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Table S1. Carbonate chemistry parameters for each experimental run, including sea 
surface parameters at the time of collection, measurements of treatment water at the time 
of incubation for respirometry, and average conditions (from water samples taken every 
other day) over the entire experimental run. Each letter represents a single collection and 
letter and number pair an experimental run.  
 

 

Experimental	
Group	

pH	Before	
Filling	

pH	After	
Filling	

[CO3
2-]	(µmol/kgSW)	
Before	Filling	

[CO3
2-]	(µmol/kgSW)	
After	Filling	

C1	 7.59	 7.59	 56.70	 57.48	
C2	 8.15	 8.16	 178.25	 181.04	
D1	 7.73	 7.76	 77.22	 82.20	
D2	 8.28	 8.27	 224.53	 219.26	
E1	 7.57	 7.61	 54.61	 58.95	
E2	 7.74	 7.76	 78.39	 81.72	
F1	 7.98	 7.96	 119.28	 116.13	
F2	 8.28	 8.28	 223.34	 225.10	
G1	 7.69	 7.74	 67.17	 74.73	
G2	 8.00	 8.00	 129.08	 129.27	
H1	 7.58	 7.60	 54.90	 56.49	

 
 

Table S2. During respirometry incubations, individual foraminifera were maintained in 
treatment water without a fluorescent calcein label. Treatment water was filtered from 
0.6µm to 0.2µm for this purpose and to account for any change in chemistry as a result of 
the filtration, pH (total scale) was measured before and after the vials were filled.  

 

Experiment	
Run	

Surface	Conditions	at	
Collection	

	

Conditions	during	
Incubation	for	Oxygen	

Consumption	
	

Average	Conditions	for	Entire	
Experiment	

	

	 pHT [CO3
2-] 

(µmol kg-1) 
 

ΩCa 
 

pHT [CO3
2-] 

(µmol kg-1) 
 

ΩCa 
 

pHT [CO3
2-] 

(µmol kg-1) 
 

ΩCa 
 

Salinity 
(psu) 

C1	 8.08	 132.55	 3.47	 7.59	 57.09	 1.31	 7.56	 53.8	 1.39	 32.5	
C2	 8.08	 132.55	 3.47	 8.15	 179.65	 4.40	 8.16	 180.97	 4.36	 32.5	
D1	 8.18	 174.23	 4.34	 7.75	 79.71	 1.82	 7.72	 75.08	 1.93	 32.98	
D2	 8.18	 174.23	 4.34	 8.27	 221.89	 5.30	 8.27	 219.18	 5.36	 32.98	
E1	 8.14	 165.08	 4.01	 7.53	 49.76	 1.21	 7.59	 56.78	 1.38	 32.54	
E2	 8.14	 165.08	 4.01	 7.75	 80.06	 1.68	 7.69	 69.24	 1.94	 32.54	
F1	 8.05	 139.28	 3.38	 7.97	 117.70	 2.90	 7.96	 119.6	 2.86	 32.46	
F2	 8.05	 139.28	 3.38	 8.28	 224.22	 5.40	 8.28	 222.58	 5.44	 32.46	
G1	 8.05	 141.73	 3.42	 7.72	 70.95	 1.56	 7.66	 64.03	 1.72	 32.19	
G2	 8.05	 141.73	 3.42	 8.00	 129.18	 3.04	 7.98	 125.19	 3.14	 32.19	
H1	 8.04	 137.87	 3.30	 7.59	 55.69	 1.18	 7.52	 48.47	 1.35	 32.54	
	



 
	
Fig	S1.	Individual	foraminifera	pixel	intensity	shows	calcite	added	for	single	shells.	
Reduced calcification under low pH or [CO3

2-] has previously been described for 
foraminifera in culture (1-3), in plankton tows (4), and in the fossil record (5, 6), and is 
generally assessed by a ratio of weight to size. The application of this methodology to 
foraminifera is novel, allowing for a semi-quantitative documentation of only the amount 
of calcite grown under known (culture) conditions. This is a useful approach in assessing 
calcification of individuals that did not add a new chamber under culture conditions. 
 
 

	
	
Fig.	S2	Aerobic metabolism was assessed as the rate of oxygen consumption relative to 
background respiration in filtered seawater and normalized to shell length (pmol O2 
foram-1 hr-1 µm-1). Individual	foraminifera	showed	a	large	degree	of	inter-individual	
variability	in	respiration	rates.	The cause of this variability is indicative of differing 
physiologic states across individual shells, not captured by quantitative or qualitative 
metrics of health or life history. Such internal processes must play an important and as of 
yet undefined role in foraminiferal oxygen consumption. The pink shaded region 
represents results indistinguishable from background.	
 



 
 
 

 
 
 
Fig S3. Oxygen consumption rates (nmol O2 foram-1 hr-1) across pH treatments, sized 
according to the longest shell dimension. Shell length has been shown to relate to 
biomass in both planktic (7) and benthic foraminifera (8, 9) and with protein biomass in 
planktic foraminifera (10), and as such, maximum shell length from post-respirometry 
observations was used to normalize oxygen consumption rates to account for variation 
associated with approximate biomass (pmol O2 foram-1 hr-1 µm-1). Here, un-normalized 
oxygen consumption rates (nmol O2 foram-1 hr-1 µm-1) are shown, sized according to the 
longest shell dimension.  
 
	
 
 
 
	



	
	
	
Fig. S4 The relationship between oxygen consumption and other observed traits in G. 
bulloides relative to [CO3

2-]. (A) Individuals that added a new chamber during their 
respirometry incubation are highlighted in orange. (B) Individuals that were able to feed 
the day following respirometry incubation (thus both healthy and not pre-gametogenic) 
are highlighted in orange. (C) Individuals with an extensive spine array at the time of 
incubation are highlighted in lighter blue. (D) The number of total days in culture before 
death or gametogenesis, with individuals having longer culture lifespans in lighter blue.  
 
 
Water Chemistry 

Water for each treatment condition was prepared ahead of collection. Individual G. 

bulloides were immediately isolated from plankton tows and randomly assigned to a 

target pH treatment (pH ~ 7.5, 7.7, 8.0, or 8.3) prior to the initiation of experiments. 

Limited abundance in tow material prevented all four treatments from being run 



simultaneously. Consequently, the experimental conditions were replicated in non-

repeating pairs until all four targets had been run at least twice. At the start of each 

experiment, foraminifera were placed directly into 25 mL vials, sealed without 

headspace, and filled with treatment water filtered to 0.6 um	containing fluorescent 

calcein dye. A regression of measured conditions was used in most analyses, through, to 

assess such categorical traits (i.e. spine regrowth, chamber addition), the proportion of 

individuals with a trait are reported relative to the measured average condition within 

each of four pH groups, averaging pHT 7.54 (SE +/- 0.02), 7.69 (SE +/- 0.01), 8.02 (SE 

+/- 0.02) and 8.27 (SE +/- 0.01), respectively. 

 

To monitor carbonate chemistry conditions throughout each run, a new container of 

treatment water was opened for each water change and measurements of pHT and total 

alkalinity were performed both upon opening and after filling vials. pHT was measured 

using a spectrophotometric method based on m-cresol purple (10) (UV-1800 UV-VIS 

spectrophotometer, Shimadzu Corp., Kyoto, Japan) (+/- 0.03 pHT). Total alkalinity was 

measured using an automated, open-cell potentiometric titration (12) with a Metrohm 809 

Titrando titrator and a Metrohm 6.0262.100 pH probe (Metrohm AG, Herisau, 

Switzerland) (+/- 4.2 umol/L). Titrations were performed using a titrant of 0.025N HCl in 

a matrix of NaCl (33.5 PSU) and were standardized using certified references materials 

from A. Dickson laboratory (Scripps Institute of Oceanography). Temperature, salinity, 

pHT, and total alkalinity were used to calculate the complete suite of carbonate chemistry 

parameters for each water change, using CO2CALC (13), with CO2 constants K1, K2 

(14) and pHT (mol kg-SW-1).  



 

Defining Foraminiferal Life Stage 

We used established understandings of foraminiferal life history to guide our 

observations. This included the important observation that the planktic foraminiferal life 

cycle ends in sexual reproduction and the release of gametes, with the parent cytoplasm 

being nearly or entirely consumed or converted in the process (15). Individuals were 

photographed every other day in culture and observed every day for the presence and 

robustness of spines, extended rhizopodia, cytoplasm color, and the degree to which 

cytoplasm filled the youngest chambers. Individual G. bulloides generally completed 

their life cycle within 3-10 days of collection. 1-2 days prior to gametogenesis, G. 

bulloides began to show “pre-gametogenic” characteristics, including change of 

cytoplasm color from brown/gold to white, rhizopodial shortening and decreased 

“streaming”, and cessation of feeding. In some cases foraminifera died without 

completing their life cycle and “death” was defined as the inability to feed during two 

consecutive feedings accompanied by an absence of rhizopodial activity without pre-

gametogenic characteristics. Foraminifera that did not feed but appeared to be pre-

gametogenic were subject to continued observations, imaging, and water changes until 

gamete release. 

 

Incubation in Calcein 

The fluorescent compound, calcein (Sigma-Aldrich, Co., St. Louis, MO, USA), was used 

to label foraminiferal calcite grown under treatment conditions. Calcein binds to free 

calcium ions and is incorporated in calcite minerals during shell formation from seawater. 



Calcein was shown to be non-toxic to foraminifera during short (<5 week exposures) at 

concentrations <20 mg/L (16, 17) and has since been used in additional experiments e.g. 

(18, 19). All foraminifera were incubated in treatment seawater containing a final calcein 

concentration of 10 mg/L. Calcein addition was found to cause a small decrease on final 

seawater pH (< 0.02), which given the slightness of this change and consistency of 

calcein addition across treatments was not chemically corrected. When the number of 

days spent in culture, and therefore in calcein was included in initial statistical models of 

calcification relative to pH, there was no significant interaction between time and either 

carbonate chemistry parameter.  

 

Analogous uses of calcien as a quantitative or semi-quantitative measurement of calcite 

bound calcite has been undertaken by many previous authors, for example as a 

quantitative metric of coral calcification (20) or semi-quantitatively for in vitro analyses 

(21). Results here are presented as semi-quantitative, as the relationship between 

calcification and calcein uptake under these conditions in foraminiferal calcite could not 

be quantified. Our semi-quantitative analysis of bound calcien was carried out using the 

Metamorph software, by defining the limits of the foraminiferal shell from images taken 

using an epifluorescent microscope. An upper and lower threshold of brightness 

consistent across all images was defined, and then the relative brightness or intensity of 

each pixel could be determined. The measure reported, of Average Pixel Intensity, was 

the average intensity of each pixel of our image defined as shell.  

 

Predicting Changes in the ‘Rain Ratio’ 



In our estimations of foraminfieral contribution to ‘rain ratio’ changes, we used 

previously published records of foraminiferal CaCO3, total CaCO3, and POC flux below 

1000 m (Table 2), along with an approximation that each individual foraminifera contains 

on average 5 µg CaCO3 and 1 µg POC. We furthermore assumed that our calcification 

reduction results are representative of all foraminifera at pH <8.0, and that absence of 

spine repair is a reasonable measure of pre-reproductive mortality and rapid export. Thus, 

foraminifera shells would contain on average 38% less CaCO3. If a spine loss event 

occurs (we estimate this at 25% likelihood within a lifetime), 70% of foraminifera would 

fail to recover, resulting in export of POC associated with cytoplasm. We also assume no 

change in “background” mortality, such as that of thinly calcified sub-adults, for which 

remobilization of both organic and inorganic carbon likely occurs in the upper water 

column, and thus would not impact export.  
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