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For two n-by-n matrices, A, B, the product field of values is the set

P(A, B) = {〈Ax, x〉〈Bx, x〉 : x ∈ C
n, ‖x‖ = 1}. In this paper, we

establish basic properties of the product field of values. The main

results are a proof that the product field is a simply connected subset

of the complexplane anda characterizationofmatrix pairs forwhich

the product field has nonempty interior.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

Let Mn(C) denote the set of complex n-by-n matrices and suppose A, B ∈ Mn(C). Recall that the
classical field of values (also known as the numerical range) of thematrix A is the subset of the complex

plane defined by

F(A) = {〈Ax, x〉 : x ∈ C
n, ‖x‖ = 1}.

This is a compact, convex set for each A [5].

The class of generalizations to two matrices given by

Qk,l(A, B) = {〈Ax, x〉k〈Bx, x〉l : x ∈ C
n, ‖x‖ = 1},
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in which k and l are integers was first considered in [2]; we assume that 0 /∈ F(A) (0 /∈ F(B)) if k < 0

(respectively, l < 0).

A connected subset� of the complex plane is said to be ray convex if for each z /∈ �, there is a ray

anchored at z that does not intersect�. Note that ray convexity implies simple connectivity (so long as

the set in question is connected), but not conversely.Motivated by a numerical application [7], the ratio

field of values R(A, B) = Q−1,1 was studied in [2,9]. In particular, it was shown in [2] that the ratio field,

while seldom convex, is always ray convex (and therefore simply connected), while according to [9]

the simple connectedness fails if the condition 0 /∈ F(B) dropped. Also [2], Qk;l(A; B) is not generally
simply connected whenever |k| + |ll > 2. The remaining case k = l = 1 was left unresolved.

Here we consider this case. It is natural to call Q1,1(A, B) the product field of values, and thus to

denote it P(A, B). We show below that the product field is also ray convex (and not generally convex),

completing a classification of the Qk,l ’s with respect to simple connectivity, ray convexity, and con-

vexity. Interestingly, the product field lacks certain structural characteristics that supported the proof

of ray convexity in the ratio field case. As a result, the product field requires more topological and

analytical considerations.

We will begin with a discussion on the basic properties of the product field, followed by a compar-

ison of P(A, B) and R(A, B). Next, we will prove that the product field is ray convex and consequently

simply connected. We followwith a description of the product field in certain special cases. In Section

5 we characterize the matrix pairs for which the product field has empty interior. An Appendix A with

images of several example product fields of values is included at the end (Figs. 1–7). These images

were computed numerically using MATLAB. As shown in Appendix A, the product field of values of

two matrices can take on a wide variety of shapes and nonconvex product fields are typical.

2. Basic properties

This section is primarily concerned with the immediate observations about the product field. Af-

terwards, we will highlight significant differences between the product field and the ratio field.

Proposition 1. Suppose A and B are complex n × n matrices and P(A, B) is their associated product field

of values.

(1) (Compactness) P(A, B) is a compact subset of C.

(2) (Connectedness) P(A, B) is a connected subset of C.

(3) (Homogeneity) P(αA, βB) = αβP(A, B) for complex numbers α and β .
(4) (Symmetry) P(A, B) = P(B, A).
(5) (Subadditivity) P(A1 + A2, B) ⊂ P(A1, B)+ P(A2, B).
(6) If U ∈ Un(C), then P(U∗AU,U∗BU) = P(A, B) (Un(C) is the group of n × n unitary matrices).
(7) P(A, B) ⊂ F(A)F(B) where F(A) (F(B)) is the field of values for A (B).
(8)

⋃
U∈Un(C) P(A,U

∗BU) = F(A)F(B).
(9) P(A, B) is symmetric with respect to the real axis if the entries of A and B are real.

(10) If A and B are both Hermitian or both skew-Hermitian, then P(A, B) is a compact interval on the real

axis.

(11) If A is Hermitian and B is skew-Hermitian (or vice-versa), then P(A, B) is a compact interval on the

imaginary axis.

Proof. Let CSn denote the complex unit n-sphere CSn = {x ∈ C
n : ||x|| = 1}. Note that CSn is

topologically equivalent to S2n−1. The function f : CSn → C,

f (x) = 〈Ax, x〉〈Bx, x〉

is continuousand f (CSn) = P(A, B). Thismeans thatP(A, B) is compact andconnected, proving (1) and

(2). Homogeneity, symmetry, subadditivity and (7) are immediate from set theoretic considerations.
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For (6), observe that

P(U∗AU,U∗BU) = f (U(CSn)).

Since U is a bijection of CSn onto itself, f (U(CSn)) = f (CSn) = P(A, B). Next we will show (8).

Consider z ∈ F(A)F(B), say

z = 〈Ax, x〉〈By, y〉
for some x, y ∈ CSn. Since Un(C) acts transitively on CSn, there is a unitary matrix U so that Ux = y.

This means that

〈Ax, x〉〈By, y〉 = 〈Ax, x〉〈U∗BUx, x〉,
and therefore z ∈ F(A)F(B) if and only if z ∈ ⋃

U∈Un(C) P(A,U
∗BU), as required.

Now we will prove (9). Suppose that the entries of A and B are real. Then Ā = A, B̄ = B, and

(〈Ax, x〉〈Bx, x〉)∗ = 〈Āx̄, x̄〉〈B̄x̄, x̄〉 = 〈Ay, y〉〈By, y〉,
where y = x̄ ∈ CSn.

For (10), observe that

(〈Ax, x〉〈Bx, x〉)∗ = 〈±Ax, x〉〈±Bx, x〉 = 〈Ax, x〉〈Bx, x〉,
if A and B are Hermitian (respectively, skew-Hermitian). This means that P(A, B) ⊂ R. Likewise for

(11),

(〈Ax, x〉〈Bx, x〉)∗ = 〈±Ax, x〉〈∓Bx, x〉 = −〈Ax, x〉〈Bx, x〉,
if A is Hermitian and B is shew Hermitian (respectively, A is skew-Hermitian and B is Hermitian). This

means that P(A, B) ⊂ iR (iR = {ix : x ∈ R}). �

There are two noteworthy differences between the product field of values P(A, B) and the ratio

field of values R(A, B) (whenever we talk about R(A, B), it is always assumed that 0 is not in F(B)). For
P(A, B), we may assume that B is upper triangular by property (6) in the previous proposition (every

matrix B ∈ Mn(C) is unitarily similar to a triangular matrix, see [4]). However, R(A, B) satisfies a

property stronger than (6). If C ∈ GLn(C), then [2]

R(C∗AC, C∗BC) = R(A, B).

Since any square matrix B with 0 /∈ F(B) is congruent to a diagonal matrix [6], we may assume that B

is diagonal. In particular, this property greatly simplifies the study of the ratio field in the 2 × 2 case.

The second notable difference between P(A, B) and R(A, B) is translatability. For the ratio field [2],

R(A + βB, B) = R(A, B)+ β,

with β ∈ C. This means that if the ratio field is translated in the complex plane, the resulting set

is a ratio field for some different pair of matrices. This property is key for the proof that R(A, B) is
simply connected in [2]. This proof can be summarized as follows. Take an α not in R(A, B), it is

sufficient to show that there is a ray emanating from α not intersecting R(A, B). Translate the ratio

field so that α becomes the origin. Finally, use convexity of the regular field of values and the estimate
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R(A, B) ⊂ F(A)/F(B) to produce a ray not intersecting F(A)/F(B) to complete the proof. However,

it is not immediately clear that translation of the product field P(A, B) results in a product field of a

different pair of matrices. This means we cannot adapt a proof that P(A, B) is simply connected from

that of R(A, B).

3. Simple connectivity of the product field of values

First, let us discuss the relationship between ray convexity and simple connectivity.

Definition 1. A connected set� in the complex plane is ray convex if for each α not in� there is a ray

emanating from α not intersecting �. If such a ray exists, it is called an escape ray for α with respect

to�.

Observe that � is ray convex if and only if its complement with respect to the extended plane

C ∪ {∞} is star shaped at ∞. In particular, the complement of�with respect to the extended plane

is connected. This means that� is simply connected. However, the converse is not true. Consider the

spiral

S = {z = θeiθ : θ ∈ R, θ > 0}.
This set is simply connected, but not ray convex. In fact, no point outside of S has an escape ray with

respect to S.

Theorem 1. For A, B ∈ Mn(C), P(A, B) is ray convex and therefore simply convex.

As in the previous section, let f : CSn → C be the function

f (x) = 〈Ax, x〉〈Bx, x〉. (1)

Fix a point α not in P(A, B) and let gα : CSn → R be the map

gα(x) = Im

(∫
f (γ )

dz

z − α

)
,

where γ : [0, 1] → CSn is any smooth path from x0 to x in CSn. To check that this is well defined,

suppose γ1 and γ2 are two such paths and g1α (g2α) is the function gα determined by the curve γ1 (γ2).
Consider the cycle � = γ1 − γ2

�(t) =
{
γ1(2t) 0 � t � 1/2,

γ2(1 − 2t) 1/2 � t � 1.

Since α is not in the image of f we may consider the winding number of f (�)with respect to α:

n(f (�), α) = 1

2π i

∫
f (�)

dz

z − α
= 1

2π i

(∫
f (γ1)

dz

z − α
−

∫
f (γ2)

dz

z − α

)
= 1

2π i
(g1α − g2α).

Recall that a curve is contractible in a topological space if it can be continuously deformed to a single

point in that space.

Lemma 1. If γ is a closed curve in CSn, then f (γ ) is a contractible closed curve in P(A, B)

Proof. Since f is a continuous function from CSn to P(A, B), it induces a homomorphism
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f∗ : π1(CSn) → π1(P(A, B)).

Since π1(CSn) is trivial, f∗ is the trivial homomorphism. Therefore f∗(π1(CSn)) is trivial, proving the

lemma. �

By the previous lemma, f (�) is a contractible curve in P(A, B), so n(�(f ), α) necessarily vanishes

and g1α = g2α . This proves that gα is well defined.

Lemma 2. The following are equivalent:

(1) The product field of values P(A, B) is ray convex.

(2) For each x1 and x2 in CSn and each α not in P(A, B),

|gα(x2)− gα(x1)| < 2π.

(3) For each pair of orthonormal vectors x1 and x2 in CSn, any point α not in P(A, B) has an escape ray

with respect to the curve � : [0, 2π ] → C

�(t) = f (x1 cos t + x2 sin t).

Proof. Suppose (2) is true. Fix α not in P(A, B). Then a ray R whose angle is not in gα(CSn) (but is
within 2π of any point in this set) is an escape ray for α. This proves that P(A, B) is ray convex.

Now suppose (1) is true, and R is an escape ray for α with respect to P(A, B). Since each curve γ (t)
defined in (3) lies entirely in P(A, B), R is an escape ray for α with respect to �(t). Thus (1) implies (3).

Finally, we will show that (3) implies (2). Suppose x1 and x2 are in CSn and α is not in P(A, B). If x1
and x2 are linearly dependent, say x2 = eiθ x1 for some real number θ , then f (x1) = f (x2) (this is an
easy calculation). This means we can assume that x1 and x2 are linearly independent. Now set y1 = x1
and

y2 = x2 − 〈x1, x2〉 x1
‖x2 − 〈x1, x2〉 x1‖ .

So {y1, y2} is an orthonormal basis for the linear span of x1 and x2. Consider the curve

�(t) = f (y1 cos t + y2 sin t).

From (3), the point α has an escape ray with respect to �, so

gα(y1 cos t + y2 sin t)

is an interval of length less than 2π . Since x1 and x2 lie on y1 cos t + y2 sin t (this curve is a parame-

trization of the circle which is precisely CSn ∩ span{x1, x2}), x1 and x2 satisfy the inequality in (2), as

required. �

Now we will prove that P(A, B) is ray convex by demonstrating (3) in the above Lemma.

Proof of Theorem 1. Suppose α is not in P(A, B) and x1 and x2 are orthonormal vectors in CSn. Let

� be the function defined in Lemma 2 part (3). Applying the translation z 
→ z − α takes �(t) to
�0(t) = �(t)− α and α to the origin. The curve �0 can be written as

�0(t) = β1 cos
4(t)+β2 cos3(t) sin(t)+β3 cos2(t) sin2(t)+β4 cos(t) sin3(t)+β5 sin4(t), (2)
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where the coefficients βi are complex numbers (to see this, explicitly compute f (x1 cos t + x2 sin t)
and apply the translation by α using the relationship 1 = (cos2 t + sin2 t)2). Note that β1 and β5 in (2)

must be nonzero, otherwise the curve passes through the origin (remember that n(�0, α) = 0). By

the fundamental theorem of algebra, we may factor �0(t) into linear factors

c(cos t+b1 sin t)(cos t+b2 sin t)(cos t+b3 sin t)(cos t+b4 sin t) = cγ1(t)γ2(t)γ3(t)γ4(t). (3)

We will now digress into the geometry of these linear factors. It is well known that a curve of the

form

c(t) = cos t + k sin t

for some complex number k is an ellipse centered at the origin (when Im k = 0, this curve is just a

line segment from −1 to 1). Thus n(c, 0) = sign(Im k) assuming Im k �= 0.

The following lemma shows that the product of two such linear factors is also an ellipse (so long as

neither factor is a line segment).

Lemma 3. Suppose k1 and k2 are complex numbers. Then the curve

c2(t) = (cos t + k1 sin t)(cos t + k2 sin t), 0 � t � 2π

is an ellipse (so long as it does not degenerate).

Proof. By an appropriate affine transformation, c2 turns into c̃2(t) = cos2 t + k3 cos t sin t. Now the

curve

t 
→ cos2 t + i cos t sin t

is a circle (in fact, it is the circle of radius 1/2 centered at 1/2). The linear transformation onR
2 ∼= C that

takes theorderedbasis {1, i} to {1, k3}will take this circle to c̃2, so it is anellipse (linear transformations

take ellipses to ellipses). �

Nowwewill return to the proof of Theorem 1. Each bi in Eq. (3) has a nonvansihing imaginary part.

Indeed, suppose that Im bi = 0 for some i = 1, 2, 3, 4. Then the curve γi passes through the origin,

so �0 also passes through the origin, a contradiction. Next, observe that n(γi, 0) = sign(Im bi) and

n(�0, 0) =
4∑

i=1

n(γi, 0) =
4∑

i=1

sign(Im bi).

The above expression is necessarily 0; this only happenswhen exactly two bi’s have positive imaginary

parts and two have negative imaginary parts. After reordering the factors, suppose b1 and b2 have

positive imaginary parts and b3 and b4 have negative imaginary parts. Then

n(γ1γ3, 0) = n(γ1, 0)+ n(γ3, 0) = 0.

So γ1γ3 is an ellipse contained in some open half plane H1. Likewise, γ2γ4 is an ellipse contained in

an open half plane H2. Therefore, the curve �0 is contained in the set

H = H1H2 = {z1z2 : z1 ∈ H1, z2 ∈ H2}.
The set H is contained in C\R where R is a ray emanating from the origin determined by the sets H1

and H2. This ray R is an escape ray for the origin with respect to the curve �0, as required. �
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We conclude with a remark on the above proof. Let A be a n × n matrix with complex entries.

The classical field is the image of the function ψ1 : CSn → C, ψ1(x) = 〈Ax, x〉. If ψ2 is the function

ψ2(x) = 〈Bx, x〉, then P(A, B) is the image of the functionψ1ψ2,which is simply connected. This raises

the following question: if two functions from CSn to C individually produce convex sets, does their

product produce a simply connected set? If this is true, the simple connectivity of P(A, B)would be an

immediate consequence. However, this is not the case;wewill construct two such functions as follows.

There is a continuous map π from CSn whose image is [0, 1]. Let a and b be two complex numbers

that are linearly independent when regarded as elements of R
2 ∼= C. Define ϕ1, ϕ2 : [0, 1] → C by

ϕ1(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 − 4t 0 � t < 1
4

0 1
4

� t < 1
2

4t − 2 1
2

� t < 3
4

1 3
4

� t � 1

, ϕ2(t) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

a 0 � t < 1
4

4a
(
t − 1

4

)
+ 4b

(
1
2

− t
)

1
4

� t < 1
2

b 1
2

� t < 3
4

4b
(
t − 3

4

)
+ 4a(1 − t) 3

4
� t � 1

.

So�1 = ϕ1π and�2 = ϕ2π are continuous functions on CSn. The image of�1 is the interval [0, 1]
and the image of�2 is the line segment joining a and b, both ofwhich are convex. However, the product

�1�2 produces the triangle with vertices 0, a, b which is obviously not simply connected.

4. Explicit descriptions of the product field in special cases

The simplest situation occurs when one of the matrices A, B is a scalar multiple of the identity

matrix I. Then apparently P(A, B) = F(C), where

C =
{
λB if A = λI,

λA if B = λI.

So, in this (trivial) case all possible shapes of product fields are exactly the same as those of the fields of

values for matrices of the same size. Note that a complete description of those was obtained recently

in [3].

The next in complexity case is when the triple A, B, I is linearly dependent. Without loss of gener-

ality, let

B = λA + μI, (4)

where λ �= 0 (λ = 0 being covered by the preceding observation).

Proposition 2. Under condition (4),

P(A, B) = λF(C)2 − μ2

4λ
.

Here C = A + μ
2λ

I, and we use the convention Z2 = {z2 : z ∈ Z} for subsets Z ⊂ C.

Proof. Directly from the definition of the product field and (4) we see that

P(A, B) = {〈Ax, x〉〈Bx, x〉 : ‖x‖ = 1}
= {〈Ax, x〉(λ〈Ax, x〉 + μ) : ‖x‖ = 1} = {z(λz + μ) : z ∈ F(A)}
=

{
λ

(
z + μ

2λ

)2

− μ2

4λ
: z ∈ F(A)

}
=

{
λζ 2 − μ2

4λ
: ζ ∈ F(C)

}
. �

Consequently, all possible shapes of P(A, B) in the setting of Proposition2 are affine transformations

of (point-wise) squares of classical fields of values.
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Suppose that A is a linear combination of I and a Hermitian matrix, but not a scalar multiple of the

identity:

A = α1I + α2H with α2 �= 0, H = H∗ /∈ CI.

Then (4) implies a similar representation for B:

B = β1I + β2H, β2 �= 0.

The computation from the proof of Proposition 2 reveals that then

P(A, B) = α2β2

(
F(H)+ α1β2 + α2β1

2α2β2

)2

+ α1β1 − (α1β2 + α2β1)
2

4α2β2
.

Since F(H) is a line segment, we immediately obtain:

Corollary 1. Let A and B both be linear combinations of a Hermitian matrix H and the identity. Then

P(A, B) is a parabolic arc, possibly degenerating into a line segment.

In the next statement, we list some other cases in which P(A, B) is a line segment.

Proposition 3. Suppose that either (i) one of the matrices A, B is a scalar multiple of the conjugate

transposed of the other, or (ii) both A and B are scalar multiples of Hermitian matrices. Then P(A, B) is a
closed subinterval of a line passing through the origin.

Proof. (i) If say B = λA∗, then

P(A, B) = {〈Ax, x〉〈λA∗x, x〉 : ‖x‖ = 1} = λ{|z|2 : z ∈ F(A)}.
But {|z|2 : z ∈ F(A)} is a closed interval in R+, due to the convexity of the field of values.

(ii) If A = αH1, B = βH2, with H1,H2 being Hermitian, then P(A, B) ⊂ αβR. Since P(A, B) is
closed, bounded and connected, it is therefore a closed subinterval of the line αβR. �

For n = 2, condition (4) holds (possibly after switching A with B) if and only if A and B commute.

So, for two commuting 2-by-2 matrices A, B the product field P(A, B) is either a parabolic arc or an

affine image of the square of an elliptical disk (see Figs. 4 and 7 in Appendix A). Note that already in

this setting the product field may fail to be convex.

5. Empty interior

The main result of this section is the criterion for the interior of P(A, B) to be empty.

Theorem 2. The interior of the product field of values P(A, B) is empty if and only if one of the following

(overlapping) conditions holds:

(i) A and B are scalar multiples of Hermitian matrices,

(ii) A and B are linear combinations of the identity matrix and some Hermitian matrix:

A = α1I + α2H, B = β1I + β2H, (5)

(iii) one of the matrices A, B is a scalar multiple of the conjugate transposed of the other.
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Sufficiency is of course a direct consequence of Corollary 1 and Proposition 3. Moreover, as soon

as the necessity in Theorem 2 has been established, the description of all possible shapes of P(A, B)
follows immediately.

Corollary 2. For A, B ∈ Mn(C), if P(A, B) has empty interior, then P(A, B) is either a point, a line segment,

or a parabolic arc.

Before proving necessity, we establish a number of auxiliary results in the case n = 2.

In what follows, we treat C as a real inner product space, with inner product 〈z1, z2〉 = Re(z1z̄2).
Note that two complex numbers z1 and z2 are orthogonal if and only if 〈z1, z2〉 = 0. Two complex

numbers are real linearly dependent if and only if 〈z1, iz2〉 = 0 or equivalently Im(z1z̄2) = 0.

Lemma 4. Let A = [aij] and B = [bij] be 2-by-2 matrices with complex entries. Assume neither matrix

is normal. If P(A, B) has empty interior, then there is a unitary U such that UAU∗ and UBU∗ both have

constant diagonal.

Proof. Suppose that no such U exists. We may assume without loss of generality that a11 = a22

but b11 �= b22. Let x = x(θ) =
⎡
⎣ cos(θ/2)

ω sin(θ/2)

⎤
⎦ where ω ∈ C, |ω| = 1. The expression p(θ) =

(x(θ)∗Ax(θ))(x(θ)∗Bx(θ)) is a second degree trigonometric polynomial with complex coefficients of

the form:

p(θ) = α0 + α1 cos θ + β1 sin θ + α2 cos 2θ + β2 sin 2θ.

Expanding the polynomial, we compute:

α2 = −1

2

(
a12ω + a21ω̄

2

) (
b12ω + b21ω̄

2

)
, and β2 = 1

2

(
a12ω + a21ω̄

2

) (
b11 − b22

2

)
.

Since B is not normal,
(
b12ω+b21ω̄

2

)
and

(
b11−b22

2

)
must be real linearly independent for someω. When

α2 and β2 are real linearly independent, it follows from the proof of [8, Theorem 1] that p(θ) is a

closed curve with at most finitely many self-intersections (that is, points θ1 �= θ2 such that p(θ1) =
p(θ2)). The proof given in [8] is for polynomials in eiθ but essentially the same argument applies

to trigonometric polynomials with complex coefficients. Since a continuous closed curve with only

finitely many self-intersections must enclose a nonempty subset of C and since the range of p(θ) is
contained in P(A, B), it follows that P(A, B) has nonempty interior. �

Lemma 5. Let� ∈ C[X, Y] be the polynomial

�(X, Y) = c0 + c1X + c2Y + c3X
2 + c4XY + c5Y

2,

and assume that c1, c2, and c4 are not zero. If the image of an open domain D ⊂ R
2 under � has empty

interior inC, then c1X+c2Y factors asα(s1X+s2Y)whereα ∈ C and s1, s2 ∈ R and one of the following

conditions is also true.

(1) c3X
2 + c4XY + c5Y

2 factors as β(s1X + s2Y)
2, β ∈ C.

(2) c3 = s3α, c4 = s4α, and c5 = s5α where each si ∈ R.
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Proof. We calculate the Jacobian determinant

D� =
∣∣∣∣∣∣
∂ Re�(X,Y)

∂X
∂ Re�(X,Y)

∂Y
∂ Im�(X,Y)

∂X
∂ Im�(X,Y)

∂Y

∣∣∣∣∣∣ .

The constant term of the Jacobian determinant is Im c2 Re c1 − Im c1 Re c2 = 2 Im(c2c̄1). If �(D)
has empty interior, then the Jacobian determinant is identically zero, so Im c2c̄1 = 0. Therefore c2
and c1 are real linearly dependent. The coefficient of the X2 term of the Jacobian determinant is

2(Im c4 Re c3 − Im c3 Re c4) = 4 Im c4c̄3. The Y
2 coefficient is 2(Im c5 Re c4 − Im c4 Re c5) = 4 Im c5c̄4.

Thus, if �(D) has empty interior, c4 and c5 must be real linearly dependent, as are c4 and c3. This

proves that there exist s1, s2, s3, s4, s5 ∈ R such that c1 = αs1, c2 = αs2 and c3 = βs3, c4 = βs4,
and c5 = βs5 for some α, β ∈ C.

If we substitute si, α, and β into the Jacobian determinant formula, we get

D� = (Reα Imβ − Imα Reβ)(s1s4X − 2s2s3X + 2s1s5Y − s2s4Y).

Consequently either, α and β are real linearly dependent, or s1s4 − 2s2s3 = 0 and 2s1s5 − s2s4 = 0.

In the later case,
s3
s4

= s1
2s2

and
s5
s4

= s2
2s1

. Thus

s3X
2 + s4XY + s5Y

2 = s4

2

(
s1

s2
X2 + 2XY + s2

s1
Y2

)
= s4

2s1s2
(s1X + s2Y)

2 . �

In [1], it was observed that the field of values of a 2-by-2 matrix is the affine image of a 2-sphere.

In the following proposition we give an explicit formula for this affine linear transformation.

Proposition 4. Let A = [aij] ∈ M2(C). The field of values F(A) is the image of the unit sphere S2 =
{(X, Y, Z) ∈ R

3 : X2 + Y2 + Z2 = 1} under the affine linear transformation

f̂ (X, Y, Z) = 1

2
tr (A)+

(
a12 + a21

2

)
X +

(
a12 − a21

2

)
iY +

(
a22 − a11

2

)
Z. (6)

Proof. For any x ∈ C
2 with ||x|| = 1, let

q(x) = (2|x1||x2| cos θ, 2|x1||x2| sin θ, |x2|2 − |x1|2), (7)

where x1 and x2 are the entries of x and θ = arg(x2/x1). Note that q(x) is the stereographic projection
of x2/x1 onto the Riemann sphere represented as the unit sphere S2 in R

3. In particular, q maps two

unit vectors to the same point if and only if they are scalar multiples. Thus we may consider the map

f̂ defined by the commutative diagram below.

In order to derive an equation for f̂ , we expand f (x). By scalar multiplication, we may assume that

x has entries (|x1|, |x2|eiθ )with θ = arg(x2/x1). Then,



D. Corey et al. / Linear Algebra and its Applications 438 (2013) 2155–2173 2165

f (x) =
[
|x1| |x2|e−iθ

] ⎡
⎣a11 a12

a21 a22

⎤
⎦

⎡
⎣ |x1|
|x2|eiθ

⎤
⎦

= a11|x1|2 + a22|x2|2 + (a12 + a21)|x1||x2| cos θ + (a12 − a21)|x1||x2|i sin θ
=

(
a11 + a22

2

)
+

(
a22 − a11

2

)
Z +

(
a12 + a21

2

)
X +

(
a12 − a21

2

)
iY,

where (X, Y, Z) are the entries of q(x). This expression in terms of (X, Y, Z) is the formula for f̂ . In

particular, f̂ is an affine linear map from R
3 into the complex plane. �

Lemma 6. Let α, β ∈ C
2\{0} and define f (x) = x∗(αβT )x. Let D denote the real unit disk {x ∈

R
2 : xTx � 1}. If f (D) has empty interior, then the matrix αβT is normal or a multiple of a matrix with

real entries.

Proof. Note that f (D) = conv (f (S1) ∪ {0})where S1 is the unit circle S1 = {x ∈ R
2 : xTx = 1}. The

image f (S1) is a subset of the field of values F(αβT ).
By Proposition 4, F(αβT ) is the image of the unit sphere inR

3 under an affine linear transformation

f̂ given by (6). IfαβT is normal, then F(αβT ) is a line segment connecting the eigenvalues ofαβT . Since

αβT is rank 1, it follows that F(αβT ) is contained in a line passing through the origin, so f (D) must

have empty interior. Therefore, let us assume that αβT is not normal. The field of values F(αβT ) is a

filled ellipse and the rank of the linear part of f̂ is two. Thus the nullity of the linear part of f̂ is one and

any element of the nullspace is mapped by f̂ to tr (αβT )/2. The intersection of the nullspace with the

Riemann sphere consists of two points, which we call the North and South poles of f̂ .

The set q(S1) is a great circle on the Riemann sphere. The image of a great circle under the map f̂

will be an ellipse, unless the great circle passes through both the North and South poles of f̂ . In that

case, the image of the great circle is a nontrivial line segment passing through tr (A)/2.

The eigenvectors of A = αβT are α with eigenvalue λ = βTα and β⊥ =
⎡
⎣ β2

−β1

⎤
⎦ with eigenvalue

0. It is possible thatβ⊥ andα aremultiples, inwhich case 0 is an eigenvaluewith algebraicmultiplicity

2, but geometric multiplicity 1.

Since f maps an eigenvector to its eigenvalue, it follows that a great circle passing through both

q(β⊥) and q(α) must also pass through the North and South poles of f̂ . Note that a great circle is

defined by any two points it passes through. This implies that if a great circle passes through the North

pole or the South pole and also passes through q(β⊥) or q(α), then all four points are on the great

circle. In that case both β⊥ and α will be multiples of real vectors, and so is β , which implies that αβT

is a multiple of a real matrix. We will now show that this is the only way αβT can not be normal and

still have f (D)with empty interior.

If the great circle q(S1) passes through the North and South pole of f̂ and does not pass through

either q(α) or q(β⊥), then f (S1) will be a nontrivial line segment that is not contained in a the line

passing through the origin. Let z1 and z2 denote the endpoints of this line segment. Then f (D) is the
convex hull of {0, z1, z2} which has nonempty interior. �

Lemma 7. Let A = [aij] and B = [bij] be 2-by-2 matrices with complex entries and constant diagonals.

Assume neither matrix is normal. Let

α =
⎡
⎣ a12 + a21

i(a12 − a21)

⎤
⎦ , β =

⎡
⎣ b12 + b21

i(b12 − b21)

⎤
⎦ .

Define f (x) = x∗(αβT )x and D = {x ∈ R
2 : ||x|| � 1}. If f (D) has empty interior, then b12 = γ ā21 and

b21 = γ ā12 for some γ ∈ C\{0}.
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Proof. By Lemma6, the rank 1matrixαβT must be either normal or amultiple of a realmatrix.Wewill

show that αβT cannot be a multiple of a real matrix. Note that αβT is a multiple of a real matrix if and

only if both α and β are multiples of vectors with real entries. We may treat C as a real inner-product

space, with 〈z1, z2〉 = Re(z1z̄2). Then α is a multiple of a real vector if and only if 〈α1, iα2〉 = 0. Note

that 〈α1, iα2〉 = 〈a12 + a21, a21 − a12〉 = |a21|2 − |a12|2. Thus α is a multiple of a real vector if and

only if |a12| = |a21| which cannot happen since A is not normal. We conclude that αβT is normal.

Since αβ∗ must have zero as an eigenvalue, it is normal if and only if it is a multiple of a 2-by-2

Hermitian matrix. Therefore, β = γ ᾱ for some γ ∈ C.

Thus

b12 + b21 = γ (ā12 + ā21),

i(b12 − b21) = −γ i(ā12 − ā21).

Solving for b12 and b21 gives b12 = γ ā21 and b21 = γ ā12. �

Proposition 5. Given A, B ∈ M2(C) such that neither A nor B is normal, P(A, B) has empty interior if and

only if B is a multiple of A∗.

Proof. If B is a multiple of A∗, then by property 7 of Proposition 1, P(A, B) is contained in a line

passing through the origin. Suppose P(A, B) has empty interior. By Lemma 4 we may assume that

both A and B have constant diagonal. Using (6), we see that P(A, B) is the image of the unit disk

D = {(X, Y) ∈ R
2 : X2 + Y2 ≤ 1} under the following map

P(X, Y) = 1

4
(c0 + c1X + c2Y + c3X

2 + c4XY + c5Y
2),

where

c0 = (a11 + a22)(b11 + b22),

c1 = (a12 + a21)(b11 + b22)+ (a11 + a22)(b12 + b21),

c2 = i(a12 − a21)(b11 + b22)+ i(a11 + a22)(b12 − b21),

c3 = (a12 + a21)(b12 + b21),

c4 = i(a12 + a21)(b12 − b21)+ i(a12 − a21)(b12 + b21),

c5 = −(a12 − a21)(b12 − b21).

By Lemma 5 the coefficients c1 and c2 are real linearly dependent as are c3 with c4 and c5 with c4. In

particular the image of c3X
2 + c4XY + c5Y

2 has empty interior. Note that if

α =
⎡
⎣ a12 + a21

i(a12 − a21)

⎤
⎦ , β =

⎡
⎣ b12 + b21

i(b12 − b21)

⎤
⎦ ,

then c3X
2 + c4XY + c5Y

2 = x∗(αβT )x where x =
⎡
⎣X

Y

⎤
⎦. Therefore, by Lemma 7 there exists γ ∈ C

such that b12 = γ ā21 and b21 = γ ā12 and therefore β = γ ᾱ. It follows that c3X
2 + c4XY +

c5Y
2 = γ x∗(αα∗)x = γ ||x∗α||2 = γ ||(a12 + a21)X + i(a12 − a21)Y)||2. As noted in the proof of

Lemma 7, (a12 + a21) and i(a12 − a21) are real linearly independent since A is not normal. Therefore,
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c3X
2 + c4XY + c5Y

2 cannot factor as c(s1X + s2Y)
2 where c ∈ C and s1, s2 ∈ R. Thus the constants

c3, c4, c5 must all lie on the same line passing through the origin as c1 and c2, according to Lemma 5.

Substituting into the formulas for c1 and c2 gives

c1 = (a12 + a21)tr (B)+ γ tr (A)(ā12 + ā21) = α1tr (B)+ γ tr (A)ᾱ1,

c2 = i(a12 − a21)tr (B)− iγ tr (A)(ā12 − ā21) = α2tr (B)+ γ tr (A)ᾱ2,

Since c3, c4, and c5 are all real multiples of γ , it follows that c1 and c2 are also real multiples of γ . Thus
both

α1

γ
tr (B)+ tr (A)ᾱ1 and

α2

γ
tr (B)+ tr (A)ᾱ2

are real. Consequently

Im

(
α1

γ
tr (B)

)
= − Im (tr (A)ᾱ1) ,

Im

(
α2

γ
tr (B)

)
= − Im (tr (A)ᾱ2) .

Expanding in terms of the real and imaginary parts of tr (B) gives

Im

(
α1

γ

)
Re(tr (B))+ Re

(
α1

γ

)
Im(tr (B)) = −2 Im (tr (A)ᾱ1) ,

Im

(
α2

γ

)
Re(tr (B))+ Re

(
α2

γ

)
Im(tr (B)) = −2 Im (tr (A)ᾱ2) .

Since α1/γ and α2/γ are real linearly independent, the matrix

⎡
⎣Im

(
α1
γ

)
Re

(
α1
γ

)
Im

(
α2
γ

)
Re

(
α2
γ

)
⎤
⎦

is nonsingular. Therefore there is a unique solution for tr (B), which is tr (B) = γ tr (A). Since both A

and B have constant diagonals, b11 = b22 = γ ā11. This completes the proof that B is a multiple of

A∗. �

Proposition 6. For A, B ∈ M2(C) such that A is normal, if P(A, B) has empty interior, then either A and

B are simultaneously unitarily diagonalizable or they are both multiples of Hermitian matrices.

Proof. First, suppose that B is not normal. We will show that P(A, B)must have nonempty interior. In

this case, we may assume without loss of generality that A is a diagonal matrix

A =
⎡
⎣a11 0

0 a22

⎤
⎦ , B =

⎡
⎣b11 b12

b21 b22

⎤
⎦ .
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Let x =
⎡
⎣

√
t√

1 − teiθ

⎤
⎦ where t ∈ (0, 1) is fixed and θ ∈ [0, 2π) is allowed to vary. Then

〈Ax, x〉〈Bx, x〉 = (ta11 + (1 − t)a22)

(
tb11 + (1 − t)b22 + (b12e

iθ + b21e
−iθ )

√
t(1 − t)

)
,

and as θ varies, this curve will be a nondegenerate ellipse since B is not normal and therefore |b12| �=
|b21|.

Wemay therefore assume that both A and B are normal. We will assume also that neither matrix is

a multiple of the identity since that case is trivial. Then both matrices have two distinct eigenvectors

up to scalar multiplication. Using Proposition 4, the field of values of both matrices is the image

of the unit sphere in R
3 under an affine linear map. In both cases, the affine linear map must be

rank one since A and B are both normal, and the field of values of a normal matrix is a line segment

connecting the twoeigenvalues. LetλA1,λ
A
2 denote theeigenvaluesofAwithcorrespondingeigenvectors

xA1 and xA2 respectively. Similarly let λB1, λ
B
2 denote the eigenvalues of B corresponding to xB1 and xB2. Let

fA(x) = 〈Ax, x〉 and fB(x) = 〈Bx, x〉 and let f̂A and f̂B denote the corresponding affine linear maps as

in Proposition 4. Since fA(x
A
1) = λA1 and fA(x

A
2) = λA2 which are the endpoints of F(A), it follows for q

given by (7) that q(xA1) and q(xA2) are antipodal points on S2. Using the inner-product on R
3, we may

write the rank one affine linear map f̂A as

f̂A(y) = 1
2
tr (A)+ 1

2
(λA1 − λA2)〈y, q(xA1)〉,

where y ∈ S2 ⊂ R
3. Similarly we may write

f̂B(y) = 1
2
tr (B)+ 1

2
(λB1 − λB2)〈y, q(xB1)〉.

Let X̂ = 〈y, q(xA1)〉 for any y ∈ S2 ⊂ R
3 and let Ŷ = 〈y, q(xB1)〉 and note that the image of S2 under the

map y 
→ (X̂, Ŷ) contains an open set around 0 if and only if q(xA1) and q(xB1) are linearly independent.

Assume for now that this is the case. Then P(A, B) is the image of a set in R
2 with nonempty interior

under the map

�(X̂, Ŷ) =
(
1
2
tr (A)+ 1

2
(λA1 − λA2)X̂

) (
1
2
tr (B)+ 1

2
(λB1 − λB2)Ŷ

)
.

Note that

�(X̂, Ŷ) = 1

4
(c0 + c1X̂ + c2Ŷ + c3X̂

2 + c4X̂Ŷ + c5Ŷ
2),

where

c0 = tr (A)tr (B),

c1 = tr (B)(λA1 − λA2),

c2 = tr (A)(λB1 − λB2),

c3 = c5 = 0,

c4 = (λA1 − λA2)(λ
B
1 − λB2).
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By Lemma 5, c2 = tr (A)(λB1 − λB2) and c4 = (λA1 − λA2)(λ
B
1 − λB2) must be real linearly dependent.

Factoring out (λB1 − λB2) we find that λA1 + λA2 and λA1 − λA2 are real linearly dependent. Therefore λA1
and λA2 both lie on the same line as tr (A) and λA1 −λA2, and Amust be amultiple of a Hermitianmatrix.

A similar argument holds for B.

Recall that we temporarily assumed that q(xA1) and q(xB1) were linearly independent. If that is not

the case, then the eigenvectors of A are multiples of the eigenvectors of B and the twomatrices can be

simultaneously diagonalized by the same unitary congruence. �

We are ready now to prove the necessity part of Theorem 2.

Necessity. For n = 2 the result follows from Propositions 5 and 6 as soon as one observes that

commuting normal 2-by-2 matrices satisfy condition (ii) of Theorem 2.

Let now A and B be n × n matrices such that P(A, B) has empty interior. Then the same is true for

P(A′, B′), where A′ = V∗AV, B′ = V∗BV for any n-by-2 isometry V . From the already obtained result

for the case n = 2 it follows that the 2-by-2 matrices A′, B′ satisfy one of the conditions (i)–(iii) of

Theorem 2. Recalling the standard notation

Re X = 1

2
(X + X∗), Im X = 1

2i
(X − X∗),

we observe that among the four matrices Re A′, Im A′, Re B′, Im B′ there are at most two linearly inde-

pendent. Since this is true for any V as described above, Theorem 2 of [10] allows us to conclude that

actually there are at most two linearly independent matrices amongst Re A, Re B, Im A, Im B.

Now, if both pairs {Re A, Im A} and {Re B, Im B} are linearly dependent, condition (i) is apparently

satisfied. Therefore, suppose that at least one of these pairs is linearly independent. Without loss of

generality, let it be {Re A, Im A}. Then Re B, Im B must be linear combinations of Re A, Im A. In other

words,

B = λA + μA∗. (8)

If λ = 0 in (8), then (iii) holds. Otherwise, by scaling we may suppose that λ = 1, and from (8)

P(A, B) = {z2 + μ |z|2 : z ∈ F(A)} = {ζ + μ |ζ | : ζ ∈ �},

where� = {ζ = z2 : z ∈ F(A)}.
Note that the Jacobian of the mapping

ζ 
→ ζ + μ |ζ |

on C \ {0} is

1 + 〈ζ, μ〉
|ζ | .

Since it cannot equal zero identically on any open set, from the emptyness of the interior of P(A, B) it
follows that the interior of�, and therefore of F(A), must be empty.

Due to the convexity of F(A) the latter constrain means that F(A) is actually a line segment, that is,

A is as prescribed by the first formula in (5). From this and (8) we conclude that B also is as prescribed

by (5). Thus, the remaining case (ii) holds.
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Appendix A. Numerical examples

The following are images of the product field of values for the specifiedmatrices A and B. All images

were generated from MATLAB. Inside most of these product fields is a curve of the form f (x1 cos t +
x2 sin t) for fixed x1 and x2 where f : CSn → C is the function f (x) = 〈Ax, x〉〈Bx, x〉.

Fig. 1. A =
⎡
⎢⎣ 1 1

1 1

⎤
⎥⎦, B =

⎡
⎢⎣ 1 0

0 eiπ/5

⎤
⎥⎦.

Fig. 2. A =
⎡
⎢⎣ 1 0

0 1 + i

⎤
⎥⎦, B =

⎡
⎢⎣ −1 1

4i −1

⎤
⎥⎦.
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Fig. 3. A =
⎡
⎢⎣ 1 1 − 3i

0 2i

⎤
⎥⎦, B =

⎡
⎢⎣ 0 1

−1 + i 0

⎤
⎥⎦.

Fig. 4. A =
⎡
⎢⎣ 1 0

0 i/2

⎤
⎥⎦, B =

⎡
⎢⎣ 1 0

0 −1/2

⎤
⎥⎦
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Fig. 5. A =
⎡
⎢⎣ 1 1 + i

0 i

⎤
⎥⎦, B =

⎡
⎢⎣ 0 1

−i 0

⎤
⎥⎦.

Fig. 6. A =
⎡
⎢⎣ 1 0

0 −i/2

⎤
⎥⎦, B =

⎡
⎢⎣ 1 1 − i/2

0 5

⎤
⎥⎦.
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Fig. 7. A = B =
⎡
⎢⎣ 2i 1

2

0 1

⎤
⎥⎦.
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