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We have measured cross sections for the γ3He → pd reaction at photon energies of 0.4–1.4 GeV
and a center-of-mass angle of 90◦. We observe dimensional scaling above 0.7 GeV at this center-
of-mass angle. This is the first observation of dimensional scaling in the photodisintegration of a
nucleus heavier than the deuteron.

Dimensional scaling laws directly relate the energy
dependence of the high-t (the four-momentum transfer
squared) invariant cross sections to the number of con-
stituents of the hadrons involved in the process. The
origin of dimensional scaling is the scale invariance of
the interactions among hadron constituents, and, thus,
it naturally reflects the property of asymptotic freedom
of QCD at small distance scales. The laws state that at
fixed center-of-mass (c.m.) angle, the cross section of an
exclusive two-body-to-two-body nuclear reaction at large
s (the total c.m. energy squared) and t is

dσ

dt
∝ s2−ni−nf = s−n (1)

where ni and nf are the total number of elementary fields
in the initial and final states that carry a finite fraction
of particle momentum [1]; e.g., 3 for a nucleon. Ta-
ble I presents the experimental evidence for the success
of these scaling laws.
Dimensional scaling is well founded and expected at

asymptotic energies, where the available energy in the
c.m. is much higher than the mass of the system. Under
these circumstances, the only scale available is the energy
and the s dependence arises from the norm of the active

Reaction s θc.m. n n Reference

GeV2 deg. Predicted Measured

pp → pp 15-60 38-90 10 9.7±0.5 [2]

pπ−
→ pπ− 14-19 90 8 8.3±0.3 [3]

γp → γp 7-12 70-120 6 8.2±0.5 [4]

γp → ρ0p 6-10 80-120 7 7.9±0.3 [5]

γp → pπ0 8-10 90 7 7.6±0.7 [6]

γp → nπ+ 1-16 90 7 7.3±0.4 [7]

γp → K+Λ 5-8 84-120 7 7.1±0.1 [8]

γd → pn 1-4 50-90 11 11.1±0.3 [9–16]

γpp → pp 2-5 90 11 11.1±0.1 [17]

γ3He → pd 11-15.5 90 17 17.0± 0.6 (this work)

TABLE I. Selected hard exclusive hadronic and nuclear reac-
tions that have been previously measured.

fields. However, data for many reactions show evidence
for dimensional scaling even when s is roughly equal to
the squared mass of the system, as is the case reported
here.

To date there is no common model or theory that can
describe all the data listed in Table I in a consistent man-
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ner. For processes on nuclear targets, phenomenologi-
cal extensions of pQCD based on factorization [18–20]
have been developed and have shown limited success. A
common feature of model interpretations of dimensional
scaling, such as [1, 21, 22], is the dominance of a hard
scattering mechanism in the reaction dynamics. It was,
however, also discussed that soft QCD processes [23] or
destructive interference among resonances [24] can mimic
scaling at medium energies.
From the standpoint of a non-perturbative approach,

the scaling laws have been reviewed and derived using
the AdS/CFT correspondence between string theories
in Anti-de Sitter space-time and conformal field theo-
ries in physical space-time [25]. Within this approach,
the interactions between hadron constituents are scale-
invariant at very short but also at very large distances
in the so-called “conformal window” where the effective
strong coupling is large but constant, i.e., scale indepen-
dent [26]. Thus, dimensional scaling laws may be prob-
ing the limits of two very different dynamical regimes of
asymptotically large t and s, and of small t. In order to
understand better the origin of scaling, we would need to
also probe rigorously exclusive nuclear processes at very
small t.
For reactions that are dominated by resonances, the

study of scaling at smaller t is difficult since the reso-
nances make it hard to determine whether scaling is ob-
served. We chose to probe dimensional scaling in the
reaction γ3He → pd in the photon energy range 0.4 –
1.4 GeV. In this energy range, photoreactions on the
proton and deuteron have shown signatures of scaling
[7, 9–16], but their interpretation is unclear. This reac-
tion has the advantage that resonance mechanisms are
suppressed (as shown by low-energy studies) [27]. In ad-
dition, there is evidence that two- and three-body mech-
anisms are important at large c.m. angles [28], i.e., the
momentum transfer is shared among two or three nu-
cleons so that the average momentum transfer to each
quark constituent would be small (maybe in the range
of the “conformal window”). Our measurement is the
first of this reaction in the GeV energy region. As previ-
ous measurements of photo-induced reactions have only
involved A = 1 or 2, the expected quark-counting scal-
ing power of dσ/dt ∝ s−17 is higher than any previous
observation in photoproduction.
The data presented here were taken as part of Jeffer-

son lab (JLab) Experiments 03-101 and 93-044, which
ran at the continuous electron beam accelerator facility
(CEBAF) in Hall A [29] and in Hall B [30], respectively.
E03-101 was a measurement of the θc.m. = 90◦ energy

dependence of the 3He(γ, pp)nspectator reaction [17]. In
two kinematics at an incident electron energy of 1.656
GeV we could identify two-body photodisintegration of
3He into a proton and a deuteron at angles corresponding
to θp c.m. = 85◦.
In this experiment, untagged bremsstrahlung photons

Left arm
β

0.5 0.6 0.7 0.8 0.9 1.0

R
ig

ht
 a

rm
β

0.5

0.6

0.7

0.8

0.9

1.0

0

1

2

3

4

5

6

7

8

9

FIG. 1. (Color online) The β distribution of particles detected
in coincidence by the two High Resolution Spectrometers in
Hall A/E03-101. The widths of the peaks result from the
calibration and time resolution of the scintillators, from the
momentum acceptance of the spectrometers (∆p ≈ ±3.5%),
and the uncertainty of the path-length correction. The dif-
ferent scintillators in the two spectrometers lead to different
widths of the distributions.

were generated when the electron beam impinged on a
copper radiator. The 6%-radiation-length radiator was
located in the scattering chamber 38 cm upstream of the
center of a 20-cm long cylindrical 0.079 g/cm3 3He gas
target. The size of the photon beam spot on the target,
≈2 mm, results from electron beam rastering intended
to distribute the heat load across the target. The size of
the target is much smaller than the ≈1-cm size of the tar-
get windows and apertures. Protons and deuterons from
the target were detected in coincidence with the Hall-
A high-resolution spectrometers (HRSs) [29]. The two
spectrometers were set symmetrically on the two sides of
the beam line in two kinematical settings corresponding
to central momenta of 1.421 GeV/c at a scattering angle
of 63.16◦ and 1.389 GeV/c at a scattering angle of 65.82◦.

For each spectrometer, the scattering angles, mo-
menta, and interaction positions at the target were re-
constructed from trajectories measured with vertical drift
chambers (VDCs) located in the focal plane. Two planes
of plastic scintillators provided triggering and time-of-
flight information for particle identification. Figure 1
shows the speed, β, of the two particles detected in coin-
cidence. One clearly sees protons and deuterons in coin-
cidence, with no visible backgrounds, such as pp and dd
coincidences, or pions.

In analyzing the data from E03-101, the incident pho-
ton energy of the untagged beam was reconstructed event
by event from the momentum and angles of the scattered
particles under the assumption of two-body pd final-state
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kinematics. In order to assure the validity of this assump-
tion and reduce backgrounds, the analysis is limited to
events that fulfill two energy and momentum constraints:

1. pT missing ≡ pT (p) + pT (d) < 5 MeV/c, and

2. αmissing ≡ αd + αp − α3He − αγ < 5 · 10−3.

where α is the light cone variable for each particle par-
ticipating in the reaction:

αX = A
EX − pXz
EA − pAz

≈ EX − pXz
mA/A

, (2)

where A = 3 is the mass number, EX and pX are respec-
tively the energy and momentum of the particle, mA,
EA and pA are the nucleus mass, energy and momentum
respectively, and the z direction is the direction of the
incident photon beam. With the above definitions, αγ is
zero, while α3He is 3.
Simulations show that the inelastic processes present

in the spectrum in Fig. 2 have negligible contribution to
the cross section after the pTmissing and αmissing cuts
are applied.
The detected proton-deuteron pairs can result from

either a photon or an electron disintegrating the 3He
nucleus. We took data with the radiator in and out
of the beam, to extract the number of events result-
ing from photons produced in the bremsstrahlung radi-
ator [13, 17]. Event selection cuts on the target vertex
and coincidence between the two spectrometers were ap-
plied using the same techniques as [17]. The finite ac-
ceptance correction was determined using the standard
Hall-A Monte-Carlo simulation software MCEEP [31].
The sources for the systematic uncertainties for E03-

101 are described in [17]; for this analysis they are domi-
nated by the finite acceptance correction, which is at the
4% – 11% level.
Experiment E93-044 used the CEBAF large accep-

tance spectrometer (CLAS) to measure various photo-
production reactions on 3He and 4He targets. A col-
limated, tagged, real-photon beam was produced using
the bremsstrahlung tagging facility in Hall B [32]. Pho-
tons with energies between 0.35 and 1.55 GeV were in-
cident on a 18-cm long cryogenic liquid 3He target po-
sitioned in the center of CLAS. The outgoing protons
and deuterons were tracked in the six toroidal magnetic
spectrometers (sectors) of CLAS. Their trajectories were
measured by three layers of drift chambers surrounding
the target. Particle time of flight was measured by 6×57
scintillators enclosing CLAS outside of the magnetic field.
CLAS covers a polar angular range from 8◦ to 142◦ and
an azimuthal angular range from 0◦ to 360◦, excluding
the angles where the torus coils are located. More de-
tails about CLAS and experiment E93-044 can be found
in [33] and [34], respectively.
In the analysis of data from E93-044, protons and

deuterons were identified from momentum and time-of-
flight measurements. Only events with one proton and

FIG. 2. (Color online) Event distributions measured by
CLAS, of the missing-mass of the proton, MM2

p , for
θp c.m.=90◦, with (dashed red line) and without (blue solid
line) the kinematic cuts, are shown. Events from the pd fi-
nal state are clearly identified in the peak. The background
distribution (events rejected by the kinematic cuts) exhibits
smooth behavior under the deuteron peak and reproduces the
background shape outside of the peak.

one deuteron originating from the target were analyzed.
Accidental and physics backgrounds were reduced by ap-
plying kinematic cuts making use of the constraints pro-
vided by two-body kinematics when both final-state par-
ticles are detected.

Figure 2 demonstrates the effect of the kinematic cuts
on the proton missing-mass-squared, MM2

p , distribution
at θp c.m.=90◦. The proton missing-mass-squared is cal-
culated as MM2

p = (p̃γ+ p̃3He− p̃p)
2, where p̃γ , p̃3He, and

p̃p are the four-momenta of the beam, target, and de-
tected final-state proton, respectively. The initial event
distribution, before our kinematic cuts are applied, shows
a well pronounced peak at around 3.5 (GeV/c2)2 (which
corresponds to the square of the deuteron mass), followed
by a broader structure above 3.8 (GeV/c2)2. While the
peak contains predominantly the pd events of interest,
the broader structure contains background produced in
the reaction γ3He → pdX , where X could be one or more
missing particles. The low-mass tail of the background
events extends under the pd peak. Our kinematic cuts
select the good pd events from the initial sample and re-
ject background events. For simplicity, in Fig. 2 we show
the events rejected by our kinematic cuts overlaid with
the initial distribution. These background events exhibit
smooth behavior under the deuteron peak and reproduce
the background shape outside of the peak. The uncer-
tainty of the yield extraction due to the remaining back-
ground events is (2.30± 0.63)%.

The CLAS acceptance for the reaction γ3He → pd was
evaluated by generating 2 × 107 phase-space events and
processing them through GSIM [35], a GEANT-3 pro-
gram that simulates CLAS. The CLAS acceptance for pd
events at a c.m. angle of 90◦ is ≈ 71%. The main con-
tribution to the uncertainty of the CLAS acceptance is



5

)2s (GeV
10 11 12 13 14 15

)
32

/d
t (

G
b 

G
eV

σd
17 s

0

20

40

60

80

,pd)γHe(3

° = 90p c.m.θ

 (GeV)γE
0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3

JLab / E03-101
JLab / E93-044 CLAS
DAPHNE
RNA calculation
Laget’s model

 scaling-17s

FIG. 3. The invariant cross section dσ/dt multiplied by s17

to remove the expected energy dependence. The DAPHNE
data is taken from [28]. The RNA [18] calculation is normal-
ized to our highest energy data point from JLab/E03-101.
The prediction of Laget is based on a diagrammatic hadronic
model [38]. Constant s17 scaling normalized to our highest
energy data point is indicated by a solid red line. For a com-
ment on the comparison between the CLAS and DAPHNE
data see [39].

due to residual inefficiencies of various detector elements,
such as scintillator paddles and drift-chamber wires. The
uncertainty of the acceptance was evaluated by compar-
ing our best estimate of acceptance to the acceptance of
100%-efficient CLAS, and by comparing the acceptance-
corrected pd yields (real data) from each of the three
independent CLAS spectrometers. All methods yielded
that the systematic uncertainty of the CLAS acceptance
is < 10%. The photon flux was calculated using the
standard CLAS software [36] and has an uncertainty of
4.5% [37]. The uncertainty of the target length and den-
sity was 2% [34]. The total systematic uncertainty of the
CLAS cross sections is < 11.4%, with the CLAS accep-
tance being the dominant source. The statistical uncer-
tainties range from 2% to 40% depending on the energy
bin. Full details about the analysis of the CLAS data
will be given in a forthcoming long publication

Figure 3 shows the resulting cross sections from CLAS
and Hall A compared to previously published data [28]
for s >10 GeV2. In the range of s = 11.5 – 15 GeV2, the
cross section falls by two orders of magnitude. The falloff
of our Hall-A and CLAS data is fit as s−17±0.6, which is
consistent with the expected scaling degree of n = 17.
This is the first observation of high-energy cross-section
scaling for photodisintegration of an A > 2 system. We
note that our data point at s ≈ 13.5 GeV2 is about 3.5
standard deviations below the scaling prediction. Due
to the limited statistics in this kinematic bin we cannot
study in further detail whether the origin of this deviation
is random or is due to physics.

Starting at threshold, the scaled invariant cross sec-

tion, s17dσ/dt, decreases smoothly to Eγ=0.7 GeV where
it levels out, a transition different from meson photopro-
duction [7] or pp breakup [17], where “resonance-like”
structures are observed. Since our data are taken in the
resonance region (

√
s < 2 GeV assuming a free nucleon

target), this suggests that two- and three-nucleon mech-
anisms dominate the reaction dynamics or nucleon reso-
nance contributions are strongly suppressed.

The scaled cross section of ≈30 Gb·GeV32 corresponds
to an invariant cross section of dσ/dt ≈ 0.4 nb/GeV2

for Eγ ≈ 1.3 GeV. The corresponding cross section for
γd → pn at this energy is about 30 nb/GeV2, about two
orders of magnitude larger, while the cross section for
γ3He → pp + nspectator at this energy is ≈13 nb/GeV2,
about 30 times larger. If one adopts the view that large
momentum transfer reactions select initial states in which
all the quarks and nucleons are close together, it is much
more likely that there is a short-range, and thus high-
momentum, pn pair than pp pair. This was observed
in recent studies for nucleons above the Fermi surface
that have momenta of several hundred MeV/c [40, 41].
Furthermore, in 3He there is nearly as large a probability
for a short-range pd pair as for a pp pair [42].

The reduced nuclear amplitudes (RNA) prescrip-
tion [18] was developed as a way of extending the ap-
plicability of pQCD to lower energy and momentum
scales, by factoring out non-perturbative dynamics re-
lated to hadron structure through phenomenologically
determined hadronic form factors. It should be noted
that deuteron photodisintegration follows the dimen-
sional scaling better than it follows the RNA predic-
tion [15]. The RNA prescription for γ3He → pd is:

dσ

dt
∝ 1

(s−m2
3He)

2
F 2
p (t̂p)F

2
d (t̂d)

1

p2T
f2(θc.m.). (3)

Here Fp (Fd) is the proton (deuteron) form factor, t̂p (t̂d)
is the momentum transfer to the proton (deuteron) and
f is an unknown function of the c.m. angle that must be
determined from experimental data. The overall normal-
ization is also unknown, and ideally should be determined
from data at asymptotically large momentum transfer.
Figure 3 shows the RNA prediction, normalized to our
highest energy data point from E03-101. Our data ap-
pear to agree better with dimensional scaling than with
the RNA prediction.

The model of Laget [38] is a hadronic model based
on a diagrammatic approach for the calculation of the
dominant one-, two-, and three-body mechanisms con-
tributing to the reaction. It provides good accounting of
the absolute magnitude of the cross section and repro-
duces the scaling exhibited by the data over a limited
energy range. Overall, the data appear to agree better
with dimensional scaling than with the model.

We observe the onset of scaling at θc.m. = 90◦ at a
momentum transfer to the deuteron |t| > 0.64 (GeV/c)2
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and a transverse momentum p⊥ > 0.95 GeV/c. These
momentum thresholds for scaling are remarkably low.
For other processes, such as deuteron photodisintegra-
tion, the onset of scaling has been observed at p⊥ >
1.1 GeV/c [9–16]. Both the deuteron form factor and
the reduced deuteron form factor [18] show scaling at
|t| > 2 (GeV/c)2. This comparison suggests that non-
perturbative interpretation of our data may be more
appropriate. Such interpretation in the framework of
AdS/CFT means that the observed scaling is due to
the near-constancy of the effective QCD coupling at low
Q (“conformal window” [26]) and we are in the non-
perturbative regime of QCD. A further test of this inter-
pretation would require data over a higher-energy range
where the transition from non-perturbative to perturba-
tive dynamics would manifest itself in breaking dimen-
sional scaling. The latter would be observed again at
asymptotically large invariants when pQCD sets in.

Our result indicates that QCD studies of nuclei are
meaningful at energies as low as Eγ = 0.7 GeV and that
the three-nucleon bound system may be an equally good
laboratory for such studies as the deuteron. Moreover,
since the cross section for our process had been previously
measured down to beam energies of a few MeV, our data
combined with the low-energy data allow to map for the
first time the transition from meson-nucleon to partonic
degrees of freedom cleanly, without the complication of
resonance structures, as has been the case in previous
studies involving A = 1 or A = 2 nuclear systems.

We have observed for the first time scaling in an exclu-
sive reaction initiated by a photon beam and involving
an A = 3 nucleus. The scaling power of s−17 for Eγ > 0.7
GeV, is the highest quark-counting power-law depen-
dence observed to date in leptoproduction. If AdS/CFT
correspondence is the proper framework to understand
the origin of dimensional scaling, then the observed scal-
ing is a result of the near-constancy of the QCD coupling.
This assumption may be validated through the study of
this reaction in a higher energy range.
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¶ Current address: Università di Roma Tor Vergata, 00133
Rome Italy

[1] S. J. Brodsky and G. R. Farrar, Phys. Rev. Lett. 31, 1153
(1973).

[2] A. W. Hendry, Phys. Rev. D 10, 2300 (1974).
[3] K. A. Jenkins et al., Phys. Rev. D 21, 2445 (1980).
[4] A. Danagoulian et al., Phys. Rev. Lett. 98, 152001

(2007).
[5] M. Battaglieri et al., Phys. Rev. Lett. 87, 172002 (2001).
[6] D. G. Meekins et al., Phys. Rev. C 60, 052201 (1999).
[7] L. Y. Zhu et al., Phys. Rev. Lett. 91, 022003 (2003).
[8] R. A. Schumacher and M. M. Sargsian, Phys. Rev. C 83,

025207 (2011).
[9] J. Napolitano et al., Phys. Rev. Lett. 61, 2530 (1988).

[10] S. J. Freedman et al., Phys. Rev. C 48, 1864 (1993).
[11] J. E. Belz et al., Phys. Rev. Lett. 74, 646 (1995).
[12] C. Bochna et al., Phys. Rev. Lett. 81, 4576 (1998).
[13] E. C. Schulte et al., Phys. Rev. Lett. 87, 102302 (2001).
[14] E. C. Schulte et al., Phys. Rev. C 66, 042201 (2002).
[15] M. Mirazita et al., Phys. Rev. C 70, 014005 (2004).
[16] P. Rossi et al., Phys. Rev. Lett. 94, 012301 (2005).
[17] I. Pomerantz et al., Phys. Lett. B684, 106 (2010).
[18] S. J. Brodsky and J. R. Hiller, Phys. Rev. C 28, 475

(1983).
[19] L. L. Frankfurt, G. A. Miller, M. M. Sargsian, and M. I.

Strikman, Phys. Rev. Lett. 84, 3045 (2000).
[20] M. M. Sargsian and C. Granados, Phys. Rev. C 80,

014612 (2009).
[21] V. A. Matveev, R. M. Muradian, and A. N. Tavkhelidze,

Nuovo Cim. Lett. 7, 719 (1973).
[22] X. Ji, J.-P. Ma, and F. Yuan, Phys. Rev. Lett. 90, 241601

(2003).
[23] A. V. Radyushkin, Phys. Lett. B642, 459 (2006).
[24] Q. Zhao and F. E. Close, Phys. Rev. Lett. 91, 022004

(2003).
[25] J. Polchinski and M. J. Strassler, Phys. Rev. Lett. 88,

031601 (2002).
[26] S. J. Brodsky and G. F. de Téramond, Phys. Rev. D 77,
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