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Abstract Disease spread in a society depends on the topology of the network of social
contacts. Moreover, individuals may respond to the epidemic by adapting their contacts to
reduce the risk of infection, thus changing the network structure and affecting future dis-
ease spread. We propose an adaptation mechanism where healthy individuals may choose to
temporarily deactivate their contacts with sick individuals, allowing reactivation once both
individuals are healthy. We develop a mean-field description of this system and find two
distinct regimes: slow network dynamics, where the adaptation mechanism simply reduces
the effective number of contacts per individual, and fast network dynamics, where more effi-
cient adaptation reduces the spread of disease by targeting dangerous connections. Analysis
of the bifurcation structure is supported by numerical simulations of disease spread on an
adaptive network. The system displays a single parameter-dependent stable steady state and
non-monotonic dependence of connectivity on link deactivation rate.

Keywords Adaptive network · Dynamical network · SIS model · Link deactivation

1 Introduction

In classical compartmental epidemic models, it is assumed that the population is homoge-
neously mixed, and every individual has an equal chance to contact any other individual in
the population [2]. As this assumption is relaxed, the social network topology is included
[1, 8, 13]. Furthermore, disease spread on both static [11, 12, 14, 15] and evolving [18, 21]
networks are considered.

A class of epidemic models that recently has received a lot of attention considers the
situation where people may change their social preferences during an epidemic to avoid ex-
posure to disease [5, 17]. These models try to take into account the effect that the presence
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of the disease can have on the network topology. The individuals in the society may choose
to adapt their local connections based on the desire to quarantine themselves from the epi-
demic. This in turn affects the further spread of the disease. Some models consider rewiring
of potentially dangerous connections as the adaptation mechanism [6, 16, 19, 24]. That is,
when a contact between individuals is abandoned, a new contact is immediately formed, and
the total number of connections is conserved. A motivation for these models is that social
connections serve a purpose, and thus a fixed number of connections must be maintained
for society to continue functioning. In the first models of this type, a healthy individual
breaks its connection with a sick individual, in favor of some other healthy individual [6,
19]. The assumption in this model is that each person knows the infection status of all the
people in the society. In [24], relaxing this assumption, a healthy person reconnects to a
randomly chosen person. Furthermore, sick individuals may altruistically rewire their links
away from their healthy contacts [16]. With rewiring as the adaptation mechanism, bistabil-
ity is frequently observed, where both the disease free state and endemic state coexist for
some range of parameters.

Other adaptation mechanisms that have been studied do not preserve the total number
of connections in the society. Jolad et al. studies networks in which connections are created
and abandoned in an attempt to achieve some preferred number of connections [7]. In this
case, the adaptation mechanism reduces the expected number of contacts between the indi-
viduals as a response to the global infection prevalence, which in turn reduces the spread of
infection. Zhou et al. considers growing networks in which connections between healthy and
sick nodes are deleted, with the constraint that nodes can not be completely isolated [25]. In
this case, the combination of network growth, connection removal, and isolation avoidance
lead to recurring epidemic outbreaks. Kiss et al. studies an adaptive network in which the
connections are abandoned or created at rates dependent on the status of individuals [10].
Here a variety of bifurcation structures, including bistable solutions, are observed.

We expect that in real social networks, people tend to avoid contact with their infected
neighbors during an epidemic. However, once an infected neighbor recovers, people would
resume social relations with that neighbor. This is in contrast to previous models in which
social connections are deleted or rewired away in response to an infection, never to be re-
sumed. In order to study this type of social behavior, we consider an adaptive network model
where a susceptible node temporarily deletes or deactivates links to its infected neighbors. It
then recreates or reactivates these links after its neighbors have recovered. In our model, link
deletion and creation are constrained in that link creation is only allowed for the previously
deleted links. There is an overarching static network structure of all possible links that could
exist, and the neighborhood of each node is preserved. We assume a complex network struc-
ture rather than the complete network geometry used in [10]. Results are presented here for
Erdős-Rényi random networks [3], but the approach can be used for any other complex (and
potentially more realistic) network geometry. In a related model by Valdez et al., connec-
tions between susceptible and infected nodes are temporarily interrupted [23]. The period
over which the connection is deactivated is shorter than the infectious period of the dis-
ease, and a connection might be interrupted and restored several times before the infected
node recovered. However, because people can communicate their infection status without
in-person contact (e.g., by telephone), we will assume that nodes know the infection status
of their neighbors and do not reactivate connections until their neighbors have recovered. In
particular, unlike [10, 23], we do not allow links between susceptibles and infectives to be
activated.

In Sect. 2, we specify the model dynamics. In Sect. 3, we present a mean-field analytic ap-
proach and argue that bistability does not occur with our adaptation mechanism, in contrast
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Fig. 1 (a) Schematic of the adaptation mechanism. An active SI link is deactivated with deactivation rate d ,
and a deactivated SS link is reactivated with reactivation rate a. (b) Schematic of the link dynamics in the
network. Horizontal arrows indicate infection (arrows toward right) and recovery (arrows toward left) tran-
sitions

to many models with rewiring adaptation. In Sect. 4, we present stochastic and mean-field
results for infection levels and for the geometry of the active subnetwork. We conclude and
discuss future applications in Sect. 5.

2 Model

We study epidemic spread in a population that is represented by a network. Disease spread
is modeled by using a susceptible-infected-susceptible (SIS) dynamics on the network [2].
In this model, individuals can be in one of two states: infected with the disease and conta-
gious (I), or healthy and susceptible to the infection (S). The disease can spread via contact
between susceptibles and infectives at a constant infection rate p per SI link. The infected
individuals recover from the disease, becoming susceptible again, at a constant recovery
rate r .

We allow healthy individuals to adapt their relationships so as to reduce the risk of being
infected. In this model, susceptible individuals know the infection status of all their neigh-
bors and can temporarily deactivate their connections to infected neighbors, a process that
takes place at a deactivation rate d . Once both individuals are susceptible, the deactivated
links are reactivated at a reactivation rate a. The deactivation and reactivation processes are
illustrated in Fig. 1(a). Note that these processes take place on an unchanging network: what
changes is its active part, i.e., the subset of links that allow the disease transmission.

We study the dynamics of the disease spread on a network with a fixed number of nodes,
N , and a fixed number of links, K . The average degree of the network, κ , is then given
by κ = 2K/N . Given an initial network geometry, the node and network dynamics are
simulated using a continuous time Monte Carlo algorithm [4]. Simulation results presented
in this paper are for Erdős-Rényi networks [3] with N = 104 and K = 105 unless otherwise
specified. Self-links and multiple links between nodes are not allowed.

3 Analytical Approach

In this section, we approximate the full system using a mean-field approach [6, 9]. The
following system of equations describes the evolution of the number of each type of node:

dNS

dt
= rNI − pNSI, (1a)
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dNI

dt
= −rNI + pNSI, (1b)

and each type of link:

dNSS

dt
= rNSI − pNSSI + aN

̂SS, (2a)

dNSI

dt
= r(2NII − NSI) + p(NSSI − NISI) − dNSI, (2b)

dNII

dt
= −2rNII + pNISI (2c)

dN
̂SS

dt
= rN

̂SI − pN
̂SSI − aN

̂SS, (2d)

dN
̂SI

dt
= r(2N

̂II − N
̂SI) + p(N

̂SSI − N
̂ISI) + dNSI, (2e)

dN
̂II

dt
= −2rN

̂II + pN
̂ISI, (2f)

where NX denotes the expected number of nodes in state X, while NXY and N
̂XY respec-

tively denote the expected number of active and deactivated links connecting nodes in states
X and Y, with X ∈ {S, I}. The notation NXYZ denotes the expected number of triples of con-
nected nodes of type X, Y, and Z, with a circumflex over nodes that are connected by a
deactivated link. Note that our definition of an XYX type of a triple includes the degener-
ate triples, i.e., those triples formed by a Y-node and a single X-node. Equations (1a), (1b)
reflect the transitions of nodes between susceptible and infected states, while Eqs. (2a)–(2f)
reflect the link transitions indicated in Fig. 1(b). The values of NX, NXY and N

̂XY are treated
as continuous in the limit of large network size.

The system of Eqs. (1a), (1b) and (2a)–(2f) is open since it contains unknown quantities
corresponding to the statistics of the higher order node formations, i.e., the number of con-
nected triples of nodes where at least one of the links is of SI type. Thus, in order to close
the system, we approximate the number of triples in the system using the moment closure
approximation discussed in [6, 9, 20]:

NXSI = 2NXS

NS

NSI

NS
NS for XS ∈ {SS,̂SS} (3a)

N
̂ISI = N

̂SI

NS

NSI

NS
NS (3b)

NISI =
((

NSI

NS

)2

+ NSI

NS

)

NS. (3c)

This closure corresponds to the assumption that, if one follows a link that stems from a
susceptible node, the probability that a node at the end of that link is infected is independent
of any other information available about that susceptible node.

In order to simplify the analysis, we set r = 1, which is equivalent to rescaling the time
by 1/r . We also rescale the quantities NX and NXY by N and K respectively. Since both
the total number of nodes and the total number of links are conserved, the quantities PX ≡
N−1NX and PXY ≡ K−1NXY correspond to the fraction of the nodes of type X and fraction
of links of type XY respectively.
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Using conservation of nodes, we can eliminate one of the node equations in (1a),
(1b). Similarly, using conservation of links, we can eliminate one of the equations
in (2a)–(2f). Thus, the state of the full system is approximated by the vector x =
(PI,PSS,PSI,PII,P̂SS,P̂SI). Note that the remaining two quantities, PS and P

̂II, are found
from the equations for conservation of nodes and links: PS = 1 − PI and P

̂II = 1 − PSS −
PSI − PII − P

̂SS − P
̂SI.

This system has a unique disease-free state (DFS) given by the vector x0 = (0,1,0,0,0,0)

for a �= 0. We analyze the stability of the disease-free state by evaluating the Jacobian at the
DFS:

J|x0 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

−1 0 pκ

2 0 0 0
0 0 1 − pκ 0 a 0
0 0 −1 − p − d + pκ 2 0 0
0 0 p −2 0 0
0 0 0 0 −a 1
0 −2 d − 2 −2 −2 −3

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

In order for the DFS to be stable, the real part of the eigenvalues of the Jacobian must be
less than zero. Four of the eigenvalues of the Jacobian are λ1 = −1, λ2 = −1, λ3 = −2,
λ4 = −a, all of which are less than zero. The remaining two eigenvalues λ5 and λ6 are given
as the solutions to the equation:

λ2 + λ
(

(d + 1 − pκ) + 2 + p
) + 2(d + 1 − pκ) = 0.

We note that if d + 1 − pκ > 0 then (i) λ5λ6 = 2(d + 1 − pκ) > 0 and (ii) λ5 + λ6 =
−((d +1−pκ)+2+p) < 0. If both (i) and (ii) hold, then both Re(λ5) < 0 and Re(λ6) < 0,
and therefore the DFS must be locally stable for p < (d + 1)/κ . On the other hand, the
relation λ5λ6 = d + 1 − pκ < 0 implies that one of the eigenvalues is positive and the DFS
loses stability. The bifurcation point

p∗ = d + 1

κ
, (4)

where the DFS loses stability is referred to as the epidemic threshold.
The non-trivial solution corresponding to the endemic state, PI > 0, is found by setting

the left hand side of Eqs. (1a), (1b) and (2a)–(2f) to zero. We obtain the following steady
state relations for the endemic state:

PSS =
(

d + 1

pκ

)

(1 − PI), (5a)

PSI = 2

pκ
PI, (5b)

PII = PI

κ
+ P 2

I

pκ(1 − PI)
, (5c)

P
̂SS = 2d

pκa
PI, (5d)

P
̂SI = 2d

pκ
PI + 4d

pκa

P 2
I

1 − PI
, (5e)
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P
̂II = d

pκ

P 2
I

1 − PI
+ 2d

pκa

P 3
I

(1 − PI)2
. (5f)

Using conservation of links, we obtain the following cubic equation in PI:

P 3
I − P 2

I (κ + 2) + PI(κ + 1 + A + B) − B = 0, (6)

where A ≡ (2d)/(pa) and B ≡ κ − (d + 1)/p. This cubic can be solved to obtain the
infection level for parameter values of interest.

At the epidemic threshold, B = 0, Eq. (6) takes the form

PI

(

P 2
I − PI(κ + 2) + κ + 1 + A

) = 0.

Nonzero solutions are

PI = 1 + 1

2

(

κ ±
√

κ2 − 4A
)

, (7)

both of which are either imaginary or greater than 1 for positive parameter values. Thus, at
the epidemic threshold, there is no solution for PI ∈ (0,1), the allowed range of endemic
states. Models with rewiring adaptation typically show a backward transcritical bifurcation
in the infection rate [6, 19, 24], which leads to bistability. An endemic steady state exists
at the epidemic threshold in these models. We have shown that at the epidemic threshold,
our model has the disease-free state as its only steady state. We thus argue that our adapta-
tion mechanism of link deactivation and reactivation does not produce bistability. Numerical
results described in the next section support this argument and indicate that a forward tran-
scritical bifurcation in infection rate occurs at the epidemic threshold.

Finally, we note that in the absence of adaptation, the equation below is derived by setting
a = d = 0 and solving Eqs. (1a), (1b) and (2a)–(2f) at the steady state:

P 2
I − PI(κ + 1) + (κ − 1/p) = 0. (8)

4 Results

We next present the results of numerically simulating the adaptive system on an Erdős-
Rényi random network [3] and compare the results to those predicted by the steady state of
the mean-field theory given by Eqs. (5a)–(5f) and (6). In Fig. 2, we show the steady state
value of the fraction of infecteds as a function of infection rate p and deactivation rate d

for fixed reactivation rate a. As expected, the levels of infection grow as the infection rate
p is increased. Furthermore, increasing deactivation rate d leads to suppression of infection
due to decreased number of potential channels of infection transmission. The onset of the
endemic state is in good agreement with the mean-field threshold prediction (4), as indicated
by the white curve. We note that although Fig. 2 was obtained by averaging over 20 Erdős-
Rényi network realizations, the standard deviation of infecteds across networks is less than
1 % of the mean except very close to the threshold where variations are larger. In subsequent
figures we present results for only one typical network realization, but the error bars across
different realizations would generally be within the plotting resolution.

The results presented in Fig. 3 indicate excellent agreement of the mean-field with the
simulations for various parameter values and demonstrate the effects of activation and deac-
tivation on the bifurcation diagrams of fraction of infected nodes versus infection rate. Thus,
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Fig. 2 Density plot of the steady state fraction of infected nodes in the adaptive system, plotted as a function
of infection rate, p, and deactivation rate, d , for the reactivation rate a = 10. The results of the simulations
are averaged over 20 network realizations and 100 time points for each network with 1000 events between
each time point. The number of events discarded as transients ranged from 3 × 109 to 108 for different d

and p values. The white curve indicates the location of the threshold as predicted by the mean-field theory in
Eq. (4) (Color figure online)

Fig. 3 (a) Fraction of infected nodes as a function of infection rate for a = 1 and fixed d values. (b) Fraction
of infected nodes as a function of infection rate for d = 1 and fixed a values. Curves are mean-field solutions
and symbols are simulation results. Bifurcation curves were obtained in simulations by sweeping p downward
after discarding transients (Color figure online)

in Fig. 3(a), we show that by varying d , we affect the location of the epidemic threshold.
Note that this result is also observed in Fig. 2. By contrast, increasing a has no effect on the
location of the epidemic threshold as shown in Fig. 3(b), a result that is consistent with the
mean-field prediction in Eq. (4). However, as we increase the rate of reactivation, the steady
state fraction of infecteds increases, partially negating the effect of deactivation.

In our model, the initial network geometry is not evolving in time. What changes is the
active part of the network, via which the disease can be transmitted. The active network ge-
ometry evolves due to the interplay between the link deactivation/reactivation and the node
status. The effect that adaptation has on the network topology can be observed through the
average active degree. For a given infection rate p and reactivation rate a, when the deacti-
vation rate d is zero, the network is fully active and therefore the mean active degree simply
equals the mean degree of the network. Figure 4 demonstrates that increasing the deactiva-
tion rate leads to the reduction of the active degree of the network and as a consequence
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Fig. 4 Dependence of mean active degree of the network on deactivation rate d (left axis, black circles), as
compared to the dependence of the expected fraction of infected nodes on d (right axis, red squares). The
solid curves are the corresponding mean-field predictions and symbols are simulation results. The simulation
results are obtained for N = 105, K = 106, r = 1, p = 1, a = 10 after discarding 109 number of events
(Color figure online)

the reduction in the expected number of infected nodes. However, further increases in the
deactivation rate will eventually lead to an increase in the mean active degree, while fur-
ther reducing the infection level. This suggests that the adaptation mechanism functions in
two qualitatively different regimes, which we attribute to the presence of slow and non-slow
network dynamics regimes.

First, we consider the behavior of the system at the steady state in the limit of slow net-
work dynamics, where deactivation and reactivation processes are much slower than the in-
fection transmission. The steady state solution of the mean-field equations (5a)–(5f) suggests
that the non-trivial regime of the slow network dynamics is given by the limit of d, a → 0
with d/a = c, for a constant c. In this limit, we study the disease spreading on a static
network, frozen with only some fraction of its links being active.

The limiting behavior of our adaptive system in steady state is captured by taking the
corresponding limit of the steady state solution of the mean-field equations (5a)–(5f). Thus,
in the limit under consideration, the terms proportional to d drop out, while the terms pro-
portional to d/a survive, yielding the following expected fraction of deactivated and active
links in the system, respectively:

P ∗
deactivated ≡ lim

d,a→0
d/a=c

(P
̂SS + P

̂SI + P
̂II) = 2cPI

pκ(1 − PI)2
, (9)

P ∗
active ≡ 1 − P ∗

deactivated =
(

1 − 2cPI

pκ(1 − PI)2

)

. (10)

Solving Eq. (10) for c and substituting the result into the corresponding limit of Eq. (6) (i.e.,
A = 2c/p, B = κ − 1/p), we see that PI satisfies the following equation:

(PI − 1)

(

P 2
I − PI

(

κP ∗
active + 1

) + κP ∗
active − 1

p

)

= 0.

Since the solution PI = 1, where all the nodes are infected, is not a physically possible steady
state, the fraction of infected nodes PI must satisfy the following equation:

P 2
I − PI

(

κP ∗
active + 1

) + κP ∗
active − 1

p
= 0, (11)
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Fig. 5 Comparison of simulation results for adaptive networks with mean-field solutions for a static network
(SMF), where the mean degree in the static network is matched with the active degree in the adaptive one.
Curves: mean-field solution of epidemic model on static network. Symbols: simulation results of epidemic
model on adaptive network with d = 10−2. Case d/a = 0 represents original static network with all links
active. The simulation results for d/a = 10 and p < 1 are obtained for N = 105 and K = 106 (Color figure
online)

which, as shown in Eq. (8), is precisely the equation that describes the steady state infection
level in a static network with mean degree κP ∗

active. Note that P ∗
active depends on all of the sys-

tem parameters and the value of PI, with the dependence on the deactivation and reactivation
rates only via the ratio of those rates.

The significance of the above is that in the slow network limit, the function of adaptation
is merely to suppress the mean active degree of the nodes. In other words, the adaptation
reduces the mean number of potential channels for the disease transmission, regardless of
the status of the nodes at the end of a channel. Figure 5 shows that the fraction of infected
nodes in the system, when the adaptation rates are much slower than the rates of the disease
dynamics, is well approximated by the mean-field theory for a static network with mean
degree corresponding to the mean active degree, κP ∗

active. Furthermore, we can see that as
c approaches zero, the system approaches the mean-field solution for the network without
adaptation. Thus, given the active degree of the nodes in the network, possibly measured
from the simulations, we can use the static network mean-field description with the corre-
sponding mean degree (SMF) to analyze our system in this regime. Away from the limit
where a and d approach zero the assumption that the disease spreads on a static network is
no longer valid. In this regime the network changes on a time scale comparable to the time
scale of the disease dynamics, and the nature of the adaptation mechanism becomes more
complex. In Fig. 6, we emphasize the difference between the SMF solution and the simu-
lation results. The overestimation of the infection levels by the static mean-field approach
demonstrates that, in the fast network dynamics regime, the adaptation mechanism is more
effective than merely mean active degree reduction.

Now we turn to investigating how the adaptive network deviates from the static network
with corresponding mean degree. Figure 7(a) demonstrates this deviation as we increase the
adaptation parameters a and d , while keeping their ratio fixed. As we previously observed,
the SMF theory makes excellent predictions about the infection levels when the network
dynamics is slow; however, as the deactivation rate becomes either comparable to or greater
than either the recovery or the infection rate, the SMF significantly overestimates the infec-
tion level. This is well explained by the steady state solution in Eqs. (5a)–(5f), where we
observe that as d is increased, the d = 0 assumption made when deriving the SMF is no
longer valid. We quantify effects of the adaptation by looking at the local neighborhood of
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Fig. 6 Fraction of infected
nodes as a function of infection
rate p in the fast adaptation
regime. Black curve: mean-field
solution for model with
adaptation. Red curve: SMF
solution. Symbols: simulation
results for adaptive epidemic
model for d = 1 and a = 10
(Color figure online)

susceptible and infected nodes using the metric

〈κ〉SI

〈κ〉II
= PSI/(2PSS + PSI)

2PII/(PSI + 2PII)
,

where 〈κ〉SI is the fraction of actively connected neighbors of a susceptible node that are
infected, and similarly 〈κ〉II is the fraction of actively connected neighbors of an infected
node that are infected. As shown in Fig. 7(b), at rapid deactivation rates where the SMF no
longer holds, the expected fraction of infected nodes in the neighborhood of a susceptible
node becomes smaller than this fraction in the neighborhood of an infected node. In other
words, the mechanism of adaptation, in addition to mean degree reduction, reduces the ex-
posure of susceptible nodes to the infected ones. The full mean-field theory for the adaptive
network, given by Eq. (6) and associated equations, continues to hold in the fast network
dynamics regime.

5 Conclusions

We studied a susceptible-infected-susceptible model on an adaptive network with a new
adaptation mechanism. In our model, a susceptible node temporarily deactivates its links to

Fig. 7 (a) Fraction of infected nodes as a function of deactivation rate d . (b) 〈κ〉SI/〈κ〉II as a function of d ,
where 〈κ〉SI is the fraction of infected neighbors of a susceptible node and similarly, 〈κ〉II is the fraction of
infected neighbors of an infected node. Black solid curve: mean-field solution for model with adaptation, Red
solid curve: mean-field solution for static model with corresponding mean degree (SMF), Red dashed curve:
mean-field solution for static model with all links active (κ = 20), symbols: simulation results for network
with adaptation where d/a = 0.1 and p = 1 (Color figure online)
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infected nodes. It reactivates the previously deactivated links to its neighbors once they have
recovered. Although the active degree of the node is evolving, its original set of neighbors
is preserved, which we believe is a more realistic adaptation mechanism than models that
allow nodes to form connections anywhere in the network.

We derived and analyzed a system of mean-field equations based on a moment closure
approximation. Solutions of the mean-field equations were compared with simulations of the
full system on an Erdős-Rényi random network and were in good agreement. An expression
for the epidemic threshold was obtained. In contrast to models with a rewiring mechanism
for infection avoidance [6, 16, 19, 24], our model does not display bistable solutions. We
observe in numerical simulations a forward transcritical bifurcation as the infection rate is
increased past the threshold, and we argue from the mean-field equations that a backward
transcritical bifurcation and bistability cannot occur.

We studied the infection level and geometry of the active subnetwork as a function of
disease and adaptation parameters. The epidemic threshold depended on the link deactiva-
tion rate but not the reactivation rate. However, slowing the reactivation decreases the steady
state infection level. The average node degree in the active subnetwork was found to depend
non-monotonically on the link deactivation rate. While initially counterintuitive, this result
can be understood by realizing that the epidemic is better controlled at high deactivation
rates, and numbers of infectives and SI links are lower, so the total amount of link deacti-
vation is less even though the per link deactivation rate is higher. This observation suggests
that very rapid social adaptation that more effectively controls disease spread can lead to
less disruption of a social network than slower adaptation would.

The adaptation mechanism in our model has two methods by which it reduces the spread
of infection. Which method is most pronounced depends on the speed of the network dy-
namics relative to the disease dynamics. First, adaptation reduces the average active degree
of the network. When deactivation and reactivation are slow, nodes change their state fre-
quently and the infection spreads quickly on the remaining active links. The reduction in
the active degree matters more than which specific links are deactivated. We compared the
steady state results of our model with an SIS model on a static network having the same
degree as the active degree in our model. In the regime where the dynamics of the network
is much slower than the disease dynamics, the infection level in our model is very close to
that in the corresponding static network. However, when both the network dynamics and the
disease dynamics have comparable time scales, we observed a difference between our model
and the static network model with the same active degree. Since the deactivation mechanism
in our model is preferential, a susceptible node deactivates its links specifically to infected
nodes. Thus, in this regime, infection spread is suppressed to a greater extent than in the
corresponding static network.

Here we have focused on an Erdős-Rényi random network. However, more realistic net-
work geometries can be selected for the overarching static network. In contrast to rewiring
networks, in which rewiring rules must be carefully selected to preserve desired aspects
of the geometry such as community structure [22], the network structure is automatically
maintained. In a future work, we will consider the effects of this adaptation mechanism on
a scale-free network.

Another area for future study is the role of fluctuations in the different parameter regimes.
When the network dynamics is fast, a node’s active degree decreases drastically while it is
infected and increases while it is susceptible. However, the active degree fluctuates much
less when the network dynamics is slow. Our simulations indicate that these fluctuations
do not significantly affect the overall infection level in the system, but they may influence
aspects of the active network geometry such as degree distributions.
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