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a b s t r a c t

In this article, we introduce two new families of multivariate association measures
based on power divergence and alpha divergence that recover both linear and nonlinear
dependence relationships between multiple sets of random vectors. Importantly, this
novel approach not only characterizes independence, but also provides a smooth bridge
between well-known distances that are inherently robust against outliers. Algorithmic
approaches are developed for dimension reduction and the selection of the optimal robust
association index. Extensive simulation studies are performed to assess the robustness of
these association measures under different types and proportions of contamination. We
illustrate the usefulness of our methods in application by analyzing two socioeconomic
datasets that are known to contain outliers or extreme observations. Some theoretical
properties, including the consistency of the estimated coefficient vectors, are investigated
and computationally efficient algorithms for our nonparametric methods are provided.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Canonical Correlation Analysis (CCA) pioneered by Hotelling [10] is a classical method for determining pair-wise linear
relationships between two sets of randomvectorsXp×1 andYq×1. Onemain drawback of CCA is that the canonical coefficients
computed based on a classical estimator of the covariance matrix are vulnerable to outlying observations, which in
turn affects the recovered relationships; see [20]. The presence of outliers or extreme observations severely impacts the
performance of multivariate association measures, such as CCA, because of their potential to mask the true relationships
or even identify spurious ones. Therefore, robust methods are fundamental to the study of multivariate associations, since
manual cleaning is often not feasible and it is a challenge just to detect outliers in multivariate contexts. Even if it is possible
to detect outliers, the fact that these observations may genuinely be part of the dataset makes it essential to consider
inherently robust approaches that are capable of extracting the underlying true relationships in the presence of such values.

Karnel [14] adopted an obvious robust version of CCA by estimating a covariance matrix using an M-estimator,
whereas [7] used a minimum covariance determinant estimator. Importantly, canonical variates obtained using robust
estimates of a covariancematrix lose their natural interpretations. Branco et al. [3] proposed two approaches for robust CCA
based on projection pursuit and robust alternating regressions. Also, see [16,8,4] for other robustmodifications of CCA.While
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Fig. 1. Variate plots z (annual salary) vs:aT1x (left panel) andbT
1y (right panel) (example 5.2).

these methods address the issue of robustness in association studies, they are limited to detecting only linear relationships
between two sets.

In the last decade, there has been a renewed interest in developing methods for multivariate association and dimension
reduction involvingmultiple sets. For instance, Yin and Sriram [28] extended theKullback–Leibler (KL) divergencemethod of
Yin [26] to recover linear/nonlinear relationships between groups ofmultiple sets of vectors. Note that themethod of Yin [26]
was motivated by the work of Yin and Cook [27] for dimension reduction in regression. Iaci et al. [13] then introduced an
overall measure of association based on KL divergence for application in morphological integration studies. More recently,
Iaci, Sriram and Yin [12] developed Generalized Canonical Analysis (GCA) based on an L2 measure that generalizes CCA and
applied it to extract linear and nonlinear relationships between a set of mortality, air pollution and weather vectors, for an
environmental dataset. However, as shown later, these association measures are also sensitive to outliers.

In this article, we construct a continuum of multivariate association measures based on density power divergence (DPD)
parameterized by a tuning parameter α, which helps balance infinitesimal robustness and efficiency measured in terms of
the recovered amount of dependence between sets of variables. Our method, termed Power Divergence Canonical Analysis
(PDCA), is shown to identify both linear and nonlinear relationships betweenmultiple sets, even in the presence of extreme
observations. In fact, for α ∈ [0, 1], the PDCA index based on DPD provides a smooth bridge between the KL divergence
method (α = 0) and an L2 distance (α = 1) and thus, encompasses the methods of Yin [26] and Iaci et al. [13]. Moreover,
for two sets ourmethod is shown to be equivalent to CCA undermultivariate normality. A second continuum ofmultivariate
association measures is also proposed based on density alpha divergence (DAD), which includes the well-known Neyman’s
Chi-square (α = −1) and Pearson’s Chi-square (α = 2) and the Hellinger distance (α = 1/2). The latter method, termed
Alpha Divergence Canonical Analysis (ADCA), is developed not only to provide another family of robust measures, but also
for comparison purposes. A novelty here is, rather than pre-selecting any one value of α and considering the resulting robust
associationmeasure, we propose a continuumof robustmeasures and let the data determine an optimal estimate ofα which
balances robustness and efficiency.

Wemotivate the need for our new robust methodologies through two socioeconomic datasets that are known to contain
outliers or extreme observations. The first dataset concerns consumer expenditures and was extracted from the Consumer
Expenditure (CE) survey. We first analyze the entire dataset and identify a relationship between a household expenditure
vector and a socioeconomic vector using PDCA, GCA andCCAand then study the effect of outliers on the recovered association.

The second is the baseball Hitters’ Salary dataset collected for a data analysis exposition sponsored by the American
Statistical Association. This dataset has been well-studied from a regression perspective to answer the question, ‘‘are players
paid according to their performance?’’. The presence of extreme observations in this dataset has been handled in a variety
of ways in past analyses. For instance, after identifying and removing outlying observations, Xia et al. [25] reanalyzed the
dataset to illustrate their effective dimension reduction (EDR) method, termed Minimum Average Variance Estimation
(MAVE). We take an entirely different approach and use our robust PDCA method to simultaneously study the joint
association between the three sets of variables; annual salary, 1986 performance and career performance. The benefit of
such an approach is seen in the plots in Fig. 1, which show that our multiple set PDCA analysis simultaneously recovers
a relationship between the annual salary and 1986 performance, and the annual salary and the career performance variables.
Such a distinction of the influence that the performance variables have on annual salary is not apparent in [25]. Importantly,
with our robust methods a preliminary analysis to detect and remove the outliers from this dataset is not necessary.

The article is organized as follows. In Section 2 we introduce the association measures based on DPD and DAD used
to recover the joint linear/nonlinear relationships between multiple sets. We show analytically the equivalence of our
DPD based method to CCA under a multivariate normal assumption in Section 2.2. Computational aspects of our methods
are discussed in Section 2.3 and a consistency result for the estimated coefficient vectors is stated in Section 2.4 with
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a proof provided in the Appendix. The robustness of PDCA is motivated through an illustrative example in Section 2.5.
We use a permutation test in Section 3.1 to determine the number of significant relationships and thereby, provide a
method for dimension reduction. In Section 3.2 we develop a data driven algorithm to determine the optimal level of the
tuning parameter that parameterizes the most robust index. Simulation studies are performed in Section 4 to compare the
performance of PDCA, ADCA and GCA in the presence of different types and proportions of gross-error contamination. The
additional simulations given inWeb Appendices E–M are briefly described in Section 4.2. The two real datasets are analyzed
in Sections 5.1 and 5.2 and concluding remarks are given in Section 6.

2. Methodology

In this section, we propose and study two associationmeasures based on density divergence, which provide two families
of robust methods to recover relationships between multiple sets of random vectors.

2.1. Density divergences and families of association measures

For α > 0, we state the multivariate extension of the Basu et al. [1] density power divergence (DPD) between two density
functions g1 and g2 as

Dα(g2, g1) =


u


g1+α
1 (u) −


1 +

1
α


gα
1 (u)g2(u) +


1
α


g1+α
2 (u)


du, (1)

where u = (u1, . . . , um)T is an m-dimensional vector with m ≥ 1 and α is a tuning parameter. Since Dα(g2, g1) is a
divergence, we have that

Dα(g2, g1) ≥ 0 for all g1 and g2, and Dα(g2, g1) = 0 if and only if g1 = g2. (2)

When α = 0, the integrand in (1) is undefined and thus, we define D0(g2, g1) = limα→0 Dα(g2, g1) =

g2(u)

ln

g2(u)

g1(u)


du, which is the KL divergence. When α = 1,D1(g2, g1) =


|g2(u) − g1(u)|2du is the L2 distance between g1 and

g2, and thus, for 0 < α < 1, theDPD is a smoothbridge between theKLdivergence and the L2 distance between twodensities.
Note that, the DPD does not include some well-known distances, such as the Hellinger distance (HD) that was exploited

by Beran [2] to construct minimum HD estimators that are as efficient as the MLE and simultaneously robust against
error contaminations. This, and the work of Cressie and Read [6], motivate us to consider another family of density power
divergences. For α ∈ (−∞, ∞) \ {0, 1}, the density alpha divergence (DAD) between two multivariate densities g1 and g2 is
defined to be

dα(g2, g1) =
1

α(1 − α)


1 −


u
[g1(u)/g2(u)]α g2(u)du


. (3)

Note that, dα is the Hellinger distance when α = 1/2, Neyman’s Chi-square when α = −1, and is equivalent to
Pearson’s Chi-square when α = 2; see [19,5]. When α = 0 or 1, we define dα in (3) to be the KL divergence. Also, for
α ∈ (−∞, ∞), dα(g2, g1) is a divergence and (2) holds.

Next, consider m ≥ 2 sets of random vectors X(k) with dimension pk, k = 1, . . . ,m, with associated coefficient vectors
(a(1), . . . , a(m)), and suppose that g2 = f

(a(1)T X(1),...,a(m)T X(m))
and g1 =

m
k=1 fa(k)T X(k) denote the joint and the product of

the marginal densities of (a(1)TX(1), . . . , a(m)TX(m)) and a(k)TX(k), k = 1, . . . ,m, respectively. For α ≥ 0, we define a power
divergence multivariate association index by substituting g1 and g2 into (1) as

Rα


a(1), . . . , a(m)


= Dα


f
(a(1)T X(1),...,a(m)T X(m))

,

m
k=1

fa(k)T X(k)


. (4)

Analogously, an alpha divergence index is defined using (3) as

Aα


a(1), . . . , a(m)


= dα


f
(a(1)T X(1),...,a(m)T X(m))

,

m
k=1

fa(k)T X(k)


, (5)

where α ∈ (−∞, ∞). Note that, for every fixed α ≥ 0, (2) gives the result that

Dα


f
(a(1)T X(1),...,a(m)T X(m))

,

m
k=1

fa(k)T X(k)


= 0 ⇔ f

(a(1)T X(1),...,a(m)T X(m))
=

m
k=1

fa(k)T X(k);

that is, the a(k)TX(k), k = 1, . . . ,m, are mutually independent. This also holds for dα in (3).



284 R. Iaci, T.N. Sriram / Journal of Multivariate Analysis 117 (2013) 281–295

To jointly recover linear and nonlinear relationships between the random vectors X(1), . . . ,X(m), for each α ≥ 0, we
search successively for the coefficient vectors (a(1)

i , . . . , a(m)
i ) such that the projected vectors (a(1)T

i X(1), . . . , a(m)T

i X(m)) have
the most dependence by maximizing Rα


a(1), . . . , a(m)


with respect to (a(1), . . . , a(m)). The maximization is performed

under the constraints that the projected vectors, or variates, have unit variance, a(k)T
i ΣX(k)a(k)

i = 1 for all i = 1, . . . ,min(pk),

and are uncorrelated, a(k)T
i ΣX(k)a(k)

j = 0 for all j = 1, . . . , i−1. Note that, we could also formulate our index using coefficient
matrices and provide an overall measure of association as in [13], but instead focus on identifying the coefficient vectors
that extract the relationships between multiple sets.

Not only is our method able to extract both linear and nonlinear dependence relationships between multiple sets,
but under a two-set multivariate normal assumption our method is equivalent to CCA; see Section 2.2. Therefore, we
term our method Power Divergence Canonical Analysis (PDCA). Similarly, when the alpha divergence index, Aα , is used,
we term our method Alpha Divergence Canonical Analysis (ADCA). Thus, for m ≥ 2, {Rα


a(1), . . . , a(m)


, α ≥ 0} and

{Aα


a(1), . . . , a(m)


, α ∈ (−∞, ∞)} provide two new families of multivariate association measures that characterize

independence.

2.2. Equivalence to CCA under normality

Let (X = X(1), Y = X(2)) be multivariate normal, then the PDCA index in (4) reduces to

Rα (a, b) =
1

α(α + 1)(2π)ασ α
1 σ α

2

α −
(α + 1)2

1 + 2α + α2(1 − ρ2)
 +

1
(1 − ρ2)α/2

 , (6)

where σ1 = Var(aTX), σ2 = Var(bTY) and ρ = ρ (a, b) = aTCov(X, Y)b/(σ1σ2); see Web Appendix A. For each α > 0, it
can be shown using calculus and algebra that Rα (a, b) is a decreasing function of (1− ρ2), which implies that maximizing
Rα (a, b) with respect to (a, b) is achieved by maximizing ρ (a, b) and thus, equivalent to CCA. For α = 0, PDCA is defined
to be the KL divergence method of Yin [26], which was shown to be equivalent to CCA and hence, PDCA is equivalent to CCA
for all α ≥ 0.Moreover, the GCAmethod of Iaci et al. [12] is equivalent to CCA under normality and thus, equivalent to PDCA.

2.3. Computational methods

The population version Rα


a(1), . . . , a(m)


in (4) can be written using the integral representation in (1) as

Rα


a(1), . . . , a(m)


=

m
k=1

E

f α

a(k)T X(k)(a
(k)TX(k))


− (1 + 1/α)E


m

k=1

f α

a(k)T X(k)(a
(k)TX(k))


+ (1/α)E


f α

(a(1)T X(1),...,a(m)T X(m))
(a(1)TX(1), . . . , a(m)TX(m))


,

where the expectation in the last two terms iswith respect to the joint density of (a(1)TX(1), . . . , a(m)TX(m)). Therefore, letting
{x(1)

i , . . . , x(m)
i , i = 1, . . . , n} denote a random sample from X(1), . . . ,X(m), we estimate the PDCA index as

Rα


a(1), . . . , a(m)


=

m
k=1


n−1

n
i=1

f α
n (a(k)T x(k)

i )


− (1 + 1/α)n−1

n
i=1


m

k=1

f α
n (a(k)T x(k)

i )



+ (1/α)


n−1

n
i=1

f α
n (a(1)T x(1)

i , . . . , a(m)T x(m)
i )


, (7)

where the functions fn(a(k)T x(k)
i ) and fn(a(1)T x(1)

i , . . . , a(m)T x(m)
i ) are kernel density estimates of fa(k)T X(k)(a(k)T x(k)

i ) and

f
(a(1)T X(1),...,a(m)T X(m))

(a(1)T x(1)
i , . . . , a(m)T x(m)

i ), respectively. Similarly, we define a sample version of the ADCA index as

Aα


a(1), . . . , a(m)


=

1
α(1−α)


1 −

1
n

n
i=1

 m
j=1

fn(a(j)T x(j)
i )fna(1)T x(1)

i ,...,a(m)T x(m)
i

α
. The steps for obtaining the estimated coefficient

vectors and computational notes pertaining to each step are discussed next.

Step 0:

Whiten each datamatrixDX(k) corresponding toX(k) using the nonsingular transformation Z(k)
= Σ

−1/2
X(k)


X(k)

−EX(k)

,

k = 1, . . . ,m. For ease in exposition, the notation X(k) is maintained throughout this section.
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Note that, for any α > 0 and U(k)
= C(k)X(k)

+ bk, k = 1, . . . ,m, where C(k) are nonsingular matrices and bk is a fixed pk × 1
vector, then the following holds,

Rα,(X(1),...,X(m))


a(1), . . . , a(m)


= M ∗ Rα,(U(1),...,U(m))


C(1)T a(1), . . . , C(m)T a(m)


,

where M is a constant. Thus, the PDCA index is equivariant under invertible linear transformation; see Web Appendix D
for the proof. The main motivation for this scale transformation is to simplify the constraints in Section 2.1 to the
orthonormal constraints a(k)T

i a(k)T
i = 1, i = 1, . . . ,min(pk) and a(k)T

i a(k)T
j = 0, j = 1, . . . , i − 1, and ease computation.

This transformations changes the scale, but not the relationships between the random vectors, rescales the variables to have
equivalentmagnitude, and importantly allows the estimated coefficient vectors to be transformed back to the original scale.
Step 1:

For a given set of coefficient vectors calculate the product kernel density estimate

fn(a(1)T x(1)
i , . . . , a(m)T x(m)

i ) =
1

nh1h2 · · · hm

n
j=1

m
k=1

K

(a(k)T x(k)

j − a(k)T x(k)
i )/hk


and evaluate the sample PDCA (or ADCA) index Rα


a(1), . . . , a(m)


in (7).

Scott [22] and Silverman [23] suggested the use of Gaussian product kernels for density estimation and the simulation
studies performed in [26,13] confirm that this choice works well for their KL divergence based methods. The same was also
shown to be true for the L2 type index in [12]. The success of these methods and the fact that the PDCA index is a smooth
bridge between the KL and an L2 distances, for 0 < α < 1, induced our selection of Gaussian product kernels. However,
our methods hold for any kernel of bounded variation. Finally, motivated by the results of Yin [26] and Iaci et al. [13], and
the discussion in [12] on bandwidth selection for multivariate associationmethods whosemain goal is the estimation of the
directions a(k)TX(k), as is the focus here, we use the bandwidths hk = (4/(d + 2))1/(d+4) skn−1/(d+4), where d is the dimension
of the density being estimated (d = 1 or m here) and sk is the sample standard deviation of {a(k)T x(k)

i , i = 1, . . . , n}.
Step 2:

Under the orthonormal constraints imposed in Step 0, the estimated coefficient vectors are the solutions

(a(1), . . . ,a(m)) = argmax Rα


a(1), . . . , a(m)

 
or Aα


a(1), . . . , a(m)


.

Here, themaximization is carried out iteratively using the nonlinear constrainedminimizer (ormaximizer) fmincon available
in Matlab, which implements a Sequential Quadratic Programming (SQP) method. The SQP is a nonlinear constrained
minimizing algorithm, which closely mimics Newton’s method for constrained optimization. This method maximizes the
sample PDCA or ADCA index while incorporating the nonlinear constraints a(k)T a(k)

= 1 simultaneously. Details of the SQP
procedure can be found in [17].
Step 3:

After the ith estimated coefficient vectorsa(k)
i , k = 1, . . . ,m, are found, each data matrix DX(k) is projected into a

subspace orthogonal to A(k)
pk×i =

a(k)
1 , . . . ,a(k)

i


, i < min(pk), and Steps 1–2 are repeated to find (a(1)

i+1, . . . ,a(m)
i+1).

A detailed algorithm for implementing this step is given in Web Appendix P.

2.4. Consistency of the estimated coefficient vectors

In this section, we state a consistency result for the 1st estimated coefficient vectors (a(1)
1 , . . . ,a(m)

1 ) defined in Section 2.3
for the PDCA index. The 2nd estimated coefficient vectors (a(1)

2 , . . . ,a(m)
2 ) are obtained by maximizing Rα


a(1), . . . , a(m)


over the set {


a(1), . . . , a(m)


: a(k)T ΣX(k)a(k)

= 1 and a(k)T ΣX(k)a(k)
1 = 0, k = 1, . . . ,m}, which is a random set depending on

(a(1)
1 , . . . ,a(m)

1 ). Since the 1st estimated coefficient vectors are shown to be consistent, we canmodify the proof of Theorem1
suitably to establish the consistency of the 2nd estimated coefficient vectors. The same argument applies for successive
coefficient vectors.

Theorem 1 (Consistency). Assume the conditions of Lemma 1 in Appendix A.1. Let (a(1)
1 , . . . ,a(m)

1 ) = argmax Rα


a(1), . . . ,

a(m)

and (a(1)

1 , . . . , a(m)
1 ) = argmax Rα


a(1), . . . , a(m)


, for each α ≥ 0. Then, (a(1)

1 , . . . ,a(m)
1 ) → (a(1)

1 , . . . , a(m)
1 ) almost

surely as n → ∞.

The proof is given in Appendix A.1. Similar results hold for the estimated coefficient vectors based on the sample ADCA
index, Aα


a(1), . . . , a(m)


.
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Table 1
Average L2 distances and correlations for uncontaminated and contaminated data.

(α) a b

L
∗

2 (∆) |ρ(a, a)| |ρ(ac , a)| L
∗

2 (∆) |ρ(b, b)| |ρ(b, bc)|

PDCA (0.6) 0.1410 0.9979 0.9841 0.0281 0.9994 0.9986
ADCA (0.9) 0.3822 (2.71) 0.9980 0.8231 0.2866 (10.20) 0.9994 0.8450
GCA 0.4502 (3.19) 0.9983 0.8389 0.1511 (5.380) 0.9995 0.9372
CCA 0.7285 (5.17) 0.9984 0.6170 0.5299 (18.86) 0.9995 0.7464

2.5. Robustness

To motivate the inherent robustness property of the PDCA index, again consider two sets of vectors X and Y. Note that,
for α close to 0, a heuristic argument shows that the sample PDCA index Rα (a, b)

≈
1
n

n
i=1


ln
fn(aTxi, bTyi)

f α
n (aTxi, bTyi) − ln

fn(aTxi)fn(bTyi)
f α

n (aTxi)f α
n (bTyi)


;

see Web Appendix B. However, when α = 0, Rα (a, b) ≈ n−1n
i=1 ln

 fn(aT xi,bT yi)fn(aT xi)fn(bT yi)

, which is the estimating function for

the Kullback–Leibler (KL) index of Yin [26] and Iaci et al. [13]. Therefore, for α near 0, the PDCA index can be viewed as a
weighted version of the KL index. Next, suppose that xi and/or yi are outliers, then the PDCA index naturally down-weights
these values throughf α

n (aTxi, bTyi),f α
n (aTxi) andf α

n (bTyi), and hence, the estimated coefficient vectors of a and b are less
affected. Whereas, the KL index assigns a weight of one to each observation, including the outliers, and hence, the resulting
estimates of a and bwill be more affected. Consequently, we investigate the range of values α = 0.1, . . . , 1.0 to determine
the optimal value that parameterizes the most robust PDCA index. This simple heuristic motivation reveals the rationale for
the expected robustness using PDCA.

Next, we illustrate the abovemotivation through an example that shows that formany values ofα > 0, the PDCAmethod
is considerably more robust against gross-error contamination than is GCA, ADCA and CCA. Since CCA can only detect linear
relationships between two sets, we will conduct a comparative robustness study by contaminating a linear relationship
between X and Y. We consider a simple scenario with two random vectors X = (X1, . . . , X8)

T and Y = (Y1, Y2, Y3)
T , where

X1, . . . , X8, Y2, Y3 are independent N(0, 1) random variables, and Y1 = (2X1 + X2 + X3) + ϵ. Suppose that a dataset of size
n = 100 is randomly generated with ϵ ∼ N(0, σ = 0.5). We create a 10% contamination of the linear relationship by
randomly replacing n∗

= 10 of the ϵ’s with ϵ∗’s drawn from a U(0, 50).
Let (a,b) and (ac,bc) correspond to the estimated coefficient vectors of the true vectors a = (2, 1, 1, 0, 0, 0, 0, 0)T

and b = (1, 0, 0)T calculated from the uncontaminated and contaminated datasets, respectively. In order to measure
the effect of contamination on the estimated coefficient vectors (given by PDCA, GCA and CCA), we consider the L2-norm,
L∗

2 = ∥(I−aaT )ac∥2, which is the projection ofac into the orthogonal subspace spanned bya. The L∗

2 value is small ifa ∼=ac ,
implying that the estimates are not largely affected by the contamination, and hence, the corresponding method is more
robust; we calculate this measure analogously for (b,bc). To compare the methods, with PDCA as the standard, we consider
the relative change in the difference ∆ = L∗

2/L
∗

2;R . Finally, the accuracy of the estimates can be quantified by the absolute
correlations between the estimated and true variates, |ρ(a, a)| = |ρ(aTx, aTx)|, |ρ(ac, a)|, |ρ(b, b)| and |ρ(bc, b)|.

Table 1 reports the following average values computed using 500 datasets generated with the above specifications:
L
∗

2, |ρ(·, ·)| and ∆. For PDCA and ADCA, respectively, the table reports only the value of α for which the L
∗

2 value is the
smallest, while the figures in Web Appendix C give the plots of the L

∗

2 values for α = 0.1, 0.2, . . . , 1.0, and additionally,
α = −1, 2 for ADCA. It is evident from the reported L

∗

2 and ∆ values, and the plots, that PDCA is considerably more robust
than ADCA, GCA and CCA, especially when estimating b. In terms of the L

∗

2 distance values in the plots, α = 0.6 generates the
most robust PDCA index, whereas for the ADCA method, all values α ≥ 0.4 produce similar results, with α = 0.9 narrowly
parameterizing the most robust ADCA index.

For this simple example, Fig. 1 in Web Appendix C shows that PDCA is more resistant to contamination when α is near 0
than when it approaches 1. This suggests that we can algorithmically select a value of α that yields maximum robustness. In
Section 3.2, a data driven procedure for selecting the value of α that achieves the most robustness is given. It is important to
note that the PDCA method achieves robustness against contamination without having to use robust versions of estimated
covariance matrices.

In terms of the average of the absolute correlations between the estimated and true vectors, PDCA has near perfect
correlation for the datasets with and without contamination, whereas for the other methods the correlations decrease
considerably under contamination, with CCA showing the most decline. Note that, the values in Table 1 are reported in
the transformed scale, where X and Y have identity covariance matrices; see Section 2.3.

Using a robust CCAmethodwould expectedly improve performance, however, if a nonlinear relationship existed between
the two sets, then CCAwould be less successful in identifying this type of associationwhether or not a robust version is used.
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Moreover, CCA is unable to jointly study the associations between multiple sets. All this motivates our study of density
divergences for recovering multivariate associations with a particular focus on the PDCA method.

3. Dimension reduction and alpha selection

In this section,wedevelop amethod for dimension reduction and the selection of an optimal level of the tuning parameter
α for the PDCA index. The same methods can be adopted for the ADCA index.

3.1. Dimension reduction

To provide a parsimonious summary of the relationships that exist between them-sets of random vectors X(1), . . . ,X(m),
for each fixed α, we search successively for the minimum number lα ≤ p∗

= min(pk), k = 1, . . . ,m, of linear combinations
{(a(1)T

i X(1), . . . , a(m)T

i X(m)); i = 1, . . . , lα} having significant relationships that collectively describe the associations
between the vectors. To this end, first note that Rα = Rα


a(1), . . . , a(m)


= 0 if and only if (a(1)TX(1), . . . , a(m)TX(m))

are mutually independent, which follows directly from (2) with g1 =
m

k=1 fa(k)T X(k) and g2 = f
(a(1)T X(1),...,a(m)T X(m))

. Second,

for 1 ≤ i ≤ p∗, let R(α,i) = Rα


a(1)
i , . . . , a(m)

i


= maxRα


a(1), . . . , a(m)


denote the PDCA index corresponding to the ith

coefficient vectors, then R(α,1) > · · · > R(α,w) > 0 = R(α,w+1) = · · · = R(α,p∗), where w ≤ p∗; this follows from the
definition of Rα and the assumption that the maximizers are unique.

Since, R(α,i) characterizes independence and R(α,i) ≥ R(α,j) for i ≤ j, as in [13], we can test H0 : R(α,i) = 0 vs
H1 : R(α,i) > 0, for i = 1, . . . , p∗, using a permutation test. For a fixed α and i, let R(α,i) = max Rα(a(1)

i , . . . ,a(m)
i )

denote the sample PDCA index corresponding to the ith coefficient vectors. If (a(1)T
i x(1), . . . ,a(m)T

i x(m)) are independent,
then H0 is true and a permutation of the rows of the data matrices corresponding to X(1),X(2), . . . ,X(m) should preserve
the independence. However, if H0 is false, then a permutation of the data matrices will destroy the dependence relationship
and result in a smaller index value. Therefore, letting Rw

(α,i) denote the value of the PDCA index corresponding to the wth
randomly permuted dataset, the observed level of significance is given by p-value=

np
w=1 I

Rw
(α,i)>

R(α,i)

/np, where I is an

indicator function and np is the number of permutations. If the p-value is small, then rejectH0 and proceed to the case (i+1).
If H0 is not rejected for i = lα + 1, then stop further testing and conclude that there are lα estimated variates exhibiting
significant relationships. Hence, we refer to this as a dimension reduction method. An alternative, but subjective approach,
is to plot the estimated variate pairs to visually determine the number of significant relationships.

3.2. Alpha selection

After determining the number of lαj = lj significant relationships for each αj, j = 1, . . . , A, we use the quantities
computed in the above permutation tests to select an optimal value of α that parameterizes the most robust index and
thus, enables PDCA to recover the maximum dependence. To compare the sample index values for different levels of αj,
we standardize R(αj,i) asd(αj,i) = (R(αj,i) − R

∗

(αj,i))/S
∗
R(αj,i)

, i = 1, . . . , lj, where S∗
R(αj,i)

is the sample standard deviation,

and R
∗

(αj,i) the mean, of the permuted index values R∗

(αj,i)
. Next, the value αj that yields the largest scaled indexd(αj,i)

parameterizes the index that recovers the ith largest amount of dependence between the vectors. Finally, we define an
estimator of the optimal tuning parameter to beα = argmax(

l1
i=1
d(α1,i),

l2
i=1
d(α2,i), . . . ,

ll
i=1
d(αA,i)). That is, we choose

the levelαj that allows PDCA to collectively recover the largest amount of dependence between the sets. However, in practice
the individual scaled indices can be used subjectively to determine a range of optimal values. The use of scaled index values
in a permutation-based algorithm was also suggested by Witten and Tibsharani [24] to determine the best value of the
tuning parameter for their sparse CCA procedure.

In the procedure for determiningα we specify fixed values α = αj, j = 1, . . . , A, and then select an optimal value from
among these and thus, cannot investigate the consistency ofα. This raises the question of the possibility of simultaneous
consistent estimation of α and the coefficient vectors. This a challenging problem for many reasons, including the fact
that α appears not only in multiple terms of the PDCA index, but also in various forms, as a power of density estimators.
Consequently, studying the behavior of Rα as a function of α on a continuous interval is critical. Nevertheless, this is a
worthwhile pursuit for future research.

4. Numerical studies

In the simulations that follow we investigate various scenarios involving different sample sizes, combinations of linear
and nonlinear relationships between sets, vectors with variables following a variety of distributions, and finally, different
types of outlier contamination.
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For ease in describing the ways in which outliers are generated, consider two multivariate random vectors X =
X1, . . . , Xp

T and Y =

Y1, . . . , Yq

T
,X, Y ∼ F ,G. Next, suppose that the random variables Y1 and Y2 have the functional

relationships Y1 = h1 (X) + ϵ1 and Y2 = h2 (X) + ϵ2 with X, for some h1 and h2. The three types of outliers investigated in
our simulation studies are:

Asymmetric: The errors, ϵj ∼ π1N(0, σ ) + (1 − π1)U(0, θ), j = 1, 2, and π1 ∈ [0, 1].
Orthogonal: The functional relationships are switched, Y1 = h2(X) + ϵ2 and Y2 = h1(X) + ϵ1, with probability π2,
where ϵj ∼ N(0, σ ), j = 1, 2. We term these orthogonal outliers since the functions h1 and h2 define orthogonal
relationships between Y1 and Y2 in our simulations. Thus, we expect a 2(1−π2) univariate contamination proportion.
Mixture: Asymmetric outliers are generated with probability (1 − π1) and orthogonal outliers with probability π2.

In discussion, we will often refer to any of these types of outliers simply as contamination, but the specific kind will be clear
from the context. The orthogonal outliers are created to contaminate the actual relationships, since we are in a multivariate
association setting.

Similar to Section 2.5, we quantify the accuracy of the estimated coefficient vectors in the presence of varying proportions
of contamination with the absolute correlations |ρj| = |ρ(a(k)T

j x, a(k)T
j x)|, j = 1, . . . , l, where l is the number of true

relationships, and report the mean over the number of simulations, denoted |ρ| for brevity. Additionally, we calculate the
L2 normed distance between the subspaces spanned bya(k)

j and the true coefficient vector a(k) as ∥(I − a(k)
j a(k)T

j )a(k)
j ∥2, and

report the mean, denoted ∥·∥2.
The simulation results are reported in the whitened scale, due to the equivariance property stated in Section 2.3. For

clarity, the notations X(1)
= X,X(2)

= Y and X(3)
= Z are used. The distance measure is calculated in the transformed

scale by transforming the true coefficient vectors as 61/2a(k). As discussed in Section 2.5, we set the values of the tuning
parameter to be α = 0.1, . . . , 1.0, and include α = −1 and 2 for the ADCA index.

4.1. Simulation

In this simulation we test the robustness of the PDCA, ADCA and GCA methods for two sets of vectors, composed of
variables with a wide range of distributions and a moderate to small sample size. We consider both linear and nonlinear
relationships between the sets with orthogonal contamination. We investigate the contamination proportions π2 =

0.05, 0.10, 0.15, 0.20 and 0.25. The simulation can be summarized as follows:

Simulation: For a sample size of n = 100, we define the multivariate random vectors X = (X1, X2, . . . , X8)
T , and

Y = (Y1, Y2, Y3)
T , where X1, X2, X3 ∼ N(0, 1), X4 ∼ χ2

(7), X5 ∼ t(5), X6 ∼ F(3, 12), X7, X8 ∼ N(0, 1), Y3 ∼ t(9), and
ϵj ∼ N (0, 1) , j = 1, 2. The remaining variables are defined as

Y1 = (2X1 + X2 + X3)
2
+ 0.5ϵ1 and Y2 = X2 − X3 + 0.2ϵ2.

The true coefficient vectors are: a = (2, 1, 1, 0, 0, 0, 0, 0)T , b = (1, 0, 0)T anda = (0, 1, −1, 0.0, 0, 0, 0, 0)T ,b = (0, 1, 0)T .

For a dataset drawn according to the above specifications, we estimate the coefficient vectors using the three methods,
PDCA, ADCA, and GCA and repeat the process 500 times. We compute estimates of the 1st and 2nd variates asaTj x andbT
j y, j = 1, 2, where x and y denote a random sample from X and Y, respectively. The means and estimated standard errors

of the absolute correlations and distances for each of the contamination proportions π2 are given in Web Table 20 for GCA.
For the PDCAandADCAmethods, the entire results are reported inWebTables 21–24. For ease in comparing the performance
of the methods, Table 2 reports the correlation results for subjectively selected values of α. In Section 4.1.1, the dimension
reduction and optimal α selection methods of Section 3 are performed on a randomly selected simulated dataset for each
contamination proportion.

Referencing Table 2, for PDCA when π2 = 0.05, the |ρ| values are large, which indicate that this method is very robust
at this contamination proportion in recovering both relationships. In terms of this measure, the most robustness is attained
for the middle ranged values of α, with α = 0.5 arguably the best with |ρ| values that range from 0.9817 to 0.9975. These
results are repeated for the next two proportions, π2 = 0.10 and 0.15, with the most robustness achieved on average when
α = 0.5 or 0.6. The |ρ| values range from 0.9612 to 0.9953 when α = 0.5 and π2 = 0.10, and from 0.9278 to 0.9871 when
α = 0.6 and π2 = 0.15. These results demonstrate that PDCA is also very robust for moderate to high levels of orthogonal
contamination. Moreover, even for the highest levels of contamination, the range of |ρ| values is from 0.8552 to 0.9859 for
α = 0.7 and π2 = 0.20, and three are between 0.9132 and 0.9513 when α = 0.7 and π2 = 0.25.

In Web Table 22, the results indicate that the best performance for ADCA occurs for low to middle ranges of α. The |ρ|

values are reasonable for low levels of contamination, but quickly worsen, especially in recovering the 2nd relationship, for
themoderate to very high proportions of contamination,π2 = 0.15, 0.20 and 0.25. For example, in Table 2whenπ2 = 0.20,
the |ρ2| values for the 2nd estimated variates for ADCA are 0.6707 and 0.6981; the maximum correlation is 0.7226 over all
levels of α. In comparison, the PDCA values are much higher than those of ADCA, with values between 0.8790 and 0.9609
when α = 0.7, indicating that PDCA is far more robust comparatively.
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Table 2
Mean absolute correlations (standard errors), |ρ| (simulation 4.1).

Simulation 4.1

π2 0.05 0.10 0.15 0.20 0.25

Rα(a, b) α = 0.5 α = 0.5 α = 0.6 α = 0.7 α = 0.7aT1x 0.9975 (0.0001) 0.9953 (0.0006) 0.9871 (0.0027) 0.9609 (0.0059) 0.9513 (0.0062)bT
1y 0.9909 (0.0011) 0.9788 (0.0018) 0.9562 (0.0028) 0.9489 (0.0035) 0.9214 (0.0042)aT2x 0.9817 (0.0032) 0.9612 (0.0056) 0.9278 (0.0073) 0.8790 (0.0108) 0.8141 (0.0128)bT
2y 0.9832 (0.0035) 0.9690 (0.0048) 0.9565 (0.0051) 0.9394 (0.0068) 0.9132 (0.0078)

G(a, b)aT1x 0.9567 (0.0050) 0.9237 (0.0070) 0.9173 (0.0066) 0.8851 (0.0084) 0.8931 (0.0080)bT
1y 0.9747 (0.0042) 0.9582 (0.0048) 0.9411 (0.0048) 0.9095 (0.0063) 0.9139 (0.0051)aT2x 0.8852 (0.0106) 0.8259 (0.0121) 0.7337 (0.0141) 0.6692 (0.0141) 0.6368 (0.0140)bT
2y 0.9353 (0.0083) 0.8972 (0.0105) 0.8467 (0.0124) 0.8167 (0.0129) 0.8001 (0.0133)

Aα(a, b) α = 0.4 α = 0.4 α = 0.4 α = 0.4 α = 0.4aT1x 0.9947 (0.0019) 0.9955 (0.0008) 0.9953 (0.0007) 0.9956 (0.0007) 0.9919 (0.0018)bT
1y 0.9735 (0.0017) 0.9446 (0.0023) 0.9035 (0.0030) 0.8593 (0.0033) 0.8246 (0.0035)aT2x 0.9338 (0.0083) 0.8793 (0.0108) 0.7622 (0.0141) 0.6707 (0.0147) 0.5890 (0.0148)bT
2y 0.9348 (0.0081) 0.8735 (0.0112) 0.7747 (0.0140) 0.6981 (0.0149) 0.6418 (0.0143)

Fig. 2. π2 = 0.20 R0.5(a, b) Left panel: actual variates. Right panel: estimated variates (Ex. 4.1).

In Table 2, the results show that when the contamination level is π2 = 0.05, the |ρ| values for the GCA method are
comparable to those of ADCA, but far lower than the PDCA values. As π2 is increased, the GCA performance is far worse in
comparison to PDCA and thus, as expected, is far less robust than PDCA in this scenario.

Next, to visually investigate the performance of PDCA, since it outperformed both GCA and ADCA in this simulation,
for each contamination proportion π2 we select a simulated dataset at random and plot the estimated variatesaT1x versusbT
1y andaT2x versusbT

2y in the far right two panels of Web Figs. 7–11, respectively, for R0.5(a, b). In the adjacent left two
panels, the true variatesaTx versusbTy and aTx versus bTy are plotted for comparison. The plots corroborate the tabulated
simulation results for these datasets and show that both relationships are recovered using PDCA for each proportion of
contamination. The variate plots for the dataset with π2 = 0.20 are also given in Fig. 2.

This simulation shows that not only is the PDCA method able to identify complex relationships between these two
vectors, but is also resistant to contamination. In addition, the PDCA method firmly outperforms both GCA and ADCA.

4.1.1. Dimension reduction and alpha selection
For the above randomly selected simulated datasets, the permutation test described in Section 3 is performed for each

level of α to test the significance of the recovered relationships and to determine an optimal value of α. The permutation
p-values, denoted p1 and p2, and the individual and summed scaled index statistics,d(α,i) and

d(α,i), for the ith significantly
identified relationship (pi < 0.05) are reported in Table 3. The results together with the correlations between, |ρ1| and |ρ2|,
are given in Web Table 25.

In Table 3, for the contamination proportions π2 = 0.05 and 0.10, the correlations between the estimated and actual
variates are very high, with all corresponding p-values = 0 except for the second identified relationship when α = 0.1
and π2 = 0.10. Ignoring this exception, we conclude that all levels of α enable the PDCA index to correctly identify
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Table 3
Permutation test results (simulation 4.1).

Rα(a, b) Simulation 4.1

α 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

π2 = 0.05

p1(p2) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)d(α,1) 26.7675 26.8614 26.9744 26.3700 26.0635 28.0382 31.4893 33.8380 36.1624 14.2937d(α,2) 16.0925 15.8834 14.6311 14.1575 13.7319 13.1779 12.7619 13.1770 13.6133 27.9038
Σd(α,i) 42.8600 42.7448 41.6055 40.5275 39.7954 41.2161 44.2512 47.0150 49.7758 42.1975

π2 = 0.10

p1(p2) 0 (0.4760) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)d(α,1) 15.0610 14.7198 15.0836 12.5239 13.3862 14.0317 14.1304 13.0141 15.6475 16.5607d(α,2) – 12.4395 13.6946 15.8601 15.6507 14.9215 13.6298 15.4721 13.7638 12.9208
Σd(α,i) 15.0610 27.1593 28.7781 28.3840 29.0369 28.9532 27.7602 28.4861 29.4113 29.4815

π2 = 0.15

p1(p2) 0 (0.4640) 0 (0.3010) 0 (0.2750) 0 (0.2180) 0 (0.1360) 0 (0.1810) 0 (0) 0 (0) 0.0100 (0) 0.042 (0.692)d(α,1) 12.8256 12.2542 12.0025 11.9642 11.6688 13.3987 8.5174 7.5098 1.6972 0.9140d(α,2) – – – – – – 8.4085 9.5830 9.9049 –
Σd(α,i) 12.8256 12.2542 12.0025 11.9642 11.6688 13.3987 16.9259 17.0928 11.6021 0.9410

π2 = 0.20

p1(p2) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0.6740 (0)d(α,1) 12.9434 9.5426 11.7453 1.0628 1.3667 1.9691 13.0730 12.0698 16.5580 –d(α,2) 4.7587 12.0954 6.3138 11.2472 1.4653 1.4147 1.4822 9.5543 1.2992 12.0621
Σd(α,i) 17.7021 21.6379 18.0591 21.3100 20.8319 21.3838 23.5552 21.6240 26.8571 12.0621

π2 = 0.25

p1(p2) 0 (0.0160) 0 (0.0580) 0 (0.0350) 0 (0.1540) 0 (0.1970) 0 (0.1220) 0 (0.0170) 0 (0.0140) 0.5930 (0) 0.5480 (0)d(α,1) 10.8078 10.2371 9.6778 8.4413 8.5870 13.4795 17.2207 14.9173 – –d(α,2) 2.4069 – 2.0379 – – – 2.5233 2.4959 8.5017 8.2665
Σd(α,i) 13.2148 10.2371 11.7158 8.4413 8.5870 13.4795 19.7440 17.4133 8.5017 8.2665

the two defined relationships. The optimal level of the tuning parameter is α = 0.9 when π2 = 0.05, and α = 0.9
or 1.0 when π2 = 0.10, since these values generate the largest

2
i=1
d(α,i) statistics. When the contamination level is

increased to π2 = 0.15, the values of α that correctly determine the associations and parameterize the most robust PDCA
index are α = 0.7, 0.8 and 0.9. However,

2
i=1
d(0.7,i) = 16.9259 and

2
i=1
d(0.8,i) = 17.0928 are much larger than2

i=1
d(0.9,i) = 11.6021, indicating that α = 0.7 or 0.8 are more optimal. This conclusion is supported by noting that

both correlations, |ρ1| and |ρ2|, are near 0.99 when α = 0.7 or 0.8. Next, for π2 = 0.20, the PDCA index identifies the
relationships with p-values = 0 for nearly every α. Again, as was the case when π2 = 0.05, α = 0.9 produces the largest2

i=1
d(α,i) statistic, with all other levels generating comparable numbers except when α = 0.1 or 1.0. Finally, when the

mean contamination is raised to π2 = 0.25, the values α = 0.7 and 0.8 recover the relationships with the lowest p-values
and have the largest

2
i=1
d(α,i) statistics. Note that, for each proportion of contamination,α = 0.7 or 0.8were nearly always

the most optimal values of α and thus, we infer that the middle to upper range of α values for these selected datasets are
likely to provide the most robust PDCA estimates of the defined relationships.

4.1.2. Extension of simulation 4.1
Under the same vector parameterizations as above, we create a mixture contamination by independently adding

asymmetric outliers from a U(0, 30) distribution with probability 1 − π1. We investigate the pairs, (π1, π2) =

(0.95, 0.05), (0.975, 0.05) and (0.975, 0), which give a 15%, 10% and 5% univariate contamination rate and up to a 15%,
10% and 5% multivariate contamination rate. The results are reported in Table 4 for subjectively selected values of α; the
entire results are given in Web Appendix K. Note that, the case (0.975, 0) contains only asymmetric outliers. Simulations
with only asymmetric outliers are performed in the Web Appendix.

The first two columns of Table 4 give the |ρ| and ∥·̄∥2 values for the (π1, π2) = (0.95, 0.05) case. For α = 0.6, PDCA has
|ρ| values above 0.99 and 0.95 for the 1st and 2nd estimated variates, respectively. For GCA, the correlations are markedly
lower than those of PDCA for both variates. Next, the |ρ1| values for the 1st variates using ADCA when α = 0.3 are 0.9914
and 0.9579, respectively, which are lower than PDCA values, but higher than GCA values, asmight be expected. However, for
the 2nd variates, the |ρ2| values are notably lower with values 0.7641 and 0.7949. These results are repeated for all values of
α for both PDCA and ADCA inWeb Tables 49 and 50, with the best performance for both methods in general attained for the
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Table 4
Mean absolute correlations, |ρ|, and distances, ∥·̄∥2 , (standard errors) (simulation 4.1.2).

Simulation 4.1.2

(π1, π2) (0.95, 0.05) (0.975, 0.05) (0.975, 0)
|ρ| ∥·̄∥2 |ρ| ∥·̄∥2 |ρ| ∥·̄∥2

Rα(a, b) α = 0.6 α = 0.6 α = 0.6aT1x 0.9908 (0.0010) 0.1130 (0.0031) 0.9939 (0.0004) 0.0970 (0.0023) 0.9964 (0.0002) 0.0782 (0.0015)bT
1y 0.9927 (0.0011) 0.0711 (0.0042) 0.9931 (0.0009) 0.0717 (0.0040) 0.9993 (0.0000) 0.0314 (0.0009)aT2x 0.9529 (0.0062) 0.2047 (0.0078) 0.9590 (0.0062) 0.1808 (0.0075) 0.9825 (0.0037) 0.1281 (0.0048)bT
2y 0.9737 (0.0048) 0.1329 (0.0067) 0.9755 (0.0048) 0.1269 (0.0064) 0.9879 (0.0030) 0.0933 (0.0046)

G(a, b)aT1x 0.8953 (0.0082) 0.3271 (0.0108) 0.9297 (0.0062) 0.2743 (0.0092) 0.9407 (0.0070) 0.2183 (0.0094)bT
1y 0.9633 (0.0053) 0.1719 (0.0078) 0.9769 (0.0038) 0.1382 (0.0063) 0.9740 (0.0055) 0.1112 (0.0071)aT2x 0.8048 (0.0124) 0.4372 (0.0130) 0.8400 (0.0117) 0.3828 (0.0127) 0.9049 (0.0096) 0.2748 (0.0110)bT
2y 0.9002 (0.0101) 0.2613 (0.0119) 0.9173 (0.0094) 0.2303 (0.0111) 0.9468 (0.0075) 0.1863 (0.0090)

Aα(a, b) α = 0.3 α = 0.3 α = 0.3aT1x 0.9914 (0.0011) 0.1057 (0.0033) 0.9924 (0.0017) 0.0904 (0.0033) 0.9934 (0.0015) 0.0786 (0.0034)bT
1y 0.9579 (0.0031) 0.2192 (0.0077) 0.9599 (0.0028) 0.2134 (0.0076) 0.9811 (0.0023) 0.1148 (0.0066)aT2x 0.7641 (0.0142) 0.4500 (0.0150) 0.8605 (0.0116) 0.3292 (0.0130) 0.9374 (0.0080) 0.2031 (0.0098)bT
2y 0.7949 (0.0129) 0.4115 (0.0152) 0.8659 (0.0110) 0.3208 (0.0132) 0.9383 (0.0074) 0.2005 (0.0102)

middle ranged values α = 0.3 to 0.8. Thus, once again, PDCA is clearly more robust in recovering the defined relationships
at this level of mixture contamination.

In the middle column the asymmetric contamination rate is reduced to 1 − π1 = 0.025 and the same pattern of results
for the previously discussed cases with 1 − π1 = 0.5 is observed. Note that, in the far right column with the asymmetric
contamination removed, all methods improve, with PDCA remaining the most robust and GCA the least. The results based
on the ∥·̄∥2 values are consistent with those based on the |ρ| values.

4.2. Additional simulations

Extensive simulation studies were conducted to investigate the performance of our proposed methods. In this section,
we briefly summarize the additional simulations found in Web Appendices E–M.

The simulations ofWebAppendices E and F, repeat the two-set scenario and themultiple set simulationwith heavy-tailed
distributed variables in [12], respectively. Web Appendices G and K give the entire set of tables and graphs for Simulations
4.1 and 4.1.2, respectively. The remainingWeb appendices, H, I, J, and L, give simulations that involve a linear and nonlinear
(quartic) relationships between sets with varying types and proportions of contamination. Finally, a three set simulation
with complicated relationships between the vectors that are composed of 13 non-normal variables among the 15 considered
using PDCA is performed inWebAppendixM in the presence of asymmetric contamination. Note that, in all simulations PDCA
substantially outperforms ADCA and GCA and thus, only the results are presented and comparative discussions omitted.

5. Data analysis

The following real data analyses are performed in the whitened scale. However, the notations X(1)
= X,X(2)

= Y and
X(3)

= Z are maintained for clarity. Given the existence of extreme observations in the two datasets, and the improved
performance of PDCA over ADCA in simulation, we use PDCA in Section 5.1 for brevity. Due to the superior performance
over all methods, we focus on PDCA exclusively in Section 5.2.

5.1. Consumer expenditure (CE) survey

This dataset has been derived from the Quarterly Interview Survey of the Consumer Expenditure (CE) survey undertaken
by the US Department of Labor, Bureau of Labor Statistics. This nationally representative survey is a sample of nearly 5000
households, with each household being interviewed five times, the first time to gather basic data about the household, and
four other times at quarterly intervals to gather data on expenditures. The households in the present dataset entered the
quarterly survey at the beginning of 1995 and the data give the total expenditure by category over the 1995 calendar year.
We use the same eight variables and n1 = 866 observations used by Hubert et al. [11] to illustrate their robust Principal
Component Analysis (PCA) method for datasets with outliers.

For our analysis we select four variables to make up the X vector; X1 = total household expenditure (EXP), X2 food
consumed at home (FDHO), X3 = housing and household equipment (SHEL), X4 = telephone services (TELE), and the
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remaining the Y vector; Y1 = food consumed away from home (FDAW), Y2 = clothing (CLOT), Y3 = health care (HEAL),
and Y4 = entertainment (ENT). The vector X is termed the household expenditure vector. The vector Y is viewed as measure
of socioeconomic status and thus, termed the socioeconomic vector.

An interesting question is: ‘‘What type of multivariate association, if any, exists between these vectors, and what
effect do outliers have on recovering the relationships?’’ To this end, we start by using the kurtosis-based method
developed by Peña and Prieto [18] to identify multivariate outliers. The motivation for their method stems from noting that
symmetric contamination of univariate data increases the kurtosis coefficient, while asymmetric contamination increases
the coefficient when the proportion of outliers is small, but may decrease it if the proportion is large. Therefore, to find
multivariate outliers they suggest projecting the dataset into one dimensional orthogonal subspaces that both maximize
and minimize their kurtosis index. Next, a scaled median type distance is calculated for each projected observation and
labeled an outlier if the value exceeds a critical value determined through simulation. Combining the random vectors X and
Y into one vector, U = (X, Y)T , and implementing their algorithm identifies 255 suspected outliers. To determine the most
extreme of these outliers, we use the Mahalanobis distance calculated in their procedure and label a sample point to be
extreme if (uj − ū)T S̃−1(uj − ū) > χ2

p+q(0.95). There were 15 such observations in the dataset and are referred to as the
outliers hereafter.

To study the effect extreme observations have in recovering the relationships between X and Y, we begin by considering
the full dataset, denotedDn1 , and remove the 15 outliers to produce a second dataset, denotedD∗

n1 , and then study the change
in the estimated coefficient vectors computed from each dataset. Next, a second dataset Dn2 of size n2 = 600 is created by
combining the 15 outliers with a dataset D∗

n2 containing 585 randomly selected sample points. This is repeated to produce
two more datasets, Dn3 and Dn4 , of size n3 = 400 and n4 = 100, that have at least a 3.75% and 15% contamination rate,
respectively.

Data analysis:
For the full dataset Dn1 , the 1st estimated variates using PDCA, GCA, and CCA identify a linear relationship between

the household expenditure and socioeconomic vectors. This can be seen in the plot of the 1st PDCA variates for Dn1 in the
left panel of Web Fig. 28; the right panel is the analogous plot for D∗

n1 . The loadings for the coefficient vectors are in
the left quadrant and leftmost column for each method in Table 5. For PDCA when α = 0.1, the coefficient vector for
X weighs heaviest on X1,a1 = (1.0, 0.0025, 0.0057, 0.0007)T , and for Y are a weighted average, to some degree, of all
the variables,b1 = (0.5357, 0.4571, 0.2430, 0.6671)T . A similar interpretation holds for the CCA and GCA methods. This
value of α was selected based on the robustness analysis performed below. It seems reasonable to expect that the total
household expenditure variable X1 would be strongly associated with at least one, or all, of the four socioeconomic variables.
For example, a family with a low household expenditure naturally spends less on clothing, health care, entertainment, and
consumes less food away from home. Plots of the 2nd estimated variates indicated that at most a weak relationship is
recovered and thus, focus only on the 1st estimated directions hereafter.

Robustness analysis:

As in Section 2.5 the distance L∗

(2,ni)
= ∥(I−a(k)

1 a(k)T
1 )a∗(k)

1 ∥2, k = 1, 2,wherea(k)
1 anda∗(k)

1 are the estimated 1st coefficient
vectors fromDni andD∗

ni , respectively, is used to quantify the effect the outliers have in recovering the relationship. For each
of the methods PDCA, CCA and GCA, the top left quadrant of Table 5 gives the loadings fora1 anda∗

1 for Dn1 and D∗
n1 in the

left most column and the adjacent right column, respectively. For PDCA when α = 0.1, the L2 norm distance between the
spanned subspaces ofa1 anda∗

1 is L
∗

(2,n1)
= 0.0149, and for CCA and GCA it is 0.0655 and 0.0363, respectively. In the next row

the relative change in the distance is reported with PDCA as the standard, ∆ = L∗

(2,·)/L
∗

(2,·)R . The relative change using CCA
is ∆ = 0.0655/0.0149 = 4.396 times larger than PDCA, and analogously, 2.436 times more using GCA. In the bottom left
quadrant the results for the relative change in distance betweenb1 andb∗

1 are 1.907 and 1.466 times larger using CCA and
GCA, respectively. Similar results are obtained when this analysis is repeated on the datasets with increased contamination,
Dn2 and Dn3 . The right quadrants of Table 5 give the results for the dataset with the highest level of contamination and
notably, the relative change betweena1 anda∗

1 is almost 6 times more using CCA and 10 times more with GCA.
In conclusion, the results quantifying the change in the estimated loadings as the contamination proportion is increased

show, as did the simulations, that PDCA is more robust than GCA and the moment based method CCA.

5.2. Baseball salaries

The dataset analyzed in this section has beenwell-studied in the literature from a regression perspective andwas initially
presented as a data analysis exposition sponsored by the section on statistics and graphics of the American Statistical
Association in 1988. Fifteen groups performed statistical analyses to answer the question ‘‘are players paid according to their
performance?’’ Hoaglin and Velleman [9] wrote a review of the successes and failures of these analyses, and commented
on the authors’ considerations of the effect outliers and extreme values had on their results. More recently, Xia et al. [25]
reanalyzed this dataset to illustrate their effective dimension reduction (EDR) method. Important in their analysis was that
they first identified and removed outliers, not only to improve their results, but also to argue that the deleted observations
were indeed influential points.
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Table 5
1st estimated coefficient vector comparison (example 5.1).

n1 = 866 Dn1 |D
∗
n1 n4 = 100 Dn4 |D

∗
n4

R0.1(a, b) CCA GCA R0.5(a, b) CCA GCAa11 1.000 0.9999 0.9981 0.9955 0.9176 0.9062 0.9924 0.9934 −0.9519 0.9882 0.9598 0.8951a12 0.0025 −0.0011 0.0466 0.0887 0.2461 0.2793 −0.0311 −0.0560 0.0240 0.0558 0.2023 0.3040a13 0.0057 −0.0058 0.0312 −0.0237 0.2504 0.2591 −0.0914 −0.0634 0.2714 −0.0678 −0.1768 0.1387a14 0.0007 −0.0082 −0.0238 0.0223 0.1866 0.1837 −0.0764 −0.0770 0.1399 −0.1255 0.0812 0.2951
L∗

(2,·) 0.0149 0.0655 0.0363 0.0376 0.2208 0.3917
∆ 1 4.396 2.436 1 5.872 10.420b11 0.5357 0.5430 0.5535 0.5004 0.5543 0.5138 0.4830 0.5286 −0.5149 0.3463 0.3881 0.2991b12 0.4571 0.4641 0.5230 0.4837 0.5410 0.5236 0.5720 0.4998 −0.4121 0.5643 0.4645 0.6958b13 0.2430 0.2779 0.3075 0.2981 0.2488 0.2678 0.3445 0.4322 −0.3576 0.5255 0.2941 0.4665b14 0.6671 0.6423 0.5705 0.6533 0.5815 0.6247 0.5664 0.5329 −0.6611 0.5342 0.7397 0.4569
L∗

(2,·) 0.0440 0.0839 0.0645 0.1266 0.3060 0.4047
∆ 1 1.907 1.466 1 2.417 3.197

We consider two random vectors composed of the predictor variables used by Xia et al. [25] and the response variable,
annual salary. First, we define the random vector X = (X1, . . . , X9)

T to consist of the variables number of: times at bat X1,
hits X2, home runs X3, runs X4, runs batted in X5, walks X6, errors X7, putouts X8, and assists X9, in 1986. We term X the 1986
performance vector. The second vector Y = (Y1, . . . , Y7)

T is composed of the variables number of: times at bat Y1, hits Y2,
home runs Y3, runs Y4, runs batted in Y5, walks Y6, and years in the major leagues Y7 (in 1986), during their entire career up
to 1986. We label Y the career performance vector. Finally, we take the variable Z to be the log of the salary in 1986 and refer
to this variable simply as the annual salary.

Unlike previous analyses, we take an entirely different approach in analyzing this dataset using our PDCA multiple set
index in (4),which studies the joint association between the annual salary, 1986 performance and career performance variables
without deleting any extreme observations. Although not typical in multivariate association studies, here Z is univariate,
so studying its association with the vectors X and Y naturally classifies it as the response. Therefore, consistent with the
original goals of the data exposition, in the analysis below we treat Z as the response. However, different from regression-
type analyses, ourmethod studies the association between two separate sets of predictors simultaneouslywith the response.

Using the methods in Section 3, the permutation p-values = 0 for all values of α, indicating that significant relationships
exist between Z,X and Y, and that α = 0.4 parameterizes the most robust index to recover them, sinced(0.4,1) = 29.78 is
the largest; see Web Table 64. Hereafter, only results for α = 0.4 are presented. The variate plot of Z versusaT1X in the left
panel of Fig. 1 indicates that a weak linear relationship exists between annual salary and the 1986 performance vector when
considered simultaneously with the career performance variables. However, when considered simultaneously with the 1986
performance variables, the plot of Z versusbT

1Y in the right panel of Fig. 1 shows that a very strong nonlinear relationship
exists between annual salary and the career performance vector.

Consider the loadings for the 1986 performance vector: a1 = (0.5812, 0.2963, 0.3230, 0.1747, 0.5088, 0.3859, 0.0312,
0.1094, −0.1372)T . Strong weights are given to the batting variables times at bat X1, hits X2, and home runs X3, with
coefficients 0.5812, 0.2963 and 0.3230, respectively. Next, runs batted in X5, and walks X6, are given the similarly
proportioned weights 0.5088 and 0.3859, respectively. For the fielding variables, errors X7 is near 0 and the coefficients
0.1094 and −0.1372 for putouts X8, and assists X9, effectively negate their influence; see Web Appendix O for a detailed
explanation. Therefore, we conclude that the coefficients for X provide an unequally weighted average of the batting
variables, where times at bat X1, and runs batted in X5, have themost influence on the linear relationship with annual salary.

Next, consider the coefficients for the career performance vector: b1 = (0.9312, 0.2514, 0.0594, 0.1154, 0.1264,
0.1872, 0.0199)T . The career total times at bat Y1 has the largest mass 0.9312, followed by 0.2514 for career hits Y2, and
then runs Y4, runs batted in Y5, and walks Y6, are given similar low weights. Of note, home runs Y3, and the variable number
of years in the league Y7, areweighted near 0. Therefore,we assert that the loadings for the career vector are disproportionate
and the weight placed on career times at bat Y1 drives the nonlinear relationship with annual salary.

Returning to the variate plots in Fig. 1, the left panel shows that an increase in the 1986 performance variate is most
associated with a linear trend in annual salary. With our previous interpretation of the coefficients for the 1986 performance
vector, this means in general that as the batting variables times at X1, hits X2, runs batted in X5, andwalks X6 increase, annual
salary improves in a weakly linear manner. Next, the right panel plot shows that annual salary is smallest when the career
performance variate is near−1 and increases in a sharp linear fashionwith little variation as the variate approaches 0, which
likely corresponds to players in the early to middle part of their careers. Finally, as the variate gets close to and exceeds 1,
there is a plateau and increased variation with a slight quadratic downturn in annual salary, which is likely attributable to
players who have been in the league a number of years. These players have a had a large number of times at bat Y1, and hits
Y2, but there is substantial variation in how much they make.

Note that, the plots in Fig. 1 are similar in nature to those in Fig. 6 of Xia et al. [25] using MAVE. However, there are many
striking differences between our results and theirs. First, their plots are based on revised estimates obtained after removing
seven outliers, whereas our plots are the result of using PDCA on the entire dataset. Second, their dimension reduction



294 R. Iaci, T.N. Sriram / Journal of Multivariate Analysis 117 (2013) 281–295

regression analysis studies the influence of U = (X, Y)T on Z through the two directions,βT
1U andβT

2U, whereas ours is a
simultaneous association study of Z,X, andY throughaT1X andbT

1Y. Consequently, our analysis reveals the joint relationships
between the annual salary, 1986 performance and career performance variables. Furthermore, our variate plots separately
identify the influence of 1986 and career performance on annual salary. However, such a clear division is neither apparent
in Fig.6 of Xia et al. [25] nor recoverable through the coefficient vectors β1 and β2. Thus, our analysis more definitively
answers the main interest stated in the data exposition sponsored by the ASA, which shows the versatility and potential of
the PDCA method.

6. Discussion

We have introduced two new families of multivariate association measures, PDCA and ADCA, based on density
divergences. The families are indexed by a tuning parameter α, which plays a critical role in obtaining an optimally robust
association index that is least sensitive to outliers and recovers the most amount of dependence between multiple sets.
We have also shown the consistency of the PDCA and ADCA estimates. Furthermore, through extensive simulations, it is
shown that PDCA is superior to ADCA, GCA and CCA in recovering the true associations despite the presence of gross-error
contamination. PDCA maintains its superior performance in the analysis of two socioeconomic datasets that are known
to contain outliers. Moreover, the PDCA method is appealing because it does not require preliminary outlier detection to
extract associations betweenmultiple sets. This raises the possibility of theoretically studying the robustness of our method
through influence functions and such studies will be taken up elsewhere.
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Appendix A

A.1. Consistency

Let Vi be a sequence of d-dimensional random vectors with distribution function F and Lebesgue measurable density f .
Define the kernel density estimate of f as:

fn (u) =
1
nadn

n
i=1

K

v − Vi

adn


, for v ∈ Rd,

where K : Rd
→ R+ is a probability density on Rd, uniformly for ∥v∥ → ∞ and where an > 0 and limn→∞ an = 0. The

following lemma follows as direct application of Theorem 1-m of Kiefer [15] and Theorem 1 of Ruschendorf [21]; hence,
we omit the proof. Here, for notational convenience, f (a(k)T x(k)) denotes the density of a(k)TX(k) for k = 1, . . . ,m and
f

a(1)T x(1), . . . , a(m)T x(m)


denotes the density of


a(1)TX(1), . . . , a(m)TX(m)


.

Lemma 1. Let {(X(1)
i , . . . ,X(m)

i )}, i = 1, . . . , n, be i.i.d, and

∞
n=1

e−γ na2dn < ∞, for all γ > 0.

Let K be of bounded variation and, for each k = 1, . . . ,m, let

f (a(k)T x(k)) be uniformly continuous in a(k) and x(k),

f (a(1)T x(1), . . . , a(m)T x(m)) be uniformly continuous in a(1), . . . , a(m) and x(1), . . . , x(m).

Under these conditions we have for each k = 1, . . . ,m, as n → ∞

sup
a(k), x(k)∈Rpk

fn(a(k)T x(k)) − f (a(k)T x(k))

 → 0 almost surely (a.s.)

sup
a(k), x(k)∈Rpk , ∀k

fn a(1)T x(1), . . . , a(m)T x(m)


− f

a(1)T x(1), . . . , a(m)T x(m)

 → 0 a.s.
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Proof of Theorem 1. Assume the conditions of Lemma 1. Suppose (a(1)
1 , . . . ,a(m)

1 ) does not converge to (a(1)
1 , . . . , a(m)

1 ) a.s.
Then, there exists a subsequence (still denoted by n) and vectors (a(1)

0 , . . . , a(m)
0 ) satisfying the constraints in Section 2.1

such that (a(1)
1 , . . . ,a(m)

1 ) → (a(1)
0 , . . . , a(m)

0 ) a.s. and (a(1)
1 , . . . , a(m)

1 ) ≠ (a(1)
0 , . . . , a(m)

0 ). Therefore, for any ϵ > 0 and n large
enough, we have from Lemma 1 that for each k = 1, . . . ,mfn a(k)T

1 x(k)
i


= f

a(k)T
1 x(k)

i


+ ∆1,i = f


a(k)T
0 x(k)

i


+ δk,i,fn a(1)T

1 x(1)
i , . . . ,a(m)T

1 x(m)
i


= f

a(1)T
1 x(1)

i , . . . ,a(m)T

1 x(m)
i


+ ∆(m+1),i

= f

a(1)T
0 x(1)

i , . . . , a(m)T

0 x(m)
i


+ δ(m+1),i,

such that |δj,i| < ϵ for all i and j = 1, . . . ,m + 1. Here, the first set of equalities follow from the conclusion
of Lemma 1 and the second set of equalities follow from the assumed uniformly continuity in Lemma 1. Using these
and algebraic manipulations, it can be shown that Rα

a(1)
1 , . . . ,a(m)

1


= Rα


a(1)
0 , . . . , a(m)

0


+ o (1). Note that, by

assumption, (a(1)
1 , . . . ,a(m)

1 ) = argmax Rα(a(1), . . . , a(m)) and (a(1)
1 , . . . , a(m)

1 ) = argmax Rα


a(1), . . . , a(m)


. Therefore,Rα(a(1)

1 , . . . ,a(m)
1 ) ≥ Rα(a(1)

1 , . . . , a(m)
1 ), which implies

Rα(a(1)
0 , . . . , a(m)

0 ) = lim
n→∞

Rα(a(1)
1 , . . . ,a(m)

1 ) ≥ lim
n→∞

Rα(a(1)
1 , . . . , a(m)

1 ) = Rα(a(1)
1 , . . . , a(m)

1 )

and also, by assumption, Rα(a(1)
0 , . . . , a(m)

0 ) ≤ Rα(a(1)
1 , . . . , a(m)

1 ). Thus, Rα(a(1)
0 , . . . , a(m)

0 ) = Rα(a(1)
1 , . . . , a(m)

1 ), which
contradicts the uniqueness of (a(1)

1 , . . . , a(m)
1 ). Therefore, as n → ∞ (a(1)

1 , . . . ,a(m)
1 ) → (a(1)

1 , . . . , a(m)
1 ) almost surely. �

Appendix B. Supplementary data

Supplementary material related to this article can be found online at http://dx.doi.org/10.1016/j.jmva.2013.03.004.
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