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a b s t r a c t

The viral lytic cycle is an important process in oncolytic virotherapy. Most mathematical
models for oncolytic virotherapy do not incorporate this process. In this article, we propose
a mathematical model with the viral lytic cycle based on the basic mathematical model for
oncolytic virotherapy. The viral lytic cycle is characterized by two parameters, the time
period of the viral lytic cycle and the viral burst size. The time period of the viral lytic cycle
is modeled as a delay parameter. The model is a nonlinear system of delay differential
equations. The model reveals a striking feature that the critical value of the period of the
viral lytic cycle is determined by the viral burst size. There are two threshold values for
the burst size. Below the first threshold, the system has an unstable trivial equilibrium
and a globally stable virus free equilibrium for any nonnegative delay, while the system
has a third positive equilibrium when the burst size is greater than the first threshold.
When the burst size is above the second threshold, there is a functional relation between
the bifurcation value of the delay parameter for the period of the viral lytic cycle and the
burst size. If the burst size is greater than the second threshold, the positive equilibrium is
stable when the period of the viral lytic cycle is smaller than the bifurcation value, while
the system has orbitally stable periodic solutions when the period of the lytic cycle is
longer than the bifurcation value. However, this bifurcation value becomes smaller when
the burst size becomes bigger. The viral lytic cycle may explain the oscillation phenomena
observed in many studies. An important clinic implication is that the burst size should be
carefully modified according to its effect on the lytic cycle when a type of a virus is mod-
ified for virotherapy, so that the period of the viral lytic cycle is in a suitable range which
can break away the stability of the positive equilibria or periodic solutions.

� 2012 Elsevier Inc. All rights reserved.

1. Introduction

Oncolytic virotherapy is an innovative therapeutic strategy to destruct tumors. This idea stemmed from an old tale: evils
can destroy evils. Viruses infect tumor cells and replicate themselves in tumor cells. Upon lysis of infected tumor cells, new
virion particles burst out and proceed to infect additional tumor cells. This idea was initially tested in the middle of the last
century, and merged with renewed interesting over last 20 years due to the technologic advances in virology and in the use
of viruses as vectors for gene transfer. (For the history of oncolytic viruses, see [1].) Oncolytic viruses – viruses that selec-
tively infect and replicate in tumor cells, but spare normal cells – have two types: oncolytic wild viruses that naturally occur
with preferential in human cancer cells, and gene-modified viruses engineered to achieve selective oncolysis. The wild type
viruses have shown a limited oncolytic efficacy in some preclinical trials, while gene-modified viruses seem to have a great
potency of oncolysis [2–4]. The list of oncolytic viruses is growing (see [5] for a partial list). However, the efficacy of oncolytic
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virotherapy has not been well established yet. The major challenges are the replicative ability of oncolytic viruses within
tumor cells and the spreadability of infections in whole tumors. Although genetic engineering has made possible to modify
the viral genome to improve replicative ability of oncolytic viruses, the whole process of the lytic cycle of oncolytic viruses
and viral infection spreading affects the outcome of oncolytic virotherapy. (For a review of oncolytic virotherapy, see [6].)

At molecular level, a great deal of the intracellular viral life cycle has been found out experimentally. The lytic cycle of a
virus has six stages. To infect a cell, a virus must enter the cell through the plasma membrane. The virus attaches to a recep-
tor on the cell membrane, and then releases its genetic materials into the cell. These are the first two stages, called adsorp-
tion and penetration. The third stage is integration that the host cell gene expression is arrested, and viral materials are
embedded into the host cell nucleus. The fourth stage is biosynthesis that the virus uses the cell machinery to make large
amount of viral components, and at the meantime, destroys the host’s DNA. Then, it enters the last two stages, maturation
and lysis. When many copies of viral components are made, they are assembled into complete viruses. The number of the
newly formed viruses is call the burst size of the virus. These phages direct production of enzymes that break down the host
cell membrane. The cell eventually bursts, and new viruses come out. (For the details of lytic cycle, see the book [7].) During
the lytic cycle, each stage is mediated by a diverse group of proteins, and each stage needs some time to complete [8–11].
Overall, the burst size and the time period of the intracellular viral life cycle are important factors in viral therapy. Fig. 1
demonstrates the lytic cycle of oncolytic viruses.

At cell population level, many experiments have been conducted to test the outcome of oncolytic virotherapy. Some
experiments with animal models have shown good results, and preclinical trials have achieved reasonable statistic results.
All those research are still on phases I and II studies [12–15]. (For a review, see [5] and references therein.)

Oncolytic virotherapy, on the other hand, has provided opportunities for mathematical modeling. In return, mathematical
models may help to understand this complicated treatment and to design efficient protocols. Actually, much effort has been
devoted to mathematical studies on oncolytic virotherapy. Wu et al. [16,17] established a mathematical model in terms of
partial differential equations (PDEs), which is essentially a radially-symmetric epidemic model with a freely moving bound-
ary. They compared three alternative virus-injection strategies. Tao et al. proved there is a periodic solution for a similar PDE
model as Wu’s model [18]. We extended Wu’s model to include innate immune responses and found the burst size is an
important parameter for oncolytic virotherapy [19]. We also observed oscillation phenomena in our model. In order to thor-
oughly understand oncolytic virotherapy, it is better first to understand the dynamics of oncolytic virotherapy in a relative
simple space-free setting. There are actually several works using ordinary differential equations (ODEs) to study the dynam-
ics of oncolytic virotherapy. Wodarz proposed a mathematical model to study how virus-specific lytic CTL response contrib-
utes to killing of infected tumor cells [20]. Novozhilov et al. analyzed a ratio-dependent mathematical model for tumor cell
population and infected tumor cell populations [21]. Bajzer et al. proposed a mathematical model for recombinant measles
viruses. Their model counts free virus population besides tumor cell population and infected tumor cell populations [22].
Komarova et al. studied several possibilities to build mathematical models for oncolytic virus dynamics where only tumor
cell population and infected tumor cell population are considered [23,24]. Based on Bajzer’s model, we proposed a common
basic mathematical model for oncolytic virotherapy with the parameter burst-size explicitly built in [25], and found the
burst size is an important parameter for the dynamics of oncolytic treatments. However, all those mathematical models
for oncolytic virotherapy do not consider the lytic cycle within infected tumor cells. To consider the intracellular viral life
cycle, Tian et al. proposed a mathematical model [26], and found the viral life cycle can induce oscillations. However, this
model does not count free virus population and the apoptosis blockade of infected tumor cells.

In this paper, we propose a mathematical model for the dynamics of oncolytic virotherapy with the viral lytic cycle incor-
porated. As mentioned above, the burst size and the time period of the intracellular viral life cycle are important factors in
viral therapy. Theoretically, we will design two parameters b and s to represent the burst size and the time period of the
intracellular viral life cycle respectively, and assume these two parameters are constants. For simplicity, we will not model
the details of the lytic cycle. Instead, we will use these two parameters to characterize the dynamics of viral therapy. Spe-
cifically, the population of infected tumor cells is determined by the populations of tumor cells and free viruses at s unit time
ago, and b new viruses add to free virus population once an infected tumor cell bursts. Such, the model is a nonlinear system
of delay differential equations. Although the difficulty of analysis of the model, we obtain some analytical results. We also
extend and confirm our analysis by numerical study of the model. One striking feature of the model is that the bifurcation
value of the period of the viral lytic cycle is determined by the virus burst size. For the burst size, there are two threshold
values. Below the first threshold, the system has an unstable trivial equilibrium and a globally stable viral free equilibrium.
When the burst size is between two thresholds, the system has an asymptotically stable third interior equilibrium. When the
burst size is above the second threshold, there is a functional relation between the bifurcation value of the delay parameter
and the burst size. When the period of the lytic cycle is longer than the bifurcation value, the system undergoes Hopf bifur-
cation and has orbitally stable periodic solutions. However, this bifurcation value becomes smaller when the burst size be-
comes bigger. This prediction seems reasonable. When viruses have a big burst size, there will be more newly produced free
viruses at unit time, and more infections at average. Then, it will need short time to accumulate enough infections to break
away the stability of the co-exiting equilibrium for tumor cells, infected tumor cells and free viruses. This viral lytic cycle
may explain the oscillation phenomena observed in many studies. An important clinic implication is that the burst size
should be carefully modified according to its effect on the lytic cycle when a type of a virus is modified for virotherapy,
so that the period of the viral lytic cycle is in a suitable range which can break away the stability of the interior equilibria
or periodic solutions.
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2. Mathematical models

In the paper [25], the basic mathematical model for oncolytic virotherapy was proposed as follows

dxðtÞ
dt ¼ kxðtÞð1� xðtÞþyðtÞ

C Þ � bxðtÞvðtÞ;
dyðtÞ

dt ¼ bxðtÞvðtÞ � dyðtÞ;
dvðtÞ

dt ¼ bdyðtÞ � bxðtÞvðtÞ � cvðtÞ:

8>><
>>: ð2:1Þ

The variable x stands for the tumor cell population, y stands for the infected tumor cell population, and v represents free
viruses which are outside cells. The tumor growth is modeled by logistic growth, and C is maximal tumor size, k is the per
capita tumor growth rate. The coefficient b represents the infectivity of the virus. The coefficient d is the death rate of in-
fected tumor cells, and c is virus clearance rate. The parameter b is the burst size of the virus. For the details of the model
assumptions, the reader is referred to the article [25].

As we mention in Introduction, this model and all other mathematical models do not incorporate lytic cycle within in-
fected tumor cells. The time to complete the lytic cycle varies. For example, some virus only needs 30 min, some viruses take
several hours to complete this process, and some can take days. Therefore, it is necessary and realistic to incorporate the lytic
cycle into the oncolytic virotherapy model for its predicted dynamics. Moreover, to build a population model, we assume
that the time period of the lytic cycle to be a constant s. Based on the model (2.1), the rate of change of infected tumor cells
at time t will be determined by the tumor cell population and free virus at time t � s, namely, xðt � sÞvðt � sÞ. Although the
details of the lytic cycle as shown in Fig. 1 will not be incorporated into the model, we will use the lytic cycle time s and burst
size to catch the oncolytic process. Based on the model (2.1), a diagram for the dynamic interactions in oncolytic virotherapy
within a tumor is given in Fig. 2.

Because of the apoptosis blockade of infected tumor cells [5], infected tumor cells will not die until they burst. That is, a
death term for infected tumor cells before bursting is not necessary, and all infected tumor cells will burst. Therefore, the
model we propose is given by the system (2.2).

dxðtÞ
dt ¼ kxðtÞð1� xðtÞþyðtÞ

C Þ � bxðtÞvðtÞ;
dyðtÞ

dt ¼ bxðt � sÞvðt � sÞ � dyðtÞ;
dvðtÞ

dt ¼ bdyðtÞ � bxðtÞvðtÞ � cvðtÞ:

8>><
>>: ð2:2Þ

Fig. 1. The lytic cycle of oncolytic viruses.

Fig. 2. The interactions in oncolytic virotherapy. k is per capita growth rate. b is infectivity. s is the period of time of lytic cycle. c is virus clearance rate. d is
death of infected tumor cells.
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For the convenience of study, we re-scale this system by setting ~t ¼ dt; ~s ¼ ds; xðtÞ ¼ C~xð~tÞ; yðtÞ ¼ C~yð~tÞ, and
vðtÞ ¼ C~vð~tÞ. Then, we drop all tildes over variables. The non-dimensionalized system is given by (2.3).

dxðtÞ
dt ¼ k1xðtÞð1� xðtÞ � yðtÞÞ � k2xðtÞvðtÞ;

dyðtÞ
dt ¼ k2xðt � sÞvðt � sÞ � yðtÞ;

dvðtÞ
dt ¼ byðtÞ � k2xðtÞvðtÞ � k3vðtÞ;

8>><
>>: ð2:3Þ

where k1 ¼ k
d ; k2 ¼ Cb

d ; k3 ¼ c
d.

3. Preliminary results

To study the dynamics of the system (2.3) when s P 0, we need to consider a suitable phase space and a feasible region.
For s > 0, let C ¼ Cð½�s;0�;RÞ be the Banach space of continuous functions mapping the interval ½�s;0� into R with the norm
kuðhÞk ¼ sup�s6h60juðhÞj for u 2 C. The nonnegative cone of C is denoted by Cþ ¼ Cð½�s; 0�;RþÞ. We present some preliminary
results for the system (2.3). Particularly, when the burst size b is smaller than the first threshold bc1 ¼ 1þ k3

k2
, the virotherapy

fails no matter what the lytic cycle period is.

Proposition 3.1. Suppose that ðxðtÞ; yðtÞ;vðtÞÞ is a solution of system (2.3) with initial conditions xðhÞ ¼ u1ðhÞ; yðhÞ ¼ u2ðhÞ, and
vðhÞ ¼ u3ðhÞ, where uiðhÞ 2 Cþ, and uið0Þ > 0; i ¼ 1;2;3. Then xðtÞP 0; yðtÞP 0; vðtÞP 0 for all t P 0.

Proof. From the first equation of the system (2.3) we have that

xðtÞ ¼ u1ð0Þe
R t

0
½k1ð1�xðsÞþyðsÞÞ�k2vðsÞ�ds

:

Since u1ð0ÞP 0, it implies that xðtÞP 0 for t P 0.
When t 2 ½0; s�, from the second equation of system (2.3) it follows that

yðtÞ ¼ e�t u2ð0Þ þ k2

Z t

0
esu1ðs� sÞu3ðs� sÞds

� �
:

Since uiðhÞP 0 ði ¼ 1;2;3Þ, we have yðtÞP 0 when t 2 ½0; s�.
From the third equation of system (2.3) we have that

vðtÞ ¼ e�
R t

0
ðk3þk2xðsÞÞds u3ð0Þ þ b

Z t

0
e
R s

0
ðk3þk2xðnÞÞdnyðsÞds

� �
and u3ð0ÞP 0, as well as yðtÞP 0 for t 2 ½0; s�, we have vðtÞP 0 for t 2 ½0; s�.

By induction, we have that yðtÞP 0 and vðtÞP 0 for all t P 0. Hence the proof is completed. h

Proposition 3.2. For the initial conditions in Proposition 3.1, the solutions of system (2.3) are ultimately uniformly bounded in
Cþ � Cþ � Cþ for t P 0.

Proof. By Proposition 3.1, we have that d
dt xðtÞ 6 k1xðtÞ � k1x2ðtÞ. By the Comparison Principle, we can get xðtÞ 6 1 when the

initial value xð0Þ < 1. Therefore, lim supt!þ1xðtÞ 6 1. Furthermore, we consider

ðxðt � sÞ þ yðtÞÞ0 ¼ k1xðt � sÞ½1� xðt � sÞ � yðt � sÞ� � yðtÞ
6 k1½1� xðt � sÞ� � yðtÞ
¼ k1 � k1xðt � sÞ � yðtÞ

with 0 6 u1 6 1; 0 6 u2 6
k1
k and k ¼minfk1;1g. We obtain lim supt!þ1½xðt � sÞ þ yðtÞ� 6 k1

k . Since xðtÞP 0, we get
lim supt!þ1yðtÞ 6 k1

k . The third equation of system (2.3) implies

v 0ðtÞ ¼ byðtÞ � k2xðtÞvðtÞ � k3vðtÞ 6 byðtÞ � k3vðtÞ 6 b
k1

k
� k3vðtÞ;

thus, lim supt!þ1vðtÞ 6 bk1
kk3

. Therefore, xðtÞ; yðtÞ, and vðtÞ are ultimately uniformly bounded in Cþ � Cþ � Cþ. h

Proposition 3.2 implies that the x limit set of system (2.3) is contained in the following bounded feasible region:

M ¼ ðx; y;vÞ 2 Cþ � Cþ � Cþ : kxk 6 1; kyk 6 k1

k
; kvk 6 bk1

kk3

� �
:

It is easy to verify that the region M is positively invariant for the system (2.3). We will analyze the model in this region.
When b 6 bc1 ¼ 1þ k3

k2
, the system has two equilibria E0 ¼ ð0;0;0Þ, and E1 ¼ ð1;0;0Þ. The E0 is cancer free equilibrium, and

E1 is infection free but with cancer equilibrium. When b > bc1 , there is a third equilibrium E� ¼ ðx�; y�;v�Þ in the feasible
range, where

Y. Wang et al. / Applied Mathematical Modelling 37 (2013) 5962–5978 5965



x� ¼ k3

k2ðb� 1Þ ; y� ¼ k3

b� 1
v�; v� ¼ k1k2ðb� 1Þ � k1k3

k2ðk1k3 þ k2ðb� 1ÞÞ :

If the burst size b is less than 1, then free viruses will die out eventually. It is impossible to establish any infection within a
tumor in this situation. Actually, the burst size is even greater than 1 but smaller than bc1 ¼ 1þ k3

k2
, it is still impossible for

virus infection spreading. At the cancer free and hence virus free equilibrium E0 ¼ ð0;0; 0Þ, the eigenvalues of variational ma-
trix of the system (2.3) are

l1 ¼ k1 > 0; l2 ¼ �1 < 0; l3 ¼ �k3 < 0:

Therefore, this equilibrium is unstable for biologically relevant parameters. Biologically, around the origin, each population
has a small size, virus population and infected tumor cell population both decrease, but tumor cell population increases. The
instability of this equilibrium is due to the increase of tumor cells. Furthermore, as the tumor population attains its maximal
size 1, the equilibrium E1 ¼ ð1;0;0Þ represents failure of the tumor virotherapy.

Proposition 3.3. The equilibrium E1 is locally asymptotically stable for any time delay s P 0 if b < bc1 , and unstable if b > bc1 .

Proof. Let u1 ¼ x� 1; u2 ¼ y, and u3 ¼ v , the system (2.3) is transformed as

du1ðtÞ
dt ¼ �k1u1ðtÞ � k1u2ðtÞ � k2u3ðtÞ � k1u2

1ðtÞ � k1u1ðtÞu2ðtÞ � k2u1ðtÞu3ðtÞ;
du2ðtÞ

dt ¼ �u2ðtÞ þ k2u3ðt � sÞ þ k2u1ðt � sÞu3ðt � sÞ;
du3ðtÞ

dt ¼ bu2ðtÞ � ðk2 þ k3Þu3ðtÞ � k2u1ðtÞu3ðtÞ:

8>><
>>: ð3:1Þ

Then the characteristic equation is

ðlþ k1Þ½ðlþ 1Þðlþ k2 þ k3Þ � bk2e�ls� ¼ 0: ð3:2Þ

Clearly, l ¼ �k1 is a root of the Eq. (3.2). So we only need to consider

l2 þ a1lþ b1 þ c1e�ls ¼ 0; ð3:3Þ
where a1 ¼ 1þ k2 þ k3 > 0, b1 ¼ k2 þ k3 > 0; c1 ¼ �bk2.

b < 1þ k3
k2

implies that b1 þ c1 ¼ k2 þ k3 � bk2 > 0. Hence, the roots of (3.3) at s ¼ 0 have negative real parts. This shows
that the equilibrium E1 is locally asymptotically stable when s ¼ 0.

ixðx > 0Þ is a root of (3.3) with s > 0 if and only if

�x2 þ ia1xþ b1 þ c1ðcos xs� i sin xsÞ ¼ 0:

Separating the real and imaginary parts gives

�x2 þ b1 ¼ �c1 cos xs;
�a1x ¼ �c1 sin xs:

(
ð3:4Þ

Adding the squares of both equations together, we obtain

x4 þ ða2
1 � 2b1Þx2 þ b2

1 � c2
1 ¼ 0: ð3:5Þ

Then

x2 ¼ 1
2
�ða2

1 � 2b1Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða2

1 � 2b1Þ2 � 4ðb2
1 � c2

1Þ
q� �

:

This implies that x2 < 0 when b < 1þ k3
k2

. Hence, all the roots of (3.3) have negative real parts when b < 1þ k3
k2

. Thus, the equi-
librium E1 is locally asymptotically stable for any time delay s P 0. Let

hðlÞ ¼ l2 þ a1lþ b1 þ c1e�ls:

Then we have lim l!þ1hðlÞ ¼ þ1 and hð0Þ ¼ b1 þ c1 < 0 when b > 1þ k3
k2

. It follows that the equation hðlÞ ¼ 0 has at least
one positive root. Hence E1 is unstable for s P 0. h

Theorem 3.4. If b < bc1 , the equilibrium E1 is globally asymptotically stable for all s P 0.

Proof. Consider a Lyapunov functional on the domain M given by

Vð/Þ ¼ bu2ð0Þ þu3ð0Þ þ bk2

Z 0

�s
u1ðsÞu3ðsÞds:

When b < 1þ k3
k2

, we have

_Vð/Þ ¼ ½k2u1ð0Þðb� 1Þ � k3�u3ð0Þ 6 ½k2ðb� 1Þ � k3�u3ð0Þ 6 0:
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Meanwhile, we have _Vð/Þ ¼ 0 if and only if u3ð0Þ ¼ 0. Thus, the maximum invariant set in f/ 2 Mj _Vð/Þ ¼ 0g is the singleton
E1. The classical Lasalle’s Invariance Principle [27] implies that E1 ¼ ð1;0;0Þ is globally attractive. This confirms the globally
asymptotical stability of E1 for s P 0. h

4. Hopf bifurcations and periodic solutions

When the burst size b is greater than the first threshold bc1 , the system (2.3) has the third interior equilibrium E�. There
exists the second threshold of the burst size, bc2 which is greater than bc1 . When the burst size b is greater than bc2 , there
exists bifurcation value for the lytic cycle period s0. When 0 6 s 6 s0; E� is locally asymptotically stable. While the system
undergoes Hopf bifurcation at s ¼ s0. When the lytic cycle period is greater than s0, there exists periodic solutions. To study
periodic solutions, we compute the directions of Hopf bifurcations, the Floquet exponents of the periodic solutions and their
periods. However, we leave the theoretical derivation in Appendix A.

4.1. Existence of Hopf bifurcations and periodic solutions

By the transformation u1 ¼ x� x�; u2 ¼ y� y�; u3 ¼ v � v�, the system (2.3) is changed to

du1
dt ¼ �k1x�u1ðtÞ � k1x�u2ðtÞ � k2x�u3ðtÞ � k1u2

1ðtÞ � k1u1ðtÞu2ðtÞ � k2u1ðtÞu3ðtÞ;
du2
dt ¼ �u2ðtÞ þ k2v�u1ðt � sÞ þ k2x�u3ðt � sÞ þ k2u1ðt � sÞu3ðt � sÞ;

du3
dt ¼ �k2v�u1ðtÞ þ bu2ðtÞ � ðk2x� þ k3Þu3ðtÞ � k2u1ðtÞu3ðtÞ:

8>><
>>: ð4:1Þ

The linearization of (4.1) at ð0;0;0Þ is given by

du1
dt ¼ �k1x�u1ðtÞ � k1x�u2ðtÞ � k2x�u3ðtÞ;

du2
dt ¼ �u2ðtÞ þ k2v�u1ðt � sÞ þ k2x�u3ðt � sÞ;

du3
dt ¼ �k2v�u1ðtÞ þ bu2ðtÞ � ðk2x� þ k3Þu3ðtÞ:

8>><
>>: ð4:2Þ

Then the characteristic equation is

l3 þ a1l2 þ b1lþ c1 þ ðd1lþ e1Þe�ls ¼ 0; ð4:3Þ

where

a1 ¼ k3 þ k2x� þ 1þ k1x�;

b1 ¼ k3 þ k1k3x� þ k2x� þ k1k2x�2 þ k1x� � k2
2x�v�;

c1 ¼ k1x�ðk3 þ k2x�Þ � k2
2x�v�;

d1 ¼ k1k2x�v� � bk2x�;

e1 ¼ bk2
2x�v� � bk1k2x�2 þ k1k2k3x�v�:

It is impossible to find roots of the Eq. (4.3) explicitly. Instead, we look for the condition under which it has purely imaginary
roots and there will be Hopf bifurcations. Particularly, we are interested in the condition that relates the burst size b and the
delay parameter s. Clearly, ixðx > 0Þ is a root of (4.3) if and only if

�ix3 � a1x2 þ ib1xþ c1 þ ðid1xþ e1Þðcos xs� i sin xsÞ ¼ 0:

Separating the real and imaginary parts, we have

�a1x2 þ c1 ¼ �d1x sin xs� e1 cos xs;
�x3 þ b1x ¼ �d1x cos xsþ e1 sin xs:

(

Adding the squares of both equations together gives

x6 þ ða2
1 � 2b1Þx4 þ ðb2

1 � 2a1c1 � d2
1Þx2 þ c2

1 � e2
1 ¼ 0: ð4:4Þ

Denote z ¼ x2; p ¼ a2
1 � 2b1, q ¼ b2

1 � 2a1c1 � d2
1 and r ¼ c2

1 � e2
1. Then the Eq. (4.4) becomes

hðzÞ ¼ z3 þ pz2 þ qzþ r ¼ 0: ð4:5Þ

Suppose the Eq. (4.5) has positive roots. Without loss of generality, we assume that it has three positive roots, denoted by
z1; z2 and z3, respectively. Then the Eq. (4.4) has three positive roots, say
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x1 ¼
ffiffiffiffiffi
z1
p

; x2 ¼
ffiffiffiffiffi
z2
p

; x3 ¼
ffiffiffiffiffi
z3
p

:

Let

sðjÞk ¼
1
xk

arccos
d1x4

k þ ða1e1 � b1d1Þx2
k � c1e1

d2
1x2

k þ e2
1

" #
þ 2jp

( )
; k ¼ 1;2;3; j ¼ 1;2; . . . ð4:6Þ

Then �ixk is a pair of purely imaginary roots of (4.3) with s ¼ sðjÞk ; k ¼ 1;2;3, j ¼ 1;2; . . . Clearly,
limj!1sðjÞk ¼ 1; k ¼ 1;2;3, j P 1. Then we can define

s0 ¼ sðj0Þk0
¼ min

1 6 k 6 3; j P 1
fsðjÞk g; x0 ¼ xk0

: ð4:7Þ

When s ¼ 0, the Eq. (4.3) becomes

l3 þ a1l2 þ b1lþ c1 þ d1lþ e1 ¼ 0: ð4:8Þ

By the Routh–Hurwitz criterion, all of its roots have negative real parts if and only if
a1 > 0; a1ðb1 þ d1Þ � ðc1 þ e1Þ > 0 and c1 þ e1 > 0. When b > bc1 ; a1 > 0, and

c1 þ e1 ¼ k1x�ðk3 þ k2x�Þ � k2
2x�v� þ bk2

2x�v� � bk1k2x�2 þ k1k2k3x�v�

¼ ð1� bÞk1k2x�2 þ k1k3x� þ ðb� 1Þk2
2x�v� þ k1k2k3x�v� ¼ ðb� 1Þk2

2x�v� þ k1k2k3x�v� > 0:

If a1ðb1 þ d1Þ � ðc1 þ e1Þ > 0, then

a1ðb1 þ d1Þ > ðc1 þ e1Þ;

ðk3 þ k2x� þ 1þ k1x�Þðk3 þ k1k3x� þ k2x� þ k1k2x�2 þ k1x� � k2
2x�v� þ k1k2x�v� � bk2x�Þ > ððb� 1Þk2

2x�v� þ k1k2k3x�v�Þ;

ðk3 þ k2x� þ 1þ k1x�Þðk1k3 þ k1k2x� þ k1 � k2
2v
� þ k1k2v�Þ > ððb� 1Þk2

2v
� þ k1k2k3v�Þ;

k1k3 þ k1k2x� þ k1 � k2
2v� þ k1k2v� >

ðb� 1Þk2
2v� þ k1k2k3v�

k3 þ k2x� þ 1þ k1x�
;

k1k3bþ k1ðb� 1Þ
b� 1

þ ðk1 � k2Þðk1k2ðb� 1Þ � k1k3Þ
k1k3 þ k2ðb� 1Þ >

ðk1k2ðb� 1Þ � k1k3Þk2ðb� 1Þ
ðk2k3bþ k2ðb� 1Þ þ k1k3Þ

;

ðk3bþ b� 1Þðk1k3 þ k2ðb� 1ÞÞ
ðk2ðb� 1Þ � k3Þðb� 1Þ þ k1 � k2 >

k2ðb� 1Þððb� 1Þk2 þ k1k3Þ
k2k3bþ k2ðb� 1Þ þ k1k3

;

k2ðb� 1Þ
k2k3bþ k2ðb� 1Þ þ k1k3

� k3bþ b� 1
ðk2ðb� 1Þ � k3Þðb� 1Þ <

k1 � k2

k1k3 þ k2ðb� 1Þ :

Since k1k3 þ k2ðb� 1Þ > 0, we obtain /ðbÞ < k1 � k3. From the derivation above, we see that a1ðb1 þ d1Þ � ðc1 þ e1Þ > 0 if
and only if /ðbÞ < k1 � k3. Therefore, we conclude that all roots of the Eq. (4.8) have negative real parts if and only if
/ðbÞ < k1 � k3 when b > bc1 . To summary, we quote a statement from [28].

Lemma 4.1 (see [28]). Suppose that b > bc1 and /ðbÞ < k1 � k3. Then

(i) If r P 0 and M ¼ p2 � 3q < 0, then all roots of the Eq. (4.3) have negative real parts for all s P 0
(ii) If r < 0 or r P 0; z1 > 0 and hðz1Þ 6 0, then all roots of the Eq. (4.3) have negative real parts when s 2 ½0; s0Þ.

Consider r ¼ c2
1 � e2

1 ¼ ðc1 þ e1Þðc1 � e1Þ.

c1 � e1 ¼ k1k3x� þ k1k2ðbþ 1Þx�2 � ðk2
2 þ bk2

2 þ k1k2k3Þx�v� ¼ x�½k1k3 þ k1k2ðbþ 1Þx� � ðk2
2 þ bk2

2 þ k1k2k3Þv��

¼ x�k1 k3 þ
k3ðbþ 1Þ

b� 1
� ðk2 þ bk2 þ k1k3Þ

k2ðb� 1Þ � k3

k1k3 þ k2ðb� 1Þ

� �

¼ x�k1 k3 þ
k3ðbþ 1Þ

b� 1
� k1k3 þ k2ðbþ 1Þ

k1k3 þ k2ðb� 1Þ ðk2ðb� 1Þ � k3Þ
� �

¼ x�k1
2bk3ðbþ 1Þ

b� 1
� k1k3 þ k2ðbþ 1Þ

k1k3 þ k2ðb� 1Þ ðk2ðb� 1Þ � k3Þ
� �

:

Since x�k1 > 0, setting b� 1 ¼ y, we only consider the factor W
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W ¼ 2ð1þ yÞk3

y
� k1k3 þ k2ð2þ yÞ

k1k3 þ k2y
ðk2y� k3Þ ¼

wðyÞ
yðk1k3 þ k2yÞ ;

where wðyÞ ¼ �k2
2y3 � ðk1k2k3 þ 2k2

2 � 3k2k3Þy2 þ ð3k1k2
3 þ 4k2k3Þyþ 2k1k2

3. W and wðyÞ have the same nonzero roots. We only
need to study the root distribution of wðyÞ.

Consider w0ðyÞ ¼ �3k2
2y2 � 2ðk1k2k3 þ 2k2

2 � 3k2k3Þyþ 4k2k3. Since 4k2k3 > 0; w0ðyÞ has two roots, and with opposite
signs. Say y1 < 0; y2 > 0. Since wð0Þ ¼ 2k1k2

3 > 0; wðyÞ ! þ1 as y! �1, and /ðyÞ ! �1 as y! þ1, so wðy1Þ < 0 and
/ðy2Þ > 0, there is a root y3 of wðyÞ ¼ 0 such that wðyÞ < 0 when y > y3, while wðyÞ > 0 when 0 < y < y3. Since wðk3

k2
Þ > 0,

so y3 >
k3
k2

. Denote bc2 ¼ 1þ y3, then bc2 > bc1 . Therefore, when b > bc2 ; r ¼ ðc1 þ e1Þðc1 � e1Þ < 0.

Lemma 4.2. If /ðbÞ < k1 � k3 and b > bc2 , there exists a positive value s0, such that all roots of the Eq. (4.3) have negative real
parts when s 2 ½0; s0Þ.

Let

lðsÞ ¼ aðsÞ þ ixðsÞ

be the root of the Eq. (4.3) satisfying aðs0Þ ¼ 0 and xðs0Þ ¼ x0; z0 ¼ x2
0. It needs to be confirmed if �ix0 is a pair of simple

purely imaginary roots. We need to verify h0ðz0Þ– 0.
Consider the coefficient p of the Eq. (4.5), p ¼ a2

1 � 2b1 ¼ ðk2
1 þ k2

2Þx�2 þ 2k2k3x� þ k2
2x�v� þ k2

3 þ 1 > 0. Suppose z0 is a re-
peated root, then z0 is also a root of h0ðzÞ ¼ 0. The roots of h0ðzÞ ¼ 3z2 þ 2pzþ q ¼ 0 are given by z1 ¼ � p

3þ 1
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 � 3q

p
and

z2 ¼ � p
3� 1

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 � 3q

p
, which both are real. Since p > 0; z2 is negative. So, z0 must be z1. Such, we have

ðz� z0Þðz� z1Þðz� z2Þ ¼ ðz� z1Þðz� z1Þðz� z2Þ ¼ z3 þ pz2 þ qzþ r. Compare their coefficients, we have z2
1z2 ¼ �r > 0 since

r is negative when b > bc2 . However, z2
1z2 < 0. This contradiction means z0 is not a repeated root. Therefore, h0ðz0Þ – 0.

We also need to know the sign of a0ðsÞ at s ¼ s0, which will tell monotonicity of the function aðsÞ around s0. We differ-
entiate both sides of the Eq. (4.3) with respect to s, and obtain

f3l2 þ 2a1lþ b1 þ ½d1 � sðd1lþ e1Þ�e�lsg dl
ds
¼ lðd1lþ e1Þe�ls:

Solving for the derivative, we have

dl
ds

� ��1

¼ ð3l
2 þ 2a1lÞ þ b1Þels

lðd1lþ e1Þ
þ d1 � sðd1lþ e1Þ

lðd1lþ e1Þ
:

Therefore,

Sign
dRelðs0Þ

ds
¼ Sign Re

dl
ds

� ��1

js¼s0

( )
¼ Sign

1

d2
1x2

0 þ e2
1

h0ðz0Þ
( )

– 0:

We state the results above as a Theorem 4.3

Theorem 4.3. If /ðbÞ < k1 � k3 and b > bc2 , there exists a positive value s0, such that all roots of the Eq. (4.3) have negative real
parts when s 2 ½0; s0Þ. While at s ¼ s0, the Eq. 4.3 has a pair of simple purely imaginary roots, �ix0, and all other roots have
negative real parts. Furthermore,

Sign
daðs0Þ

ds

� �
¼ Signfh0ðz0Þg:

4.2. Numerical study of Hopf bifurcations and periodic solutions

To demonstrate the model behavior, we simulate the system (2.3). According to data in [19], we choose a set of parameter
values as follows: k1 ¼ 0:1; k2 ¼ 0:001; k3 ¼ 0:01. Since we are interested in how the burst size b and the period of the lytic
cycle s influence the virotherapy, we will leave these two parameters as variables. The thresholds of the burst size are deter-
mined by other three parameters. We compute bc1 ¼ 1þ k3

k2
¼ 11. To compute bc2 , we solve the equation wðyÞ ¼ 0 to find the

positive root (it has only one positive root) y3, and bc2 is given by bc2 ¼ 1þ y3 � 30. We know that p > 0 and r < 0 if b > bc2 in
the Eq. (4.5). Then, the Eq. (4.5) has only one positive root. So, the Hopf bifurcation value s0 is easy to define and compute in
terms of the burst size b as (4.6). We plot the relation between s0 and b when b > bc2 in Fig. 3. It is easy to observe that s0 is a
decreasing function of b. That means, when the virus burst size is big, the time for the virotherapy to get out the stability of
the interior equilibrium is short, and the system may shift to oscillated interaction among three populations.

We take several typical cases to demonstrate the what may happen for the system. When b ¼ 100, we compute
s0ð100Þ ¼ 13:99. If we take s ¼ 9, the equilibrium E� should be asymptotically stable. The Fig. 4 shows this situation.

For b ¼ 100 and s0ð100Þ ¼ 13:99, if we take s ¼ 16, we obtain periodic solutions for different initial conditions. Fig. 5
show oscillation of each population over time and oscillated interactions between three populations.
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To Study these periodic solutions, we study the directions of bifurcations, the Floquet exponents and periods of bifurcat-
ing solutions. The theoretical derivation is given in Appendix A. We compute c1ð0Þ ¼ �0:0238� 0:4238i, hence
Refc1ð0Þg < 0. We also get Refl0ðs0Þg > 0; l2 > 0; b2 ¼ �0:0476 < 0. Therefore, the positive equilibrium E� is asymptoti-
cally stable when s 2 ½0;13:99Þ, the Hopf bifurcation is supercritical and the bifurcating periodic solution is orbitally stable
when s > s0.

We know from the function wðbÞ that the system will not undergo Hopf bifurcations around E� when the value of b choose
as bc1 ¼ 11 < b < bc2 ¼ 30.

On the other hand, we choose the burst size b as a bifurcating parameter. We fix the lytic cycle period, say s ¼ 8, accord-
ing to the relation between s0 and b as shown in Fig. 3, we obtain b� � 133. To demonstrate, we take two different values of
the burst size, b ¼ 100 and b ¼ 150. Fig. 6 shows the positive equilibrium E� is asymptotically stable.

When the burst size b ¼ 150 > 133, we have periodic solutions for different initial conditions. Fig. 7 shows the dynamics
of each population over time and interactions among them. We also did computation in Appendix A, and find these Hopf
bifurcations are supercritical and the bifurcating periodic solutions are orbitally stable.

In summary, when the burst size b and the lytic cycle s are above the bifurcation curve in Fig. 3, the system has periodic
solutions. When b and s are below the bifurcation curve and b > bc2 , the system has the stable interior equilibrium solution.
Along the bifurcation curve, the system undergoes Hopf bifurcations.

5. Summary and discussion

The viral lytic cycle is the most important process in oncolytic virotherapy. After the initial infection of tumor cells by
oncolytic viruses, new viruses are produced by this virus reproduction process. It makes the spreading of the infection within
a tumor possible. It is clear that any initial infection of tumor cells by injecting viruses can not have a successful experimen-
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Fig. 3. A bifurcation curve s0ðbÞ: for a fixed value of the burst size b, there corresponds to a value of the lytic cycle period s0 according to the curve. The
system undergoes a Hopf bifurcation when s passes s0.

0 0.05 0.1 0.15 0.2 0.25

0

0.005

0.01

0.015

0.02
40

60

80

100

120

X

τ= 9 ( τ0(b) ≈13.9977)

Y

V

k1=0.1,k2=0.001
k3=0.01,b=100
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tal or clinical results, and even cannot establish a meaningful infection. Therefore, the understanding of the viral lytic cycle
within a tumor is essential for improving experimental and clinical efficacy of virotherapy.

The dynamics of the viral lytic cycle can be described by two parameters, the viral burst size and the time period of the
viral lytic cycle. In this article, we study the viral lytic cycle by applying delayed differential equations. The model is a non-
linear system of three differential equations. It explicitly incorporates the burst size b and the period of the viral lytic cycle s.
The dynamic behavior of the model is characterized by those two parameters. Particularly, the burst size has two threshold
values, bc1 and bc2 . The model always has two equilibrium solutions, the trivial one E0 and the virus free equilibrium solution
E1 while it has the third positive equilibrium solution E� when b > bc1 . E0 is always unstable. By employing a Lyapunov func-
tional, it is shown E1 is globally asymptotically stable for any lytic cycle period s P 0 when b < bc1 , while it is unstable when
b > bc1 . When the burst size b is greater than the second threshold bc2 , there exists a bifurcation value for the lytic cycle per-
iod s0. For this b, if s < s0, the positive equilibrium solution E� is locally asymptotically stable. The system undergoes a Hopf
bifurcation around s ¼ s0. When s > s0, the system has orbitally stable periodic solutions. It is interesting that s0 is a func-
tion of b when b > bc2 . The system also undergoes a Hopf bifurcation along the parameter b. Therefore, we obtain a bifurca-
tion curve in b� s plane. The system undergoes Hopf bifurcations along this curve. For the values of b and s that are above
this curve, the system has periodic solutions. For the values of b and s that are below this curve, the system has stable
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Fig. 5. Periodic solutions when s > s0.
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positive equilibrium solution E�. For the value of b that is in the range between bc1 and bc2 for s P 0, the solution behavior is
complicated by other model parameters. Recalling the ODE model [25] which does not have the period of the viral lytic cycle
as a delay parameter, the dynamics is easier to characterize but may be insufficient to the real therapy. Concretely, in [25], it
is shown that there also exist two threshold values for the burst size. Below the first threshold, the system has a globally
asymptotically stable virus free equilibrium, this result also occurs in our present model (2.2), which means under this con-
dition the virus-free equilibrium E1 is robust [23]; while passing this threshold, there is a locally stable positive equilibrium.
Above the second threshold, there exits one or three families of periodic solutions arising from Hopf bifurcations. Comparing
with the model with more details of the viral lytic cycle, namely the period of the viral lytic cycle included in the present
paper, the delay parameter of the period of the viral lytic cycle makes the model more realistic although the burst size seems
to be a major parameter to determine the outcome of the virotherapy. This may provide more realistic suggestions for exper-
imental and/or clinical virotherapy than the ODE model and the other simple ones.

As mentioned in Introduction, two types of viruses have been applied in experiments and/or clinical virotherapy, onco-
lytic wild viruses and gene-modified viruses. There are various genetic methods that can be used to modify the genomes of
viruses so that the viruses have desired burst sizes [6]. For different viruses, their burst sizes may be modified according to
their nature to obtain new viruses with various burst sizes. As we demonstrated, the burst size has effects on the period of
viral lytic cycle, and thus affects the outcome of the virotherapy. It is clear that any oncolytic virus with small burst size, say
smaller than the first threshold, can not eradicate the tumor, in stead, the tumor will grow to its maximum volume. When
oncolytic viruses have a medium burst size, the outcome of the virotherapy could be the coexistence of three populations –
tumor cell population, infected tumor cell population, and virus population, and this is determined by the period of the lytic
cycle. When oncolytic viruses have large burst size, the outcome of the virotherapy could be the coexistence of three pop-
ulations or the oscillation of three population. If viruses have huge burst size, the period of the viral lytic cycle will have less
effect, and the averages of each population will have a small portion although most outcome will be oscillations of three pop-
ulations. Since the success of the therapy is determined by detectability of tumor cells, it will be reasonable to apply onco-
lytic viruses with big burst size in the treatments. However, the stability in each case, coexistence and oscillations, should be
broken away when the solution tends to reduce the amount of tumor cells. Overall, a clinic implication is that the period of
the viral lytic cycle and the viral burst size should be modified simultaneously when a type of a virus is modified for oncolytic
virotherapy, so that the period of viral lytic cycle and burst size are in a suitable range which can produce a desired outcome.

As a theoretical implication, the appearance of periodic solutions in the model with viral lytic cycle included may explain
the periodic phenomena observed in [12,20,22] and other works. In [22], the model is for a specific virus measles and it has
extra term for cell-to-cell fusion. Although the oscillation was observed, the authors attribute it to some combined param-
eter which do not have a clear biological significance. In [20], the models have immune cell population. The author had
pointed out that the oscillation may caused by the interaction between immune cells and tumor cells. In other works, for

Fig. 7. Periodic solutions when b > b� .
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example, in papers [21,23,24], the models only have two populations, tumor cells and infected tumor cells. Although some
unstable oscillations were observed in some of those models, we could not figure out a clear biological meaning. In our re-
cently accepted work [26], we considered a quasi-equilibrium state study where we did not have free virus. We observed
oscillation phenomenon. However, we could not explain the relation between the threshold values of s and the burst size
b. In our current work, our conclusion seems reasonable in terms of explaining biological observations in [12]. Comparing
with all existing models for viral therapy, our current model reveals a striking feature that the critical value of the period
of the viral lytic cycle is determined by the viral burst size. An important clinic implication is that the burst size should
be carefully modified according to its effect on the lytic cycle when a type of a virus is modified for virotherapy, so that
the period of the viral lytic cycle is in a suitable range which can break away the stability of the positive equilibria or periodic
solutions.
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Appendix A. Direction and stability of the Hopf bifurcation

In Section 4, we obtain some conditions under which the system (2.3) undergoes Hopf bifurcations along the bifurcation
curve. In this appendix we shall derive some formulae to compute the direction of the Hopf bifurcation and the stability of
the bifurcating periodic solutions by using the normal form and center manifold theory [29].

Let s ¼ s0 þ �; � 2 R. Then � ¼ 0 is the Hopf bifurcation value for system (2.3). Choosing the phase space as
C ¼ Cð½�s;0�;R3Þ then system (2.3) is transformed into an FDE in C.

_u ¼ L�ðutÞ þ Fð�;utÞ; ð5:1Þ

where ut ¼ uðt þ hÞ 2 C, and L� : C ! R3; F : R� C ! R3.
For / ¼ ð/1;/2;/3Þ

T 2 Cð½�s;0�;R3Þ, let

L�/ ¼ A1/ð0Þ þ B1/ð�sÞ; ð5:2Þ

where

A1 ¼
�k1x� �k1x� �k2x�

0 �1 0
�k2v� b �ðk2x� þ k3Þ

0
B@

1
CA; B1 ¼

0 0 0
k2v� 0 k2x�

0 0 0

0
B@

1
CA

and

Fð�;/Þ ¼
�k1/

2
1ð0Þ � k1/1ð0Þ/2ð0Þ � k2/1ð0Þ/3ð0Þ

k2/1ð�sÞ/3ð�sÞ
�k2/1ð0Þ/3ð0Þ

0
B@

1
CA:

By the Riesz representation theorem, there exists a matrix whose components are bounded variation functions gðh; �Þ in
h 2 ½�s;0�, such that

L�/ ¼
Z 0

�s
dgðh; �Þ/ðhÞ for / 2 C: ð5:3Þ

In fact, we can choose

gðh; �Þ ¼ A1fðhÞ � B1fðhþ sÞ; ð5:4Þ

where

fðhÞ ¼
1; h ¼ 0;
0; h – 0:

�
ð5:5Þ

Then (5.3) is satisfied. For / 2 C1ð½�s;0�;R3Þ, define

Að�Þ/ ¼
d/ðhÞ

dh ; h 2 ½�s;0Þ;R 0
�s dgðs; �Þ/ðsÞ; h ¼ 0

(
ð5:6Þ

and
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Rð�;/Þ ¼
0; h 2 ½�s; 0Þ;
Fð�;/Þ; h ¼ 0:

�
ð5:7Þ

Hence, we can rewrite (5.1) in the following form:

_ut ¼ Að�Þut þ Rð�; utÞ; ð5:8Þ

where

u ¼ ðu1;u2;u3ÞT ;ut ¼ uðt þ hÞ for h 2 ½�s; 0Þ:

For w 2 C1ð½0; s�; ðR3Þ�Þ, define

A�wðsÞ ¼
� dwðsÞ

d s ; s 2 ð0; s�;R 0
�s dgðt;0Þwð�tÞ; s ¼ 0:

(
ð5:9Þ

For / and w, we define the bilinear form

hw;/i ¼ �wð0Þ/ð0Þ �
Z 0

�s

Z h

n¼0

�wðn� hÞdgðhÞ/ðnÞdn; ð5:10Þ

where gðhÞ ¼ gðh;0Þ. Then A� and Að0Þ are adjoint operators. By the results in Section 4, we assume that �ix0 are eigenvalues
of Að0Þ. Thus, they are also eigenvalues of A�.

We define

qðhÞ ¼ ð1; q1; q2Þ
T eix0h; q�ðsÞ ¼ Dðq�1; q�2;1Þeix0s: ð5:11Þ

By direct computation, we have that

q1 ¼
k2v� � k1x� � ix0

k1x� þ ðix0 þ 1Þeix0s0
;

q2 ¼
k1k2x�v� þ ðix0 þ 1Þðix0 þ k1x�Þeix0s0

k1k2x�2 þ k2x�ðix0 þ 1Þeix0s0
;

q�1 ¼
k2v�ðbeix0s0 � 1þ ix0Þ

ð1� ix0Þðk1x� � ix0Þ þ k1k2x�v�eix0s0
;

q�2 ¼
bðk1x� � ix0Þ þ k1k2x�v�

ð1� ix0Þðk1x� � ix0Þ þ k1k2x�v�eix0s0
;

where qðhÞ is the eigenvector of Að0Þ corresponding to ix0, and q�ðsÞ is the eigenvector of A� corresponding to �ix0.
Moreover,

hq�; qi ¼ 1; hq�; �qi ¼ 0:

Then from (5.10), it follows that

hq�ðsÞ; qðhÞi ¼ �q�ð0Þqð0Þ �
Z 0

�s

Z h

n¼0

�q�ðn� hÞdgðhÞqðnÞdn

¼ �Dfð�q�1; �q�2;1Þð1; q1; q2Þ
T �

Z 0

�s

Z h

0
ð�q�1; �q�2;1Þe�ix0ðn�hÞdgðhÞð1; q1; q2Þ

T eix0ndng

¼ �Df�q�1 þ q1�q�2 þ q2 �
Z 0

�s
ð�q�1; �q�2;1Þheix0hdgðhÞð1; q1; q2Þ

Tg ¼ �D �q�1 þ q1�q�2 þ q2 þ sk2�q�2e�ix0sðv� þ q2x�Þ
	 


¼ 1:

Thus, we can choose �D as

�D ¼ f�q�1 þ q1�q�2 þ q2 þ sk2�q�2e�ix0sðv� þ q2x�Þg�1
:

Using the same notions as Hassard et al. [29], we first compute the coordinates to describe the center manifold C0 at � ¼ 0.
Define

zðtÞ ¼ hq�ðsÞ;utðhÞi; Wðt; hÞ ¼ utðhÞ � 2RefzðtÞqðhÞg:

On the center manifold C0 we have

Wðt; hÞ ¼WðzðtÞ;�zðtÞ; hÞ;
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where

Wðt; hÞ ¼W20ðhÞ
z2

2
þW11ðhÞz�zþW02ðhÞ

�z2

2
þ � � � ;

z and �z are local coordinates for center manifold C0 in the direction of q� and �q�. Note that W is real if ut is real. We only
consider real solutions.

For solution ut 2 C0 of system (2.3) with � ¼ 0, then we have

_z ¼ ix0zþ hq�ðsÞ; FðW þ 2RefzðtÞqðhÞgÞi ¼ ix0zþ �q�ð0ÞFðWðz;�z;0Þ þ 2RefzðtÞqð0ÞgÞ ¼ ix0zþ �q�ð0ÞF0ðz;�zÞ:

We rewrite this as

_z ¼ ix0zðtÞ þ gðz;�zÞ; ð5:12Þ

where

gðz;�zÞ ¼ �q�ð0ÞF0ðz;�zÞ ¼ g20ðhÞ
z2

2
þ g11ðhÞz�zþ g02ðhÞ

�z2

2
þ g21

z2�z
2
þ � � � ð5:13Þ

By (5.8) and (5.12) we have

_W ¼ _ut � _zq� _�z�q ¼
AW � 2Ref�q�ð0ÞF0qðhÞg; h 2 ½�s;0Þ;
AW � 2Ref�q�ð0ÞF0qðhÞg þ F0; h ¼ 0;

�
¼ AW þ Hðz;�z; hÞ;

where

Hðz;�z; hÞ ¼ H20ðhÞ
z2

2
þ H11ðhÞz�zþ H02ðhÞ

�z2

2
þ � � � ð5:14Þ

Expanding and comparing the coefficients, we obtain

ðA� 2ix0ÞW20ðhÞ ¼ �H20ðhÞ;AW11ðhÞ ¼ �H11ðhÞ; ðAþ 2ix0ÞW02ðhÞ ¼ �H02ðhÞ; � � � ð5:15Þ

Notice that

u1tð0Þ ¼ zþ �zþW ð1Þ
20 ð0Þ

z2

2
þW ð1Þ

11 ð0Þz�zþW ð1Þ
02 ð0Þ

�z2

2
þ � � � ;

u2tð0Þ ¼ q1zþ �q1�zþW ð2Þ
20 ð0Þ

z2

2
þW ð2Þ

11 ð0Þz�zþW ð2Þ
02 ð0Þ

�z2

2
þ � � � ;

u3tð0Þ ¼ q2zþ �q2�zþW ð3Þ
20 ð0Þ

z2

2
þW ð3Þ

11 ð0Þz�zþW ð3Þ
02 ð0Þ

�z2

2
þ � � � ;

u1tð�sÞ ¼ e�ix0szþ eix0s�zþW ð1Þ
20 ð�sÞ z

2

2
þW ð1Þ

11 ð�sÞz�zþW ð1Þ
02 ð�sÞ

�z2

2
þ � � � ;

u3tð�sÞ ¼ q2e�ix0szþ �q2eix0s�zþW ð3Þ
20 ð�sÞ z

2

2
þW ð3Þ

11 ð�sÞz�zþW ð3Þ
02 ð�sÞ

�z2

2
þ � � �

and

F0 ¼
�k1u2

1tð0Þ � k1u1tð0Þu2tð0Þ � k2u1tð0Þu3tð0Þ
k2u1tð�sÞu3tð�sÞ
�k2u1tð0Þu3tð0Þ

0
B@

1
CA;

we have

gðz;�zÞ ¼ �q�ð0ÞF0

¼ �Dð�q�1; �q�2;1Þ
�k1u2

1tð0Þ � k1u1tð0Þu2tð0Þ � k2u1tð0Þu3tð0Þ
k2u1tð�sÞu3tð�sÞ
�k2u1tð0Þu3tð0Þ

0
B@

1
CA

¼ �Df�q�1½�k1u2
1tð0Þ � k1u1tð0Þu2tð0Þ � k2u1tð0Þu3tð0Þ� þ �q�2k2u1tð�sÞu3tð�sÞ � k2u1tð0Þu3tð0Þg:

Comparing the coefficients with (5.13), we have

g20 ¼ 2�Dð�k1�q�1 � k1q1�q�1 � k2�q�1q2 þ q2�q�2e�2ix0s � k2q2Þ;
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g11 ¼ �Dð�2k1�q�1 � k1�q1�q�1 � k1q1�q�1 � k2�q�1�q2 � k2�q�1q2 þ k2�q2�q�2 þ k2q2�q�2 � k2q2 � k2�q2Þ;

g02 ¼ 2�Dð�k1�q�1 � k1q1�q�1 � k2�q�1�q2 þ k2�q2�q�2e2ix0s � k2�q2Þ;

g21 ¼ �D½ð�2k1�q�1 � k1�q1�q�1 � k2�q�1�q2 � k2�q2ÞW ð1Þ
20 ð0Þ þ ð�4k1�q�1 � 2k1q1�q�1 � 2k2�q�1q2 � 2k2q2ÞW

ð1Þ
11 ð0Þ � k1�q�1W ð2Þ

20 ð0Þ

� 2k1�q�1W ð2Þ
11 ð0Þ � k2ð�q�1 þ 1ÞW ð3Þ

20 ð0Þ � 2k2ð�q�1 þ 1ÞW ð3Þ
11 ð0Þ þ k2�q2�q�2eix0sW ð1Þ

20 ð�sÞ þ 2k2q2�q�2e�ix0sW ð1Þ
11 ð�sÞ

þ k2�q�2eix0sW ð3Þ
20 ð�sÞ þ 2k2�q�2e�ix0sW ð3Þ

11 ð�sÞ�:

We still need to compute W20ðhÞ and W11ðhÞ for h 2 ½�s;0Þ. We have

Hðz;�z; hÞ ¼ �2Ref�q�ð0ÞF0qðhÞg ¼ �gqðhÞ � �g�qðhÞ:

Comparing the coefficients with (5.14), we get

H20ðhÞ ¼ �g20qðhÞ � �g02�qðhÞ;

H11ðhÞ ¼ �g11qðhÞ � �g11�qðhÞ:

It follows from (5.15) that

_W20ðhÞ ¼ 2ix0W20ðhÞ þ g20qðhÞ þ �g02�qðhÞ:

Solving for W20ðhÞ, we obtain

W20ðhÞ ¼
ig20

x0
qðhÞ þ i�g02

3x0
�qðhÞ þ E1e2ix0h ð5:16Þ

and similarly

W11ðhÞ ¼ �
ig11

x0
qðhÞ þ i�g11

x0
�qðhÞ þ E2; ð5:17Þ

where E1 and E2 are both 3-dimensional vectors which can be determined by setting h ¼ 0 in H. In fact, since

Hðz;�z; hÞ ¼ �2Ref�q�ð0ÞF0qðhÞg þ F0;

we have

H20ð0Þ ¼ �g20qð0Þ � �g02�qð0Þ þ Fz2 ; ð5:18Þ

H11ð0Þ ¼ �g11qð0Þ � �g11�qð0Þ þ Fz�z; ð5:19Þ

where

F0 ¼ Fz2
z2

2
þ Fz�zz�zþ F�z2

�z2

2
þ � � � ;

Fz2 ¼
�2k1 � 2k1q1 � 2k2q2

2k2q2e�2ix0s

�2k2q2

0
B@

1
CA;

Fz�z ¼
�2k1 � k1ðq1 þ �q1Þ � k2ðq2 þ �q2Þ

k2ðq2 þ �q2Þ
�k2ðq2 þ �q2Þ

0
B@

1
CA;

F�z2 ¼
�2k1 � 2k1�q1 � 2k2�q2

2k2�q2e2ix0s

�2k2�q2

0
B@

1
CA:

Hence, from combining the definition of A, we can getZ 0

�s
dgðhÞW20ðhÞ ¼ AW20ð0Þ ¼ 2ix0W20ð0Þ þ g20qð0Þ þ �g02�qð0Þ � Fz2 ð5:20Þ

and Z 0

�s
dgðhÞW11ðhÞ ¼ AW11ð0Þ ¼ g11qð0Þ þ �g11�qð0Þ � Fz�z: ð5:21Þ
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Notice that

ix0I �
Z 0

�s
eix0hdgðhÞ

� �
qð0Þ ¼ 0; ð5:22Þ

�ix0I �
Z 0

�s
e�ix0hdgðhÞ

� �
�qð0Þ ¼ 0: ð5:23Þ

Substituting (5.16) and (5.18) into (5.20), we obtain

2ix0I �
Z 0

�s
e2ix0hdgðhÞ

� �
E1 ¼ Fz2 : ð5:24Þ

Similarly, we haveZ 0

�s
dgðhÞ

� �
E2 ¼ �Fz�z: ð5:25Þ

Hence we obtain

2ix0 þ k1x� k1x� k2x�

�k2v�e�2ix0s 2ix0 þ 1 �k2x�e�2ix0s

k2v� �b 2ix0 þ k2x� þ k3

0
B@

1
CAE1 ¼ 2

�k1 � k1q1 � k2q2

k2q2e�2ix0s

�k2q2

0
B@

1
CA

and

k1x� k1x� k2x�

�k2v� 1 �k2x�

k2v� �b k2x� þ k3

0
B@

1
CAE2 ¼

2k1 þ k1ðq1 þ �q1Þ þ k2ðq2 þ �q2Þ
�k2ðq2 þ �q2Þ
k2ðq2 þ �q2Þ

0
B@

1
CA:

We can determine W20ðhÞ; W11ðhÞ from (5.16) and (5.17), then g21 can be expressed. Since each gij is determined by the
parameter and delays in system (2.3), we can compute the following quantities:

c1ð0Þ ¼
i

2x0
g20g11 � 2jg11j

2 � 1
3
jg02j

2
� �

þ 1
2

g21;

l2 ¼ �
Refc1ð0Þg
Refl0ðs0Þg

;

T2 ¼ �
1
x0
ðImfc1ð0Þg þ l2Imfl0ðs0ÞgÞ;

b2 ¼ 2Refc1ð0Þg:

ð5:26Þ

We know that (see [29]) l2 determines the directions of the Hopf bifurcation: if l2 > 0 ð< 0Þ, the bifurcating periodic solu-
tions exists in a right (left) neighborhood of s0; b2 determines the stability of the bifurcating periodic solutions: the bifur-
cating periodic solutions are orbitally stable (unstable) if b2 < 0 ð> 0Þ; and T2 determines the period of the bifurcation
periodic solutions: the period increase (decrease) if T2 > 0 ð< 0Þ.
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