## ВЕСЦІ НАЦЫЯНАЛЬНАЙ АКАДЭМІІ НАВУК БЕЛАРУСІ № 2 2015 СЕРЫЯ ХІМІЧНЫХ НАВУК

### ТЭХНІЧНАЯ ХІМІЯ І КІМІЧНАЯ ТЭХНАЛОГІЯ

УДК 693.542.4

Н. Х. БЕЛОУС, С. П. РОДЦЕВИЧ, О. Н. ОПАНАСЕНКО, Н. П. КРУТЬКО, О. В. ЛУКША, О. Л. ЖИГАЛОВА, А. Д. СМЫЧНИК

### ВЛИЯНИЕ МОДИФИЦИРОВАННЫХ ПАРАФИНОВЫХ ЭМУЛЬСИЙ НА СВОЙСТВА ПОРТЛАНДЦЕМЕНТНЫХ БЕТОНОВ

Институт общей и неорганической химии НАН Беларуси

(Поступила в редакцию 20.01.2015)

Портландцементные (ПЦ) бетоны, использующиеся в дорожном, гидротехническом и промышленном строительстве, при эксплуатации подвергаются комплексу неблагоприятных факторов: периодическому увлажнению—высушиванию, замораживанию—оттаиванию, капиллярному подсосу при контакте с водой, а также воздействию агрессивных растворов солей. По этой причине актуальной задачей строительного материаловедения является разработка прочных, водонепроницаемых, коррозионностойких составов бетонов, характеризующихся повышенной долговечностью [1,2]. В решении данной задачи, наряду с формированием мелкой, равномерно распределенной в объеме пористости бетонов, существенную роль играет гидрофобизация внутренней поверхности их пор и капилляров, которая может осуществляться при введении водоразбавляемых гидрофобизирующих добавок, в том числе парафиновых эмульсий (ПЭ), в воду затворения [3,4].

Малая степень использования ПЭ в цементно-песчаных (ЦПС) и бетонных смесях связана с их недостаточной стабильностью, низкой и неоднородной дисперсностью, а также ухудшением при введении эмульсий ряда характеристик бетонов. В связи с этим актуальной является задача получения и исследования новых видов ПЭ, характеризующихся заданным набором свойств и повышенной агрегативной устойчивостью.

Для получения ПЭ используют различные эмульгаторы (ЭМ), функцией которых является снижение поверхностного натяжения на границе раздела фаз парафин—вода, способствующее повышению их агрегативной устойчивости. В работе [5] в качестве ЭМ нами использован сорбитанполиоксиэтиленмоностеарат (сорбиталь C-20), обеспечивающий устойчивость эмульсий в щелочных портландцементных средах. В ряде работ [4,6,7] для придания бетонам пластифицирующих свойств, увеличения устойчивости в щелочных средах и повышения сродства парафина к кристаллогидратным новообразованиям бетонов в состав ПЭ вводят анионоактивные поликарбоксилатные суперпластификаторы (СП).

Цель данной работы – исследование комплексного влияния неионогенного ПАВ сорбиталь C-20 и поликарбоксилатного суперпластификатора на коллоидно-химические свойства парафиновых эмульсий и показатели водо- и солестойкости бетонов.

ПЭ получали механическим диспергированием, как описано в [5]. Содержание дисперсной фазы составляло  $\sim 46\%$ , концентрация ЭМ  $\sim 12\%$ . В качестве ЭМ использовали как сорбиталь С-20, так и его композицию с отечественным СП «Frem Giper—S»(ООО «Фрэймхаустрэйд») в интервале массовых соотношений С-20 : СП = 3,2:1-6,4:1. Основным показателем эффективности диспергирования являлась однородность эмульсий. ПЭ, полученные при соотношении С-20 : СП = 6,4:1, однородны и хорошо разбавляются водой. В то же время увеличение содержания СП до 3,2:1 приводит к образованию нестабильной, плохо разбавляющейся водой пасты.

Методом светорассеяния на лазерном анализаторе частиц («Analysette 22», фирма Fritsch) изучен гранулометрический состав полученных эмульсий. Анализ показал (рис. 1), что в ПЭ на основе сорбиталя С-20 наблюдается узкий интервал распределения по размерам частиц парафина, при этом их средний диаметр достигает 2,68 мкм. В этих эмульсиях фиксируется высокий процент содержания частиц одинакового диаметра, что в конечном счете должно оказывать благоприятное влияние на равномерность распределения парафиновых мозаичных пленок в капиллярно-пористой структуре бетонов. Для модифицированной композицией С-20 и СП парафиновой эмульсии (МПЭ) наблюдается более широкий разброс по размеру частиц, средний диаметр которых составляет 3,12 мкм. Такие отличия, однако, не оказывали существенного влияния на устойчивость эмульсий в насыщенном растворе гидроксида кальция, поскольку скорость роста глобул парафина для ПЭ и МПЭ, размер которых оценивали под микроскопом каждые 10 мин после внесения в насыщенный раствор гидроксида, величины одного порядка.

Рост размеров частиц в МПЭ, по-видимому, обусловлен снижением эмульгирующей способности С-20 при введении СП и стерическими препятствиями, возникающими при образовании адсорбционного сольватного слоя на поверхности парафиновых капель в процессе совместной конкурирующей адсорбции С-20 и СП, имеющих разветвленное химическое строение. Однако как в одном, так и в другом случае за счет формирования пространственной структуры обеспечивается агрегативная устойчивость ПЭ и МПЭ, что подтверждается проведенными структурно-реологическими исследованиями.

Реологические свойства ПЭ и МПЭ изучали на автоматическом реометре Physica MCR-101 (измерительная система пластина—пластина) в диапазоне скоростей сдвига:  $D_r = 0 \div 300 \mathrm{c}^{-1}$ . Структурно-реологические характеристики, отражающие межмолекулярные взаимодействия при формировании пространственных структурных сеток в ПЭ, следующие: условный статический предел текучести ( $P_{\kappa 1}$ , Па), граничное напряжение, соответствующее предельному разрушению структуры ( $P_m$ , Па), наибольшая ( $\eta_0$ ,мПа×с) и наименьшая пластическая (бингамовская) вязкость ( $\eta_m$ , мПа×с), показатель прочности структурных связей ( $\chi$ ), которые рассчитывали по стандартным методикам [8,9].

Реологические кривые течения (рис 2, a,  $\delta$ ) имели классический вид кривых структурированных неньютоновских систем, описываемые моделью вязкопластического тела Бингама—Шведова [9] и характеризовались резким падением эффективной вязкости ( $\eta$ , мПа×с) в узком интервале напряжений (рис. 2,  $\delta$ ) и умеренным ростом сдвиговых напряжений ( $\tau$ , Па) (рис. 2, a). Ход кривых свежеприготовленных ПЭ с С-20 (рис. 2, a,  $\delta$ , кривая I) указывает на то, что это система с хорошо структурированными межфазными адсорбционными слоями на поверхности частиц парафина, низким условным статическим пределом текучести (6,87 Па), высокими значениями напряжения предельного разрушения структуры (244,7 Па) и показателя прочности структуры (35,6), рассчитываемого по соотношению пределов прочности  $P_m/P_{\kappa 1}$  [8]. Такие реологические показатели обусловлены образованием адсорбционно-сольватных слоев, экранирующих частицы парафина, предотвращающих его коагуляцию и повышающих прочность структуры ПЭ.

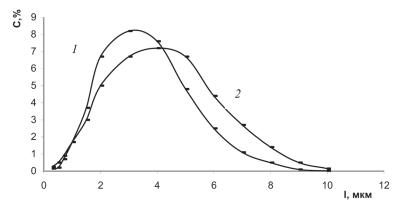
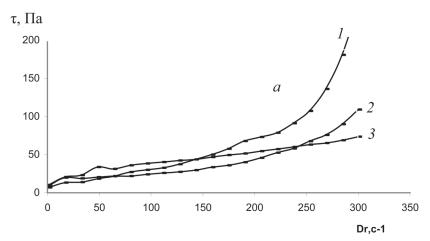




Рис. 1. Дифференциальные кривые гранулометрического состава ПЭ с C-20 (I) и МПЭ (массовое соотношение C-20:СП - 6.4:1) (I2)



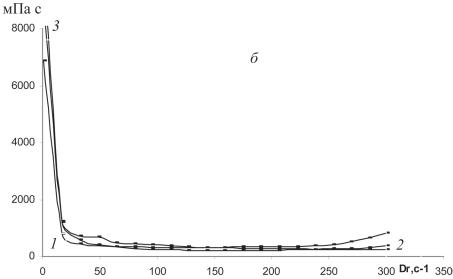



Рис. 2. Реограммы  $(\tau - D_r)(a)$  и  $(\eta - D_r)(\delta)$  свежеприготовленных ПЭ с C-20 (1) и МПЭ (массовое соотношение C-20:СП- 6,4:1) (2) и ПЭ через 10 мес хранения (3)

Модифицирование ПЭ СП (рис. 2, a, кривая 2) приводило к увеличению условного статического предела текучести до 9,15 Па, снижению напряжения предельного разрушения структуры до 109 Па и уменьшению показателя прочности структуры в 3 раза ( $\chi = 11,9$ ) Результатом использования СП являлось также увеличение наибольшей пластической вязкости в системе ( $\eta_0$ ), что, вероятно, связано с формированием при модификации ПЭ более плотных адсорбционно-сольватных слоев (рис. 2,  $\delta$ , кривая 2).

Следует отметить, что при хранении  $\Pi$ Э в течение 10 месяцев происходит изменение их структурно-реологических показателей: рост в 1,5 раза условного статического предела текучести и наибольшей пластической вязкости, снижение в 3,5 раза напряжения предельного разрушения структуры и уменьшение в 5 раз показателя ее прочности (рис. 2, a, кривая a). Визуально наблюдалось разрушение МПЭ в течение данного срока, что подтверждалось нетипичным ходом их реограмм и множеством аномальных эффектов, фиксируемых на кривых данного объекта.

 $\Pi$ Э и М $\Pi$ Э в количестве 0,1–2,0 мас.% от  $\Pi$ Ц (расчет на сухое вещество) сразу после получения вводили в воду затворения Ц $\Pi$ С. Использовали портландцемент марки М 500Д0 (ОАО «Красносельстройматериалы», Красносельск, РБ ) [10], песок  $\Pi$  2 (карьер «Крапужино» Логойского района, фракции 0,16–3 мм), водоцементное отношение в Ц $\Pi$ С – 0,3. Параллельно были испытаны бездобавочные составы бетонов.

Побочным эффектом от введения ПЭ является существенная пластификация ЦПС, в связи с этим по методике [11] определяли их осадку конуса (ОК). Степень воздухововлечения в ЦПС

рассчитывали по сопоставлению расчетного и фактического объемных масс смесей с учетом удельной массы их составляющих по [12].

ЦПС заливали в кубы (4×4×4 см), которые отверждали на воздухе в нормальных температурно-влажностных условиях (НТВУ) ( $T=20\pm2$  °C, относительная влажность ~80–90%). После отверждения определяли плотность [13], кинетику твердения по изменению прочности при сжатии бетонов через 3, 7, 28 сут [14] и специальные свойства: водопоглощение ( $B_{\rm M}$ , мас.%) [15], солепоглощение, коэффициенты водо- и коррозионной стойкости. Определение солепоглощения ( $C_{\rm M}$  мас.%), коэффициентов водостойкости ( $K_{\rm B}$ ) и коррозионной стойкости ( $K_{\rm Kop}$ ) проводили по методикам, описанным в [5].

При введении в ЦПС ПЭ их ОК, обусловленная адсорбцией мозаичных пленок на поверхности твердых фаз, увеличивалась в среднем от П 1 до П 2, при использовании МПЭ – до П 3, благодаря чему водоцементное отношение ЦПС может быть снижено в среднем на 15-17%.

Увеличение содержания ПЭ в указанном интервале дозировок приводило к небольшому росту интегральной пористости бетонов и воздухововлечения (B) ЦПС до 7,0% (рис. 3, a, кривая I) (для бетонов контрольного состава  $B \sim 6,0\%$ ). Превышение концентрации ПЭ сопровождалось ростом подвижности, общей пористости бетонов и резким снижением их прочности.

Использование МПЭ увеличивало В до 7,2% (рис. 3, a, кривая 2) и способствовало небольшому снижению плотности бетонов (рис. 3,  $\delta$ ). Результат не является неожиданным, несмотря на то что общеизвестен факт диспергирующего и дефлокулирующего действия СП, вводимых в бетоны в количестве 0,3–1 мас.%, приводящего к увеличению их плотности. В нашем случае, вероятно, снижение этой величины обусловлено концентрационным фактором, т. е. низким содержанием СП в ЦПС ( 1–3 мас.% от массы парафина).

Следствием введения эмульсий на C-20 в бетоны являлось увеличение пропорционально содержанию сроков схватывания, при оптимальной дозировке 1 мас.% прирост составлял 15–20 мин. Использование МПЭ не только не замедляло процесс гидратации, но и приводило к его ускорению. Авторы работ [4, 6, 7] связывают этот факт с дефлокуляцией новообразований под воздействием СП. Однако, по данным качественного и количественного рентгенофазового анализов (дифрактометр ДРФ-2,0, излучение  $\text{CuK}_{\alpha}$ ), нами установлено, что состав и, главное, степень окристаллизованности гидратных новообразований бетонов при введении МПЭ не изменяется по сравнению с немодифицированными ПЭ и бездобавочными бетонами, и в этом случае определяющим, вероятно, является фактор концентрации СП.

Результаты исследования прочностных свойств бетонов представлены на рис. 4, a. Присутствие МПЭ (1 мас.% от ПЦ ) на 11–15% снижало конечную прочность бетонов, при этом ранняя  $\sigma_{\rm cж}$  (7 сут) превышала прочность контрольных бетонов и бетонов с ПЭ на 38–40% (рис. 4, a, кривая a). При анализе результатов изучения кинетики твердения можно также сделать вывод

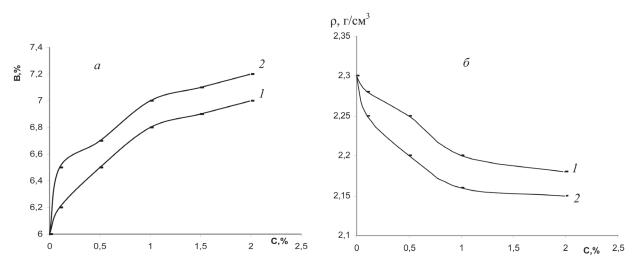
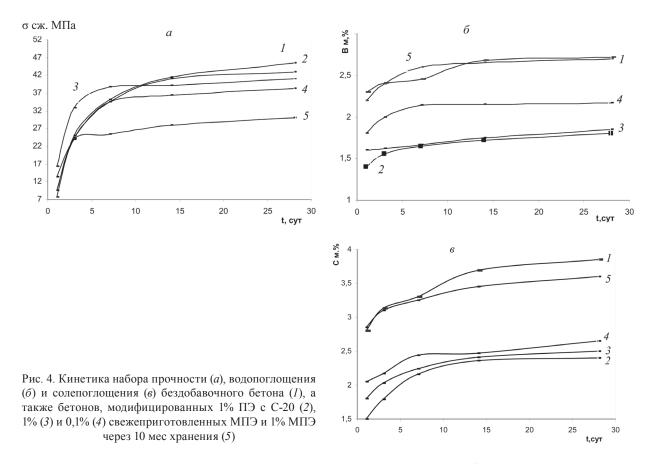




Рис. 3. Влияние содержания  $\Pi$ 3 с C-20 (I) и М $\Pi$ 3 (I2) на воздухововлечение Ц $\Pi$ C (I2) и плотность бетонов (I6)



о недостаточной прочности бетонов, в которых использовались МПЭ длительного хранения (рис. 4, a, кривая 5).

Использование в бетонах 1 мас.% ПЭ приводило к значительному уменьшению величины их водопоглощения ( $B_{\rm M}$ ) (рис. 4,  $\delta$ , кривая 2), В  $_{\rm M}$  снижалось почти в 2 раза по сравнению с контрольными составами (рис. 4,  $\delta$ , кривая I). Присутствие гидрофильного СП в составе эмульсий и его адсорбция на поверхности парафина сопровождалась незначительным снижением гидрофобизирующего эффекта МПЭ (рис. 4,  $\delta$ , кривая J), который определялся содержанием эмульсий в бетоне (рис. 4,  $\delta$ , кривые J0. Применение длительно хранившихся МПЭ в бетонах нецелесообразно, поскольку эффект гидрофобизации при введении таких эмульсий полностью отсутствует: J1. Модифицированных бетонов не отличается от J2. В бездобавочных составов (рис. 4, J3, кривая J3).

Введение ПЭ и МПЭ в бетоны не обеспечивало повышение коэффициентов их водостойкости ( $K_{\rm B}$ ), после 28 сут хранения в воде  $K_{\rm B}$  варьировался в интервале 0,9–0,95 (в контрольных образцах он составил 0,92), использование МПЭ длительного хранения даже приводило к снижению  $K_{\rm B}$  до 0,8.

Для бетонов, содержащих ПЭ, характерны низкие величины солепоглощения  $(C_{\rm M})$  (рис. 4, e, кривые 2–e). Для них после хранения в растворах солей наблюдается существенный прирост прочности, коэффициент коррозионной стойкости  $(K_{\rm kop})$  бетонов, содержащих 1 мас.% ПЭ, повышался до 1,0–1,2, а МПЭ — до 1,3 ( для контрольных составов  $K_{\rm kop}$ ~ 0,8). Более высокую коррозионную стойкость сложно объяснить интегральной пористостью бетонов, ее можно связать с содержанием в них гидрофобизированных парафиносодержащих компонентов и кольматируемых кристаллами соли и труднорастворимыми продуктами твердения, пор и капилляров [4].

Таким образом, изучены технологические свойства портландцементных бетонов, гидрофобизированных парафиновыми эмульсиями на основе неионогенного ПАВ сорбиталь С-20 и его смеси с поликарбоксилатным суперпластификатором бетонов. Показано, что использование СП приводит к увеличению осадки конуса, ранней прочности бетонов, а также к улучшению их прочностных показателей после хранения в растворе соли.

#### Литература

- 1. *Рамачадран В. С., Фельдман Р. Ф., Каллепарди М.* Добавки в бетон / Под ред. А. С. Болдырева, В. Б. Ратинова. М.: Стройиздат, 1988.
  - 2. Батраков В. Г. Модифицированные бетоны. М.: Стройиздат, 1998.
- 3. *Хигерович М. И., Байер В. Е.* Гидрофобно-пластифицирующие добавки для цементов, растворов и бетонов. М.: Стройиздат, 1979.
  - 4. Сивков С. П., Даулетбаева С. Ш. // Строительные материалы. 2010. № 11. С. 18–20.
- 5. Белоус Н. Х., Родцевич С. П., Опанасенко О. Н., Крутько Н. П., Лукша О. В., Жигалова О. Л., Смычник А. Д. // Весці НАН Беларусі. Сер. хім. навук. 2014. № 4. С. 99–104.
- 6. *Махин Д. Ю.* Разработка способа получения эмульсий на основе промышленных нефтяных восков и их использование в строительных растворах и бетонах: автореф. дис. ... канд. техн. наук. М., 2013.
- 7. Главина С. Ш. Цементные растворы и бетоны с добавками модифицированных парафиновых дисперсий: автореф. дис. ... канд. техн. наук. М., 2012.
- 8. *Опанасенко О. Н., Крутько Н. П.* Свойства и применение битумных дисперсий и битумно-эмульсионных материалов. Минск: Бел. навука, 2014.
  - 9. Матвеенко В. Н., Кирсанов Е. А. // Вестник МГУ. Сер. 2. Химия. 2011. Т. 52. № 4. С. 243–276.
  - 10. ГОСТ 10178-85. Портландцемент и шлакопортландцемент. Технические условия. М., 1998.
  - 11. СТБ 1545-2005. Смеси бетонные. Методы испытаний. Минск, 2005.
  - 12.  $\mathit{Елэнкс}$  Р.,  $\mathit{Кеннеди}$  Г. Технология цемента и бетона. М.: Стройиздат, 1982. С. 200–201.
  - 13. ГОСТ 12730.1-78. Бетоны. Методы определения плотности. М., 1980.
  - 14. ГОСТ 10180-90. Бетоны. Методы определения прочности по контрольным образцам. М., 1991.
  - 15. ГОСТ 12730.3. Бетоны. Методы определения водопоглощения. М., 1980.

N. H. BELOUS, S. P. RODTSEVICH, O. N. OPANASENKO, N. P. KRUT'KO, O. V. LUKSHA, O. L. ZHIGALOVA, A. D. SMYCHNIK

# THE EFFECT OF MODIFIED PARAFFINE EMULSIONS ON PORTLAND CEMENT CONCRETES

#### **Summary**

Structural and rheological properties of paraffin emulsions based on sorbital C-20 surfactant and its mixtures with concrete polycarboxylate superplasticizer, kinetics of durability improvement and behavior of portland cement concretes containing these emulsions, in water and salt solutions have been studied.