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Activation of arterial smoothmuscle alpha1-adrenergic receptors results in vasoconstriction, as well as a second-
ary release of nitric oxide and slow vasodilation, presumably through gap junction communication from smooth
muscle to endothelium. We hypothesized that this slow vasodilation is due to activation of eNOS through phos-
phorylation at Ser1179 and dephosphorylation at Thr495. Phosphorylation wasmeasured bywestern blot using
mouse mesenteric arteries that were cannulated and pressurized (75 mm Hg) and treated either by 1) 5 min of
phenylephrine superfusion (10−5 M) (PE5), 2) 15 min of phenylephrine (PE15), 3) 15 min phenylephrine
followed by acetylcholine (10−4 M) (PE+ACh), or 4) 20 min time control with no treatment (NT) [4–5 arteries
pooled per treatment per blot; 5 blots performed]. These treatments allowed correlation between vasomotor
changes, namely maximal constriction (PE5), slow vasodilation (PE15), and maximal dilation (PE+ACh), and
relative phosphorylation changes. Phosphorylation of eNOS at Ser1179 was increased relative to NT by more
than 2-fold at PE5 and remained similarly increased at PE15 and PE+ACh. Phosphorylation of eNOS at Thr495
was less in all treatments relative to NT, but not significantly. Treatment with L-NAME (10−4 M) or endothelial
denudation indicated that the slow dilation in response to phenylephrine was completely due to nitric oxide
synthase and was endothelial dependent. These results indicate that eNOS phosphorylation at Ser1179 occurs
before the slow dilation and is not actively involved in this vasodilation or dilation to acetylcholine, but may
play a permissive role in eNOS activation by other mechanisms. It is not yet known what mechanism is respon-
sible for Ser1179 phosphorylation with phenylephrine stimulation.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

Endothelial nitric oxide synthase (eNOS), which produces the gas
nitric oxide, is an important enzyme for cardiovascular health as it is es-
sential for maintenance of normal blood pressure (Shesely et al., 1996),
for preventing atherosclerosis (Kuhlencordt et al., 2001), for angiogen-
esis (Murohara et al., 1998; Yu et al., 2005), and for vasodilation and re-
modeling in large arteries (Brandes et al., 2000; Rudic et al., 1998). It is
activated by shear stress, hypoxia, and endothelial agonists, such as
bradykinin, estrogen, and VEGF (Sessa, 2004). Its catalytic activity is
regulated by intracellular calcium, phosphorylation, dimerization, and
interaction with other proteins (Rafikov et al., 2011). Phosphorylation
changes occur at several sites and stimulation of cultured endothelial
cells with agonists induces increased eNOS phosphorylation at Ser1179
and desphosphorylation at Thr495 (human sequence nomenclature)
(Harris et al., 2001; Rafikov et al., 2011; Sessa, 2004). Phosphorylation
at Ser1179 seems to be a critical event because in cultured endothelial
cells, alteration of Ser1179 to alanine results in decreased production
of nitric oxide (Dimmeler et al., 1999; Fulton et al., 1999; Scotland
et al., 2002), and conversion to aspartate (mimicking phosphorylation)
causes maximal enzymatic activity of the enzyme and independence

from increases in calcium concentration (Dimmeler et al., 1999). More-
over, in intact carotid arteries, transgenic alteration of amino acid 1179
from serine to alanine or adenoviral reconstitution of eNOS knockout
mice to Ala1179 impairs acetycholine-induced vasodilation (Atochin
et al., 2007; Scotland et al., 2002). It is unclear, however, how and at
what sites eNOS is phosphorylated in intact arteries in response to ago-
nists and over time and how this correlates with vasomotor responses.

Generation of nitric oxide is also stimulated in some vessels
during vasoconstriction by activation of sympathetic nerves (Boric
et al., 1999) or by the alpha1-adrenergic receptor agonist, phenylephrine
(Dora et al., 1997; Tuttle and Falcone, 2001). Dora et al. (1997) were the
first to show thatwith stimulation of hamster arterioleswith phenyleph-
rine lead to an increase in endothelial cell calcium and subsequent
generation of nitric oxide and attenuation of constriction. The rise in
endothelial cell calcium provided evidence for gap junction communica-
tion from smooth muscle to endothelial cells (myoendothelial gap junc-
tion communication), because phenylephrine is not known to have
direct effects on endothelial cells. This phenomenon has also been ob-
served in rat skeletal muscle arterioles (Tuttle and Falcone, 2001) and
in mouse mesenteric arteries (Nausch et al., 2012). In this latter study,
it was recently shown that inmousemesenteric arteries, smoothmuscle
alpha1-adrenergic receptor stimulation with phenylephrine results in
IP3-mediated release of Ca++ from the endothelial sarcoplasmic reticu-
lum, presumably due to diffusion of IP3 from smoothmuscle to endothe-
lial cells via gap junctions (Nausch et al., 2012). Others have provided
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evidence that these particular arteries havemyoendothelial gap junction
communication to support this conclusion (Dora et al., 2003; Saliez et al.,
2008). This increase in endothelial cell calcium at the myoendothelial
junction potentially stimulates eNOS, as it has recently been shown
that eNOS can reside in the myoendothelial junction in mouse arteries
(Straub et al., 2011). It is unknown whether phosphorylation of eNOS
also occurs during this process.

In this study, we sought to determine whether phenylephrine
stimulation of intact arteries results in eNOS regulation via phosphor-
ylation.We show that in intact, cannulatedmousemesenteric arteries,
phenylephrine induced eNOS Ser1179 phosphorylation within 5 min,
even as the artery reachedmaximal constriction. As the artery partial-
ly dilated in reaction to phenylephrine-induced stimulation of NOS,
there was no further increase in Ser1179 phosphorylation, nor was
there any further increase when acetylcholine was added to induce
maximal dilation, despite its NOS dependence. These data indicate
that phosphorylation of eNOS on Ser1179 does not necessarily corre-
spond to vasodilatory responses and full phosphorylation at this site
does not result in maximal dilation, but suggests that this phosphory-
lation may act permissively when other mechanisms of regulation are
activated.

2. Methods

2.1. Measurement of in vitro artery function

All experimental procedures were approved by the William & Mary
Institutional Animal Care and Use Committee and are in accordance
with the Guide for the Care and Use of Laboratory Animals (National
Research Council). Male C57BL/6 mice (~12 weeks old) were anesthe-
tized with sodium pentobarbital (Nembutal, 50 mg/kg body weight,
intra-peritoneal), the intestines were removed and euthanasia resulted
from exsanguination. The intestines along with the mesenteric arcade
were placed in cold PSS-MOPS buffer (in mM: 145 NaCl, 4.7 KCl, 2.0
CaCl2, 1.17 MgSO4, 1.2 NaH2PO4, 2.0 MOPS, 0.02 EDTA, 5.0 glucose, 2.0
pyruvate, pH 7.4). Two first order mesenteric arteries were removed
from each mouse, cannulated in separate vessel chambers (Danish Myo
Technology, Aarhus, DK) filled with PSS-MOPS, secured with nylon
suture (8‐0, S&T, Neuhausen, Switzerland), gently cleared of blood, and
pressurized to 75 mm Hg with PSS-MOPS+1% bovine serum albumin
perfusion, with no subsequent flow through the lumen. The chambers
weremounted on stages of two separate pressuremyographmicroscope
systems (Danish Myo Technology) and equilibrated at 37 °C for 30 min,
with constant superfusion (superfusate not re-circulated) before testing
functional responses. Luminal diameter was measured using a 10× ob-
jective, ccd camera, and VediView Software (Danish Myo Technology)
on one system and Ionoptix software (Milton MA) on the other system
using on-screen cursors.

After the 30 min equilibration, mounted vessels were tested in
one of 6 different protocols: 1) no treatment (NT), which consisted of
20 min of equilibration with the superfusate re-circulated (100 ml
total volume). This treatment acted as a time control in which no
drugs were added, and diameter was measured before and after equili-
bration; 2) phenylephrine treatment (10−5 M in 100 ml superfusate)
for 5 min (PE5) with diameter measured every minute; 3) phenyleph-
rine treatment (10−5 M in 100 ml superfusate) for 15 min (PE15)with
diameter measured every minute; 4) acetylcholine treatment (10−4 M
in 100 ml superfusate) for 5 min (PE+ACh) after pre-constrictionwith
10−5 M phenylephrine for 15 min. Diameter wasmeasured everymin-
ute after phenylephrine addition and subsequent acetylcholine addi-
tion. 5) Treatment with L-NAME (10−4 M, in lumen perfusate and in
superfusate) beginning during cannulation, followed by treatment
with phenylephrine and acetylcholine as in treatment #4 (L-NAME),
to determine how much of the constriction and dilation with these
drugs was due to nitric oxide synthase/s. 6) Arteries were treated
with air through the lumen for 10–15 min to destroy the endothelium,

followed by treatment with phenylephrine and acetylcholine as in
treatment #4 (Denuded), to determine how much of the constriction
and dilation to drugs was endothelial dependent. All arteries were fro-
zen immediately in liquid nitrogen (and stored at −80 °C) after each
of these treatments for western blot analysis, with the exception of
the L-NAME arteries. Maximal diameter was measured in the L-NAME
group after superfusion with Ca++-free PSS-MOPS+1 mM EGTA for
at least 15 min. In the other groups, maximal diameter was estimated
by the initial diameter upon chamber mounting when the vessel was
bathed in cold PSS-MOPS. Previous results in our laboratory have
shown this to be a close estimate given that the vessel is fully relaxed
in this state and there is no basal tone.

All groups had similar luminal diameters at the initial measurement
in cold PSS (mean±SEM: NT: 230±5 μm; PE5: 235±6 μm; PE15:
234±6 μm; PE+ACh: 242±8 μm; L-NAME: 224±12; Denuded:
232±11). In four of the groups the baseline diameter after 30 min
of equilibration at 37 °C was either not changed (PE5: 229±8 μm;
PE15: 235±7 μm), or increased slightly but significantly (pb0. 05,
paired t-test) (NT: 235±5 μm; PE+ACh: 245±8 μm), indicating an
absence of basal tone, which is consistent with our previous results
(Looft-Wilson et al., 2008). However, the L-NAME and Denuded groups
had significantly decreased (pb0.05, paired t-test) diameters after the
30 min equilibration (L-NAME: 195±11 μm; Denuded: 198±12 μm),
indicating basal nitric oxide release from the endothelium in this artery
type.

In a separate set of experiments arteries underwent one of three
treatments: 1) NT, 2) PE15, or 3) treatment with phenylephrine for
15 min in the presence of the alpha1-adrenergic receptor antagonist,
prazosin (500 nM) in the superfusate beginning at the 30 min equilibra-
tion (Prazosin). These experiments were performed to confirm that
the constriction to phenylephrine was entirely dependent on alpha1-
adrenergic receptor stimulation. These arteries had similar initial diam-
eters (NT: 256±24; PE15: 238±15; Prazosin: 241±7) with no change
after 30 min of equilibration (NT: 260±22; PE15: 241±14; Prazosin:
245±6).

In a preliminary set of experiments, arteries were treated with in-
creasing doses of phenylephrine (10−9 M–10−4 M) in a cumulative
manner, with 5 min allowed after each dose for equilibration. These ex-
perimentswere performed to determine the dose of phenylephrine that
produces the maximal constriction, the variability with each dose, and
the effective concentration to produce a 50% constriction (EC-50). This
curve indicated that a dose of 10−5 M phenylephrine produced a max-
imal responsewith lowvariability (SEM) (Supplementary Fig. 1), so this
dose of phenylephrine was chosen as the single treatment dose to as-
sess functional responses and eNOS phosphorylation status in the ex-
periments described above. Although this dose produces a maximal
drug response, greater constriction is still possible in this artery when
endothelium-dependent vasodilation is impaired either through denu-
dation or NOS inhibition.

Vessel diameter responses were calculated by: diameter with drug/
baseline diameter. Vessel function experiments were performed in two
arteries from each mouse, but different treatments were performed in
each of the two arteries.

2.2. Phosphorylation of eNOS in mesenteric arteries after drug treatment

Western blotting was performed to quantify the relative phosphor-
ylation of eNOS at Ser1179 and Thr495 in pooled mesenteric arteries
(4–5 arteries for a given treatment per western blot). Tissues were ho-
mogenized in 80–100 μl lysis buffer with phosphatase inhibitors
[50 mM Tris–HCl, 100 mM NaF, 15 mM Na4P2O7, 1 mM Na3VO4, 1%
Triton X-100, and 1:200 protease inhibitor cocktail solution (#P2714,
Sigma, St. Louis, MO); pH=7.6], incubated for 1 h at 4 °C, and cen-
trifuged (14,000 rpm, 10 min) to remove insoluble material. Proteins
were separated by 10% SDS-PAGE (4% stacking gel) using 25 μl of pro-
tein. Proteins were transferred to a nitrocellulose membrane and total
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protein was visualized on the membrane with ponceau-S (in some but
not all membranes). Membranes were cut in half between the 75 and
50 kDa markers, and the higher molecular weight half was immuno-
labeled first for phosphorylated eNOS, either pSer1179-eNOS (1:750;
BDBiosciences, San Jose, CA) or pThr495-eNOS (1:1000, BD Biosciences),
followed by HRP-conjugated secondary antibody (anti-mouse 1:5000,
Pierce Biotechnology, Rockford, IL), and visualized with enhanced
chemiluminescence (Pierce Biotechnology) captured on film. The mem-
brane was then stripped for 20 min (Restore Western Blot Stripping
Buffer, Thermo Scientific, Waltham, MA), and re-probed with eNOS
(1:1000, BD Biosciences) using the same procedure as with the phos-
phorylated forms.Wehave previously shown that this stripping protocol
results in negligible residual labeling of the phosphorylated form even
with long film exposure times (Looft-Wilson et al., 2008). The half of
the membrane containing the lower molecular weight proteins was la-
beled for gapdh (1:1000; Millipore, Temucula, CA) or β-actin (1:1000;
Cell Signaling Technology, Danvers, MA).

2.3. Data analysis

Statisticswere performed using Prism software (GraphPad Software,
Inc., San Diego, CA). Vessel responses were compared between groups
by two-way ANOVA with repeated measures (Bonferroni post-hoc
analysis). Protein bands were quantified by scanning the film and
determining the density of each band using Image J software (NIH). Sin-
gle bands were detected on the membranes at the appropriate sizes:
gapdh (38 kDa), pS1179eNOS (140 kDa), pT495-eNOS (140 kDa),
eNOS (140 kDa), and beta-actin (45 kDa). Phosphorylated eNOS pro-
teinwas normalized to total eNOSprotein and this ratiowas normalized
to the no treatment (No T) values in each blot to determine the relative
change in eNOS phosphorylation at each site in response to the drug
treatments, and to allow combining of different blots. Treatments
were compared by one-wayANOVA (Bonferroni post-hoc analysis). Ini-
tial diameters between groups were compared by one-way ANOVA
(Bonferroni post-hoc analysis), and comparisons of initial diameters
to baseline diameters after 30 min equilibration were compared within
each group by paired t-test. Significance was at pb0.05. The EC-50 for
phenylephrine was calculated for each vessel in the phenylephrine
cumulative dose–response trial using GraphPad Prism's sigmoidal plot
function.

3. Results

Addition of phenylephrine to mesenteric arteries caused an initial
constriction followed by a slow dilation over 15 min (Fig. 1A and B),
similar to the responses observed in mouse thoracodorsal arteries
(Straub et al., 2011). This slow dilation was dependent upon NOS acti-
vation because it was blocked by incubation with L-NAME (10−4 M),
and required the presence of the endothelium because it was eliminat-
ed by denudation. Subsequent addition of acetylcholine resulted in full
dilation that was ~50% dependent upon NOS activation as indicated by
the impaired dilation after 5 min of acetylcholine addition, and fully
dependent upon an intact endothelium as dilation was nearly elimi-
nated by denudation. The early dilation after acetylcholine addition
(1–2 min) is less dependent upon NOS as indicated by the near maxi-
mal dilation (relative to baseline diameter) in the presence of L-NAME
at these time-points. In addition,we have previously provided evidence
that this early response in these arteries is attributable to a mechanism
consistent with endothelium-dependent hyperpolarization (EDH), be-
cause it is blocked by high K+ and is not due prostacyclin and only par-
tially due to NOS (Looft-Wilson et al., 2008). We also showed in this
previous study that the artery will remain ~50% dilated for at least
30 min after acetylcholine addition and this dilation is due to NOS, as
it is completely blocked by L-NAME.When these responses were exam-
ined in terms of absolute diameter changes (Fig. 1B), it is clear that
L-NAME and denudation resulted in greater basal tone and a deeper

constriction, which is consistent with the results found by others
(Dora et al., 2000).

Arteries in the different treatment groups had similar vasomotor re-
sponses to agonists up to the time-point at which they were frozen
(Fig. 2). The corresponding eNOS phosphorylation events at the various
time-points are shown in Figs. 3 and 4 (individual western blot films
and quantifications are displayed in Supplementary Fig. 4 and the
Supplementary table). Phosphorylation of eNOS at Ser1179 relative to
total eNOS expression (Fig. 3) was significantly increased by more than
2-fold after 5 min of phenylephrine treatment, and remained similarly in-
creased after 15 min of phenylephrine treatment and after acetylcholine
addition. Even though the arteries in PE15 and PE+ACh groups were
63% and 199% more dilated, respectively, than PE5 (% dilation: PE5=
30.1±9.6%; PE15=49.1±12.8%; PE+ACh=90.1±10.1%), the relative

Fig. 1. Artery diameter responses (mean±SEM) to phenylephrine (10−5 M) superfusion
followed by acetycholine (10−4 M) without (Control) or with L-NAME (10−4 M)
(L-NAME) in the superfusate and luminal perfusate, or with denudation (Denuded).
(A) Diameter responses are represented as % of baseline diameter measured at 30 min
post-equilibration. (B) Absolute diameter values are plotted for the same vessels as in
panel A. Maximal diameters (estimated from initial diameter in cold PSS) were similar
between the groups, indicating that the L-NAME and Denuded groups had basal tone
after equilibration. * significantly (pb0.05) different from both L-NAME and Denuded.
# significantly (pb0.05) different from L-NAME. Twenty-two of the Control arteries are
the same ones depicted in the PE+ACh group in Fig. 2 and analyzed by western blot in
Figs. 3 and 4, and three of the Control arteries and three of the Denuded arteries were
analyzed by western blot in Fig. 5. Values for one of the Control arteries were estimated
at times 1–5 min based on group average due to a computer crash during these time-
points for this artery.
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phosphorylation at Ser1179-eNOS was not different. Phosphorylation of
eNOS at Thr495 (Fig. 4) showed a trend toward decreasing in all groups
relative to the control group (NT), but did not reach significance. Total
eNOS expression was not different between the groups when normal-
ized to the housekeeping gene gapdh (Supplementary Fig. 3).

When eNOS expressionwas compared between three of the Control
arteries in Fig. 1 and three of the Denuded arteries in Fig. 1, it is clear
that the majority of eNOS is expressed in the endothelium because
the eNOS signal in theDenuded groupwas only ~5% as strong as the sig-
nal in the Control group (Fig. 5). The residual signal in the Denuded
group could mean that a minor amount of eNOS is expressed in other
cell types in the vessel wall, or that denudation was not complete.
Incomplete denudation is a possibility because there aremany endothe-
lial cell projections that extend through the basal lamina to the smooth
muscle and eNOS has been indentified in these projections (Straub
et al., 2011).

4. Discussion

This study is the first to show the time-course of eNOS phosphor-
ylation with alpha1-adrenergic stimulation of smooth muscle and it
revealed some unexpected results. Because stimulation of intact ar-
teries with phenylephrine has been shown to result in both increased
endothelial cell calcium and eNOS activation, it might be assumed
that the increased calcium was responsible for the activation of eNOS,
particularly because both the increase in calcium and expression of
eNOS are found in the endothelial projections at the myoendothelial
junction inmouse thoracodorsal arteries (Straub et al., 2011). It is unex-
pected that phosphorylation of eNOS would occur as a result of phenyl-
ephrine treatment and suggests that additional communication occurs
from smooth muscle to endothelial cell either through gap junctions
or possibly via a smooth muscle autacoid that activates enzymatic pro-
cesses leading to phosphorylation of eNOS at Ser1179. There are several
enzymes known to phosphorylate eNOS at this site, including AKT1,

Fig. 4. eNOS phosphorylation at Thr495 was decreased, but not significantly, relative to
control arteries (NT) after treatment with phenylephrine (10−5 M) for 5 (PE5) or 15 min
(PE15), or treatment with PE for 15 min followed by 5 min with acetylcholine (10−4 M)
(PE+ACh). There were no differences in phosphorylation between the drug treatment
groups. Data are the mean of 5 western blots, with 4–5 arteries pooled for each treatment
in a given western blot.

Control Denuded

eNOS

10994 431

β-actin

7923 11384

eNOS/β-actin

Normalized

0.831 0.038

1.000 0.046
To Control

Fig. 5. eNOS is highly expressed in Control arteries (n=3 pooled arteries), but relative ex-
pression declines by ~95% in Denuded arteries (n=3 pooled arteries), when normalized
to the housekeeping gene, beta-actin. This indicates that eNOS expression is largely endo-
thelial. The lowermembranewas first probed for gapdh, but the signalwas tooweak, so it
was stripped and re-probed for beta-actin. Integrated density values (measured with
Image J) are shownbelow each band. The ratio of these values for eNOS/beta-actin are cal-
culated below the films, and then normalized to the Control ratio for relative comparison
between the two groups.

Fig. 2. Artery diameter responses for all vessels in each of the four treatments used to
detect eNOS phosphorylation. Each treatment group contains 22 total arteries, with
4–5 arteries used in each of the 5 western blot trials presented in Figs. 3 and 4. Arteries
were frozen immediately after the last diameter measurement in each of the four dif-
ferent treatments, which corresponds to 20 min for the NT and PE+ACh groups, 5 min
for the PE5 group and 15 min for the PE15 group (small arrows show the time-point
when arteries were frozen in a given group). Values for 1–5 min are missing for one
vessel in the PE+ACh group due to a computer crash.

Fig. 3. eNOS phosphorylation at Ser1179 increased significantly (pb0.05) relative to con-
trol arteries (NT) after treatment with phenylephrine (10−5 M) for 5 (PE5) or 15 min
(PE15), or treatment with PE for 15 min followed by 5 min with acetylcholine (10−4 M)
(PE+ACh). There were no differences in phosphorylation between the drug treatment
groups. Data are the mean of 5 western blots, with 4–5 arteries pooled for each treatment
in a given western blot.
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AMPK, PKA, and CaMKII (Chen et al., 1999; Fleming et al., 2001; Fulton
et al., 1999; Gallis et al., 1999; Harris et al., 2001; Michell et al., 2001,
1999). It is unclear which of these pathways are involved and how
they are activated by alpha1-adrenergic stimulation, but CaMKII is acti-
vated by increased intracellular calcium, so this is a possiblemechanism
(Fleming et al., 2001).

Also, unexpectedly, the vasomotor tone of the intact vessel did not
correlate with phosphorylation status of eNOS. Firstly, 5 min after
phenylephrine stimulation, the artery was at its maximal point of
constriction, yet eNOS was also at a level of Ser1179 phosphorylation
that appears to be maximal. Blockade of nitric oxide synthases or de-
nudation at this time-point did not increase the relative magnitude of
constriction (% constriction) indicating that the influence of eNOS on
vasomotor tone at this time-point is minimal. It should be noted,
however, that the absolute constriction is greater due to the increase
in basal tone with NOS inhibition and denudation, as illustrated in
Fig. 1B. Secondly, NOS and an intact endothelium were critical for
dilation that occurred from 5 to 15 min after phenylephrine stimula-
tion, and at its greatest dilation at 15 min (~50% dilation), but there
was no additional increase in eNOS phosphorylation at Ser1179. Finally,
full dilation induced by acetylcholine, which was ~50% NOS-dependent
at 5 min after stimulation, did not result in any further Ser1179 phos-
phorylation. These data indicate that artery dilation induced by either
phenylephrine or acetylcholine was not accompanied by active phos-
phorylation at Ser1179. Rather, it appears that phenylephrine stimulation
induced Ser1179 phosphorylation before the functional contribution of
eNOS and thusmayplay a permissive role in its activation by othermech-
anisms. For example, it may increase the sensitization to intracellular cal-
cium as shown in cultured endothelial cells (McCabe et al., 2000). This
study does not provide direct evidence, however, as to the mechanism
by which eNOS is ultimately activated, which may involve one or more
mechanisms.

Typically, endothelial cells stimulated by agonists have decreased
phosphorylation of eNOS on Thr495 (Fleming et al., 2001; Harris
et al., 2001). In this study, there was a trend for reduced Thr495 phos-
phorylation, but it did not reach significance. It is possible that intact
arteries have lower basal levels of Thr495 phosphorylation than cul-
tured endothelial cells, such that agonist-induced stimulation has a
negligible effect at this site, or that this site is regulated differently
in intact arteries compared to cultured endothelial cells.

This study utilized first order mesenteric arteries as a model for
several reasons. They are large enough to examine both functional re-
sponses and to provide enough tissue (even though it has to be pooled
from several arteries) for western blot analysis. It also has relatively
robust reliance on eNOS for both phenylephrine-induced dilation and
endothelium-dependent dilation (Fig. 1). In smaller mesenteric arteries
this NOS-dependence is less important and there is more reliance on
endothelium-dependent hyperpolarization (EDH) in mice (Nausch
et al., 2012) and rats (Garland and McPherson, 1992; Parsons et al.,
1994; Shimokawa et al., 1996). This is likely the reason why a recent
study by Nausch et al. (2012) found that with phenylephrine stimula-
tion, the resulting vasodilationwas not dependent uponNOS, but rather
endothelial K+ channel activation consistent with EDH mechanisms.
The first order mesenteric arteries do rely on mechanisms consistent
with EDH for the intial dilation to acetycholine (Looft-Wilson et al.,
2008), but all the slow dilation secondary to phenylephrine stimulation
appears to be NOS-dependent as shown in Fig. 1.

The final reason for using this model is that examination of
phenylephrine-induced responses in this vessel is of physiological
importance. The mesenteric vascular bed is highly innervated by sym-
pathetic nerves and contributes significantly to vascular resistance in
rodents (Christensen and Mulvany, 1993; Long and Segal, 2009). Thus,
it is likely that vasodilatory mechanisms will occur in the presence
of some degree of underlying sympathetic tone. Moreover, it has
been shown in mouse mesenteric arteries that the norepinephrine re-
leased from the sympathetic varicosities is the primary sympathetic

neurotransmitter responsible for the slow dilation that occurs in
response to sympathetic nerve stimulation, and that the alpha1-
adrenergic receptors are the adrenergic receptors involved (Nausch
et al., 2012).We confirmed in this study that constriction to phenyleph-
rine is completely blocked by the alpha1-adrenergeric receptor blocker
prazosin (Supplementary Fig. 2). Therefore, phenylephrine stimulation
of the intact artery, as performed in this study, is a legitimate way to
mimic the effects of nerve stimulation in vitro in a targeted way.

A possible limitation of using phenylephrine superfusion to mimic
the effects of norepinephrine release from sympathetic nerves is that
the phenylephrine likely diffuses to the endothelial cells and could
interact with receptors on these cells if present. This is unlikely, howev-
er, because at least in hamster arterioles, there are no alpha-adrenergic
receptors expressed in endothelial cells and these vessels respond to
phenylephrine treatment in a similar way as mesenteric arteries, with
an increase in endothelial intracellular calcium (Jackson et al., 2008).
Moreover, in mouse mesenteric arteries it has been shown that
picospritzing phenylephrine onto the endothelium (such that it does
not interactwith the smoothmuscle) does not result in increased endo-
thelial cell calcium (Nausch et al., 2012). Thus, it is very unlikely that the
artery responses are due to phenylephrine action on endothelial cells.

5. Conclusions

In summary, this study shows for the first time the correlation
between intact artery vasomotor tone and the time-course of eNOS
phosphorylation at Ser1179 and Thr495 during alpha1-adrenergic re-
ceptor stimulation and endothelium-dependent vasodilation. The sig-
nificant increase in Ser1179 phosphorylation occurred shortly after
phenylephrine stimulation and remained at the same level over many
minutes of phenylephrine stimulation and acteylcholine stimulation,
despite changes in vasomotor tone. These data suggest that the phos-
phorylation at this site is not controlling the NOS-dependent effect on
vasomotor tone, but may be acting permissively to enhance eNOS stim-
ulation by other mechanisms.
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