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I Introduction

Connections appear to be helpful in many contexts such as obtaining a job, a promotion,

a grant, a loan or publishing a paper.1 Two main reasons help explain these wide-ranging

effects. On one hand, connections may convey information on candidates, projects and

papers. Connections then help recruiters, juries and editors make better decisions. On

the other hand, decision-makers may unduly favor connected candidates, leading to worse

decisions.2 These two reasons have opposite welfare implications and empirical researchers

have been trying to tease out the different forces behind connections’ impacts. Almost

all existing studies do so by building measures of candidates’ “true” quality. Researchers

then compare the quality of connected and unconnected promoted candidates. Informa-

tion effects likely dominate if connected promoted candidates have higher quality; favors

likely dominate if connected promoted candidates have lower quality. For instance, articles

published in top economics and finance journals by authors connected to editors tend to

receive more citations, a sign that editors use their connections to identify better papers

Brogaard, Engelberg & Parsons (2014). By contrast, Full Professors in Spain who were

connected to members of their promotion jury publish less after promotion Zinovyvea &

Bagues (2015), consistent with favoritism.

This empirical strategy, while widely used, faces three important limitations. First,

building a measure of true quality may not be easy or feasible. Looking at researchers’

publications or articles’ citations requires a long enough time lag following promotion or

publication. And such measures are in any case imperfect proxies of quality. Second,

identification is only valid if the impact of promotion on measured quality is the same

for connected and unconnected promoted candidates, see e.g. Zinovyeva & Bagues (2015,

p.283). This assumption is critical but not necessarily plausible, and can generally not

be tested. Third, connections may convey both information and favors. This empirical

1The literature on jobs and connections is large and expanding. Recent references include Beaman &
Magruder (2012), Brown, Setren & Topa (2016), Hensvik & Skans (2016), Pallais & Sands (2016). On
promotions, see Combes, Linnemer & Visser (2008), Zinovyeva & Bagues (2015). On grants, see Li (2017).
On loans, see Engelberg, Gao & Parsons (2012). On publications, see Brogaard, Engelberg & Parsons
(2014), Colussi (2017), Laband & Piette (1994).

2Favor exchange within a group might increase the group’s welfare at the detriment of society, see
Bramoullé & Goyal (2016). In this paper, we focus on the immediate negative implications of favoritism.
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strategy may allow researchers to identify which effect dominates; it does not allow them

to estimate their relative strengths.3

We develop a new method to identify why connections matter, building on earlier work

on discrimination. Our method addresses these limitations. It does not rely on measures of

true quality. Rather, it exploits classical data collected at time of promotion: information

on candidates and whether they were promoted. It allows researchers to estimate the mag-

nitudes of the two effects. The method does require exogenous shocks on connections. This

is, in any case, a precondition of any study of the reasons behind the effect of connections.

The method is indirect and looks for revealing signs of information and favors on the

relation between candidates’ observables and promotion. Consider candidates applying

for promotion. They are evaluated by a jury and some candidates are connected to jury

members. When connections convey information, the jury has an extra signal on connected

candidates’ ability. This signal is unobserved by the econometrician and could be positive

or negative. To the econometrician, then, the promotion decision looks more random for

connected candidates.4 We show how the strength of the information channel can be

recovered, under appropriate assumptions, from this excess variance in the latent error of

connected candidates. To recover favors, then, we estimate and compare the promotion

thresholds faced by connected and unconnected candidates. Favors lead to systematic biases

in evaluation and the difference between promotion thresholds measures the magnitude of

the underlying favors.

Our econometric framework is based on normality assumptions. We make use of pro-

bit models with heteroscedasticity to detect and estimate excess variance. We clarify the

conditions under which favors and information are identified. Identification fails to hold if

the effects depend in an arbitrary way on candidates’ observables (Proposition 1). Iden-

tification holds, however, under slight restrictions on this dependence, for instance in the

presence of an exclusion restriction or under linearity assumptions (Theorem 1).

We then bring our method to data. We reanalyze the data on academic promotions in

3In a context of grant applications, Li (2016) develops a new method to recover the respective strengths
of favors and information. Her method relies on measures of true quality and on jury evaluations.

4A similar idea underlies Theorem 4 in Lu (2016); we discuss this relation in more detail below.
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Spain assembled by Manuel Bagues and Natalya Zinovyeva, Zinoveyva & Bagues (2015).

This data contain information on all candidates to promotion to Associate and Full Profes-

sor in the Spanish academic system between 2002 and 2006. To be promoted, candidates

had to pass a highly competitive exam at the national level. They were evaluated by a jury

whose members were picked at random in a pool of eligible evaluators, providing exogenous

shocks on connections. The data contain information on six types of connections between

candidates and evaluators, classified in weak and strong. From data at time of promotion,

Zinovyeva & Bagues (2015) estimate the causal impacts of connections. They find positive

and significant impacts of both weak and strong ties on promotion for candidates at both

the Associate and Full Professor level.

We investigate the reasons behind these impacts on the same data. We estimate differ-

ent versions of our model. Empirical results depict a coherent, and intuitive, picture. We

find strong evidence of information effects associated with both weak and strong ties at

the Associate Professor level, when the uncertainty on candidates’ academic ability is still

strong. We do not detect favors associated with weak ties at that level. By contrast, we

find that strong ties also generate favors and that these dominate information effects quan-

titatively. We do not detect information effect at the Full Professor level, when uncertainty

on candidates is low. We detect strong favors associated with both weak and strong ties

at that level, consistent with generalized favor exchange in the Spanish academic system

at the time. These results, obtained through our method from data at time of promotion,

are consistent with results obtained through quality measures collected five years after

promotion, see Section VI.

Our analysis contributes to a growing empirical literature on the effects of connections.

We develop the first empirical method able to identify favors and information from classical

data collected at time of promotion and apply it to analyze academic promotions in Spain.

This method could be applied in many other contexts, and could be used to cross-validate

results obtained from quality measures.

Our analysis builds on, and advances, ideas first identified in the literature on dis-

crimination. Heckman & Siegelman (1993) and Heckman (1998) clarify key implications of
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differences in unobservable’ variances across groups. They show that differences in vari-

ances invalidate the use of standard models of binary outcomes to detect discrimination.

Their critique apply to major empirical studies on discrimination, such as Bertrand & Mul-

lainathan (2004). Neumark (2012) shows how probit models with heteroscedasticity can

help address this issue. He reanalyzes the data from Bertrand & Mullainathan (2004) and

finds stronger evidence for race discrimination than in the original study, once difference in

variances across racial groups are accounted for. We adapt and extend these ideas to the

study of connections. We show that differences in variances help identify the informational

content of connections, an idea consistent with Theorem 4 in Lu (2016). Lu (2016) provides

a theoretical analysis of random choice under private information. He shows that better

private information generates choices that look more dispersed from the point of view of

the econometrician. We provide, to our knowledge, the first applied implementation of this

insight. We obtain novel identification results. The first part of Theorem 1, on exclusion

restrictions, formalizes and extends the identification argument of Neumark (2012). The

second part of Theorem 2, on linearity, is new and shows that identification may hold even

without exclusion restrictions. We provide the first empirical application of these ideas to

the study of the impact of connections.

The paper proceeds as follows. The next section illustrates the identification strategy

with the help of a simple model. Section III introduces the general model and establishes

formal identification results. Section IV presents the data. Section V discusses key fea-

tures of the empirical implementation. Section VI presents empirical results. Section VII

concludes.

II A simple model

In this Section, we introduce a simple model to explain and illustrate our identification

strategy.5 We develop our general model and derive formal identification results in Section

III.

5This model is similar to models analyzed in Heckman & Siegelman (1993, Appendix 5.D), Neumark
(2012) and Zinovyeva & Bagues (2015, Section I).
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Candidates apply for promotion. A jury evaluates candidates and makes promotion

decisions. We assume that the jury grades candidates and that candidates with higher

grades are promoted.6 These grades may be affected by connections to jury members, as

described below. Let ae be the exam-specific promotion threshold: a candidate is promoted

iff her grade is higher than or equal to ae. This threshold may notably depend on the

number of candidates applying for promotion in that wave and discipline.

We assume that candidate i’s true ability ai can be decomposed in three parts:

ai = xiβ + ui + vi (1)

where xi ∈ Rm denotes a vector of m characteristics observed by the econometrician and

the jury, ui is unobserved by both the econometrician and the jury, and vi is observed by

the jury but not the econometrician. In our empirical application, xi includes number of

publications, age and gender; ui could capture creativity and vi the performance at the

exam. Without loss of generality, we assume that E(ui|xi) = E(vi|xi) = 0.7 Thus, ui and

vi represent parts of unobserved characteristics that cannot be explained by observables.

Assume further that E(ui|vi) = 0 and that unobservables are normally distributed: ui ∼

N(0, σ2
u) and vi ∼ N(0, σv). Denote by Φ the cumulative density function of a normal

variable with mean 0 and variance 1.

Consider an unconnected candidate first. We assume that her grade is equal to the

jury’s expectation of her ability E(ai|xi, vi) = xiβ + vi. Thus, unconnected candidate i is

promoted iff xiβ + vi ≥ ae. From the econometrician’s point of view, the probability that

an unconnected candidate with characteristics xi is promoted is equal to:

pu(yi = 1|xi) = Φ(
xiβ − ae

σv
) (2)

where yi = 1 if candidate i obtains the promotion and 0 otherwise.

6We develop our approach under the assumption that the econometrician does not have data on jury
evaluations.

7If E(ui|xi) 6= 0, define ûi = ui − E(ui|xi) and similarly for v̂i. Note that E(ûi|xi) = 0 while E(ui|xi)
is a function of xi. Under linearity, this yields ai = xiβ̂+ ûi + v̂i, which is then equivalent to equation (1).
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Next, consider a connected candidate. We make two simplifying assumptions in this

Section. We assume, first, that being connected to the jury is random. In the empirical

application, this holds conditional on the expected numbers of connections, see Section IV.

This implies that connected and unconnected candidates have the same distributions of

observables and unobservables. Second, we neglect issues related to the number and types

of connections. These issues are accounted for in our general model, see Section III.

Being connected to the jury has two distinct impacts on grades. On the one hand, the

jury has some additional information on the candidate’s ability. We assume that the jury

observes a noisy signal θi = ui + εi where εi ∼ N(0, σ2
ε), and updates his belief on the

candidate’s ability based on this additional information. On the other hand, the jury may

want to favor the connected candidate. We assume that favors take the shape of a grade

premium B due to connections.

A connected candidate’s grade is thus equal to its expected ability E(ai|xi, vi, si) =

xiβ + E(ui|θi) + vi plus the bias from favors B. Since E(ui|θi) = σ2
u

σ2
u+σ

2
ε
θi, connected

candidate i is hired iff xiβ + σ2
u

σ2
u+σ

2
ε
θi + vi + B ≥ ae. From the econometrician’s point of

view, the signal θi enters in the latent error and generates extra variance on the jury’s

decision. Variance of the latent error is now equal to σ2
v + σ4

u

σ2
u+σ

2
ε
. Let σ2 = 1+ σ4

u

σ2
v(σ

2
u+σ

2
ε)
> 1

denote the excess variance of the latent error compared to unconnected candidates. This

yields:

pc(yi = 1|xi) = Φ(
xiβ +B − ae

σσv
) (3)

Comparing equations (2) and (3), we see that information and favors have different im-

pacts on the probability to be promoted. When a jury has better information on connected

candidates, this reduces the magnitude of the impact of observable characteristics on the

likelihood to be promoted. By contrast, favors lead to a shift in the effective promotion

threshold, from ae to ae −B, leaving the impact of observables unchanged.

We illustrate these effects in Figure 1. The solid black curve depicts pu(yi = 1|xi),

the probability that an unconnected candidate is promoted as function of observed ability.

The dashed curve depicts the probability that a connected candidate is promoted when

information effects only are present. Note that the whole curve is less steep. The observed
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probability to be promoted varies less with observed ability. Formally, an increase in σ

leads to a second-order stochastic dominance shift of the whole curve. This also implies

that the apparent impact of connections is negative for very good candidates for which

xiβ ≥ ae. This apparent negative impact is due to an asymmetry in the effects of good

and bad news on candidates’ unobservables. While good news do not improve already good

chances by much, bad news significantly reduce the chances of good candidates. For the

econometrician, connections then reduce the observed probability to be promoted for very

good candidates.

The short-dashed curve depicts the probability that a connected candidate is promoted

when only favors are present. The curve is now translated to the left, inducing a first-

order stochastic dominance shift. The shape of the whole curve is preserved. The apparent

impact of connections is now positive for all candidates. Finally, the grey curve depicts

pc(yi = 1|xi) when both effects are present.

Figure 1: Effects of a connection

ae-B ae

x

1

p(h=1|x)

Unconnected

Connected : information

Connected : favors

Connected : information + favors

Both effects can thus be identified from data on promotion.8 Differences in the impacts

of observables between connected and unconnected can be used to recover information ef-

fects. Differences in estimated promotion thresholds between connected and unconnected

can then be used to recover favors. From an econometric point of view, the differential in-

formation that the jury has on connected candidates generates a form of heteroscedasticity.

8Formally, identification in this model holds under the standard assumption that σv = 1 and is a direct
consequence of Theorem 1 below.
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The latent error has a higher variance for connected than for unconnected. This property

allows us to rely on standard techniques developed to analyze heteroscedasticity in probit

estimations in our empirical analysis below.

To sum up, both information and favors can be identified from data on promotion in

a simple model where the two effects are constant. We extend this model and develop our

econometric framework in the next Section.

III Identification

We now develop our general framework. We maintain the assumption that connections

are random and extend the simple model in three directions. We incorporate baseline

heteroscedasticity, varying information and varying favors. Information and favors may

notably depend on the number and types of connections of a candidate to the jury. In

line with the empirical application, we consider two types here - strong and weak ties; the

framework and results easily extend to a finite number of types. Denote by niS and niW

the number of strong and weak ties that candidate i has to the jury.

We first assume that the variance of vi may depend on i’s observables xi. Thus,

vi ∼ N(0, σ2
v(xi)). In the empirical analysis, we adopt standard assumptions regarding

heteroscedasticity in probit regressions, see Section IV. To state our identification results

below, we only require that such baseline heteroscedasticity does not raise identification

problems in classical probit estimations. More precisely, consider unconnected candidates.

We have: p(yi = 1|niS = niW = 0,xi) = Φ[(xiβ − ae)/σv(xi)]. We assume that β and σv(.)

are identified from the sample of unconnected candidates.9

Second, we assume that the private signal received by the jury on a connected candidate

may depend on the candidate’s number and types of connections and on his other observable

characteristics. Denote by σ ≥ 1 the excess variance generated by this signal. We now have

σ = σ(niS, niW ,xi) where, by assumption, σ(0, 0,xi) = 1. Third, the bias from favors B

9As is well-know, a probit model with coefficients (β, ae) and variance σv(xi) cannot be distinguished
from one with coefficients (λβ, λae) and variance λσv. We therefore adopt the classical normalization
assumption that σv(0) = 1 in our econometric specifications.
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may also depend on the number and types of links and on the candidate’s characteristics:

B = B(niS, niW ,xi), with B(0, 0,xi) = 0. While we generally expect both σ and B to be

increasing in the number of connections, we do not impose it in what follows. This yields

the following probability to be hired, conditional on connections and observables:

p(yi = 1|niS, niW ,xi) = Φ[
xiβ +B(niS, niW ,xi)− ae
σv(xi)σ(niS, niW ,xi)

] (4)

The simple model presented in Section II is a particular case with σv(xi) = σv, and

B(niS, niW ,xi) = B and σ(niS, niW ,xi) = σ as soon as niS + niW ≥ 1.

Under which conditions is this general model identified? Note that our identification

strategy will not work without some form of restriction on B(.) and σ(.). If the bias B varies

with observable xki in a direction opposite from the direct effect βk, this leads to an apparent

reduction in the impact of xki on the likelihood to be promoted for connected. If this

happens on all observables and without further restrictions, it prevents the identification

of the information effect. We next state this negative result and derive a formal proof in

the Appendix.

Proposition 1 Consider model (4). Suppose that the precision of the signals conveyed by

connections and the bias from favors depend in an arbitrary way on connections and on

other observable characteristics of candidates. Then, favors and information effects cannot

be identified from data on promotion only.

We now derive our main result. We show that identification holds under mild restrictions

on bias and excess variance. We consider two types of restrictions: exclusion restrictions

and parametric assumptions.

Theorem 1 Consider model (4).

(Exclusion restriction). Suppose that characteristic k leaves σ and B unaffected and that

βk 6= 0. Then, the model is identified and the functions σ(niS, niW ,x
−k
i ) and B(niS, niW ,x

−k
i )

are non-parametrically identified.

(Linearity). Suppose that ln(σ(niS, niW ,xi)) = δ(niS, niW )xi and B(niS, niW ,xi) = γ0(niS, niW )+

γ1(niS, niW )xi, with γ0(0, 0) = 0 and δ(0, 0) = γ1(0, 0) = 0. Then, the model is identified

9



and the functions δ(niS, niW ), γ0(niS, niW ) and γ1(niS, niW ) are non-parametrically identi-

fied.

To see why the first part of Theorem 1 holds, suppose that σ and B do not de-

pend on xki . From data on the unconnected, we can recover βk, the direct effect of xki

on grade, and σv(.). Focus, then on candidates with number of connections niS and niW

and with other characteristics x−ki . From data on these candidates, we can recover the

heteroscedasticity-corrected impact of xki on grade, equal to βk/σ(niS, niW ,x
−k
i ). If βk 6= 0,

we obtain σ(niS, niW ,x
−k
i ). The bias B(niS, niW ,x

−k
i ) can then be obtained as the difference

in inferred promotion thresholds between unconnected candidates and candidates with ties

niS and niW and characteristics x−ki .

Therefore, our identification strategy operates as long as one exclusion restriction is

present in the model. As with instrumental variables, the excluded variable should have a

direct impact on the unconnected likelihood to be promoted and should not directly affect

the precision of the signals conveyed by connections nor the bias from favors they may

generate. In particular, a model where excess variance and bias from favors depend on

connections but not on other observables is identified. We estimate several variants of such

models in the empirical analysis below.

Even without exclusion restrictions, the model can still be identified thank to functional

form assumptions. The second part of Theorem 1, proved in Appendix, shows that this

notably holds when excess variance is log linear in observables while bias is an affine

function of observables. In this case, again, dependence on connections can be arbitrary and

is fully identified. To achieve non-parametric identification in practice may of course require

a very large number of observations. In the empirical analysis below, we adopt standard

parametric assumptions on the way ln(σ) and B vary with connections and observables.

All models estimated in Section VI are covered by Theorem 1.

10



IV Data

We apply our framework to the data on academic promotions in Spain assembled and

studied by Zinovyeva & Bagues (2015). We describe the main features of the data here and

refer to their study for details. From 2002 to 2006, academics in Spain seeking promotion

to Associate Professor (profesor titular) or Full Professor (catedrático) first had to qualify

in a national exam (habilitaćion). All candidates in the same discipline in a given wave

were evaluated by a common jury composed of 7 members. The jury had to allocate a

predetermined number of positions. These exams were highly competitive and obtaining

the national qualification essentially ensured promotion. A central feature of this system

was that jury members were picked at random from a pool of eligible evaluators. The

random draw was actually carried out by Ministry officials using urns and balls. The data

contains information on all candidates to academic promotion during that period, their

connections to eligible evaluators and to jury members, and their success or failure in the

national exam.

Overall, there are 31, 243 applications to 967 exams: 17, 799 applications to 465 exams

for Associate Professor (AP) positions and 13, 444 to 502 exams for Full Professor (FP)

positions. We have information on candidates’ demographics and academic outcomes at

time of application. Observable characteristics include gender, age, whether the candidate

obtained his PhD in Spain, the number of publications, the number of publications weighted

by journal quality, the number of PhD students supervised, the number of PhD committees

of which the candidate had been a member, and the number of previous attempts at

promotion. Table 1 provides descriptive statistics. Standards regarding research outputs

may of course differ between disciplines. To analyze applications in a common framework,

we follow Zinovyeva & Bagues (2015) and normalize research indicators to have mean 0

and variance 1 within exams.10 The data also contain information on six types of links

between candidates and evaluators. We adopt Zinovyeva & Bagues (2015)’s classification

of these links in strong and weak ties.11 A candidate is said to have strong ties to his

10We also normalize age and past experience to have mean 0 within exams.
11The data also contains information on indirect connections, for instance when a candidate and an

evaluator have a common member on their PhD committees. Zinovyeva & Bagues (2015) do not find any
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Table 1: Descriptive statistics: Observables

All AP FP Eng. H&L Sci. Soc. Sci.

Female 0.34 0.40 0.27 0.21 0.45 0.30 0.39
(0.47) (0.49) (0.44) (0.41) (0.50) (0.46) (0.49)

Age 41.21 37.49 46.14 38.74 41.86 41.97 40.39
(7.59) (6.41) (6.06) (7.07) (7.62) (7.55) (7.54)

PhD in Spain 0.78 0.83 0.70 0.83 0.77 0.76 0.78
(0.42) (0.37) (0.46) (0.38) (0.42) (0.43) (0.42)

Past Experience 0.81 0.73 0.91 0.85 0.63 0.89 0.88
(1.27) (1.27) (1.26) (1.36) (0.94) (1.40) (1.30)

Publications 12.84 8.12 19.09 7.76 11.45 16.99 9.22
(18.31) (14.06) (21.18) (12.88) (11.39) (24.10) (11.61)

AIS 0.72 0.70 0.74 0.52 - 0.80 0.62
(0.53) (0.57) (0.48) (0.37) - (0.51) (0.75)

PhD Students 1.00 0.24 2.00 0.83 0.61 1.45 0.66
(2.11) (0.88) (2.75) (1.61) (1.63) (2.60) (1.58)

PhD Committees 3.61 0.88 7.23 2.40 3.04 4.81 2.67
(6.76) (2.55) (8.65) (4.42) (5.99) (8.21) (4.99)

Observations 31243 17799 13444 4783 9005 12858 4597

Notes: Average values of the observable characteristics at the time of exam. Standard deviation in

parentheses. FP and AP stand for exams for Full Professor and Associate Professor positions respectively.

Eng., H&L, Sci., and Soc. Sci. are abbreviations for Engineering, Humanities and Law, Sciences, and Social

Sciences, which are 4 broad scientific areas in our sample. AIS is the sum of international publications

weighted by corresponding Article Influence Scores. The table partially replicates Table 2 in Zinovyeva &

Bagues (2015).

PhD advisor, to his coauthors and to his colleagues. He has weak ties with members of his

PhD committee, with members of the PhD committees of his PhD students and with other

members of the PhD committees of which he was a member.12 Overall, 34.8% of candidates

end up having at least one strong connection with a member of their jury and 20.6% have

at least one weak connection. Table 2 provides further information on connections.

effect of indirect connections and we do not include them in our analysis.
12A connection which is both strong and weak is classified as strong.
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Table 2: Descriptive statistics: Connections

All AP FP Eng. H&L Sci. Soc. Sci.

Strong connections 31.71 29.08 35.18 37.78 27.65 31.13 34.94

Advisor 3.17 2.97 3.43 4.60 3.29 2.43 3.50
Coauthor 5.44 3.26 8.32 6.10 2.84 7.44 4.24
Colleague 29.71 27.74 32.31 36.02 26.15 28.50 33.46

Weak connections 18.79 7.33 33.97 17.06 23.63 16.43 17.71

PhD committee member 7.08 5.31 9.43 8.05 10.22 4.39 7.48
PhD committee of his PhD student 4.45 0.69 9.42 4.70 4.81 4.27 3.96

Same PhD committee member 11.65 1.82 24.66 8.84 13.90 11.59 10.31

Notes: The percentage of candidates with at least one connection to the jury. The table partially replicates

Table 3 in Zinovyeva & Bagues (2015).

V Empirical Implementation

We now apply our identification strategy to the data on academic promotions in Spain. We

discuss three key features of the empirical implementation: the random assignment of eval-

uators; the exam-specific promotion thresholds; and the specific models being estimated.

A Random assignment of jury members

Our identification result, Theorem 1, relies on the assumption that the distribution of

unobservables for candidates with connections (niS, niW ) does not depend (niS, niW ). In

the data, random assignment of jury members ensures that this holds conditionally on the

expected number of connections to the jury. That is, candidates may vary in the extent

of their connections to eligible evaluators. From the number of eligible evaluators and the

numbers of weak and strong ties to eligible evaluators, we can simply compute the expected

number of actual connections of the candidate to the jury. Conditional on these expected

numbers, actual numbers of connections are random. We present the corresponding balance

tests in Table 3.13 Controlling for candidates’ expected numbers of connections, we do

not find significant correlations between observable characteristics and actual number of

13To be consistent with our main regressions, we run balance tests conditioning directly on the expected
numbers of connections. By contrast, Zinovyeva & Bagues (2015) control for expected connections through
an extensive set of dummies, see Table 4 p.278. Incorporating these dummies raise computational issues in
our non-linear setup. Results from Table 1 show that even in a simple linear formulation, actual connections
are uncorrelated with observable characteristics.
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Table 3: Balance tests

AIS Publications PhD PhD Past
students committees experience

Without controls for the expected number of connections
Strong 0.009 0.010 −0.017∗∗∗ −0.012∗ 0.009

(0.007) (0.007) (0.006) (0.007) (0.008)
Weak 0.007 0.051∗∗∗ 0.180∗∗∗ 0.298∗∗∗ 0.027∗∗∗

(0.007) (0.008) (0.010) (0.011) (0.007)

Including controls for the expected number of connections
Strong −0.001 −0.011 0.002 −0.006 −0.004

(0.010) (0.011) (0.010) (0.010) (0.012)
Weak −0.005 −0.008 0.013 0.010 0.003

(0.011) (0.013) (0.016) (0.016) (0.012)

Observations 31243 31243 31243 31243 31243

Notes: Results of 10 regressions of observables (columns) on the number of strong and weak connections to

the jury (rows). In regressions in the upper panel we do not control for the expected number of connections.

Regressions in lower panel include controls for the expected number of strong connections to the jury and

the expected number of weak connections to the jury. OLS estimates. Standard errors clustered on the

exam level are in the parenthesis. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.

connections. Therefore, a conditional version of Theorem 1 holds in this context. The

probability to be promoted for unconnected p(yi = 1|niS = niW = 0, EniS, EniW ,xi),

excess variance due to better information σ(niS, niW , EniS, EniW ,xi) and bias from favors

B(niS, niW , EniS, EniW ,xi) may depend on the expected numbers of connections to the

jury. Under the assumptions underlying Theorem 1, the conditional information and favor

effects are identified. Note that the expected numbers of connections represent measures

of social capital, built from information available to the jury. In the empirical analysis we

therefore simply include them in the set of candidates’ characteristics observable to the

jury.

B Exam-specific promotion thresholds

Our approach relies on exam-specific promotion thresholds. This is an important element

since the bias from favors is identified from differences in promotion thresholds between

connected and unconnected candidates. We consider two ways to account for exam-specific

thresholds empirically: exam fixed effects ae and exam grouped effects ae = zea, where ze is
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a vector of exam-level characteristics. A first approach is to include a full set of exam fixed

effects. In practice, regressions then include 967 exam dummies. While exam fixed effects

impose, in principle, less restrictions, they raise several problems in practice. They may

not be identified for exams with small numbers of candidates, due to full predictability.

They raise computational difficulties caused by the high dimensionality of the non-linear

optimization problem to be solved in the estimations. And in circumstances where grouped

effects are appropriate, estimations based on fixed effects may be inefficient.

Alternatively, we consider exam grouped effects as in Bester & Hansen (2016). We

allow promotion thresholds to depend on type, area and wave fixed effects - leading to

72 dummies in total - and on the number of candidates, the number of positions, the

proportion of filled positions and the proportion of unconnected candidates. This model

is of course nested in the model with exam fixed effects and we can then test whether it

leads to a significant loss in explanatory power.

C Econometric model

In the empirical analysis, we estimate different specifications of model (4). The general

model features three key ingredients: baseline heteroscedasticity σv(xi), excess variance

from better information σ(niS, niW ,xi) and bias from favors B(niS, niW ,xi). Note that the

first two elements are closely related, since σv(xi)σ(niS, niW ,xi) represents the variance of

the latent errror for candidates with connections niS, niW and characteristics xi.

We adopt a standard formulation for baseline heteroscedasticity, see Woolridge (2010).

We assume that the logarithm of the variance of vi, the determinant of ability of uncon-

nected candidates observed by the jury but not by the econometrician, is a linear function

of observable characteristics:

σv(xi) = exp(δxi) (5)

and where the constant is excluded from the xi’s. To gain in statistical and computational

efficiency, we do not include all characteristics in σv in our preferred specification. We

present our estimation procedure in Appendix.

We model information effects by building on this heteroscedasticity formulation. We
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consider increasingly complex specifications: (1) constant information effects σ(niS, niW ,xi) =

exp(δc) if niS + niW ≥ 1; (2) information effects depending on numbers and types of

links: σ(niS, niW ,xi) = exp(δSniS + δWniW ); and (3) information effects depending on

numbers and types of links as well as other observable characteristics: σ(niS, niW ,xi) =

exp[(δSxi)niS + (δWxi)niW ]. Thus, each new strong tie with the jury increases latent error

variance by exp(δS) in formulation (2) and by exp(δSxi) in formulation (3). These assump-

tions allow us to study the determinants of the variance of the latent error in a common,

coherent framework. In addition, observe that formulation (3) can be obtained as the first

element of the Taylor approximation of ln(σ(niS, niW ,xi)/σv(xi)) with respect to niS, niW

and xi, for any function σ.

We also model increasingly complex specifications of the bias from favors: (1) constant

bias: B(niS, niW ,xi) = B if niS +niW ≥ 1; (2) bias depending on the numbers and types of

links, linearly: B(niS, niW ,xi) = γSniS + γWniW , or in a quadratic way: B(niS, niW ,xi) =

γ1SniS+γ2Sn
2
iS+γ1WniW+γ2Wn

2
iW+γSWniSniW ; and (3) bias depending on connections and

other observables: B(niS, niW ,xi) = (γ0S+γSxi)niS+(γ0W +γWxi)niW +γ2Sn
2
iS+γ2Wn

2
iW +

γSWniSniW . Quadratic terms help capture decreasing marginal impacts of additional links.

For instance in the quadratic variant of formulation (2), a new strong tie with the jury

increases bias by γ1S +γ2S for an unconnected candidate and by γ1S + 3γ2S for a candidate

who already had one strong tie.

VI Empirical Analysis

A Main results

We develop our empirical analysis in three stages. We first estimate a version of the simple

model discussed in Section II, where the extent of information and favors are constant.

We then account for the number and types of links, holding both effects independent of

observables. Finally, we estimate a model with full dependence on links and observables.

We first examine the impact of having at least one connection of any kind to the jury. We

estimate constant favors and information effects, accounting for baseline heteroscedasticity.
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Denote by ci the connection dummy: ci = 1 if niS + niW ≥ 1 and 0 otherwise. We thus

estimate the following model.

p(yi = 1|xi, ci) = Φ[(xiβ +Bci − ae) exp[−(δxi + δcci)]] (6)

We consider grouped exam effects in our main regressions, and justify this choice in Section

VI.B. Results of the estimation of Model (6) are reported in Table 4.

Table 4: Binary connections: Model (6)

(All) (AP) (FP)

Bias (connected) 0.179∗∗∗ 0.208∗∗ 0.227∗∗

(0.055) (0.084) (0.091)
Information (connected) 0.174∗∗∗ 0.245∗∗∗ 0.072

(0.055) (0.069) (0.090)

Observations 31243 17799 13444

Notes: All specifications include controls for the full set of observable characteristics, expected number

of connections of each type, and the baseline heteroskedasticity. Heteroskedastic probit estimates. Exam

grouped effects. Standard errors clustered on the exam level are in the parenthesis. ∗p<0.1; ∗∗p<0.05;
∗∗∗p<0.01.

On the whole sample, both the estimated bias from favors B and the estimated infor-

mation effect δc are positive and statistically significant. They are also both positive and

significant when estimated on promotions to Associate Professor. By contrast, we detect

favors but no information effect on promotions to Full Professor. Thus, connected candi-

dates appear to face lower promotion thresholds at both levels and connected candidates to

Associate Professor have excess variance in their latent errors. In other words, observable

characteristics have lower power to explain promotion decisions in their case.14

Are these effects quantitatively significant? How much do connections help? And how

much each motive contributes to the overall impact? To answer these questions, we com-

pute for each candidate the predicted impact of a change in his connection status. We

focus, for clarity, on unconnected candidates with at least one link to potential evaluators.

These computations could easily be replicated on other subsamples. Consider, then, un-

14For clarity, we do not report estimates of the impact of candidates’ and exams’ characteristics on
promotion (β) and on baseline variance (δ) in the Tables.
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connected candidate i. Model (6) can be used to predict how much i’s probability to be

promoted would change if i became connected. Denote estimated coefficients with hats.

The difference in predicted promotion probabilities is equal to:

∆pi/∆ci = p(yi = 1|xi, ci = 1)− p(yi = 1|xi, ci = 0)

∆pi/∆ci = Φ[(xiβ̂ + B̂ − âe) exp[−(δ̂xi + δ̂c)]]− Φ[(xiβ̂ − âe) exp[−(δ̂xi)]]

We can further decompose the overall impact of a change in connection status in two parts:

one due to favors [∆pi/∆ci]
F = Φ[(xiβ̂ + B̂ − âe) exp[−(δ̂xi)]]− Φ[(xiβ̂ − âe) exp[−(δ̂xi)]]

and another due to information [∆pi/∆ci]
I = Φ[(xiβ̂+ B̂− âe) exp[−(δ̂xi+ δ̂c)]]−Φ[(xiβ̂+

B̂− âe) exp[−δ̂xi].15 Thus, ∆pi/∆ci = [∆pi/∆ci]
F +[∆pi/∆ci]

I .16 Finally, we compute the

averages of these values over all individuals in the sample.

We depict the results of these counterfactual computations in Table 5 and Figure 2. The

Table reports averages of initial predicted probability (first column), the average predicted

change in promotion probability due to connection (second column), the part of this change

due to information (third column) and the part to due to favors (fourth column). Thus,

an unconnected candidate with some link to potential evaluators only has, on average, a

0.08 chance to be promoted, reflecting the highly competitive nature of these promotions.

Getting, by luck, connected to the jury leads to a relative increase in the promotion prob-

ability of 80%. This relative impact is higher for candidates at the Associate Professor

level (+91%) than for candidates at the Full Professor level (+76%).17 The larger part of

this effect is due to information for AP candidates (63% of the total impact). By contrast,

favors is the main determinant of this impact for FP candidates (71% of the total im-

pact). Overall, these numbers provide a quantitative picture of the impact of connections.

Getting connected to the jury almost doubles the chances to obtain the promotion. Consis-

15We assume that the exam’s promotion threshold ae is not affected by the change in connection status
of candidate i.

16There are two ways to decompose the overall effect in two parts. Due to non-linearities, these two ways
may not be equivalent. In practice they yield similar results, however, and we only present results from
the decomposition described in the text.

17To compute the impact of connectedness for a subsample, we rely on estimates of Model (6) for this
subsample as presented in Table 4.
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Table 5: Marginal effect of connections: Model (6)

Baseline Marginal effect

Predicted Total Information Bias

All 0.080 0.064 0.035 0.029
(0.069) (0.023) (0.008) (0.019)

AP 0.088 0.080 0.050 0.030
(0.072) (0.024) (0.011) (0.019)

FP 0.063 0.048 0.014 0.034
(0.058) (0.024) (0.003) (0.022)

Notes: Average marginal effect of being connected calculated for unconnected candidates with at least one

connection to potential evaluators. Standard deviation of the effect is in the parenthesis.

tently with the estimation results, favors appear to dominate for FP candidates while the

information effect dominates for AP candidates. Figure 2 then depicts how the change

in predicted probability ∆pi/∆ci, and its two components [∆pi/∆ci]
F and [∆pi/∆ci]

I vary

with predicted probability pi = Φ[(xiβ̂ − âe) exp[−(δ̂xi)]]. We see that [∆pi/∆ci]
I has an

inverted U-shape, reaching a maximum for pi close to 0.1 and becoming negative for high

values of pi. By contrast, [∆pi/∆ci]
F is initially increasing over a larger range and only de-

creases - when it does - for high values of pi. These qualitative patterns are consistent with

Figure 1. In particular, and as discussed in Section III, better information on candidates

appears to lower the promotion probabiltiy of candidates with very good CVs. On average

for these candidates, the impact of bad news dominates the impact of good news. Overall,

∆pi/∆ci displays a clear inverted U shape for AP candidates, reaching a maximum around

pi equal to 0.2, due to the key role of the information effect. By contrast, FP candidates

with better observable characteristics benefit more from being connected to the jury.

We next assume that the bias from favors and the information effect may depend on the

number and types of links. We estimate a model with linear bias and log-linear variance:

p(yi = 1|xi, niS, niW ) = Φ[(xiβ + γSniS + γWniW − ae) exp[−(δxi + δSniS + δWniW )]] (7)

as well as a model with quadratic bias and log-linear variance:
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p(yi = 1|xi, niS, niW ) = Φ[(xiβ + γ1SniS + γ2Sn
2
iS + γ1WniW+

γ2Wn
2
iW + γSWniSniW − ae) exp[−(δxi + δSniS + δWniW )]

(8)

Results are reported in Table 6. In the Left panel we report estimation results from Model

(7). On the whole sample, the bias and information effects from strong ties are both

positive and significant; they are positive but insignificant for weak ties. For Full Professor

applications, we detect favors and information effects from strong ties and, in addition,

favors from weak ties. For Associate Professor applications, we do not detect favors in this

specification; we do detect strongly significant and positive information effects for both

strong and weak ties. Note that in general, the effects of weak ties tend to be imprecisely

Figure 2: Marginal effect of being connected: Decomposition
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Notes: Nonparametric fit using LOESS method. The grey region depicts 95% confidence intervals. Plots

are constructed using estimated model (6) on subsamples indicated above each plot.
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estimated on the subsample of AP applications. This is due to the fact that candidates at

this level have, on average, relatively few weak ties (see Table 2). In the Right panel of

Table 6, we report estimation results from Model (8). Quadratic effects in bias matter and

change overall estimation results. At the FP level, we now do not detect any information

effect. By contrast, we still detect favors from both strong and weak ties. In addition, the

marginal impact of an additional tie on the promotion threshold is decreasing in both cases.

At the AP level, we now detect favors from strong ties and the bias is also increasing and

concave in the number of ties. Information effects for both kinds of ties are positive and

significant, and particularly so for weak ties.

Table 6: Estimation of Model (7) and Model (8)

(All) (AP) (FP) (All) (AP) (FP)

Bias

nS 0.123∗∗∗ 0.071 0.120∗ 0.287∗∗∗ 0.309∗∗∗ 0.235∗∗∗

(0.047) (0.070) (0.068) (0.047) (0.072) (0.061)
n2S −0.051∗∗∗ −0.065∗∗∗ −0.036∗∗∗

(0.008) (0.014) (0.006)
nW 0.038 −0.338 0.141∗∗ 0.096 −0.170 0.238∗∗∗

(0.069) (0.230) (0.058) (0.073) (0.280) (0.067)
n2W −0.026∗ −0.293 −0.028∗∗∗

(0.014) (0.240) (0.010)
nS × nW 0.018 0.157 −0.011

(0.025) (0.121) (0.021)

Information

nS 0.157∗∗∗ 0.240∗∗∗ 0.142∗∗ 0.092∗∗ 0.137∗∗∗ 0.095
(0.044) (0.055) (0.064) (0.040) (0.051) (0.061)

nW 0.077 0.436∗∗∗ −0.045 0.065 0.519∗∗∗ −0.095
(0.068) (0.150) (0.059) (0.065) (0.153) (0.061)

Observations: 31243 17799 13444 31243 17799 13444

Notes: Estimation of Model (7) - Left panel, and Model (8) - Right panel. All specifications include

controls for the full set of observable characteristics, expected number of connections of each type, and

the baseline heteroskedasticity. Heteroskedastic probit estimates. Exam grouped effects. Standard errors

clustered on the exam level are in the parenthesis. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.

To sum up, strong connections to the jury lower the promotion threshold effectively

faced by connected candidates. This impact is increasing in the number of strong ties at

a decreasing rate. For applications to Full Professor, weak connections to the jury also
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lower the promotion threshold in a similar way. For applications to Associate Professor, we

face a problem of statistical power caused by the relatively low number of weak ties. Both

kinds of ties also appear to convey better information on candidates at the AP level. By

contrast, we do not detect robust information effects at FP level.

We next present the outcomes of counterfactual computations on the impact of connec-

tions in Table 7, based on Model (8). We now focus on unconnected candidates who have

at least one strong tie and one weak tie to potential evaluators. For each such candidate,

we compute the predicted promotion probability and the predicted increase in promotion

probability caused by obtaining, by luck, one strong or weak connection to the jury. We

also provide decompositions of these impacts into parts due to better information and to

favors. We then average over all candidates in the subsample. We see that one strong

tie increases the promotion probability by 74% for AP candidates and by 72% for FP

candidates. By contrast, one weak tie increases the promotion probability by 51% for AP

candidates and by 22% for FP candidates. Thus, strong ties have higher predicted im-

pacts than weak ties. For FP candidates, favors dominate, quantitatively, for both weak

and strong ties. For AP candidates, favors dominate for strong ties and information effects

dominate for weak ties, consistently with the estimation results.

Table 7: Marginal effect of connections: Model (8)

Baseline Marginal effect

Predicted Total Information Bias

Strong Weak Strong Weak Strong Weak

All 0.082 0.060 0.023 0.019 0.012 0.041 0.011
(0.068) (0.026) (0.009) (0.004) (0.003) (0.024) (0.007)

AP 0.091 0.067 0.046 0.028 0.092 0.039 -0.046
(0.072) (0.025) (0.023) (0.006) (0.026) (0.023) (0.031)

FP 0.068 0.049 0.015 0.019 -0.017 0.030 0.033
(0.058) (0.021) (0.017) (0.004) (0.005) (0.018) (0.020)

Notes: Average marginal effects of strong and weak connections calculated for unconnected candidates

with at least one strong connection and one weak connection to potential evaluators. Standard deviation

of the effect is in the parenthesis.
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These results essentially conform to intuition. We would a priori expect strong ties to

induce favors. We would also expect uncertainty on candidates’ true ability to be stronger

at the Associate Professor level, consistently with the stronger information effects detected

at that level. The fact that weak ties generate stronger information effects is also consis-

tent with the classical view of the role played by weak ties in information transmission

Granovetter (1973). One finding that is, perhaps, surprising is the fact that weak ties

appear to generate favors at the Full Professor level. Note that candidates at that level

have been in the academic system for a relatively long time. They have likely had more

opportunities to initiate favor exchange. Overall, these findings indicate that the Spanish

academic system was likely subject to generalized favoritism.

These results are also consisent with - and help sharpen - the findings of Zinovyeva &

Bagues (2015, Section IV.D.) derived from data collected 5 years after promotion. They

find that research outcomes after promotion are lower for promoted candidates with strong

ties than for promoted candidates without, considering the whole sample and controlling

for observables at time of promotion. Promoted candidates with strong ties publish less, in

lower quality journals, supervise less PhD students and participate in less PhD committees.

Authors state: “Our preferred interpretation of the empirical evidence is that candidates

with a strong connection may have enjoyed preferential treatment, which overshadows the

potential informational advantages of strong links.” By contrast, weak ties to the jury

do not yield detectable differences in research outcomes of promoted candidates. For AP

candidates, promoted candidates with weak ties are more likely to eventually be promoted

to full professor than promoted candidates without weak ties.

Our empirical results, obtained from promotion data only, are consistent with these

findings. On the whole sample, we clearly detect favors from strong ties. For AP candidates,

we also detect information effects from weak ties. In addition, our method allow us to

deepen the empirical analysis. We can detect both effects and precisely quantify their

respective roles. We find, in particular, evidence of information effects from strong ties on

the whole sample and no evidence of favors associated with weak ties for AP candidates.

Finally, we assume that the bias from favors and the excess variance due to better
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information may depend on observables. We estimate the following model:

p(yi =1|xi, niS, niW ) = Φ[(xiβ + (γ0S + γSxi)niS + (γ0W + γWxi)niW + γ2Sn
2
iS

+ γ2Wn
2
iW + γSWniSniW − ae) exp[−(δxi + (δSxi)niS + (δWxi)niW )]]

(9)

We present estimation results in the Appendix, see Table A1 for AP candidates and Table

A2 for FP candidates. A positive coefficient of the impact of some characteristic on bias

means that favors due to connections tend to be stronger for candidates with higher values

of this characteristic. Similarly, a positive coefficient on the information effect means that

excess variance, and hence the quality of the extra information brought about by an addi-

tional connection, is higher for these candidates. Results are rich and complex and confirm

that we can detect variations in the effects of connections. For instance, AP candidates

having obtained their PhD in Spain appear to have higher information effects from both

weak and strong ties and lower bias from weak ties. Results on information are consistent

with the idea that having obtained a PhD abroad provides an informative signal on a

candidate’s ability. We present counterfactual computations obtained from Model (9) in

Table 8. Comparing with Table 7, we see that predicted probabilities are quantitatively

similar.

Table 8: Marginal effect of connections: Model (9)

Baseline Marginal effect

Predicted Total Information Bias

Strong Weak Strong Weak Strong Weak

AP 0.090 0.078 0.055 0.032 0.066 0.047 -0.012
(0.067) (0.037) (0.052) (0.021) (0.067) (0.030) (0.044)

FP 0.066 0.058 0.017 0.011 -0.003 0.047 0.020
(0.056) (0.036) (0.027) (0.025) (0.039) (0.028) (0.026)

Notes: Average marginal effects of strong and weak connections calculated for unconnected candidates

with at least one strong connection and one weak connection to potential evaluators. Standard deviation

of the effect is in the parenthesis.

The average marginal impacts of gaining one strong or weak link to the jury for uncon-

nected candidates appear to be slightly lower under Model (9) than under Model (8). This
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means that unconnected candidates have, on average, observable characteristics for which

connections’ impacts are slightly weaker. Strong ties still have higher predicted impacts

than weak ties. And the relative quantitative importance of the two factors is robust. Fa-

vors dominate for strong and weak ties at the FP level and for strong ties at the AP level.

By contrast, information effects dominates for weak ties at the AP level.

B Robustness

In this section, we explore variations in the specification of two important features of the

econometric model: exam-specific promotion thresholds and baseline variance. First, we

contrast estimations with exam fixed effects ae and exam grouped effects ae = zea. We

compare estimation results of Model (6) under the two specifications in Table 9. The first

Table 9: Exam fixed effects vs. Exam grouped effects: Model (6)

All AP FP

FE GE FE GE FE GE

Bias 0.304∗∗∗ 0.179∗∗∗ 0.074 0.208∗∗ 0.356∗∗∗ 0.227∗∗

(0.088) (0.055) (0.078) (0.084) (0.097) (0.091)

Information 0.166∗∗∗ 0.174∗∗∗ 0.375∗∗∗ 0.245∗∗∗ 0.013 0.072
(0.053) (0.055) (0.064) (0.069) (0.065) (0.090)

LogLik -9766.6 -9965.2 -5773.2 -5847.3 -3931.7 -4064.9
df 989 98 486 61 523 61
LR - 396.68 - 148.13 - 266.37

Observations 31243 31243 17799 17799 13444 13444

Notes: The row LR reports the value of LR statistics of comparison of the restricted model (GE) and

the unrestricted model (FE) in the preceding column. Heteroskedastic probit estimates. Standard errors

clustered on the exam level are in the parenthesis. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.

column reports results of fixed effects estimations; the second column duplicates the results

from Table 4. We see that the sign and statistical significance of both effects are similar

for both specifications on the whole sample and on the subsample of FP candidates. On

AP candidates, the information effect also has similar sign and significance. Bias from

favors is positive and significant in the restricted model but positive and insignificant in

the unrestricted model. Results from likelihood ratio tests show that we cannot reject the
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hypothesis that the grouped effects specification describes the data as well as the one with

fixed effects, on each subsample as well as on the whole sample. We therefore consider

grouped effects in our main regressions.

Second, we consider different specifications of baseline variance σv(xi). We contrast

estimations under homoscedasticity, when all individual characteristics are included, and

when a subset of characteristics are included, as described in the Appendix. Results are

depicted in Table 10 for Model (6) and Table 11 in Model (7). We see that the sign and

statistical significance of the main effects are essentially similar for the last two specifica-

tions on the whole sample and on each subsample. Likelihood ratio tests also show that we

cannot reject the hypothesis that the parsimonious specification describes the data as well

as the full-fledged specification, even on subsamples. By contrast, estimates of main effects

differ under homoscedasticity and the homoscedastic specification is rejected by likelihood

ratio test. This confirms the importance of properly accounting for baseline heteroscedas-

ticity. For reasons of computational and statistical efficiency, we therefore adopt the more

parsimonious heteroscedasticy specification in our main regressions.

Table 10: Robustness: Baseline heteroskedasticity: Model (6)

All AP FP

Hom. Preferred Full Hom. Preferred Full Hom. Preferred Full

Bias 0.419∗∗∗ 0.179∗∗∗ 0.186∗∗∗ 0.398∗∗∗ 0.208∗∗ 0.173∗ 0.412∗∗∗ 0.227∗∗ 0.192∗∗∗

(0.058) (0.055) (0.064) (0.076) (0.084) (0.095) (0.096) (0.091) (0.072)
Information −0.020 0.174∗∗∗ 0.177∗∗∗ 0.055 0.245∗∗∗ 0.267∗∗∗ −0.052 0.072 0.060

(0.052) (0.055) (0.058) (0.066) (0.069) (0.077) (0.083) (0.090) (0.089)

LogLik -10052.3 -9965.2 -9958.8 -5906.0 -5847.3 -5844.4 -4089.6 -4064.9 -4059.6
df 88 98 109 52 61 69 52 61 69
LR - 174.19∗∗∗ 12.72 - 117.53∗∗∗ 5.71 - 49.42∗∗∗ 10.62

Observations 31243 31243 31243 17799 17799 17799 13444 13444 13444

Notes: The row LR reports the value of LR statistics of comparison of the unrestricted model with the

restricted model in the preceding column. Heteroskedastic probit estimates. Standard errors clustered on

the exam level are in the parenthesis. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.
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Table 11: Robustness: Baseline heteroskedasticity: Model (7)

All AP FP

Hom. Preferred Full Hom. Preferred Full Hom. Preferred Full

Bias (strong) 0.221∗∗∗ 0.123∗∗∗ 0.128∗∗ 0.202∗∗∗ 0.071 0.055 0.236∗∗∗ 0.120∗ 0.066
(0.037) (0.047) (0.051) (0.052) (0.070) (0.067) (0.051) (0.068) (0.061)

Bias (weak) 0.031 0.038 0.046 −0.093 −0.338 −0.369 0.085∗ 0.141∗∗ 0.135∗∗

(0.055) (0.069) (0.077) (0.174) (0.230) (0.228) (0.046) (0.058) (0.054)

Information (strong) 0.089∗∗∗ 0.157∗∗∗ 0.165∗∗∗ 0.124∗∗∗ 0.240∗∗∗ 0.250∗∗∗ 0.066 0.142∗∗ 0.182∗∗∗

(0.031) (0.044) (0.042) (0.041) (0.055) (0.057) (0.044) (0.064) (0.066)
Information (weak) 0.089∗∗ 0.077 0.074 0.280∗∗ 0.436∗∗∗ 0.471∗∗∗ 0.021 −0.045 −0.059

(0.040) (0.068) (0.067) (0.129) (0.150) (0.154) (0.036) (0.059) (0.060)

LogLik -10033.4 -9949.9 -9943.4 -5910.1 -5854.9 -5851.1 -4064.2 -4041.0 -4037.4
df 90 100 111 54 63 71 54 63 71
LR - 166.91∗∗∗ 13.01 - 110.26∗∗∗ 7.70 - 46.34∗∗∗ 7.08

Observations 31243 31243 31243 17799 17799 17799 13444 13444 13444

Notes: The row LR reports the value of LR statistics of comparison of the unrestricted model with the

restricted model in the preceding column. Heteroskedastic probit estimates. Standard errors clustered on

the exam level are in the parenthesis. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.

VII Discussion and Conclusion

In this article, we propose a new method to identify favors and information in the impact

of connections, building on earlier work on discrimination. Our method combines natural

experiments and semi-structural modelling. It requires exogenous shocks on connections

and only exploits information collected at time of promotion. We develop an economet-

ric framework based on probit regressions with heteroscedasticity. Our method can thus

be implemented using standard statistical softwares. We show that better information on

connected candidates yields excess variance in latent errors. Differences in estimated vari-

ances between connected and unconnected candidates can be used to identify and quantify

the information effect. Differences in estimated promotion thresholds can then be used to

identify the bias due to favors. We apply our method to the data assembled and studied in

Zinovyeva & Bagues (2015). Our empirical results are consistent with, and help sharpen,

findings obtained from data collected five years after promotion.

Our framework relies on a number of assumptions and, in particular, latent error nor-

mality, deterministic favors and jury risk-neutrality. We next discuss the robustness of

our approach to relaxing these assumptions. First, we conjecture that this method can

be extended to non-normal latent errors. The fact that better private information leads to
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excess variance is quite general, as shown by Lu (2016). It could be interesting, in future

research, to try and extend this framework to logit or even non-parametric regressions.

Second, suppose that favors are stochastic. Bias from favors is the sum of a deterministic

part and a stochastic part. If the stochastic part is independent of connections, our analysis

and results goes through without modifications. This stochastic part is simply subsumed

in the latent error. Our approach must be modified, however, if the bias’ stochastic part is

affected by connections. Current estimates of the information effect provide a lower bound

of the true effect if bias variance decreases with connections and an upper bound if it

increases with connections.

Third, consider a risk-averse jury. Risk aversion might lead the jury to promote a can-

didate with lower expected ability if the uncertainty on her ability is lower. In other words,

the grade of candidates evaluated by a risk averse jury may contain a risk penalty. This

may invalidate the identification of favors. Note that it also invalidates the identification

of favors in studies based on quality measures. For instance, Zinovyeva & Bagues (2015)’s

finding that promoted candidates with strong ties publish less in the 5 years after promo-

tion could also be explained by risk aversion. Interestingly, however, we suspect that the

identification of the information effect might be robust to risk aversion. Developing empiri-

cal methods to identify risk aversion, favors and information effects provides an interesting

challenge for future research.

To sum up, our method exploits variations in latent error variance and in promotion

thresholds with connections. We clarify the conditions under which these variations yield

identification of favors and information in the impact of connections. Even in circum-

stances when identification does not hold, however, these estimates may contain valuable

information on why connections matter.

Finally, it would be interesting to combine our method with quality measures. This

could, potentially, yield more precise estimates of favors and information effects and also

allow researchers to test critical assumptions, such as whether promotion indeed has the

same impact on quality for connected and unconnected candidates.

28



APPENDIX A

Proof of Proposition 1 A model with bias B(.) and excess variance σ(.) and an alter-
native model with bias B′(.) and σ′(.) yield the same conditional probability to be hired
p(yi = 1|niS, niW ,xi) if

xiβ +B(niS, niW ,xi)− ae
σv(xi)σ(niS, niW ,xi)

=
xiβ +B′(niS, niW ,xi)− ae
σv(xi)σ′(niS, niW ,xi)

Therefore, for any functions B(.), B′(.) and σ(.), a model based on B(.) and σ(.) and
one based on B′(.) and

σ′(niS, niW ,xi) =
xiβ +B′(niS, niW ,xi)− ae
xiβ +B(niS, niW ,xi)− ae

σ(niS, niW ,xi)

have the same empirical implications. QED.

Proof of Theorem 1 Consider first the classical Probit model with heteroscedasticity:

p(yi = 1|xi) = Φ[(a+ bxi) exp(−cxi)]

Let us show that this model is identified if ab 6= 0.18 Identification holds if the mapping
from parameters to the population distribution of outcomes is injective. Consider two sets
of parameters a,b, c and a′,b′, c′ such that ∀x ∈ Rk, Φ[(a + bx) exp(−cx)] = Φ[(a′ +
b′x) exp(−c′x)]. We must show that a = a′, b = b′ and c = c′.

Applying Φ−1 yields: ∀x, (a + bx) exp(−cx) = (a′ + b′x) exp(−c′x). At x = 0, this
yields: a = a′. Next, take the derivative with respect to xk and apply at x = 0. This yields
bk − ack = b′k − ac′k. Observe also that bk and b′k must have the same sign. Indeed if xl = 0
when l 6= k, then (a+bx) exp(−cx) = (a+bkxk) exp(−ckxk). As xk goes from −∞ to +∞,
the sign of this expression can vary in one of three ways: it goes from negative to positive
if bk > 0; it goes from positive to negative if bk < 0; or it stays constant if bk = 0.

Assume first that a 6= 0 and b 6= 0. Consider k such that bk 6= 0, for instance bk > 0.
Set xl = 0 except if l 6= k. For any xk large enough, a + bx = a + bkxk > 0. Taking logs
yields: ln(a + bkxk)− ckxk = ln(a + b′kxk)− c′kxk. Take the derivative with respect to xk:
bk/(a+ bkxk)− ck = b′k/(a+ b′kxk)− c′k. Take the derivative twice more: b2k/(a+ bkxk)

2 =
b′2k /(a+ b′kxk)

2 and −2b3k/(a+ bkxk)
3 = −2b′3k /(a+ b′kxk)

3. Since this holds for any xk large
enough, this must hold for any xk. At xk = 0, this yields: b3k = b′3k and hence bk = b′k and
ck = c′k. If bk = 0, then b′k = 0 and ck = c′k.

Assume next that b = 0. Then b′ = 0 and ∀x, a exp(−cx) = a exp(−c′x) and hence
c = c′. Finally, if a = 0 and bk > 0, then for any xk > 0, ln(bkxk)− ckxk = ln(b′kxk)− c′kxk
and hence ln(bk) − ckxk = ln(b′k) − c′kxk. This implies that bk = b′k and ck = c′k. Thus,
b = b′ and cx = c′x for any x such that bx 6= 0, which implies that c = c′.

Observe that injectivity and identification also hold if x belongs to an open set O of
Rk. The reason is that the function x → (a + bx) exp(−cx) is analytic and that two
analytic functions which are equal on an open set must be equal everywhere. Therefore,

18If a = 0 and b = 0, ∀x, Φ[(a+ bx) exp(−cx)] = 1/2 and c is not identified.
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∀x ∈ O, Φ[(a+ bx) exp(−cx)] = Φ[(a′+ b′x) exp(−c′x)]⇒ ∀x ∈ Rk, (a+ bx) exp(−cx) =
(a′ + b′x) exp(−c′x) and hence a = a′, b = b′ and c = c′.

Identification also holds if with some binary characteristics. Suppose that x1i ∈ {0, 1}
and denote by x−1i ∈ Rk−1, the vector of other characteristics. Then, p(yi = 1|x1i =
0,x−1i ) = Φ[(a+b−1xi) exp(−c−1xi)] yielding identification of a,b−1 and c−1. Next, p(yi =
1|x1i = 1,x−1i ) = Φ[(a + b1 + b−1xi) exp(−c1 − c−1xi)]. Rewrite Φ−1(p) = [e−c

1
(a + b1) +

e−c
1
b−1xi exp](−c−1xi). Therefore, e−c

1
b−1 is identified and hence c1 is identified. Since

e−c
1
(a+ b1) is also identified, b1 is identified.
Thus n becomes arbitrarily large, the econometrician can thus obtain consistent esti-

mates of a,b and c if observables have full rank.

Consider, next, the following model

p(yi = 1|niS, niW ,xi) = Φ[((β+γ1(niS, niW ))xi+γ0(niS, niW )−ae] exp[−(δ+δ(niS, niW ))xi]

We apply the identification result on the Probit model with heteroscedascticity repeatedly.
On unconnected candidates, we have: p(yi = 1|niS = 0, niW = 0,xi) = Φ(βxi−ae) exp(−δ)
and hence ae, β, and δ are identified. Similarly for candidates with connections niS and
niW , the parameters γ0(niS, niW ) − ae, β + γ1(niS, niW ) and δ + δ(niS, niW ) are identi-
fied. Therefore, γ0(niS, niW ), γ1(niS, niW ), and δ(niS, niW ) are identified. Note that to
obtain consisent estimates of ae, β, δ, γ0(niS, niW ), γ1(niS, niW ), δ(niS, niW ), the number
of observations within exams must become arbitrarily large and observables conditional on
(niS, niW ) must have full rank. QED.

Preferred specification for the baseline heteroscedasticity. We first estimate model
(4) on unconnected candidates, under the assumption that latent error variance is log-linear
and depends on all observable characteristics. We thus estimate the following model:

p(yi = 1|xi) = Φ[(xiβ − ae) exp(−δxi)]

on unconnected candidates. In our preferred specification for σv, we then include variables
that are statistically insignificant as well expected numbers of connections EniS, EniW .
We include these expected numbers given their critical role in ensuring the exogeneity
of actual connections. We exclude other variables. Our preferred specification includes the
following 10 observables: expected number of strong connections, expected number of weak
connections, PhD students advised, AIS, age, gender, number of candidates at the exam,
share of unconnected candidates at the exam, type of exam, and the indicator if the broad
area is Humanities and Law. As discussed in Section VI.B. and following Davidson &
McKinnon (1984), we also test whether this restricted model indeed explains the data as
well as the non-restricted model.

Additional estimation results. Results of the estimation of Model (9) for subsamples
of AP candidates and FP candidates are presented in Table A1 and Table A2 respectively.
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Table A1: Estimation of Model (9): AP candidates

Bias Information

Strong Weak Strong Weak

Const. 0.466∗∗ 0.587∗∗ - -
(0.185) (0.245) - -

Strong −0.075∗∗∗ 0.020 - -
(0.026) (0.128) - -

Weak 0.020 -0.141 - -
(0.128) (0.134) - -

Publications 0.016 0.033 −0.061∗∗ 0.025
(0.012) (0.128) (0.025) (0.119)

PhD Committees 0.020∗∗∗ -0.002 −0.017 −0.023
(0.007) (0.092) (0.028) (0.068)

AIS −0.009 0.103 0.063∗∗ −0.089
(0.016) (0.114) (0.029) (0.136)

PhD students 0.043∗∗ 0.086 0.078∗∗ 0.016
(0.019) (0.094) (0.037) (0.081)

Female −0.009 0.423∗∗ 0.004 −0.452∗∗∗

(0.021) (0.215) (0.041) (0.164)
PhD in Spain −0.113 −0.650∗∗ 0.170∗∗ 0.490∗∗∗

(0.182) (0.281) (0.068) (0.174)
Age −0.004 0.001 −0.004 −0.010

(0.002) (0.017) (0.004) (0.014)
Past experience −0.007 -0.156 0.037 0.222

(0.024) (0.176) (0.025) (0.135)
Expected strong 0.030 -0.168 −0.102∗∗∗ 0.060

(0.027) (0.189) (0.028) (0.150)
Expected weak 0.309 -0.415 0.180 −0.165

(0.233) (0.389) (0.278) (0.280)

Notes: Estimation of Model (9). All specifications include controls for the full set of observable character-

istics, expected number of connections of each type, and the baseline heteroskedasticity. Heteroskedastic

probit estimates. Exam grouped effects. Standard errors clustered on the exam level are in the parenthesis.
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.
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Table A2: Estimation of Model (9): FP candidates

Bias Information

Strong Weak Strong Weak

Const. 0.366∗∗∗ 0.188∗∗∗ - -
(0.065) (0.058) - -

Strong −0.058∗∗∗ −0.044 - -
(0.017) (0.035) - -

Weak −0.044 −0.021 - -
(0.035) (0.017) - -

Publications −0.054 0.037∗∗ 0.071 −0.061∗∗

(0.036) (0.019) (0.051) (0.028)
PhD Committees 0.007 0.038∗ 0.085∗∗∗ 0.037

(0.007) (0.020) (0.027) (0.026)
AIS 0.078∗∗ 0.140∗∗∗ −0.057 −0.118∗∗∗

(0.032) (0.034) (0.047) (0.037)
PhD Students −0.008 −0.061∗∗ 0.013 0.041

(0.010) (0.024) (0.020) (0.025)
Female 0.017 0.005 0.021 0.009

(0.025) (0.046) (0.047) (0.055)
PhD in Spain −0.009 0.064 0.085∗∗ −0.010

(0.013) (0.040) (0.039) (0.049)
Age 0.003∗∗ 0.002 −0.012∗∗∗ 0.002

(0.002) (0.004) (0.004) (0.005)
Past experience −0.001 −0.041 −0.018 0.108∗∗∗

(0.006) (0.027) (0.025) (0.036)
Expected strong 0.048∗∗ 0.006 −0.069∗∗∗ 0.002

(0.022) (0.035) (0.012) (0.067)
Expected weak 0.019 −0.005 0.021 −0.117∗∗∗

(0.054) (0.031) (0.071) (0.034)

Notes: Estimation of Model (9). All specifications include controls for the full set of observable character-

istics, expected number of connections of each type, and the baseline heteroskedasticity. Heteroskedastic

probit estimates. Exam grouped effects. Standard errors clustered on the exam level are in the parenthesis.
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.
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Bramoullé, Yann and Sanjeev Goyal. 2016. “Favoritism.” Journal of Development Eco-
nomics, 122: 16-27.

Broogard, Johnatan, Engelberg, Joseph and Christopher A. Parsons. 2014. “Networks and
Productivity: Causal Evidence from Editor Rotations.” Journal of Financial Economics,
111: 251-270.

Brown, Meta, Setren, Elizabeth and Giorgio Topa. 2016. “Do informal referrals lead
to better matches? Evidence from a firms employee referral system.” Journal of Labor
Economics, 34(1): 161-209.

Colussi, Tommaso. 2017. “Social ties in Academia: A friend is a treasure.” Review of
Economics and Statistics, forthcoming.

Combes, Pierre-Phillipe, Linnemer, Laurent and Michael Visser. 2008. “Publish or Peer-
rish? The Role of Skills and Networks in Hiring Economic Professors.” Labour Economics,
15: 423-441.

Davidson, Russell and James G. MacKinnon. 1984. “Convenient Specification Tests for
Logit and Probit Models.” Journal of Econometrics, 25: 241-262.

Engelberg, Joseph, Gao, Pengjie and Christopher A. Parsons. 2012. “Friends with Money.”
Journal of Financial Economics, 103: 169-188.

Granovetter, Mark. 1973. “The Strength of Weak Ties.” American Journal of Sociology,
78(6): 1360-1380.

Heckman, James J. 1998. “Detecting Discrimination.” Journal of Economic Perspectives,
12(2): 101-116.

Heckman, James J. and Peter Siegelman. 1993. “The Urban Institute Audit Studies: Their
Methods and Findings.” Clear and Convincing Evidence: Measurement of Discrimination
in America, M. Fix and R. Struyk, eds. Urban Institute.

33



Hensvik, Lena and Oskar Nordstrom Skans. 2016. “Social Networks, Employee Selection,
and Labor Market Outcomes ” Journal of Labor Economics, 34(4): 825-867.

Laband, David N. and Michael J. Piette. 1994. “Favoritism vs Search for Good Papers:
Empirical Evidence Regarding the Behavior of Journal Editors.” Journal of Political Econ-
omy, 102(1): 194-203.

Li, Danielle. 2017. “Expertise vs. Bias in Evaluation: Evidence from the NIH.” American
Economic Journal: Applied Economics, 9(2): 60-92.

Lu, Jay. 2016. “Random Choice and Private Information.” Econometrica, 84(6): 1983-
2027.

Neumark, David. 2012. “Detecting Discrimination in Audit and Correspondence Studies.”
Journal of Human Resources, 47(4): 1128-1157.

Pallais, Amanda and Emily Glassberg Sands. 2016. “Why the Referential Treatment?
Evidence from Field Experiments on Referalls.” Journal of Political Economy, 124(6):
1793-1828.

Zinovyeva, Natalia and Manuel Bagues. 2015. “The Role of Connections in Academic
Promotions.” American Economic Journal: Applied Economics, 7(2): 264-292.

34


	I Introduction
	II A simple model
	III Identification
	IV Data
	V Empirical Implementation
	A Random assignment of jury members
	B Exam-specific promotion thresholds
	C Econometric model

	VI Empirical Analysis
	A Main results
	B Robustness

	VII Discussion and Conclusion

