
W&M ScholarWorks W&M ScholarWorks 

Arts & Sciences Articles Arts and Sciences 

2013 

Flufenamic acid as an ion channel modulator Flufenamic acid as an ion channel modulator 

Romain Guinamard 

Christophe Simard 

Christopher Del Negro 
William & Mary, cadeln@wm.edu 

Follow this and additional works at: https://scholarworks.wm.edu/aspubs 

Recommended Citation Recommended Citation 
Guinamard, R., Simard, C., & Del Negro, C. (2013). Flufenamic acid as an ion channel modulator. 
Pharmacology & therapeutics, 138(2), 272-284. 

This Article is brought to you for free and open access by the Arts and Sciences at W&M ScholarWorks. It has been 
accepted for inclusion in Arts & Sciences Articles by an authorized administrator of W&M ScholarWorks. For more 
information, please contact scholarworks@wm.edu. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by College of William & Mary: W&M Publish

https://core.ac.uk/display/270220839?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.wm.edu/
https://scholarworks.wm.edu/aspubs
https://scholarworks.wm.edu/as
https://scholarworks.wm.edu/aspubs?utm_source=scholarworks.wm.edu%2Faspubs%2F1662&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@wm.edu
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Flufenamic acid has been known since the 1960s to have anti-inflammatory properties attributable to the reduc-
tion of prostaglandin synthesis. Thirty years later,flufenamic acid appeared to be an ion channelmodulator. Thus,
while its use inmedicine diminished, its use in ionic channel research expanded. Flufenamic acid commonly not
only affects non-selective cation channels and chloride channels, but also modulates potassium, calcium and
sodium channels with effective concentrations ranging from 10−6M in TRPM4 channel inhibition to 10−3M in
two-pore outwardly rectifying potassium channel activation. Because flufenamic acid effects develop and
reverse rapidly, it is a convenient and widely used tool. However, given the broad spectrum of its targets, exper-
imental results have to be interpreted cautiously. Here we provide an overview of ion channels targeted by
flufenamic acid to aid in interpreting its effects at the molecular, cellular, and system levels. If it is used with
good practices, flufenamic acid remains a useful tool for ion channel research. Understanding the targets of
FFA may help reevaluate its physiological impacts and revive interest in its therapeutic potential.

© 2013 Elsevier Inc. All rights reserved.
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1. Introduction

Flufenamic acid (FFA), namely N-(alpha,alpha,alpha-trifluoro-
m-tolyl) anthranilic acid (CI-440), is an aromatic amino acid consisting
of anthranilic acid carrying an N-(trifluoromethyl)phenyl substituent
(Fig. 1). Its anti-inflammatory and analgesic effects were recognized in
the 1960s (Winder et al., 1963) and thus FFA is included in the family
of non-steroidal anti-inflammatory drugs (NSAIDs) with mefenamic,
meclofenamic (MFA) and niflumic acids (NA). Anti-inflammatory ac-
tions occur mainly through reduction of prostaglandin synthesis from
arachidonic acid by inhibiting the cyclo-oxygenases (Fig. 1) (Flower
et al., 1972).

Despite lower effectiveness than other NSAIDs (Flower, 1974), FFA
was locally applied for analgesia against pain and inflammation
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associated with musculoskeletal and joint disorders, peri-articular
and soft tissue disorders. Oral administration was discontinued be-
cause of large intersubject variability in FFA absorption (Lentjes &
van Ginneken, 1987). In addition, the dermal administration reduces
first-pass metabolism (Roberts & Walters, 2008). FFA, similar to other
NSAIDs, has side effects including gastrointestinal perturbations
(which are reduced in dermal application) (Ravi et al., 1986) and
renal damage. Due to these deleterious side effects, and because its
benefits were weak compared to other NSAIDs, the use of FFA in
medicine remained somewhat limited. Nevertheless, human trials in
more than 10,000 patients in 1998 re-affirmed NSAIDs effectiveness
for acute and chronic pain relief, and particularly emphasized FFA
topical application in combination with salicylic acid (Moore et al.,
1998).

Interest in FFA revived following the 1976 report of an effect on
calcium and sodium uptake in lymphoid cells, which suggested that
ion-handling proteins were affected (Famaey & Whitehouse, 1976).
Indeed, during the 1990s FFA became recognized as a common
regulator of ionic currents in native tissues. The story was elaborated
in the 2000s as the molecular identities of the ion channels targeted
by FFA were discovered, including Cl−, Na+, K+ and, most notably,
non-selective cation channels. Therefore, FFA made a comeback
in basic research as a convenient pharmacological tool to study ion
channels. However, its broad spectrum of targets may produce
complex experimental results that are difficult, or impossible, to inter-
pret unambiguously.

Here, we focus on ion channels modulated by FFA, including native
currents and cloned channel proteins. We aim to provide an overview
of the currents modulated by FFA to help differentiate its effects in
physiological contexts where several ion channel types could be affected
pharmacologically (see Table 1 and Fig. 2 for specific ion channel targets,
permeability, FFA efficiency, and experimental conditions).

2. Flufenamic acid as an ion channel modulator

2.1. Chloride channels

Anion channels poorly differentiate between anions but because Cl−

is most abundant, the channels are referred to as chloride channels.

These channels are implicated in a variety of physiological processes,
depending on their regulatory properties, including sensitivity to
voltage, cell volume, internal Ca2+, cAMP, pH, and ligand binding (see
Duran et al., 2010 for review). Chloride channels were the first family
shown to be affected by FFA, which is considered to be a classical
chloride channel blocker, along with disulfonic stilbenes (DIDS,
SITS, DNDS), anthracene carboxylates (9-AC), arylaminobenzoates
(DPC), indanylalkanoic acids (IAA-94), clofibric acid derivatives
(CPP) and other fenamates such as NPPB and niflumic acid (see
Suzuki et al., 2006 for review).

2.1.1. Cystic fibrosis transmembrane conductance (CFTR)
A cAMP-dependent chloride current, later recognized as the cystic

fibrosis transmembrane conductance regulator (CFTR), was the first
identified FFA target among ion channels (McCarty et al., 1993). CFTR
is an ATP-binding cassette (ABC) protein containing 1480 amino acids
divided into two domains, each composed of six transmembrane do-
mains. CFTR forms a PKA and PKC-activated chloride channelmediating
chloride transport in a variety of tissues, with a major role in airway
epithelia. Altering its activity or expression leads to cystic fibrosis and
secretory diarrhea. CFTR is intensively studied because of its role in
pathology (Welsh et al., 1992; Duran et al., 2010 for review).

CFTR modulators were sought to correct chloride transport in cystic
fibrosis (Becq & Mettey, 2004). FFA, which is membrane permeable,
inhibits CFTR heterologously expressed in Xenopus oocytes (McCarty
et al., 1993). FFA inhibition is stronger at positive voltages. In addition,
since the effect is observed in inside-out patches, FFA inhibits CFTR by
direct interaction with the channel, producing an open-channel block.
However, high concentrations are necessary to inhibit the channel;
indeed, the CFTR currents are reduced by only 20–30% by 200 μM FFA
(McCarty et al., 1993).

Probably due to its low efficiency, FFA has rarely been used to
study CFTR in physiological preparations (Liu et al., 2006). However,
because CFTR is expressed in apical membranes of epithelia, its
inhibition has to be considered when using FFA at high concentrations
in tissues such as airway epithelia, intestine, pancreas, kidney, sweat
duct and testis, as well as cardiac cells that express CFTR (Duan, 2009
for review).

2.1.2. Ca2+-activated chloride currents (CaCCs) and bestrophins
A Ca2+-activated chloride current (CaCC) first described in

Xenopus oocytes (Barish, 1983) has been similarly recorded in excitable
and non-excitable cells (Huang et al., 2012a for review). For example,
CaCC is present in Cl− secretory epithelia and in tissues expressing
cAMP-activated Cl− current attributed to CFTR, where both channel
types co-localize in the apical membrane (Cliff & Frizzell, 1990). Also,
CaCC is present in cardiomyocytes; its cytosolic Ca2+ activation profile,
outward rectification, and time-dependent inactivation contribute to
cardiac action potential repolarization (Duan, 2009).

FFA inhibits the archetypal CaCC from Xenopus oocytes with an IC50
ranging from 28 to 35 μM(White & Aylwin, 1990; Oh et al., 2008). Inhi-
bition by FFA has also been observed in other native CaCCs in rabbit
portal vein, pig ventricular cardiomyocytes, aswell as olfactory receptor
neurons from moth Spodoptera littoralis (Greenwood & Large, 1995;
Gwanyanya et al., 2010; Pezier et al., 2010). FFA appears to exert an
open-channel block like in CFTR (Greenwood & Large, 1995). Despite
its lack of specificity for CaCC, FFA remains a useful tool to study these
currents because its IC50 is comparably low and, until now, no other
CaCC-specific inhibitors have been identified.

The molecular identity of CaCCs remains unknown. Three major
protein families have been proposed (Huang et al., 2012a). The first
candidate comes from the Ca2+ activated chloride channel (CLCA)
protein family, initially shown to produce chloride currents. However,
its identity as an ion channel has been strongly debated and it is now
considered as a secreted non-integral membrane protein (Winpenny
et al., 2009). Moreover, the CaCC endogenous expression levels do not
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Fig. 1. Anti-inflammatory effect of flufenamic acid. Chemical structure of flufenamic acid
and its main targets: cyclooxygenase for anti-inflammatory effect and ion channels for
additional effects.
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Table 1
Information about ion channels and currents affected by FFA. Depending on the reports, a single FFA concentration was used ([FFA]) or concentration for half maximal effect (EC50)
or dissociation constant (KD) was provided.

Channel
name

Permeability Current Cell Configuration FFA
effect

[FFA]
in 10−6 M

EC50
in10−6 M

KD in
10−6 M

Other
fenamates

Mechanisms References

Chloride channels
CFTR Cl− cAMP-activated

Cl− current
Xenopus
oocyte

Whole-cell Inhibition 200
to
1000

Direct
interaction
in the open
state

McCarty et al.,
1993Single channel

ClC-Ka Cl− Voltage-gated
Cl− current

Xenopus
oocyte

Whole-cell Inhibition 57 to
121

MFA>FFA Direct
interaction
in the
vestibule

Liantonio
et al., 2006

ClC-Kb Cl− Voltage-gated
Cl− current

Xenopus
oocyte

Whole-cell Activation 200 NA>FFA Liantonio
et al., 2006

ClC-1 Cl− Voltage-gated
Cl− current

Xenopus
oocyte

Whole-cell Inhibition 4.5 FFA>NA Direct
interaction

Liantonio
et al., 2007

GABAA-R Cl− GABA-induced
Cl− current

Xenopus
oocyte

Two electrodes
voltage-clamp

Inhibition 16 Woodward
et al., 1994

HEK-293 Whole-cell Inhibition 2
PanX-1 Cl− HEK-293 Whole-cell Inhibition >1000 FFA=NA Ma et al., 2009

Non-selective cation channels
TRPC3 Na+, K+,

Ca2+
Redox-sensitive HEK-293 Whole-cell Inhibition 100 Inoue et al.,

2001NSC current
TRPC4 Na+, K+,

Ca2+
Redox-sensitive HEK-293 Whole-cell Inhibition 55 FFA>NA>MFA Direct

interaction
Jiang et al.,
2012NSC current

TRPC5 Na+, K+,
Ca2+

HEK-293 Whole-cell Inhibition 37 FFA>MFA>NA Direct
interaction

Jiang et al.,
2012

TRPC6 Na+, K+,
Ca2+

α-Adrenoreceptor
-activated NSC
current

HEK-293 Whole-cell Inhibition 17 FFA>MFA>NA Klose et al.,
2011

TRPC6 Na+, K+,
Ca2+

α-Adrenoreceptor
-activated NSC
current

HEK-293 Whole-cell Activation 100 FFA>>NA Direct
interaction

Inoue et al.,
2001; Foster
et al., 2009

TRPC7 Na+, K+,
Ca2+

HEK-293 Whole-cell Inhibition 100 Inoue et al.,
2001

TRPM2 Na+, K+,
Ca2+

Hydrogen
peroxide-activated
NSC

HEK-293 Whole-cell Inhibition 155.1 FFA>NA=MFA Klose et al.,
2011

TRPM3 Na+, K+,
Ca2+

Hypoosmolarity
-activated NSC

HEK-293 Whole-cell Inhibition 33.1 MFA>FFA>NA Klose et al.,
2011

TRPM4 Na+, K+ NSCCa HEK-293 Whole-cell Inhibition 2.8 Ullrich et al.,
2005

TRPM5 Na+, K+ NSCCa in taste cells HEK-293 Whole-cell Inhibition 24.5 Ullrich et al.,
2005

TRPV1 Na+, K+,
Ca2+

Capsaicin-activated
NSC current

Xenopus oocyte Two electrodes
voltage-clamp

Inhibition 100 Hu et al., 2010

TRPV3 Na+, K+,
Ca2+

Thermo-sensitive
NSC current

Xenopus oocyte Two electrodes
voltage-clamp

Inhibition 100 Hu et al., 2010

TRPV4 Na+, K+,
Ca2+

Thermo-sensitive
NSC current

HEK-293 Whole-cell Inhibition 40.7 FFA>NA>MFA Klose et al.,
2011

TRPA1 Na+, K+,
Ca2+

Heat-activated
NSC current

HEK-293 Whole-cell Activation 57 Hu et al., 2010

α3−β2 Na+, K+,
Ca2+

Neuronal-nicotinic
Ach-receptor

Xenopus oocyte Two electrodes
voltage-clamp

Inhibition 90 FFA>NFA Direct
interaction

Zwart et al.,
1995nAchR

α3−β4 Na+, K+,
Ca2+

Neuronal-nicotinic
Ach-receptor

Xenopus oocyte Two electrodes
voltage-clamp

Activation 30 FFA>NFA Direct
interaction

Zwart et al.,
1995nAchR

Cx 43 Na+, K+,
Ca2+

Gap junction Rat kidney
fibroblast

Dye
measurements

Inhibition 40 MFA>FFA Harks et al.,
2001

Cx 50 Na+, K+,
Ca2+

Gap junction N2A
neuroblastoma
cells

Two electrodes
voltage-clamp

Inhibition 47 NA>FFA=MFA Reduction
of open
probability.

Srinivas &
Spray, 2003

Binding in
amodulatory
site within
membrane

Potassium channels
KCa 1.1 K+ Ca2+-activated K+

current (BKCa)
Xenopus oocyte Two electrodes

voltage-clamp
Activation >300 FFA=NA Gribkoff

et al., 1996
KV 11.1 K+ Human ether à

gogo related
current (HERG)

Xenopus oocyte Two electrodes
voltage-clamp

Activation 100 FFA>NA Malykhina
et al., 2002
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match the expression levels that characterize CLCA. The second candi-
date comes from the bestrophin family, so called because mutations of
the prototypic member Best-1 causes Best disease, an inherited form
of retinal macular dystrophy (Xiao et al., 2010). The bestrophin family
is composed of four members found in the human genome. The expres-
sion of some of these four transmembrane domain proteins produces
a Cl− current activated by physiological levels of internal Ca2+. In
hippocampal astrocytes, 100 μM FFA inhibits a Ca2+-activated anionic
current by 75% (Park et al., 2009). This endogenous current is reduced
by the expression of mBest-1-specific short hairpin RNA, which suggests
that the Ca2+-activated anion current corresponds to Best-1 and,
thus, indirectly demonstrates Best-1 sensitivity to FFA. At present, to
the best of our knowledge, there are no reports demonstrating the
direct effects of FFA on bestrophins. The most recent candidate for
the molecular identity of CaCCs is the transmembrane protein 16A
(TMEM16A), which forms a CaCC channel subunit (Huang et al.,
2012b). This eight transmembrane segment protein may form a func-
tional channel as a homodimer. No existing data show TMEM16Amod-
ulation by FFA, even though the effects of FFA have been reported on
TMEM16A-expressing cells such as pulmonary artery smoothmuscle
cells and human airway gland cells (Fischer et al., 2010; Yamamura
et al., 2011).

2.1.3. Swelling-activated chloride currents (IClswell) and chloride channel-3
Chloride channels that activate under hypo-osmotic conditions

can prevent cellular injuries associated with swelling. In conjunction
with K+ channels, they allow KCl leakage, leading to intracellular di-
lution, net water loss, and volume decrease. A swelling-activated Cl−

current named IClswell has been characterized in virtually every
cell yet examined, including in the heart where ICIswell may combat
arrhythmias (Baumgarten & Clemo, 2003; Duran et al., 2010). Tissue-
specific differences in biophysics and pharmacology suggest that dif-
ferent channel proteins give rise to IClswell in different cells. IClswell

is supported by an outwardly rectifying Cl− channel in rabbit and
human myocytes (Duan et al., 1997a; Demion et al., 2006). Open
probability is not voltage-dependent but the single-channel conduc-
tance increases from 10 to 80 pS as voltage ascends, resulting in a pro-
nounced outward rectification (Duan et al., 1997a; Demion et al., 2006).

In human gastric epithelial cells, 100 μM FFA reduced IClswell by
82% (Jin et al., 2003). More recently, the same concentration has
been shown to inhibit IClswell in microglia (Schlichter et al., 2011)
and reduce regulatory volume decrease in bovine ciliary epithelium
(Do et al., 2006).

Themolecular identity of IClswell is a subject of debate. The confusion
is probably due to several underlying channel proteins whose

Table 1 (continued)

Channel
name

Permeability Current Cell Configuration FFA
effect

[FFA]
in 10−6 M

EC50
in10−6 M

KD in
10−6 M

Other
fenamates

Mechanisms References

KV 7.1 K+ Delayed
-rectifier K+

current

Xenopus oocyte Two electrodes
voltage-clamp

Activation 100 Slowing of
channel
deactivation

Busch et al.,
1994

KCa 4.2 K+ Two pores
outward
rectifier K+

current

Xenopus
oocyte

Two electrodes
voltage-clamp

Activation 1100 MFA>
FFA>NA

Binding in
the pore
region

Garg &
Sanguinetti,
in press

K2p 2.1 K+ Lipid-sensitive
mechano-gated
2P
domain K+

channel

Cos-7 Perforated
patch-clamp

Activation 100 FFA>
NA=MFA

Takahira
et al., 2005

K2p 4.1 K+ TWIK-related
arachidonic acid
-stimulated K+

channel

Cos-7 Perforated
patch-clamp

Activation >500 FFA=
NA>MFA

Takahira
et al., 2005

K2p 10.1 K+ Inward rectifier K+

channel
Cos-7 Perforated

patch-clamp
Activation >100 FFA>

NA=MFA
Takahira
et al., 2005

Sodium channels
BLINaC Na+ Brain liver

intestine
Na+ channel

Xenopus oocyte Two electrodes
voltage-clamp

Activation >1000 FFA>NA Increase
of Na+

selectivity

Wiemuth
& Grunder,
2011

Current Permeability Cell Configuration FFA effect EC50 in
10−6 M

KD in
10−6 M

Other fenamates Mechanisms References

CaCCs Cl− Xenopus oocyte Two electrodes
voltage-clamp

Inhibition 35.4 28 F=NA>MFA Direct
interaction
in the open
state

White &
Aylwin, 1990
Oh et al., 2008

ICl,swell Cl− Human
gastric
epithelial
cells

Whole-cell Inhibition 50bIC50b200 Jin et al., 2003

NMDA-R
current

Na+, K+,
Ca2+

Spinal cord
neurons

Independent
from NMDA

Lerma &
Martin del Rio,
1992

Voltage-
gated INa

Na+ Rat
hippocampal
pyramidal
neurons

Whole-cell Inhibition 189 Modification
of inactivation
kinetic

Yau et al.,
2010

Voltage-
gated ICa

Ca2+ Smooth
muscle
cells of rat
carotid artery

Whole-cell Inhibition 100 Shimamura
et al., 2002

Potassium channels
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expression differs with tissue type. One of the strongest candidates be-
longs to the chloride channel (ClC) family initially identified by the
cloning of the voltage-gated Cl− channel from the electric organ of
the torpedo electric ray. Ninemembers comprise the ClC family inmam-
mals (Duran et al., 2010). The constituent molecules, composed of 10 to
12 transmembrane domains, have two conducting pores. Among ClCs,
ClC-3, cloned in 1997, is broadly distributed among tissues and its expres-
sion gives rise to an outwardly rectifying chloride channel activated by
cell swelling (Duan et al., 1997b). Following the cloning of ClC-3, compet-
ing studies putatively demonstrated or, alternatively, invalidated the idea
that ClC-3 mediated the endogenous swelling-activated chloride-current
involved in cell volume regulation (Duan et al., 2001; Weylandt et al.,
2001; Duran et al., 2010). It is unfortunate for our purposes that none of
these studies directly evaluated the effects of FFA on the ClC-3 cloned pro-
tein. Nonetheless, FFA and anti-ClC-3 antibodies attenuated IClswell in
human gastric epithelial cells and disrupted the attendant regulatory vol-
ume decrease, which suggests that ClC-3 is sensitive to FFA (Jin et al.,
2003).

2.1.4. Renal transepithelial Cl− transport and chloride channel kidney
Within the ClC family, the expression of ClC-K channels is restricted

to the basolateral membrane of kidney cells (from the thin ascending

limb to the collecting duct), where they play a major role in urine
concentration. ClC-K is also expressed in the inner earwhere these chan-
nels participate in endolymph production (Fahlke & Fischer, 2010). Two
human ClC-K isoforms (ClC-Ka and ClC-Kb) correspond to ClC-K1 and
ClC-K2 orthologs in rat. Unlike other ClCs, ClC-K channels require the
presence of an additional β-subunit called barttin (Estevez et al., 2001),
which produces a chloride current with moderate outward rectification
(Estevez et al., 2001; Waldegger et al., 2002). Mutations in ClC-Kb that
reduce channel activity cause type III Bartter's syndrome, a renal disease
characterized by severe salt wasting (Simon et al., 1997; Seyberth &
Schlingmann, 2011). Mutations in barttin cause Bartter's syndrome
type IV, which is characterized by renal failure and sensorineural deaf-
ness (Birkenhager et al., 2001).

Experiments sought to identify ClC-K ligands to discover pharmaco-
logical interventions for Bartter's diseases. FFA inhibits ClC-Ka in Xenopus
oocytes with a binding constant ranging from 57 μM at −140 mV to
121 μM at +60 mV (Liantonio et al., 2006). The authors predicted 1:1
binding based on the dose response curve. Therefore, KDmight be equiv-
alent to the EC50 for ClC-Ka. This FFA inhibition is abolished by the N68D
mutation, a residue putatively located on the extracellular vestibule
(Liantonio et al., 2006). A non-coplanar conformation in the aromatic
group of FFA is necessary for the inhibitory binding site (Liantonio
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et al., 2008); FFA derivatives with coplanar aromatic groups are too rigid
to enter the narrow part of the extracellular vestibule. Nonetheless, co-
planar ligands bind to an activating site and activate ClC-Ka (Gradogna
& Pusch, 2010).

ClC-Kb does not exhibit the same FFA sensitivity: 200 μM FFA
increases ClC-Kb current by two-fold while, at the same dose, it
reduces ClC-Ka current by half (Liantonio et al., 2006). At present
there are no clear explanations for these discrepancies.

To our knowledge, the effects of FFA on renal and inner ear trans-
epithelial salt transport systems remain unknown even though other
ClC-K blockers were recently shown to increase water dieresis in rat
(Liantonio et al., 2012).

2.1.5. Skeletal muscle voltage-gated chloride current and chloride channel-1
In a study designed to evaluate skeletal muscle chloride current

sensitivity to niflumic acid, the authors also observed that 100 μM
FFA abolished about all the endogenous chloride current from native
rat muscle fibers (Liantonio et al., 2007). Because skeletal muscle
chloride conductance is mainly attributable to the ClC-1 chloride
channel protein (Steinmeyer et al., 1991), they subsequently tested
the effect of FFA on ClC-1 expressed in Xenopus oocytes. The blocking
potency of FFA, with a KD value of 4.5 μM, was enhanced compared to
niflumic acid (Liantonio et al., 2007). This unique report of FFA-
sensitive ClC-1 awaits further confirmation since it is based on only
five recordings. However, if confirmed, the inhibition of ClC-1 by
FFA might have physiological importance because it occurs at low
concentrations and dysfunction of this channel causes congenital
myotonia from both autosomal dominant (Thomsen type) and
autosomal recessive (Becker type) inherited patterns (Tang & Chen,
2011 for review).

2.1.6. Synaptic inhibition and γ-aminobutyric acid A-receptor
The γ-aminobutyric acid (GABA) receptor mediates fast inhibitory

neurotransmission in the central nervous system by opening anion
channels. GABA channels share a five-subunit structure with other
ligand-gated ion channels, in which each subunit is composed of four
transmembrane domains. Of the three types of GABA receptors,
GABAA and GABAC form Cl− channels (GABAB receptors are G-protein
coupled and linked to K+ channels). The single-channel conductance
of GABAA and GABAC ranges from 10 to 30 pS. Its current–voltage rela-
tionship is linear at the single channel level, yet exhibits weak outward
rectification at the macroscopic level (Bormann et al., 1987; Macdonald
et al., 1989). GABAA receptor subunit mutations that reduce GABA-
activated currents are associated with epilepsy (Baulac et al., 2001;
Wallace et al., 2001; Macdonald et al., 2010).

FFA, like other NSAIDs, modulates GABAA receptors. Nevertheless,
whereas most NSAIDs exert a potentiating effect, FFA reduces the
GABA-induced current with an IC50 of 16 μM in a model of GABAA

receptors expressed in Xenopus oocytes (Woodward et al., 1994)
and 2 μM in a model of GABAA receptors expressed in HEK-293 cells
(Rae et al., 2012). FFA effects on GABAA receptors may depend on
the subunit composition in mammalian brain, because FFA exerts a
potentiating effect on several GABAA subunits, while inhibiting others
(Smith et al., 2004). Interestingly, FFA is specific for the GABAA iso-
form because it does not exert any effect on GABAC (Jones & Palmer,
2011).

The impact of GABAA modulation by FFA on neurophysiology is in-
completely understood. It has been shown that FFA suppresses epi-
leptiform activity (Schiller, 2004; Fernandez et al., 2010). However,
at least in the hippocampus, this effect is more likely due to NMDA
receptor modulation than effects on GABAA receptors.

2.1.7. Pannexins
The recently identified mammalian pannexins (PanX) are mole-

cules that bear amino acid sequence homologies with innexins, the
gap junction-forming invertebrate proteins. PanX was considered to

have a structure similar to connexins (see Section 2.2.3) and thus
suspected to form non-selective transmembrane pores. However,
the three known isoforms form typical anion channels and do not
form gap junctions but most likely function as hemi-channels when
expressed in HEK-293 cells (Ma et al., 2012). PanX1 is inhibited by
FFA at very high concentrations; the IC50 is estimated to exceed
1 mM (Ma et al., 2009).

2.2. Non-selective cation channels

Following its description as a Cl− channel blocker, FFA was shown
to modulate non-selective cation channels (NSC). NSC channels are a
heterogeneous family whose members do not strongly differentiate
between permeable cations. Initially characterized at the current level
in native cells, now a large number of cloned genes are known to code
for NSC channels. They are usually classified as ligand-gated NSC chan-
nels (e.g., nicotinic acetylcholine receptors, glutamate receptors, P2X
purinergic receptors), cyclic nucleotide-gated channels (cGMP-gated or
cAMP-gated channels), connexins and, the large group of transient
receptor potential (TRP) channels. Despite their heterogeneity in struc-
ture, FFA modulates members in all subfamilies of NSCs except cyclic
nucleotide-gated channels.

2.2.1. Transient receptor potential channels
TRP channels, first characterized in tissue from the Drosophila eye

(Minke, 1977; Montell & Rubin, 1989), are classified for mammals into
six sub-families: TRPC (canonical, seven members), TRPV (vanilloid, six
members), TRPM (melastatin, eight members), TRPP (polycystin, three
members), TRPML (mucolipin, three members) and TRPA (ankyrin,
one member) (Gees et al., 2010). Most TRPs are permeable to Ca2+ as
well as monovalent cations. However, some are strictly Ca2+ selective
(TRPV5, TRPV6), whereas others are Ca2+ impermeable (TRPM4,
TRPM5). Major physiological functions of TRP channels include Ca2+

signaling, sensory detection in peripheral neurons, as well as burst-
generating functions in central neurons (Gees et al., 2010). TRP proteins
are composed of subunits containing six transmembrane domains that
assemble as tetramers. A large variety of TRP modulators have been
described, including intracellular or extracellular messengers (e.g., ATP,
Ca2+, phosphatidylinositol 4,5-bisphosphate), as well as biophysical
modulators such as voltage and temperature. FFA inhibits a wide spec-
trum of TRP channels, including: C3, C7, M2, M3, M4, M5, M7, M8, V1,
V3, and V4; but FFA activates at least two TRP channels (C6 and A1), as
described below.

2.2.1.1. Transient receptor potential canonicals. An α-adrenoreceptor-
activated and Ca2+-permeable NSC channel is activated by FFA in rab-
bit portal vein smooth muscle (Yamada et al., 1996). TRPC6 is respon-
sible for this current, and, when the protein is expressed in HEK-293
cells, its amplitude doubles in the presence of 100 μM FFA (Inoue et
al., 2001). Interestingly, the FFA activating effect is not reproduced
by niflumic acid, which suggests that TRPC6-activation is not a gener-
al property of the fenamate family (Foster et al., 2009). In addition,
cyclo-oxygenase inhibitors do not affect this activating effect, which
favors a direct interaction of FFA with the channel (Foster et al.,
2009). Surprisingly, a recent paper reported an inhibitory effect of
FFA (IC50=17 μM) on TRPC6 heterologously expressed in HEK-293
cells (Klose et al., 2011). The effect of FFA has also been evaluated
on the closely related channels TRPC3 and TRPC7 that share, with
TRPC6, activation by diacylglycerol, thus forming a subgroup of TRPCs.
100 μM FFA inhibits TRPC3 and TRPC7 by 60 and 90%, respectively
(Inoue et al., 2001). This inhibitory action of FFA was reproduced in
TRPC3-like native currents from rabbit ear arterial myocytes (Albert
et al., 2006). The fact that FFA exerts opposite effects on TRPC6 vs.
TRPC3/7 channels indicates that FFA and diacylglycerolmay act through
different mechanisms on channel activity.
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In the other TRPC subgroup (TRPC1/4/5), mouse TRPC5 current is
reduced by 92% by 100 μM FFA (Lee et al., 2003). A more recent study
reports the inhibition by FFA of human TRPC4 and TRPC5 heterolo-
gously expressed in HEK-293 cells with IC50 of 55 and 37 μM respec-
tively (Jiang et al., 2012).

2.2.1.2. Transient receptor potential melastatins. TRPM4 and TRPM5 are
unique among TRPs because they do not conduct Ca2+ but instead are
activated by internal Ca2+ (Guinamard et al., 2011 for review).
TRPM4/5 support one of the major NSC currents often called the
Ca2+-activated non-selective cation current (NSCCa) and sometimes
Ca2+-activated non-specific cation current (ICAN). NSCCa has been
recorded in a wide variety of tissues, and is inhibited by FFA in, for
example, pancreatic acinar cells (IC50 b10 μM), rat liver cells (Simon
et al., 2002), cardiomyocytes (Gogelein et al., 1990; Guinamard
et al., 2002), and neurons (Partridge & Valenzuela, 2000; Pace et al.,
2007). It is now well established that TRPM5 is responsible for NSCCa
in taste receptor cells (Liman, 2007a,b). In contrast, insulin secretion,
immune response, constriction of cerebral arteries, neural burst dis-
charge in breathing-related neurons, and cardiac dysfunctions are asso-
ciated with TRPM4 function (or dysfunction) (Guinamard et al., 2011).
TRPM4 occupies a special position, particularly in the present review,
because of its high sensitivity to FFA. Indeed, TRPM4 is inhibited with
an IC50 of 2.8 μM when expressed in HEK-293 cells. Interestingly, in
native tissue, our group measured a similar IC50 of 5.5 μM for the inhibi-
tion of an endogenous TRPM4 current in rat cardiomyocytes (Guinamard
et al., 2006b). The closest relative, TRPM5, is inhibitedwith 10 fold higher
doses, the IC50 for TRPM5 being 24.5 μM (Ullrich et al., 2005). Low con-
centrations of FFA (~10 μM)may be appropriate to evaluate the physio-
logical role of TRPM4 in situ, whichwould be expected to have little to no
effect on other ion currents whose FFA sensitivity is much lower. Consis-
tent with this idea, 10 μM FFA was used to differentiate breathing-
related neurons that depend putatively on TRPM4 for ICAN-mediated
neural bursts in the respiratory oscillator pre-Bötzinger complex in
mice (Del Negro et al., 2005). TRPM4 modulation may represent a
major common explanation for the physiological effects of FFA given its
ubiquitous expression profile and high sensitivity to FFA. This is particu-
larly important because plasma concentrations of 4–12 μM,measured in
conditions of FFA clinical use, are sufficient to strongly inhibit TRPM4
(Aly et al., 2000).

FFA also inhibits TRPM2, themost abundant TRP in the brain, which
is implicated in cell death resulting from oxidative stress (Hill et al.,
2004). FFA inhibits 90% of the TRPM2 current in HEK-293 cells at a
dose of 50 μM (Hill et al., 2004) or 200 μM (Togashi et al., 2008). Inter-
estingly, the inhibitory effects of FFA increase in response to extracellu-
lar acidification. This phenomenon can be explained by the fact that FFA
assumes its uncharged form at acidic pH, which favors membrane
crossing to the cytosolic face of TRPM2. It can also be also explained
by a modification of the channel itself, which favors FFA interaction
(Hill et al., 2004). A more recent study in the same preparation reports
an IC50 of 155 μM for TRPM2 inhibition and an IC50 of 33 μM for TRPM3
inhibition (Klose et al., 2011). The inhibitory effect of FFA has been
further established using peroxide-stimulated endogenous TRPM2
currents from CR1-G1 insulinoma cells and CHO cells (Hill et al., 2004;
Naziroglu et al., 2007) or endogenous currents from hippocampal
neurons (Olah et al., 2009) and dorsal root ganglion from rat (Naziroglu
et al., 2011).

Three recent publications report a 50% reduction of TRPM7-like
currents by 10−4 M FFA in rat brain microglia, the human breast can-
cer cell line MCF-7, and in mouse renal tubule (Jiang et al., 2003;
Guilbert et al., 2009; Guinamard et al., 2012). Nevertheless, the direct
inhibition of TRPM7 by FFA remains to be clearly demonstrated. In
addition, a tiny inhibition of 16 to 30% by 10−4 M FFA has been also
reported for TRPM8 heterologously expressed in Xenopus oocyte
(Hu et al., 2010).

2.2.1.3. Transient receptor potential vanilloids. Sensitivity to vanilloid
characterizes TRPV1, which became the founding member of the
thermo-sensitive TRP channels (Xia et al., 2011). Subsequently, this
channel was shown to be modulated by capsaicin (Cortright et al.,
2001) and has been implicated in somatic pain sensing. As a conse-
quence, TRPV1 became an attractive target for pharmaceutical research
in order to identify new analgesic drugs. Human TRPV1 is not only
mainly expressed in dorsal root ganglia (and trigeminal root ganglia)
but also in the central nervous system, kidney and liver (Cortright
et al., 2001). TRPV1 is not only expressed in the plasma membrane
but also in intracellular organelles such as the endoplasmic reticulum
membrane (Wisnoskey et al., 2003). Therefore, TRPV1 is a target for
molecules that are membrane permeable such as FFA, as previously
shown (McCarty et al., 1993).

Unfortunately, only one study reports the FFA sensitivity of TRPV1;
10−4 M FFA reduces the TRPV1 current by 57–75%when heterologously
expressed in Xenopus oocytes (Hu et al., 2010). TRPV3, in the same TRPV
family, is inhibited to the same extent (57–67%) by 10−4 M FFA, as
measured in Xenopus oocytes (Hu et al., 2010).

The mechanosensitive TRPV4 channel is inhibited by FFA with an
IC50 of 41 μM when stably expressed in HEK-293 cells (Klose et al.,
2011), which must be considered when investigating the effects of
FFA in cell swelling.

2.2.1.4. Transient receptor potential ankyrin. Among the most recently
cloned TRP channels, TRPA1 is expressed in sensory neurons and is
implicated in inflammatory pain as well as nociception (Gees et al.,
2010). Given the anti-inflammatory properties of fenamates, TRPA1
seemed to be an obvious target to study in detail. A variety of fenamates
including niflumic, mefenamic and flufenamic acids were shown to
activate TRPA1 current following expression in HEK-293 cells, with an
EC50 of 57 μM for FFA (Hu et al., 2010). This activation effect has also
been observed for the TRPA1 endogenous current from WI-38 fibro-
blasts (Hu et al., 2010). Nevertheless, warming (from 23 to 39 °C)
prevents TRPA1 activation by FFA (300 μM) (Wang et al., 2012).

2.2.2. Ligand-gated non-selective cation channels
FFA effects have been described for three types of ligand-gated

non-selective cation channels activated by acetylcholine, glutamate
or ATP. However, the physiological significance of these FFA effects
remains incompletely understood.

An inhibitory, non-competitive effect of FFA has been described
for the N-methyl-D-aspartate (NMDA) glutamate receptors in spinal
cord neurons (Lerma & Martin del Rio, 1992). NMDA receptors form
non-selective cation channels that flux Ca2+, which can subsequent-
ly activate an NSCCa. Because NSCCa are inhibited by FFA, as described
above, the effects of FFA on NMDA-induced responses must be
interpreted with caution. NMDA receptors are implicated in epilepsy
and their inhibition by 100 μM FFA has been shown to suppress
epileptiform activity in the hippocampus (Fernandez et al., 2010).
Nevertheless, this effect of FFA may involve the inhibition of NSCCa

subsequently activated by NMDA receptor-mediated Ca2+ current
(Schiller, 2004). Interestingly, FFA does not affect other types of glu-
tamate receptors (Lerma & Martin del Rio, 1992).

Neuronal nicotinic acetylcholine receptors (nAChRs) form pen-
tameric non-selective cation channels. FFA exerts differential effects
on nAChRs in Xenopus oocytes, depending on the β subunit that is
expressed. FFA inhibits the α3β2 nAChR current with an IC50 of
90 μM, whereas FFA activates the α3β4 nAChR current with an
EC50 of 30 μM (Zwart et al., 1995). Once again, interpreting FFA
effects is problematic because nAChRs are Ca2+ permeable, and
their activation can elevate intracellular Ca2+ and subsequently
evoke FFA-sensitive NSCCa, as shown in mesencephalic dopamine
neurons (Zwart et al., 1995).

ATP induced Ca2+-entry is reduced by FFA with a low EC50
of 655 nM in the 1321N1 astrocytoma cell line stably transfected
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with the purinergic receptor P2X7R, which also forms a non-selective
cation channel (Suadicani et al., 2006). The authors attributed this re-
duction to the inhibition of the P2X7R. However this interpretation is
now controversial since it was observed that 100 μM FFA had no effect
on P2X7R currents in HEK-293 transfected cells (Ma et al., 2009).

2.2.3. Gap junction channels
FFA inhibits gap junctions, channels that electrically connect

adjacent cells. Gap junctions are composed of two hemichannels
that associate in series and can span the plasma membrane of neigh-
boring cells. Hemichannels are composed of six connexin subunits,
wherein each connexin is composed of four transmembrane segments.
There are 21 connexin (Cx) isoforms in humans; nomenclature depends
on molecular weight, from Cx26 to Cx62 (Maeda & Tsukihara, 2011 for
review). The single-channel conductance of homomeric connexin chan-
nels spans 20–300 pS. These channels are permeable to most cations,
sometimes anions, and several intracellular signaling molecules. The
principal characteristic that influences permeability is size, which has
to be under 1 kDa. A wide variety of tissues express connexins, which
can synchronize intracellular Ca2+ signaling and membrane potential
trajectory among cells. Gap junctionmodifications perturb the develop-
ment of cerebral, cardiac, and auditory functions (Kar et al., 2012).
Consequently, connexins represent important targets for pharmacologi-
cal research (Bodendiek & Raman, 2010).

A variety of fenamates inhibit gap junctions in rat kidney fibroblasts,
a result reproduced in SKHep1 cells overexpressing Cx43 (Harks et al.,
2001). In this model, FFA inhibits intercellular communication with an
IC50 of 40 μM. This inhibitory effect was later described for Cx46 and
Cx50 expressed in Xenopus oocytes (Eskandari et al., 2002). The effect
was further investigated at the current level after overexpressing a
variety of connexins in N2A neuroblastoma cells; Cx23, 32, 40, 43, 46,
and 50 are inhibited by FFA with an IC50 ranging from 20 to 60 μM
(Srinivas & Spray, 2003). Interestingly, FFA does not appear to affect
single-channel conductance. The molecule does not bind connexin
within the conduction pore but rather in amodulatory site, presumably
within the membrane, inducing channel closure (Srinivas & Spray,
2003).

2.3. Potassium channels

K+ channels form the largest ion channel family with close to one
hundred genes that encode such channels that have an extensive
array of physiological functions. There are only a few noteworthy ef-
fects of FFA on these channels. K+ channels are subdivided according
to biophysics as voltage-gated K+ channels (Kv), Ca2+-activated K+

channels (KCa), inward rectifier K+ channels (Kir), and two-pore K+

channels (K2P). In contrast to its effect on most other channels, FFA
exerts an activating effect on K+ channels in nearly all cases.

FFA affects a large conductance Ca2+-activated K+ channels,
known as the Ca2+-activated big K+ channels (BKCa), as shown in
coronary smoothmusclemembrane vesicles incorporated in lipid bilay-
er for electrophysiological recordings (Ottolia & Toro, 1994), rabbit por-
tal vein smooth muscle cells (Greenwood & Large, 1995), and cultured
Vero kidney cells (Kochetkov et al., 2000), among others. The KCa 1.1
gene (or Slo1) encodes BKCa current. Expression of mouse or human
KCa 1.1 in Xenopus oocytes results in a K+ current activated by FFA
with an EC50 that exceeds 0.3 mM (Gribkoff et al., 1996). FFA may be
more efficient in native KCa channels, because the activation of BK cur-
rents in coronary and portal vein smooth muscle cells was on the
order of 50 μM (Ottolia & Toro, 1994; Greenwood & Large, 1995).
Moreover, in human trabecular meshwork 10−5 M FFA stimulated
BKCa current by 400% (Stumpff et al., 2001).

FFA has also been shown to activate the channel encoded by the
human ether-a-gogo related gene (HERG), also called Kv 11.1. This
gene encodes for the pore forming subunit of the rapid component
of the delayed rectifier K+ channel participating in action potential

repolarization in cardiac myocytes. When heterologously expressed
in Xenopus oocytes, Kv 11.1 produces a current enhanced by 20% in
the presence of 10−4 M FFA (Malykhina et al., 2002). Interestingly,
10−4 M FFA also enhances the slow component of the delayed rectifier
K+ current encoded by Kv 7.1 by slowing its deactivation (Busch et al.,
1994).

Recently FFA was shown to stimulate the two-pore outwardly
rectifying K+ channel KCa 4.2 (or Slo 2.1) expressed heterologously
in Xenopus oocytes, although at a high dose (EC50 of 1.1–1.4 mM)
(Dai et al., 2010; Garg & Sanguinetti, in press). Interestingly, the mu-
tant A278R, which substitutes a residue in the transmembrane do-
main six segment flanking the pore, is 19-times more sensitive to
FFA, indicating that FFA binding might occur in this region (Garg &
Sanguinetti, in press). KCa 4.2 encodes a K+ channel gated by voltage
as well as internal Na+ and Cl−, which is also inhibited by ATP. The
physiological functions of Slo 2.1 are not yet established, but its rel-
ative “slack” (or Slo 2.2) may be involved in neural burst generation
and termination in particular in central pattern generating neural
circuits (Wallen et al., 2007; Krey et al., 2010). FFA also activates
the lipid-sensitive mechano-gated two-pore channels encoded by
K2P 4.1, K2P 10.1 and K2P 2.1 with EC50 in the range of 1 mM
(Takahira et al., 2005).

2.4. Sodium channels

Action potentials in all excitable cells depend on voltage-activated
Na+ channels. After an initial depolarization reaches the threshold of
activation, Na+ channels open and produce the rapid upstroke of the
action potential. Repolarization is achieved, in part, by time-dependent
channel inactivation. The Na+ channel protein is composed of one α
subunit (fourmajor repeat units, each of which is composed of six trans-
membrane domains) and two β subunits (each is comprised of one
transmembrane segment) encoded by genes SCNXA (or Nav) and
SCNXB (Catterall, 2010). A recent paper describes the inhibition of the
voltage-activated Na+ channel in hippocampal pyramidal neurons by
FFA with an IC50 of approximately 0.2 mM (Yau et al., 2010). FFA affects
inactivation by shifting the steady-state inactivation curve to more
hyperpolarized membrane potentials.

FFA activates another Na+ conductance in ventricular cardio-
myocytes with an EC50 that exceeds 0.2 mM (Macianskiene et al.,
2010). The underlying channel remains unknown but may corre-
spond to the brain liver intestine Na+ channel (BLINaC) that is ac-
tivated by high levels of FFA (EC50 > 1 mM) when heterologously
expressed in Xenopus oocytes (Wiemuth & Grunder, 2011). BLINaC
belongs to the degenerin/epithelial Na+ channel superfamily. It
is predominantly expressed in non-neuronal tissues, in particular
epithelia, and weak expression has been observed in the heart
(Sakai et al., 1999). Its physiological function was unknown until
the recent demonstration that the BLINaC channel is expressed
in cholangiocytes and is activated by bile acids, suggesting its role
in bile duct sensing of bile acid concentrations (Wiemuth et al.,
2012).

2.5. Calcium channels

Voltage-gated Ca2+ channels activate in response to depolarization
and participate in Ca2+ transients that induce muscle cell contraction
aswell as a variety of excitable responses in neurons including, notably,
chemical synaptic transmission. Ca2+ channels are composed of a
centralα subunit (organized according to four repeat units of six trans-
membrane segments each, similar to Na+ channels) encoded by the Cav
genes and four additional regulatory subunits (α2, β, γ, δ) (Catterall,
2010). The channels are divided in L, P/Q, N, R and T subtypes. FFA
inhibits smooth muscle tone in carotid arteries by directly inhibiting
L-type Ca2+ channels with an IC50 of ~0.1 mM (Shimamura et al.,
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2002). No experiments have been reported to identify the subunit
targeted by FFA.

3. Mechanisms involved in current modulation by flufenamic acid

The activating or inhibiting effects of FFA are well described.
However, the underlying mechanisms remain largely unknown.
Because FFA targets numerous ion channels with different structures,
biophysics, and regulatory properties, the underlying mechanisms
might be different from one to the other.

As illustrated in Fig. 3 and in most studies reported in this review,
modulation of ion currents by FFA is not likely to occur via gene
expression since the effect develops within minutes. While indirect
effects on ion channels through modulation of intracellular pathways
may occur, the major accepted mechanism is a direct interaction
between FFA and channel proteins. That is particularly evident when
FFA is used in excised patch-clamp configurations, as example for
CFTR (McCarty et al., 1993), TRPM4 and TRPM5 (Ullrich et al., 2005;
Guinamard et al., 2006b) or Cx50 (Srinivas & Spray, 2003). The FFA effect
can be abolished by channel mutation such as in ClC-Ka (Liantonio et al.,
2006), which also suggests a direct interaction between FFA and channel
proteins. This direct effect assumes a binding site within the channel it-
self. Such a site was suspected for Cl− channels (CFTR and ClC-K) within
the narrow part of the protein vestibule since NA is not able to reach
the site in ClC-Ka (Liantonio et al., 2006) and FFA showed an apparent
binding site at 40–50% of the electrical distance from the cytoplasmic
face in CFTR (McCarty et al., 1993). This binding site may be different
in non-selective cation channels, at least in Cx50, where it may be a
modulatory site comprised within the membrane but not in the pore
(Srinivas & Spray, 2003). Although the binding site was not described,
FFA interacts directly with TRPC4, C5, and C6 (Jiang et al., 2003; Foster
et al., 2009).

The insights above regarding FFA binding sites cannot be extended
to other channels because of large variations in channel structure
despite their (sometimes) common sensitivity to FFA.

4. Impact of ion channel modulation by
flufenamic acid on physiological processes

The effect of FFA has been observed in a wide variety of physiological
processes; toomany to cover thoroughly in one review.Here,we focus on
a few representative examples to illustrate the large spectrum of targets.

FFA affects neurons, smoothmuscle cells, and cardiomyocytes. FFA
reduces firing rates in neurons, and in particular reduces the rhythmic
burst-generating capabilities of inspiratory neurons from the respira-
tory pre-Bötzinger complex, studied in thin medullary slices from
neonatal rodents at concentrations from 10 to 500 μM (Pena et al.,
2004; Del Negro et al., 2005). This effect occurs through inhibition of
a Ca2+-activated non-selective cation current (ICAN, see above) that
was later attributed to the TRPM4 or TRPM5 proteins, both expressed
in this tissue (Crowder et al., 2007; Del Negro et al., 2010). The effective
dose of FFA was later determined to be ~100 μM (Pace et al., 2007).
FFA (100 μM) has been also shown to suppress epileptiform activity
in rat CA1 pyramidal neurons of the hippocampus through diminution
of glutamatergic excitatory synaptic transmission (Fernandez et al.,
2010) and by blocking ICAN (Schiller, 2004). Therefore, FFA was pro-
posed as a potentially effective agent for the treatment of epilepsy.
FFA (30 μM) reduces the peptide-induced intra-cardiac neuron firing
rate (Merriam et al., 2012), whichmay involve the TRPC channel inhibi-
tion. A reduction of firing rate by FFA (20 μM) was also reported
in GABAergic neurons, possibly through TRP current inhibition (Lee
et al., 2011b). Finally, FFA (3 μM) reduced dopamine-induced oscilla-
tions in pyloric pacemaker neurons of the spiny lobster (Kadiri et al.,
2011).

FFA modulates gastrointestinal tract motility by reducing pace-
maker potentials of intestinal cells of Cajal in mice (Han et al., 2012;
Lee et al., 2012). This effect has also been observed at 50 μM in
human intestinal cells of Cajal and attributed to the inhibition of the
TRPM7 channel (Kim et al., 2009).

In neuroendocrinology, FFA (100 μM) inhibits pacemaker activity
in rat pituitary lactotrophs through non-selective cation channel
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Fig. 3. Effects of flufenamic acid on several preparations. A: Inside-out patch-clamp recording of TRPM4 current on rat ventricular isolated myocyte (Vm=+40 mV). FFA produced
a dose-dependent and reversible channel inhibition (see Guinamard et al., 2006-b for protocol). B: Action potential recorded by an intracellular microelectrode on isolated mouse
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modulation, leading to decrease in prolactin secretion (Kucka et al.,
2012).

Our group recently reported a cardioprotective effect of 10 μM FFA
in a model of hypoxia reoxygenation-induced arrhythmia in mouse
(Simard et al., 2012). The mechanism is related to the fact that
FFA abolishes TRPM4-mediated early after depolarizations observed
following reoxygenation. This FFA effect mimics the specific TRPM4
antagonist 9-phenanthrol, suggesting that FFA effect occurs through
TRPM4 inhibition. Therefore, FFA may be regarded as a cardiac anti-
arrhythmic agent. FFA (25 μM) may also modulate Ca2+ signaling
by inhibiting Cx43 in rat ventricular myocytes (Li et al., 2012). A
similar result was observed in the murine fibroblast cell line L929,
where FFA (100 μM) inhibits ATP release and Ca2+ transients that
polarize the actin/myosin complex via inhibition of connexins
(Marimuthu et al., 2012). FFA (50 μM) also modulates vascular en-
dothelial growth factor secretion in human retinal pigment epithe-
lial cells by inhibiting Cx43 (Pocrnich et al., 2012).

The impact of FFA is not restricted to excitable cells. Partial reduction
of Cl− secretion in human airway gland cells occurs in response
to 100 μM FFA, an effect that might be attributed to inhibition of the
chloride channel TMEM16A (Fischer et al., 2010). FFA also regulates
cell volume in hypotonic as well as hypertonic conditions. Regulatory
volume decreases in hypotonic conditions are reduced by FFA, due
to a FFA-inhibited swelling-activated Cl− channel (Jin et al., 2003; Do
et al., 2006). A regulatory volume increase under hypertonic conditions
that protects against apoptosis is reduced by FFA with an EC50 of
300 μM, which occurs through FFA-mediated inhibition of cation
current (Wehner et al., 2003). Alpha-subunit of the epithelial Na+

channel (ENaC) was shown to participate in this hypertonicity-
induced current in the human hepatocellular liver carcinoma cell line
HepG2 (Bondarava et al., 2009) whereas the current was recently
shown to be supported by the TRPM2 channel in the HeLa cells
(Numata et al., 2012).

5. Using flufenamic acid in research

In the following section we evaluate the advantages and caveats of
using FFA in research. The caveats pertain to several FFA targets in the
same preparation and FFA exerting opposite effects on a target
channel in a dose-dependent fashion. We discuss the use of FFA in
comparison to other NSAIDs and finally identify assets of FFA.

5.1. Multiple targets in the same preparation

As described above, FFA modulates a wide spectrum of ion
channels. The same cell can express several FFA-sensitive channels.
For example, gonadotropin-releasing hormone neuroendocrine neu-
rons express non-selective cation channels and BK channels (Wang &
Kuehl-Kovarik, 2010). Mammalian cardiomyocytes not only express
ion channels inhibited by FFA including TRPC3, TRPC6, TRPM4,
TRPM7, and ICl,swell, but also channels that are activated by FFA such as
HERG (Malykhina et al., 2002; Demion et al., 2006; Inoue et al., 2006;
Guinamard et al., 2006a, 2006b). Similarly, guinea pig cardiac neurons
express TRPC3, TRPC4, TRPC5 and TRPC6 (Merriam et al., 2012).

The presence of multiple FFA-sensitive channels must be consid-
ered when analyzing the effect of the drug at the whole-cell or system
levels. Because FFA has different affinities for different ion channels,
interpreting and analyzing its effects depend on the sensitivity of
each possibly affected channel type and the drug concentration
used. For example, FFA modifies fictive swim patterns of the lamprey
spinal cord, which is attributable to modulation of both Ca2+ channels
andNMDA receptors (Wang et al., 2006). Similarly, FFA targets different
channels in Aplysia bag cell neurons, modulating K+ channels,
voltage-gated Ca2+ channels and Ca2+-dependent cation conductances
(Gardam et al., 2008).

In addition to ion channels, FFA also affects other targets that indi-
rectly impact ion channels and excitable cell behavior. For example,
FFA activates the cAMP-activated protein kinase, (Chi et al., 2011),
and yet inhibits the mouse GABA transporter GAT4 (Liantonio et
al., 2007) and glycine transporters (Steinmeyer et al., 1991). Final-
ly, FFA can also alter mitochondrial Ca2+ homeostasis, impacting
Ca2+-dependent channels (Macdonald et al., 2010). Since our re-
view focuses on the direct effects of FFA on ion channels, we will
not describe the effects above in detail, but we emphasize that
there are other biochemical and integral membrane proteins that
may be affected by FFA. Therefore, these other targets must be
taken into account when analyzing the effects of FFA in the context
of physiological experiments.

A recent publication reevaluating the chemical structure of FFA
demonstrated that this molecule possesses at least nine polymorphs
(Lopez-Mejias et al., 2012), which may influence the bioavailability
of the drug and thus provide new opportunities for investigating
the channel types targeted by FFA, depending on these polymorphs.

5.2. Opposite effects on the same channel

Another FFA-related caveat comes from its ability to exert oppo-
site effects on the same channel, depending on concentration. FFA
inhibits TRPC6 with an IC50 of 17.1 μM (Klose et al., 2011) but 100 μM
FFA activates the same channel (Inoue et al., 2001). TRPM8 is inhibited
at 100 μM FFA but slightly activated at higher concentrations (Hu et al.,
2010). A worse situation was reported for BKCa modulation since FFA
activates the channel below 10 μM, inhibits the channel between 10
and 50 μM, and then activates the channel above 50 μM (Kochetkov
et al., 2000).

5.3. Flufenamic acid or other fenamates

Other NSAIDs, including fenamates, are also known to modulate a
variety of ion channels (Gwanyanya et al., 2012). Most ion channels
modulated by FFA are also affected by other fenamates. A few studies
provide a comparative analysis of the effects of several fenamates on
the same ion channel, ranking fenamates according to their potencies
to block or activate channels. Because the rank order of efficacy
among fenamates differs from one channel to the other, we will not
review all of them. However, in the majority of reports, FFA appears
to be more effective than niflumic acid (NA) and mefenamic acid
(MFA), two of the most commonly tested fenamates. This sequence
was observed for TRPM2, TRPV4 and TRPC6 inhibition (Klose et al.,
2011; Chen et al., 2012), TRPC4 and TRPC5 inhibition (Jiang et al.,
2012), TRPA1 activation (Hu et al., 2010), BKCa activation (Ottolia &
Toro, 1994), Cx43 inhibition (Harks et al., 2001), as well as K2P 2.1
and K2P 10.1 channel activation (Takahira et al., 2005). he sequence
of fenamate sensitivity might be somewhat different for chloride chan-
nels, since MFA is more effective than FFA in ClC-K and GABAA receptor
modulation (Woodward et al., 1994; Liantonio et al., 2006), whereas
NA is more effective than FFA on IClCa (Greenwood & Large, 1995;
Oh et al., 2008). For the Slo2.1 potassium channel, the sequence is
MFA>FFA>NA (Garg & Sanguinetti, in press).

Most of the FFA-targeted ion channels are sensitive to other
fenamates, but this does not necessitate non-specificity of the FFA
binding site within channel proteins. Indeed, FFA and NA do not use
the same binding site on the ClC-Ka channel (Zifarelli et al., 2010).

5.4. Assets of flufenamic acid

Despite its promiscuity, FFA remains a convenient toll for physio-
logical studies. FFA can be used in a wide variety of experimental
models ranging from molecular preparations such as inside-out
single-channel recordings, to cellular preparations such aswhole-cell re-
cordings on isolated cells as well as isolated tissue slices in vitro and in
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situ. Instead of reviewing all these preparations,which have been already
presented in the above sections and Table 1, we illustrate several exam-
ples of FFA applications using different experimental models (Fig. 3).

FFA is lipophilic and thus membrane permeable (McCarty et al.,
1993; Hill et al., 2004). Accordingly, FFA can access intracellular or
extracellular targets whatever is its side of application, as illustrated
for TRPM4 inhibition (Fig. 3). FFA access can be achieved by drug
application in the bath during inside-out patch recordings, when
the inside of the channel faces the bath (Guinamard et al., 2006b)
or in the whole cell-configuration when external side is exposed
(Pena et al., 2004; Pace et al., 2007).

The effects of FFA develop and reverse rapidly. Examples in Fig. 3
show that, even when applied on a multicellular isolated tissue prepa-
ration (mouse right ventricle, Fig. 3B; (Simard et al., 2012)) or a rhyth-
mically active respiratory rhythmogenic network (Fig. 3C; (Picardo
et al., in press)), the effect of FFA develops within a few minutes and
washes outwith a commensurate time course.When applied to isolated
cells, the effects of FFA occur (and reverse) in the range of few seconds.

6. Conclusion

FFA appears to be a broad spectrum ion channel modulator, with
preference for non-selective cation channels and chloride channels.
However, it remains a convenient tool if used with precaution, keep-
ing in mind the caveats recapped above. That is particularly true
for studies investigating the role of channels with higher sensitivity
for FFA such as TRPM4. In combination with other more specific
tools, FFA can provide a useful tool to identify ion channels and
probe their physiological role(s) in a range of reduced preparations
in vitro or in situ.

Extensive knowledge of ion channels targeted by FFA may revive
interest in the use of this molecule for therapeutic purposes, as
was suggested for NSAIDs, especially fenamates, in the treatment of
neurological disorders (Khansari & Coyne, 2012). The recently developed
FFA hydrophobic derivative nanoprodrugs show an increase in the drug
efficiency (Lee et al., 2011a). Accordingly, lower doses might be efficient
in medical use and, thus, a better targeting of different physiological
actors might be achieved.
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