ВЕСЦІ НАЦЫЯНАЛЬНАЙ АКАДЭМІІ НАВУК БЕЛАРУСІ № 1 2015 СЕРЫЯ ХІМІЧНЫХ НАВУК

БІЯАРГАНІЧНАЯ ХІМІЯ

УДК 547.99

Н. В. КОТ, М. А. КИСЕЛЬ, П. В. КУРМАН, А. Л. МИХАЛЬЧУК, В. В. ШИЛОВ

АЦИЛИРОВАННЫЕ ПРОИЗВОДНЫЕ РЕСВЕРАТРОЛА И ИЗОЛИКВИРИТИГЕНИНА

Институт биоорганической химии НАН Беларуси

(Поступила в редакцию 25.04.2014)

Полифенолы и их производные, повсеместно представленные в растительном и животном мире, обладают широким спектром биологической активности [1, 2]. К представителям таких полифенолов относятся ресвератрол 1а, широко известный как возможный фактор проявления «французского парадокса» [3], и изоликвиритигенин 2а, обладающие противоопухолевыми, противовоспалительными, противомикробными, кардиопротекторными, вазодилататорными, антиагрегантными, антиоксидантными, эстрогенными и другими свойствами [4–10]. Наличие этих свойств в сочетании с низкой токсичностью создает предпосылки для исследования указанных полифенолов как потенциальных базовых соединений для разработки новых лекарственных средств.

Фармакокинетические свойства ресвератрола и изоликвиритигенина в настоящее время изучены недостаточно. Результаты отдельных исследований указывают на их низкую биодоступность [4–6, 11]. При достаточно высокой степени всасывания (≈70 % при пероральном приеме) концентрация свободного ресвератрола в плазме крови невелика (3,5 % от общего содержания [4]), что обусловлено его быстрыми метаболическими превращениями в сульфаты и глюкурониды, выводящиеся с мочой. Представляется вероятным, что модификация ресвератрола и изоликвиритигенина, направленная на повышение их липофильности, может способствовать пролонгированному действию и повышению биодоступности за счет увеличения поступления в кровоток, замедления метаболических превращений и снижения клиренса.

Цель настоящей работы – получение производных ресвератрола и изоликвиритигенина путем их прямого ацилирования. В качестве таких производных получены и охарактеризованы их триацетаты (1c, 2c) и тризамещенные метилсукцинаты (1f, 2f), а также трибензоат ресвератрола 1d, диацетат 2b и дизамещенный метилсукцинат 2e изоликвиритигенина. Известны коммерчески доступные ацетаты ресвератрола, а также описан синтез бензоата ресвератрола [12]. Описано получение бензоатов изоликвиритигенина по реакциям Хорнера–Уодсворта–Эммонса и конденсации Кляйзена–Шмидта [13]. Производные 1f, 2e, 2f получены впервые (рис. 1).

a: R = R = H; b: R = Ac, R' = H; c: R = R' = Ac; d: R = R' = Bz; e: $R = COCH_2CH_2COOMe$, R' = H; f: $R = R' = COCH_2CH_2COOMe$

Рис. 1. Ресвератрол 1a, изоликвиритигенин 2a и их производные 1c,d,f, 2b-f

Сравнение подходов к ацетилированию ресвератрола и изоликвиритигенина в условиях кислотного (TsOH) и основного (пиридин) катализа показало, что в условиях основного катализа реакция протекает значительно быстрее. Триацетат ресвератрола 1с (в условиях кислотного и основного катализа) и триацетат изоликвиритигенина 2с (основный катализ) получены с выходами ~95 %. Ацилирование изоликвиритигенина в условиях кислотного катализа в течение 20 ч при 30-45 °С приводит к смеси производных 2b и 2c с незначительной примесью моноацетата. Попытка получения моноацетата изоликвиритигенина в условиях кинетического контроля (-18 °С, пиридин) привела к образованию смеси, содержащей изоликвиритигенин 2a, его моноацетат, диацетат 2b и триацетат 2c. Выделить моноацетат и установить его строение не удалось вследствие низкого выхода. Отсутствие изомерных моно- и диацетатов свидетельствует о разной реакционной способности гидроксильных групп изоликвиритигенина, однако разница в скоростях ацетилирования по отдельным положениям недостаточна для препаративного синтеза моно- или диацетата. Ацилирование изоликвиритигенина 2а бензоилхлоридом приводит к смеси ди- и трибензоата 2с (ВЭЖХ: 26 и 74 % соответственно). Ацилирование изоликвиритигенина избытком (40 %) хлорангидрида монометилового эфира янтарной кислоты приводит к диэфиру 2е в качестве основного продукта и завершается практически сразу при смешении реагентов. Для получения триметилсукцината изоликвиритигенина 2f требуется 90%-ный избыток ацилирующего агента и нагревание реакционной смеси в течение 3,5 ч.

Структура полученных соединений подтверждена данными ЯМР ¹Н, ¹³С, ИК, масс-спектров (табл. 1, 2). В ИК-спектрах наблюдаются сигналы валентных колебаний сложноэфирных карбонильных групп при 1760–1770 см⁻¹, а еноновой карбонильной группы производных изоликвиритигенина – при 1625–1670 см⁻¹.

Транс-конфигурация олефинового фрагмента полученных соединений подтверждается наличием в спектрах ЯМР ¹Н двух дублетов с константой спин-спинового взаимодействия около 16 Гц. Диэфирам **2b** и **2e**, согласно данным ЯМР ¹Н (смещение сигнала гидроксильного протона в область слабого поля), приписана структура, содержащая свободную *орто*-гидроксильную группу резорцинового фрагмента. Сравнительно низкую реакционную способность *орто*-гидроксила в реакциях ацилирования изоликвиритигенина можно объяснить влиянием внутримолекулярной водородной связи с карбонильной группой.

Термическая лабильность изоликвиритигенина 2a и его диацетата 2b проявляется в условиях газохроматографического анализа, приводя к образованию изомерных циклических продук-

Соединение	Выход, %	<i>Т</i> _{пл.} , °С	ИК-спектр, v, см ⁻¹	M^+	TCX (R _f)	ГЖХ (<i>t</i> _R , мин)	ВЭЖХ (<i>t</i> _R , мин)
1c	95	118-120	1770 (С=О сл. эф.)	354 [M] ⁺	0,9*	99,8 % (28,2)	_
1d	36	165–168	1740 (С=О сл. эф.)	541 [M+1] ⁺	0,9**	-	32,3
1f	51	53-55	1765 (С=О сл. эф.); 1740 (С=О сл. эф.); 1235 (С=О сл. эф.)	571 [M+1] ⁺	0,5*	_	6,8
2b	18	152–154	1760 (С=О сл. эф.); 1640 (С=О)	341 [M+1]+	0,5**	_	6,5
2c	95	118–120	1760 (С=О сл. э.); 1670 (С=О); 1165 (С=О); 1120 (С=О)	382 [M] ⁺	0,2**	29,1	_
2e	74	123–127	1765 (С=О сл. эф.); 1755 (С=О сл. эф.); 1730 (С=О сл. эф.); 1640 (С=О)	485 [M+1] ⁺	0,6*	_	5 % 2f (6,3), 95 % 2e (7,0)
2f	69	68–71	1760 (С=О сл. эф.); 1735 (С=О сл. эф.); 1670 (С=О); 1665 (С=О); 1655 (С=О); 1645 (С=О)	599 [M+1] ⁺	0,4*	_	6,3

Таблица 1. Данные по выходам, температурам плавления, ИК-и масс-спектрам, ТСХ, ГЖХ/ВЭЖХ эфиров ресвератрола и изоликвиритигенина

Примечание. * Элюент CHCl₃/CH₃OH, 9:1. ** Элюент CHCl₃/CH₃OH, 19:1.

C	Спектр ЯМР					
Соединение	$^{1}\text{H},$ б, м. д. (интенсивность сигнала; мультиплетность; J, Гц)	¹³ С, б, м. д.				
1c	2,3 (9H; c; 3 CH ₃); 6,8 (1H; c; C ⁴ H); 7,0 (1H; д;	21,3 (3 CH ₃); 114,6 (C ⁴ H); 117,0 (C ² H, C ⁶ H); 122,0 (C ³ 'H,				
	16,3; -СН=); 7,1 (1Н; д; 16,3; -СН=); 7,1 (2Н; д;	C ⁵ 'H); 127,3 (-CH=); 127,8 (C ² 'H, C ⁶ 'H); 129,8 (-CH=);				
	$8,7; C^{3'}H, C^{5'}H); 7,1 (2H; c; C^{2}H, C^{6}H); 7,5 (2H;$	$134,6 (C^{1'}); 139,7 (C^{1}); 150,5 (C^{4'}); 151,4 (C^{3}, C^{5}); 169,1 (2)$				
	д; 8,7; С ² Н, С ⁶ Н)	С=О сл. эф.); 169,5 (С=О сл. эф.)				
1d	7,1 (1Н; д; 16,3; -СН=); 7,1 (1Н; т; 1,9; С ⁴ Н); 7,2	114,9 ($C^{4}H$); 117,3 ($C^{2}H$, $C^{6}H$); 122,2 ($C^{3}H$, $C^{5}H$); 127,4				
	(1Н; д; 16,3; -СН=); 7,2 (2Н; дд; 8,7; 0,3; С ³ Н,	(-СН=); 127,9 (С ² Н, С ⁶ Н); 128,7 (2 <i>м</i> -С Н); 128,8 (4				
	C^{5} H); 7,3 (2H; дд; 1,9; 0,3; C^{2} H, C^{6} H); 7,5 (9H;	M-CH); 129,4 (2 C); 129,6 (C); 129,9 (-CH=); 130,3 (2				
	$M; 3 n-CH, 6 m-CH); 7,7 (2H; \Xi; 7,4; C^2 H, C^0 H);$	$(0-CH); 130,4 (4 \ 0-CH); 133,8 (n-CH); 133,9 (2 \ n-CH);$				
	$8,2$ (2H; π ; 5,1; 2 0-CH); 8,2 (2H; π ; 5,1; 2 0-CH);	134,7 (C ²); $139,9$ (C ²); $150,9$ (C ²); $151,8$ (C ² , C ²); $165,0$ (2				
1.6	$8,2(2\Pi, \mu, 5,1, 20 - C\Pi)$	$(-0 \text{ cm}, 3\psi), 105, 2 (0-0 \text{ cm}, 3\psi)$				
11	$2,0$ (0 Π , M, 2,9, 5 C Π_2), 2,9 (0 Π , M, 2,0, 5 C Π_2), 2,7 (3 Π : α : C Π): 2,7 (6 Π : α : 2, C Π): 6,8 (1 Π : π :	26,8 (2 CH ₂), 28,9 (CH ₂), 29,5 (2 CH ₂), 29,5 (CH ₂), 52,0 (CH ₂), 52,0 (2 CH ₂), 29,5 (CH ₂), 52,0 (2 CH ₂), 52,0 (2 CH ₂), 54,0 (CH ₂), 54,				
	$1.9 \cdot C^{4}H$ $2.013 \cdot 7.0 \cdot (1H \cdot \pi \cdot 16.3 \cdot -CH=) \cdot 7.1 \cdot (1H \cdot 16.3 \cdot -CH=) \cdot (1H \cdot 16.3 \cdot -CH=)$	$121.8 (C^{3'}H C^{5'}H) \cdot 1271 (-CH=) \cdot 1276 (C^{2'}H C^{6'}H) \cdot 1271 (-CH=) \cdot 1276 (-CH=$				
	16.3: -CH=): 7.1 (2H: лл: 8.7: 1.9: C ³ 'H. C ⁵ 'H): 7.1	129.7 (-CH=): 134.5 (C1): 139.5 (C1): 150.3 (C4): 151.2				
	(2Н; д; 1,9; С ² Н, С ⁶ Н); 7,5 (2Н; дд; 8,7; 1,9;	(C ³ , C ⁵); 170,5 (С=О сл. эф.); 170,8 (С=О сл. эф.); 172,5				
	C^{2} 'H, C^{6} 'H)	(2 С=О сл. эф.); 172,5 (С=О сл. эф.)				
2b	2,3 (3H; с; CH ₃); 2,3 (3H; с; CH ₃); 6,7 (1H; дд;	21,3 (CH ₂); 21,3 (CH ₂); 111,4 (C ³ 'H); 113,0 (C ⁵ 'H); 118,0				
	9,0; 1,9; С ⁵ 'Н); 6,8 (1Н; д; 1,9; С ³ 'Н); 7,2 (2Н; д;	(C^1) ; 120,2 (C ⁸ H); 122,5 (C ³ H, C ⁵ H); 130,0 (C ² H, C ⁶ H);				
	8,3; $C^{3}H$, $C^{5}H$); 7,5 (1H; π ; 15,4; $C^{8}H$); 7,7 (2H; π ;	131,0 (C ⁶ 'H); 132,3 (C ¹ '); 144,7 (C ⁹ H); 152,8 (C ⁴ H); 156,8				
	8,3; C ² H, C ⁶ H); 7,9 (1H; д; 15,4; C ⁹ H); 7,9 (1H; д;	(C ⁴ H); 165,3 (C ²); 168,6 (C=O сл. эф.); 169,2 (C=O сл.				
	9,0; C ⁶ H); 13,0 (1H; c; OH)	9ϕ .); 192,8 (C'=O)				
2c	(2,2) (3H; c; CH ₃); 2,3 (2H; c; CH ₃); 2,3 (3H4 c;	[21,3] (3 CH ₃); 11/,2 (C ³ H); 119,3 (C ⁶ H); 122,4 (C ³ H,				
	(CH_3) ; /,0 (1H; \mathcal{A} ; 2,2; (C^*H) ; /,1 (1H; $\mathcal{A}\mathcal{A}$; 8,/; 2,2; $(C^{5'}H)$; 7.1 (1H; \mathcal{A} ; 8,/; 2,2; $(C^{5'}H)$; 7.2 (2H; \mathcal{A} ; 8,225;	$(C^{1}H)$; 125,2 ($C^{2}H$); 129,7 ($C^{2}H$, $C^{3}H$); 130,9 ($C^{3}H$); 132,5				
	$C^{2}H$ $C^{6}H$ $C^{6}H$ $C^{7}H$ $C^{6}H$ $C^{7}H$ $C^{7}H$ $C^{9}H$ $C^{7}H$ $C^{6}H$ $C^{7}H$ C	$(C \ H), 144,5 (C \ H), 149,7 (C \ H), 152,0 (C \ H), 155,5$ $(C^{4'}H): 168.6 (C=0 \ c\pi \ ab): 160.0 (C=0 \ c\pi \ ab): 160.2$				
	$C^{3}H, C^{5}H$): 7.7 (1H: π : 8.7: $C^{6}H$)	$(C=0 \text{ cn. 3d}.), 190.4 (C^7=0)$				
2e	2.8 (4H: m: 2 CH ₂): 2.9 (4H: m: 2 CH ₂): 3.7 (6H: c:	28.7 (CH ₂): 28.8 (CH ₂): 29.3 (CH ₂): 29.3 (CH ₂): 52.0 (2				
	2 CH ₂); 6,7 (1H; дд; 8,7; 2,2; C ⁵ 'H); 6,8 (1H; д;	CH ₂); 111,2 (C ³ 'H); 112,7 (C ⁵ 'H); 117,9 (C ^{1'}); 120,1 (C ⁸ H);				
	2,2; C ^{3'} H); 7,2 (2H; д; 8,7; C ³ H, C ⁵ H); 7,5 (1H; д;	122,2 (C ³ H, C ⁵ H); 129,8 (C ² H, C ⁶ H); 130,8 (C ⁶ 'H); 132,2				
	15,4; C ⁸ H); 7,7 (2H; д; 8,7; C ² H,C ⁶ H); 7,9 (1H; д;	$(C^{1}); 144,5 (C^{9}H); 152,6 (C^{4}); 156,5 (C^{2'}); 165,1 (C^{4'});$				
	15,4; С ⁹ H); 7,9 (1H; д; 8,7; С ⁶ H); 13,0 (1H; с;	170,0 (С=О сл. эф.); 170,6 (С=О сл. эф.); 172,4 (С=О сл.				
	C ² OH)	эф.); 172,5 (С=О сл. эф.); 192,6 (С′=О)				
2f	2,7 (2H; T; 7,1; CH ₂); 2,8 (4H; T; 7,1; 2CH ₂); 2,8	28,6 (CH ₂); 28,7 (CH ₂); 28,8 (CH ₂); 29,2 (CH ₂); 29,3				
	(2H; T; 7,1; CH ₂); 2,9 (2H; T; 7,1; CH ₂); 2,9 (2H; T;	$(2CH_2); 51,9 (CH_3); 52,0 (CH_3); 52,0 (CH_3); 117,1 (C3 H);$				
	$(7,1; CH_2); 3,7 (3H; c; CH_3); 3,7 (3H; c; CH_3); 3,7 (2H; c; CH_2); 7,0 (1H; c; CH_3); 7,1 (1H; c; CH_3)$	119,2 (C ⁶ H); $122,2$ (C ⁶ H, C ⁶ H); $125,1$ (C ⁶ H); $129,5$ (C ⁷); 120.6 (C ² H, C ⁶ H); 120.7 (C ⁶ H); 122.2 (C ¹); 144.2 (C ⁹ H);				
	$(5\pi, c, C\pi_3)$; /,0 (1H; Ξ ; 2,2; C ⁻ H); /,1 (1H; Ξ ; 15.7: C ⁸ H): 7.1 (1H: $\pi\pi$: 8.2: 2.2: C ⁵ 'H): 7.2 (2H)	129,0 (C H, C H); $150,7$ (C H); $152,2$ (C); $144,3$ (C H); $140,5$ (C ⁴): $152,4$ (C ²): $152,3$ (C ⁴): $170,1$ (C - O at a^{4}):				
	$15,7, C H), 7,1 (H, JJ, 8,5, 2,2, C H), 7,2 (2H, \pi: 8.3: C^{3}H (^{5}H): 7.5 (1H: \pi: 15.7: C^{9}H): 7.6 (2H:$	170.4 (C=O cm ad): 170.6 (C=O cm ad): 172.3 (C=O cm				
	π , 8, 3, C ² H, C ⁶ H), 7, 7 (2H, π , 8, 3, C ⁶ H)	$(C=0 \text{ cm}, 3\phi.), 170, 0 (C=0 \text{ cm}, 3\phi.), 172, 5 (C=0 \text{ cm}, 2\phi.), 172, 5 (C=0 \text{ cm}, 2\phi.), 172, 5 (C=0 \text{ cm}, 2\phi.), 190, 2$				
	[A, 0, 0, 0, 0, 11, 0, 11], i, i, (211, $A, 0, 0, 0, 0, 11]$	$(C^7=0)$				

Таблица 2. Спектры ЯМР¹Н, ¹³С эфиров ресвератрола и изоликвиритигенина

тов – ликвиритигенина **3a** и его диацетата **3b** соответственно, отсутствующих в образцах по данным ВЭЖХ. Триацетат **2c** в условиях газохроматографического анализа не подвергается каким-либо превращениям (рис. 2).

При определении температуры плавления установлено, что триацетат ресвератрола 1с имеет

Рис. 2. Циклизация изоликвиритигенина 2a и его диацетата 2b

две кристаллические модификации. Полученные осаждением водой из раствора 1,4-диоксана призматические кристаллы плавятся при 109–114 °С, одновременно формируя игольчатые кристаллы, имеющие температуру плавления 118–120 °С (лит. 116–118 °С [14], 120–121 °С [15]).

Таким образом, нами получены ацетаты 1с, 2b,c, бензоат 1d и монометилсукцинаты 1f, 2e,f, дана их физикохимическая характеристика. Установлено, что 2'-гидроксильная группа изоликвиритигенина 2a менее реакционноспособна по сравнению с 4- и 4'-OH-группами, что, по-видимому, обусловлено совокупным влиянием внутримолекулярной водородной связи, стереоэлектронного и пространственного эффектов.

Экспериментальная часть. ИК-спектры зарегистрированы в таблетках с КВг на Фурье-ИК спектрометре Nicolet Nexus-670 и ИК спектрометре Bomem mb-100 FTIR. Данные о чистоте продуктов и массе молекулярных ионов получены с использованием комплекса ВЭЖХ Agilent 1200 (колонка Zorbax Eclipse XDB-C18), подвижная фаза – 0,1%-ный водный раствор трифторуксусной кислоты/ацетонитрил в соотношении 3:2 с масс-спектрометром Agilent 6410 Triple Quad или хромато-масс-спектрометра Agilent 6890N/5975 Inert (кварцевая капиллярная колонка HP-5MS 30 м×0,25 мм×0,25 мкм, газ-носитель гелий 0,8 мл/мин, температура испарителя 250 °C, температурная программа 50–325 °C, 10 °С/мин). Спектры ЯМР ¹Н и ¹³С получены на радиоспектрометре Bruker Avance (500 и 126 МГц соответственно) в растворах дейтеропиридина или дейтерохлороформа, внутренний стандарт ТМС. Контроль за ходом реакций и чистотой продуктов после очистки осуществляли с помощью TCX на пластинках TLC Silica gel 60 F_{254} Merk. Температуры плавления определены на нагревательном блоке VEB Wägetechnik PHMK Rapido.

(E)-5-(4-ацетоксистирил)фенилен-1,3-диацетат (1с). Методика 1. Из 0,684 г (3,0 ммоль) ресвератрола 1а и 3,45 мл (36,6 ммоль) уксусного ангидрида выдерживанием в смеси 2 мл 1,4-диоксана и 2 мл уксусной кислоты в присутствии 1–2 мг TsOH в течение 30 ч при 30–45 °C (TCX контроль) с последующими разбавлением водой (\approx 30 мл), фильтрованием и высушиванием до постоянной массы (вакуум-эксикатор, CaCl₂) получено 1,014 г производного 1с в виде светло-коричневых кристаллов.

Методика 2. Из 0,342 г (1,5 ммоль) ресвератрола 1а и 1,53 мл (16,3 ммоль) уксусного ангидрида выдерживанием в смеси 3 мл 1,4-диоксана и 1,16 мл пиридина в течение 13 ч при 30– 45 °C (ТСХ контроль) с последующими нейтрализацией АсОН, разбавлением водой (≈30 мл), фильтрованием, промыванием водой и высушиванием до постоянной массы (вакуум-эксикатор, CaCl₂) получено 0,503 г производного 1с в виде белых кристаллов.

(*E*)-4-(4-ацетоксициннамоил)-3-гидроксифенилацетат (2b). Из 0,336 г (1,48 ммоль) изоликвиритигенина 2а и 2,52 мл (26,7 ммоль) уксусного ангидрида выдерживанием в 5 мл 1,4-диоксана в присутствии 1–2 мг TsOH в течение 20 ч при 30–45 °С (ТСХ контроль) с последующими нейтрализацией AcOH, разбавлением водой (\approx 30 мл), фильтрованием, промыванием водой и высушиванием до постоянной массы (вакуум-эксикатор, CaCl₂) получено 0,351 г смеси моно-, дии триацетатов. Флэш-хроматографией смеси на силикагеле (20 г, элюент – толуол-этилацетат, 10:1) выделено 0,093 г производного 2b в виде желтых кристаллов.

(*E*)-4-(4-ацетоксициннамоил)фенилен-1,3-диацетат (2с). Из 0,529 г (2,1 ммоль) изоликвиритигенина и 1,28 мл (13,5 ммоль) уксусного ангидрида выдерживанием в 3 мл 1,4-диоксана и 2 мл пиридина в течение 40 мин при 20–25 °С (ТСХ контроль) с последующими нейтрализацией AcOH, разбавлением водой (\approx 30 мл), фильтрованием, промыванием водой и высушиванием до постоянной массы (вакуум-эксикатор, CaCl₂) получено 0,653 г производного **2с** в виде светложелтых кристаллов.

(*E*)-5-(4-бензоилоксистирил)фенилен-1,3-дибензоат (1d). Из 0,232 г (1,0 ммоль) ресвератрола и 0,39 мл (3,4 ммоль) свежеперегнанного бензоилхлорида выдерживанием в 3,5 мл пиридина в течение 22 ч при 20–25 °С (ТСХ контроль) и 1,5 ч при 30–45 °С (ТСХ контроль) с последующими прибавлением реакционной смеси к смеси льда и концентрированной HCl, фильтрованием, промыванием, переосаждением из раствора ацетона и 1,4-диоксана водой и высушиванием образовавшегося осадка до постоянной массы (вакуум-эксикатор, CaCl₂) получено 0,194 г производного 1d в виде белых кристаллов.

(E)-5-[4-(4-метокси-4-оксобутаноилокси)стирил]фенилен-1,3-диметилдисукцинат (1f). Смешивали 0,342 г (1,5 ммоль) ресвератрола 1а и 0,78 мл (5,9 ммоль) 3-метоксикарбонилпропионилхлорида в 3 мл пиридина при 0 °С. Полученную смесь выдерживали 1,5 ч при 20 °С (ТСХ контроль), затем нейтрализовывали HCl, разбавляли водой (\approx 30 мл), выделившееся масло экстрагировали хлороформом, экстракт последовательно промывали раствором NaHCO₃ и водой, сушили над Na₂SO₄, фильтровали через \approx 5 г силикагеля, фильтрат упаривали, остаток кристаллизовали растиранием с этанолом. Кристаллы отфильтровывали, промывали на фильтре водой

и сушили до постоянной массы (вакуум-эксикатор, CaCl₂). Получили 0,437 г эфира **1f** в виде белых кристаллов.

(*E*)-3-гидрокси-4-[4-(4-метокси-4-оксобутаноилокси)циннамоил]фенилметилсукцинат (2е). Из 0,384 г (1,5 ммоль) изоликвиритигенина 2а и 0,84 мл (6,3 ммоль) 3-метоксикарбонилпропионилхлорида выдерживанием в смеси 6 мл диоксана и 0,48 мл пиридина в течение 24 ч при 4 °С (ТСХ контроль) с последующей нейтрализацией HC1, разбавлением водой (\approx 30 мл), фильтрованием, промыванием водой, перекристаллизацией из смеси этанола и ацетона и высушиванием образовавшегося осадка до постоянной массы (вакуум-эксикатор, CaCl₂) получено 0,078 г производного 2е в виде желтых кристаллов.

(*E*)-4-[4-(4-метокси-4-оксобутаноилокси)циннамоил]фенилен-1,3-бис(метилсукцинат) (2f). Смесь 0,388 г (1,5 ммоль) изоликвиритигенина 2a и 0,9 мл (6,8 ммоль) 3-метоксикарбонилпропионилхлорида в растворе 5 мл 1,4-диоксана и 0,6 мл пиридина выдерживали в течение 2,5 ч при 30–45 °C (ТСХ контроль), затем дополнительно прибавляли 0,24 мл (1,8 ммоль) 3-метоксикарбонилпропионилхлорида, выдерживали в течение 1,5 ч при 30–45 °C (ТСХ) и обрабатывали как описано в методике для получения производного 2e. Получили 0,621 г эфира 2f в виде белых кристаллов.

Литература

Барабой В.А. Биологическое действие растительных фенольных соединений. Киев: Наукова думка, 1976. С. 6–28.
Hanhineva K., Törrönen R., Bondia-Pons I., Pekkinen J., Kolehmainen M., Mykkänen H., Poutanen K. // Int. J. Mol. Sci. 2010. Vol. 11. P. 1365–1402.

3. Catalgol B., Batirel S., Taga Y., Ozer N.K. // Frontiers in Pharmacology. 2012. Vol. 3. Art. 141. P. 1-18.

4. Aggarwal B. B., Bhardwaj A., Aggarwal R. S., Seeram N. P., Shishodia Sh., Takada Y. // Anticancer Res. 2004. Vol. 24. P. 2783–2840.

5. Cuendet M., Guo G., Luo Y., Chen Sh., Oteham C.P., Moon R.C., Breemen R.B. van, Marler L.E., Pezzuto J.M. // Cancer Prev. Res. 2010. Vol. 3, N2. P. 221–232.

6. Frödö S., Durand Ch, Pirola L. // Current Aging Science. 2008. Vol 1. P. 145-151.

7. Athar M., Back J. H., Kopelovich L., Bickers D. R., Kim A. L. // Arch. Biochem. Biophys. 2009. Vol. 486, N2. P. 95–102.

8. Bishayee A. // Cancer Prev. Res. 2009. Vol. 2, N 5. P. 418-419.

9. Delmas D., Lançon A., Colin D., Jannin B., Latruffe N. // Current Drug Targents. 2006. Vol. 7, N 3. P. 1-20.

10. Shankar Sh., Singh G., Srivastava R. K. // Frontiers in Bioscience. 2007. Vol. 12. P. 4839-4854.

11. Wu Y. P., Meng X. S., Bao Y. R., Wang S. // J. Ethnopharmacol. 2013. Vol. 148, N 1. P. 266–270.

12. Chen X.-h., Dong X.-c., Gao Z.-f., Sun X.-j. // Chemical Reagents. 2012. Vol. 34, N1. P. 6-8.

13. Sano Sh., Okubo Y., Handa A., Nakao M., Kitaike S., Nagao Y., Kakegawa H. // Chem. Pharm. Bull. 2011. Vol. 59, N7. P. 885–888.

14. Andrus M.B., Liu J. // WO 2005/069998, PCT/US2005/003339, 4.08.2005.

15. Delaire S., Adao A., Desmurs J.-R., Gelo-Pujic M., Saint-Jalmes L., Kassem T. // US 2009/0215881, 27.08.2009.

N. V. KOT, M. A. KISEL, P. V. KURMAN, A. L. MIKHAL'CHUK, V. V. SHYLAU

ACYLATED DERIVATIVES OF RESVERATROL AND ISOLIQUIRITIGENIN

Summary

Derivatives of resveratrol and isoliquiritigenin (esters of acetic, benzoic and succinic acid) have been synthesized and characterized. The hydroxy group in 2'-position of isoliquiritigenin is acylated more readily than at positions 4 and 4' that can be explained by the influence of the intramolecular hydrogen bond. Isoliquiritigenin and its derivatives with free 2'-hydroxyl undergo cycloisomerisation during gas chromatography analysis.