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Abstract

In this paper we study a model of weighted network formation. The bilateral
interaction is modeled as a Tullock contest game with the possibility of a draw.
We describe stable networks under different concepts of stability. We show that
a Nash stable network is either the empty network or the complete network. The
complete network is not immune to bilateral deviations. When we allow for limited
farsightedness, stable networks immune to bilateral deviations must be complete
M -partite networks, with partitions of different sizes. The empty network is the
efficient network. We provide several comparative statics results illustrating the
importance of network structure in mediating the effects of shocks and interventions.
In particular, we show that an increase in the likelihood of a draw has a non-
monotonic effect on the level of wasteful contest spending in the society. To the
best of our knowledge, this paper is the first attempt to model weighted network
formation when the actions of individuals are neither strategic complements nor
strategic substitutes.
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1 Introduction

A contest is a strategic interaction in which opposing parties make costly investments in

order to increase their chances of gaining control over scarce resources. Contests have been

studied in different settings, including political rent seeking (Hillman and Riley, 1989),

discretionary spending of top managers (Inderst et al., 2007), competition for funding

(Pfeffer and Moore, 1980), sport (Szymanski, 2003), litigation (Sytch and Tatarynowicz,

2014), and armed conflict (König et al., 2017). Agents often compete with several oppo-

nents simultaneously. In this case, the set of bilateral contest relations in a population

can be described as a network, in which each agent is a node, and a link indicates the

contest between two agents. Contest networks emerge in many situations. For instance,

(Sytch and Tatarynowicz, 2014) studies the observed network of patent infringements

and antitrust lawsuits among US pharmaceutical firms. (König et al., 2017) theoreti-

cally and empirically demonstrates the importance of the network structure of conflicts

among groups in the Second Congo War. One may also expect that the structure of

a contest network has important implications in other settings, including distributional

conflicts in a federation as in (Wärneryd, 1998), lobbying for discretionary spending

of top managers as in (Inderst et al., 2007), and appropriation of property rights as in

(MacKenzie and Ohndorf, 2013).

In this paper we propose a model in which players make costly investments (exert

costly effort) to extract resources from other players in the society. It is a model of

weighted network formation, in which players choose with whom to engage in a bilateral

contest and how much to invest in each of their contests. Our starting point is the model

introduced in (Franke and Ozturk, 2015). In their model, the set of bilateral contests in

the population is given, hence the contest network is exogenous. The prize of a contest is

a fixed transfer from the loser to the victor. Our first departure from (Franke and Ozturk,

2015) is in the definition of the bilateral contest game, where we use a different specifica-

tion which, being more general than one used in (Franke and Ozturk, 2015), allows ties.

The main difference between our paper and (Franke and Ozturk, 2015) is that we pro-

pose a model in which the structure of the contest network is determined endogenously.

In our model, agents decide both with whom to fight and how much effort to exert in

each of their contests. We say that a link between two players exists or that they are

engaged in a contest when at least one of them invests a nonzero effort in fighting the

other. In this setting, our first task is to describe the efficient network architecture that

maximizes the sum of benefits of all agents in the population. We proceed by providing a

characterization of stable network structures under different notions of stability. Finally,

we provide several comparative statics results which highlight the importance of the net-

work structure when assessing how changes in parameters of the model affect individual

and aggregate outcomes. In the next few paragraphs we discuss our main results.

We start our analysis of stability by defining Nash stable networks. We show that the
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Nash stable network is, generically, the complete network in which players exert the same

effort in all contests.1 The Nash stable network is complete, even though every player

would prefer not to be engaged in any of her contests. The reason is the coordination

problem when two players contemplate destroying the link between them. For any contest

in the complete network, both players would be better off if they destroyed the link

between them. However, if one player unilaterally deviates and chooses investment 0, the

other player is strictly better off if she invests a non-zero effort in the contest between

them. The complete network is not immune to bilateral deviations - and thus a strong

pairwise stable network (Bloch and Dutta, 2009) generically does not exist.2

The lack of forward looking is implied when using the Nash equilibrium as a stability

concept. Starting a contest is always a profitable action for a player because she does

not take into account that the new opponent will fight back. We consider an alternative

stability concept where we relax this assumption and allow limited forward looking. We

assume that a player, when forming a link, takes into account that the new opponent will

fight back. However, we still assume that players do not take into account further adjust-

ments in other players’ strategies that may be a consequence of the new link creation. In

that sense, players are limited farsighted. We define a limited farsighted pairwise stable

network (LFPS) as a network that is immune to both unilateral and bilateral deviations

of limited farsighted players.

The limited farsightedness assumption provides tractability, and we believe it is also

sensible. Indeed, calculating all the effects of a change in the network structure on the

equilibrium investment profiles is a highly nonlinear problem even when the number of

nodes in the network is small. Assuming that players are able to make these calculations,

for any contemplated choice of opponents and efforts, would be a very strong assumption

about their cognitive abilities. Moreover, recent experimental results suggest that, even

in a simple bilateral Tullock contest game, players find it very difficult to anticipate oppo-

nents’ best responses to their actions. Furthermore, even when the action of an opponent

is known, they fail to calculate their own best response correctly (Masiliunas et al., 2014).

In (Kirchsteiger et al., 2016) authors find evidence in favor of the limited farsightedness

in an experimental investigation of much simpler network formation games.

We show that in every LFPS non-empty network, players are partitioned in M ≥ 2

partitions of unequal sizes. Members of the same partition do not have links with each

other, but have links with all other players in the network. So, even though players

are ex-ante homogeneous, a stable non-empty network is necessarily asymmetric. To

understand this result, the concept of a player’s strength is useful. In the model, a player

is strong when her opponents are weak. Thus, the strength of a player can be seen

1The empty network is Nash stable, for instance, in the case when the marginal cost of effort, for
any level of effort, is so high that a non-zero investment against an opponent who invests 0 is still not
profitable. We explicitly state this condition in Proposition 7.

2The empty network is immune to bilateral deviations.
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as a recursive measure of her position in the contest network. In the model, a strong

player3 has an incentive to form a link with a weak player, provided that the difference

in their strengths is large enough. This is because it is cheaper to win a contest against a

weak player than against a strong player. As the number of opponents of a weak player

increases, she becomes relatively weaker and therefore a more attractive opponent for

other strong players. This mechanism leads to network configurations with three types

of players in a stable network. The strongest players in the society (attackers) win all of

their contests. Hybrid type players are strong enough to win against the weakest players,

but are, at the same time, weak enough to be attractive opponents for the strongest

players. The weakest players are victims. They lose all of their contests. We find that

there will always be a single class of attackers and a single class of victims in a stable

non-empty network. The remaining M − 2 classes, if they exist, are classes of hybrids.

There are no links between the members of the same class in a LFPS network, whereas

there is a link between any two players from different classes. The class of attackers is

the largest class, while the class of victims is the smallest class.

Finally, we examine how the level of inefficiency in a stable network, as measured

by the total contest (wasteful) spending, depends on the parameters of the model. We

mention a few interesting results. When the stable network is asymmetric enough, an

increase in the likelihood of a draw (i.e. a third party mediation intervention) may

actually lead to an increase in the overall contest spending. On the other hand, when

the network is not very asymmetric, an increase in the likelihood of a draw will always

lead to a decrease in the contest spending. We also describe how an idiosyncratic cost

shock (i.e. a third party intervention affecting only one player in the network) propagates

through the network, and affects the investments of other players.

1.1 Related work
Our paper contributes to the literature of weighted network formation in which players

choose their investment levels specifically for each link. Several other papers study net-

work formation with link-specific actions. (Goyal et al., 2008) studies the formation of

R&D networks between firms that also compete in a market. (Bloch and Dutta, 2009)

and the follow-up work by (Deröıan, 2009) study a model of network formation in which

agents choose how much to invest in each of their communication links. (Baumann,

2017) develops a model of friendship formation in which players choose how much time

to devote to socializing with each of their friends, and how much time to spend alone.

All of these papers consider a bilateral interaction which is directly beneficial to both

parties (i.e. collaboration, communication, socializing). Our model deals with a qualita-

tively different type of interactions - contests. Moreover, in the above mentioned papers,

neighbors’ actions are either strategic complements or strategic substitutes. In the model

3Strength is an endogenous concept in our model, and it is a function of the global network structure.
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presented in this paper, neighbors’ actions are neither strategic substitutes nor strategic

complements.

Our paper also contributes to the literature on contests. Studying contests has a

long tradition in economics, starting from seminal works on rent seeking (Tullock, 1967),

and lobbying (Krueger, 1974). A recent comprehensive review of the literature on con-

tests can be found in (Corchón and Serena, 2018). This literature is mostly concerned

with the analysis of n-lateral contest games. In this paper, we consider an environment

in which a population of players plays interrelated bilateral contests. We model the

bilateral contest game following (Nti, 1997, Amegashie, 2006) and (Blavatskyy, 2010).

Since, in our model, the transfer size does not depend on the number of opponents

(same as in (Franke and Ozturk, 2015)), our model captures the situations in which the

prize is relational. For instance, this is may be the case in lobbying (Hillman and Riley,

1989), appropriation of property rights (MacKenzie and Ohndorf, 2013), and litigation

(Sytch and Tatarynowicz, 2014). In this paper we show that accounting for the network

structure of bilateral contests when studying the effects of changes in the parameters of

the model on the equilibrium outcomes (as done in (Nti, 1997) for example), may lead to

qualitatively different results compared to the case when the network structure is ignored.

The importance of the structure of a contest network has recently been acknowledged

in the literature, both theoretically and empirically. There are several papers that study

contests on a given network. (Franke and Ozturk, 2015) develops a model in which

players play bilateral contests with their neighbors in a given network. (Dziubiński et al.,

2016) studies a model in which the network of connections between players determines

potential conflicts, and agents sequentially choose if they wish to start a conflict with

their neighbors and the effort level they are going to exert. (König et al., 2017) studies

a model of conflict on a given network with two types of links: enmity links and alliance

links. All agents participate in a single n-lateral contest and the network structure is

built in the payoff function. They also conduct an econometric analysis using data on

the Second Congo War, and find that there are significant fighting externalities across

contests. (Matros and Rietzke, 2018) studies a model in which there are two types of

nodes: players and contests contests. Players connected to the same contest play an

n-lateral contest game. None of these models consider network formation. The model in

this paper endogenizes the network structure in the model of (Franke and Ozturk, 2015),

and provides new comparative static results.

There are a few papers that are concerned with formation of contest networks. (Jackson and Nei,

2015) studies the impact of trade on the formation of interstate alliances and on the onset

of war. They show that trade can mitigate conflict. (Grandjean et al., 2017) studies a

network formation model in which agents form a network of collaboration links and then

engage in a single n-lateral contest. The position of a player in the collaboration network

determines her valuation of the contest prize. The closest paper to ours is (Hiller, 2016),
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which develops a model of network formation in which players form positive links (friend-

ship) and negative links (enmity). A negative link indicates that players are involved in

a contest. However, in (Hiller, 2016) players do not choose the fighting effort like they

do in our model, and therefore the model in (Hiller, 2016) is not a model of weighted

network formation. (Goyal et al., 2016) provides a comprehensive review of the literature

on conflict and networks.

The rest of the paper is organized in 5 sections. Section 2 lays out the model. In Sec-

tion 3 we characterize efficient and LFPS networks. In Section 4 we present comparative

static results. Section 5 provides a characterization of Nash stable networks and strongly

pairwise stable networks. We conclude in Section 6. All the proofs are given in Appendix

A.

2 Model

In this section we describe our network formation model. In the next paragraph we

informally summarize the model. In Subsection 2.1 we formally introduce the notion of

a contest network, and describe the model. In Subsection 2.2 we define the concepts of

stability and efficiency we use in this paper.

Informally, we consider a population composed of a finite number of ex-ante identical

players. Players can engage in bilateral contests. The outcome of a contest is probabilistic,

and depends on costly investments by both parties. The prize of the contest is a fixed

transfer from the defeated to the victor. Individuals choose both with whom to engage in

a contest and how much to invest in each of their contests. We are interested in stable and

efficient social structures that arise from this type of interaction, and how the structure

of a stable contest network mediates the effects of various types of shocks and third party

interventions.

2.1 Setup
Denote with N = {1, 2, ..., n} the set of players. Each player i ∈ N chooses how much

to invest in bilateral contests with other players. Strategy of player i is vector si =

(si1, si2, ..., si,i−1, si,i+1, ..., sin) ∈ Rn−1
≥0 , where sij denotes the investment of player i in

bilateral contest with j.

The expected payoff of a bilateral contest between players i and j, πij(sij , sji), is

defined by:

πij(sij, sji; r) =
φ(sij)

φ(sij) + φ(sji) + r
− φ(sji)

φ(sij) + φ(sji) + r
. (1)

The expression
φ(sij)

φ(sij)+φ(sji)+r
∈ [0, 1] determines the probability with which i wins the

transfer T = 1 from j, and it defines the Contest Success Function (CSF) F : R2
≥0 → [0, 1].

The specific form of CSF we use in this paper is introduced in (Nti, 1997). The technology
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function φ : R≥0 → R≥0 in (1) transforms the investment in the contest (i.e. money, effort)

into actual means of fighting (i.e. guns, lawyers). We assume that φ is: (i) continuous and

twice differentiable, (ii) strictly increasing and weakly concave, and (iii) φ(0) = 0. Point

(ii) imposes non-increasing returns to scale, and (iii) guarantees that zero investment

implies zero actual means of fighting. The parameter r ≥ 0 captures the likelihood of

a draw (there is no transfer between players in the event of a draw). There are many

situations in which contests can end without a winner. For instance, a litigation can end

in a mistrial, sport contests often end in a tie, etc. Alternatively, one can interpret r as

noise in a transferable contest, using CSF proposed in (Blavatskyy, 2010) and modeling

noise as in (Amegashie, 2006). In this paper we refer to r simply as the likelihood of

a draw.4 A comprehensive review of contest models that allow ties can be found in

(Corchón and Serena, 2018). The CSF used in (1) is fairly general, and includes CSFs

studied in (Tullock, 1980, Loury, 1979, Dixit, 1987) as special cases. In particular, by

setting φ to be identity mapping and r = 0 we get the CSF used in (Franke and Ozturk,

2015).

We say that there is a contest between two players, i and j, whenever sij + sji >

0. Players i and j are said to be connected when there is a contest between them.

Therefore, strategy profile s defines (induces) weighted and non-directed network g(s).

Weight sij + sji is assigned to link ij = ji.5 When i and j are connected we write ij ∈ g.

It is clear that different strategy profiles s can induce the same weighted network. In

this paper we use the terms link and contest as synonyms when talking about network

g(s). We will use Ni to denote the neighborhood of node i, so Ni = {j ∈ N : ij ∈ g}, and
di = |Ni| to denote the degree of node i. The expected payoff of agent i from network

g(s) is defined by:

πi(g(s)) =
∑

j∈Ni

πij(sij, sji; r)− c(wi), (2)

where

wi =
∑

j∈Ni

sij

is the total investment of player i in all of her contests. Function c : R≥0 → R≥0 is the

cost function that we assume to be continuous, twice continuously differentiable, strictly

increasing and strictly convex, with c(0) = 0.

We conclude this section by specifying what it means to form or destroy a link.

Consider strategy profile s. Suppose that strategies si and sj are such that sij = sji = 0.

This means ij /∈ g(s). We say that player i starts a contest with j or that i forms link

ij, when i deviates from strategy si to strategy ŝi such that ŝij > 0. If, strategies si and

sj are such that sij + sji > 0, and after a (potentially bilateral) deviation of players i and

4For other interpretations of r see (Nti, 1997).
5To simplify notation, we omit dependence on s whenever there is no danger of ambiguity.
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j to strategies ŝi and ŝj, we have ŝij + ŝji = 0, we say that players i and j ended contest

ij or deleted link ij.

2.2 Efficiency and stability
In this subsection we first define efficient networks. Then we introduce the concepts of

network stability which we employ in this paper. We define Nash stable networks, and

point out why using this standard equilibrium notion may be inadequate for the model we

study. Finally, we introduce limited farsighted pairwise stability (LFPS), which circum-

vents the shortcomings of Nash stability while still allowing for a reasonable tractability in

the analysis. In Section 5 we discuss how LFPS relates to other stability concepts usually

employed when stuyding the formation of weighted networks, namely Nash stability and

strong pairwise stability (Bloch and Dutta, 2009). We also provide a characterization of

Nash stable networks and strongly pairwise stable networks.

Define the value of network g(s) with:

V (g(s)) =
n
∑

i=1

πi(g(s)). (3)

We say that network g(s) is efficient if it is a maximizer of the value function V .

Definition 1

Network g(s) is efficient if V (g(s)) ≥ V (g(s′)) for any s
′.

We define Nash stable networks as in (Bloch and Dutta, 2009, Definition 2):

Definition 2 (Nash stable networks)

A network g(s) is Nash stable if there is no individual i and strategy s
′
i such that

πi (g(s
′
i, s−i)) > πi (g(s)) .

So, a network g(s) is Nash stable if no player can alter her investment pattern and

obtain a higher payoff. The Nash equilibrium may not be the most suitable stability

concept for our model. There are at least two reasons for this. First, we show that

starting a contest is profitable for any player, except in extreme cases.6 Thus, a deviation

which leads to the formation of a new link is always profitable. Second, a deviation which

results in the destruction of a link is never profitable. The former is a consequence of the

lack of forward looking when starting a contest. When players are not farsighted, they

do not take into account that the opponent will fight back. The latter is a consequence of

the fact that Nash stability deals only with unilateral deviations. We discuss these points

in more detail in Section 5, where we provide a characterization of Nash stable networks

in Proposition 7.

6See Section 5 for more details.
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To address the issues pointed out in the previous paragraph, we consider a model in

which (i) we assume that when i decides to form a link with j, she takes into account the

immediate reaction from j (i.e. anticipates that j will fight back), and (ii) we allow for

bilateral deviations of players. In the following paragraphs we discuss (i) in more detail.

Models of network formation usually assume either pure myopia or complete farsight-

edness (Kirchsteiger et al., 2016). In our model, pure myopia implies that starting a

contest is always profitable. Given the complexity of the network effects, full farsight-

edness is too strong of an assumption to make. Indeed, even for networks with a small

number of nodes, solving for the equilibrium requires finding the roots of a high order

polynomial. Thus, calculating all future adjustments in other players’ strategies after

a deviation is computationally extremely demanding. Moreover, experimental results

suggest that limited farsightedness may be the most accurate way to describe players’

behavior in network formation games (Kirchsteiger et al., 2016). In this paper we adopt

a specific form of limited farsightedness, described in the next paragraph.

Consider strategy profile s. Let Fi = {j ∈ N | ij /∈ g}. Thus, Fi is the set of players

with whom player i does not have a contest. Consider a situation in which i contemplates

initiating contests with players j ∈ Li ⊆ Fi. We assume that, when assessing the payoff

of starting contest ij with action sij , player i expects that j will fight back by choosing

the best response BR(sij), given j′s current contest investments sj. This means that,

when i forms links to players from set Li by deviating from si to s
′
i, her expected payoff

is πi (g(s
′
i, ŝLi

, s−i−Li
)) where ŝLi

= (ŝj)j∈Li
is such that for each j ∈ Li:

πj (g(s
′
i, ŝj, sLi−j , s−i−Li

)) ≥ πj

(

g(s′i, ŝ
′
j , sLi−j, s−i−Li

)
)

, (4)

for each ŝ
′
j with ŝ′jk = ŝjk = sjk for k 6= i. Here we use −i − Li to denote all players,

except i and players from Li. We write Li − j to denote players in Li except player j.

We are now ready to state the stability concept we use in this paper.

Definition 3 (Limited Farsighted Pairwise Stable Networks)

Weighted network g = g(s∗) is stable if conditions (U) and (B) hold.

(U) For any player i ∈ N , and any, potentially empty, set Li ⊆ Fi, and any strategy

si ∈ Rn−1
≥0 ,

πi (g(s
∗)) ≥ πi

(

g
(

si, ŝLi
, s∗−i−Li

))

.

(B) For any pair of players (i, j) such that ij ∈ g(s∗), any two sets Li ⊆ Fi and Lj ⊆ Fj,

and any two strategies si and sj such that ij /∈ g(si, sj, s
∗
−i−j),

πi(g(si, sj , ŝLi
, s∗−i−j−Li

) ≥ πi(g(s
∗)) ⇒ πj(g(sj , si, ŝLj

, s∗−j−i−Lj
) < πj(g(s

∗)).

Part (U) of Definition 3 states that no player i ∈ N has an incentive to unilaterally

deviate and change her pattern of contest investments. The important assumption there

9



is that if the deviation entails the onset of a contest with player j, player i takes into

account that j may fight back, as discussed in the paragraph preceeding equation (4). Part

(B) of Definition 3 states no two players find it profitable to jointly deviate by deleting

the link between them, while at the same time potentially adjusting their strategies in

other contests or forming new links. In part, the motivation for the equilibrium concept

in Definition 3 is dynamic. In online Appendix B we propose a process of network

formation which rests in equilibria as defined in Definition 3. In Section 5 we discuss how

LFPS relates to other stability concepts employed in the literature on weighted network

formation.

It is clear that, in order to start a contest (create a link), the action of one party

suffices. This is a natural property, since, for instance, to start a litigation process it is

sufficient that one side files a lawsuit. On the other hand, to end contest ij, both players

i and j must choose zero investment. In other words, to make peace, both sides must

choose not to fight. Therefore, in our model, the creation of a link is the result of an

unilateral action, while the destruction of a link is a result of a bilateral action.

3 Analysis

In this section we first outline some properties of the network formation game. Then we

show that the unique efficient network is the empty network. This is not surprising, given

the negative sum nature of the bilateral contest game. We then turn our attention to

the analysis of stable networks. We state and discuss a series of important intermediate

results that lead to one of the main results of this paper - a LFPS network must be a

complete M-partite graph with partitions of different sizes. We then provide the sufficient

and necessary conditions for stability when M = 2.

3.1 Preliminary considerations
We begin our analysis by outlining the properties of the payoff function and the nature

of strategic interactions. It is straightforward to verify that the payoff function (2) of

player i is increasing and concave in si, and decreasing and convex in s−i. The sign of the

first and the sign of the second derivative of the payoff function with respect to r depend

on si and s−i. When a player’s probability of winning is greater than the probability of

losing in all contests, the payoff function will be decreasing and convex in r. Similarly,

if the probability of winning is lower than the probability of losing in all of her contests,

the payoff function is increasing and concave in r.7 The best reply curves of the bilateral

contest game are nonlinear and non-monotonic. The bilateral contest game is neither a

game of strategic complements nor strategic substitutes. To the best of our knowledge,

7When r = 0 the payoff function is not defined at the point sij = sji = 0, however, this does not
affect our results.
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the only papers that consider this type of bilateral strategic interactions on networks are

(Franke and Ozturk, 2015) and (Bourlès et al., 2017). Neither of these papers studies

network formation.

3.2 Efficient Networks
We briefly discuss the efficient network structure. It is easy to show that the unique

network structure which maximizes the total utility of the society is the empty network.

This is a direct consequence of the transferable nature of the contest game and the fact

that effort is costly. Indeed, the total payoff that society obtains from network g(s) can

be expressed as:

V (g(s)) =
∑

i∈N

∑

j∈N

(

φ(sij)− φ(sji)

φ(sij) + φ(sji) + r
− c(wi)

)

= −
∑

i∈N

c(wi).

In Section 4 we discuss the welfare properties of stable networks. Since contest spend-

ing is wasteful, we focus on the total contest investment as a measure of the inefficiency

associated with a stable network. We discuss how this measure behaves when we vary

the parameters of the model, and how this depends on the structure of the stable contest

network.

3.3 Stable networks
In this section we identify LFPS network architectures. We start with some useful ob-

servations, and then through a series of intermediate results arrive at our main result in

this section - a description of stable networks. We show that a non-empty stable network

must be connected, and must have a complete M-partite structure. We describe Nash

stable networks and strongly pairwise stable networks in Section 5.

Under structure of contest network g(s) we think of unweighted network (N, ḡ) with

the set of nodes N and the set of links ḡ ⊆ {{i, j} : i ∈ N ∧ j ∈ N} such that ij ∈ ḡ

if and only if ij ∈ g(s). In this paper we will always use ḡ to denote unweighted and

undirected network, and g = g(s) to denote the weighted contest network.

As hinted in Section 2.1, there are infinitely many strategy profiles s∗ that result in

the same network structure. The first result we present in this paper is that any stable

network structure is induced by one and only one strategy profile s.

Proposition 1

Let g(s∗) be a LFPS network. If g(s′) is a LFPS and such that ij ∈ g(s′) if and only if

ij ∈ g(s∗) then s
′ = s

∗. If additionally φ′(0) = ∞, then s∗ij > 0 and s∗ji > 0 whenever

ij ∈ g(s∗). In special case: φ(x) = x and c(x) = αx2, inequalities s∗ij > 0 and s∗ji > 0

hold when r is small enough.

For simplicity, additional to the assumptions stated in Section 2.1, in the remaining

part of Section 3 and in Section 4 we will require that φ′(0) = ∞. For some results in these
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sections we will focus on the special case with φ(x) = x and c(x) = αx2, α > 0, which

will be explicitly stated. Then we will also assume r → 0. This additional assumption

simply guarantees that whenever there is a contest ij, both players will invest non-zero

amount of resources in fighting.

Proposition 1 states that if g(s∗) is a LFPS network then there does not exist another

a LFPS network g(s′) such that s∗ 6= s
′ with the property that ij ∈ g(s∗) ⇔ ij ∈ g(s′).

Hence, without ambiguity, we can talk about LFPS stability of unweighted and undirected

network ḡ.

Definition 4

Unweighted and undirected network ḡ = (N, ḡ) is said to be stable when there exists a

strategy profile s such that g(s) is LFPS, and ij ∈ g(s) ⇔ ij ∈ ḡ.

It is clear from Proposition 1 that stable ḡ can be induced with one and only one

strategy profile s
∗.

We now define the strength of a player in a stable network.

Definition 5

Consider stable network g = g(s∗). Player i ∈ N is said to be stronger than player j ∈ N

in g whenever w∗
i < w∗

j .

Definition 5 is motivated with the result that for two players i and j, such that

ij ∈ g(s∗) and g(s∗) is LFPS, i wins contest ij whenever w∗
i < w∗

j . We state and prove

this result formally in Proposition 10 in Appendix A.8 This seemingly counter-intuitive

result is a direct consequence of the convexity of the cost function - when w∗
i is high, the

resources are more costly at the margin.

We now introduce a useful way to partition players in a stable network with respect

to their strengths. Sort (w∗
i )i∈N starting from the lowest (w∗

1 < w∗
2 < ... < w∗

M), where

M ≤ n is the number of different total equilibrium investment levels. We use Wi to

denote the class of players that have the i-th lowest total investment level, and with |Wi|
the cardinality of class i.

Definition 6

Player a ∈ Wi is an attacker if all of her contests are with agents from W i = {Wj |j > i}.
Player a ∈ Wi is a hybrid if there exist players b and c such that ab, ac ∈ g and w∗

b >

w∗
a > w∗

c . Player a ∈ Wi is a victim if she has all of her contests with players from

W i = {Wj|j < i}.

Definition 6 acknowledges the fact that a contest between two players of the same

strength is not profitable to any of the players involved, and hence cannot be part of a

stable network.
8This result, in the context of the game on a fixed network, appears in (Franke and Ozturk, 2015,

Proposition 2) for the case when r = 0, φ(x) = x and c(x) = x2.
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If j is weaker than i in stable network g(s∗) and ij ∈ g(s∗), there exists a bilateral

deviation which is profitable for j in which i and j destroy link ij. This is simply because

j loses the contest ij and thus prefers not to engage in it (see Proposition 10 in Appendix

A). Therefore, we say that i controls link ij if i is stronger than j. This in particular

implies that in a stable network every attacker must receive a positive payoff. If this were

not true for some attacker i and contest ij, then a joint deviation in which i and j choose

sij = sji = 0 (delete link ij) would be profitable for both i and j.

In order to study the network formation, it is important to be able to compare contests

in the network. We now state a result which enables us to do that.

Proposition 2

Let g(s∗) be a LFPS network. Suppose a ∈ Wi, b ∈ Wj , c ∈ Wk such that i < j < k and

ab ∈ g, ac ∈ g, bc ∈ g. Then s∗ab > s∗ac, s
∗
ba > s∗ca, s

∗
ca < s∗cb and s∗ac > s∗bc.

Proposition 2 states that a strong player which is engaged in contests with two players

spends less, and has a less intensive contest with the weaker of the two opponents.

Our first intermediate result is that g(s) cannot be stable if for some player i and two

players j and k, such that wi < wj ≤ wk we have ij ∈ g(s) and ik /∈ g(s). If this were the

case, a bilateral deviation in which i and j destroy link ij, and i forms link ik, would be

profitable for both i and j. Intuitively, a strong player prefers to have contests with the

weakest players in the network.9 A consequence of this result is that a non-empty stable

network g must be connected. Indeed, if there are two components in the stable network

g, then there must be at least one attacker that is not connected to the weakest player

in the network. This will be an attacker that does not belong to the same component as

the weakest player in the network. We state this result as Corollary 2 in Appendix A. In

the rest of the paper we focus on connected networks.

We now discuss, in turn, some properties of classes of attackers, hybrids and victims

in a stable network. We begin by arguing that all members of the same class of attackers

must have the same neighborhood in a stable network. Then we show that there can

be only one class of attackers in a stable network, and that members of this class are

connected to all other players in the network, except to the members of their own class.

In the next two paragraphs we outline the main intuition behind these results.

If attackers i and j from the same class W in stable network g(s∗) have different

neighborhoods (Ni 6= Nj), it cannot be that Ni ⊂ Nj nor Nj ⊂ Ni. If this were true,

w∗
i and w∗

j would not be the same, hence i and j would not belong to the same class.10

Moreover, together with Ni 6= Nj , this implies that there exists k ∈ Ni \ (Ni ∩ Nj). If k

is stronger than every neighbor of player j, then there exists h ∈ Nj \Ni which is weaker

9See Lemma 1 in Appendix A for the formal statement and the proof.
10In Corollary 1 in Appendix A we show that the strength of a player decreases with her neighborhood,

with respect to the set inclusion.
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than k. As we argued earlier in this section, in this case there is a profitable deviation

in which ik is destroyed, and ih is formed. If k is not stronger than every neighbor of

j, there is an analogous profitable deviation for j. The incentive to start contests with

weak players in the network is the main mechanism at work.

To show that there is only one class of attackers, we consider two representative

players from two different classes of attackers, i ∈ Wℓ and j ∈ Wm. We first show that in

a stable network it cannot be that Ni ⊂ Nj . Indeed, if this were the case, then w∗
j ≥ w∗

i .

Furthermore, if j does have an incentive to break any of her links (so all contests with

Nj \Ni are profitable for j), i will have an incentive to form links with all players Nj \Ni.

This is the case because after such a deviation players from Nj \ Ni will become even

weaker, and since i is stronger than j, each of the newly formed links will increase i’s

expected payoff.11 If neighborhoods of i and j are not nested, the argument proceeds

analogously to the discussion in the previous paragraph. Furthemore, all members of the

unique class of attackers W1 are connected to all nodes in a stable network that do not

belong to W1. For the formal statement and the proof see Lemma 4 in Appendix A.

We now turn our attention to the classes of hybrids and victims. We find that, in

a stable network, all members of the same class of hybrids must have the same neigh-

borhood. To show this, we first partition the neighborhood of a hybrid player into two

sets: the set of stronger opponents and the set of weaker opponents. To be more precise,

consider LFPS network g. Let N̄i = {j ∈ Ni ∧ w∗
j < w∗

i } and
¯
Ni = {j ∈ Ni ∧ w∗

j ≥ w∗
i },

and refer to these sets as the strong neighborhood of i and the weak neighborhood of i

respectively. Consider now the strongest class of hybrids, W2. As we have seen before, all

members of W2 must be connected to every member of W1. This means that all members

of W2 have the same strong neighborhood. To show that they also have the same weak

neighborhood, we use the same argument we have used when arguing that attackers have

the same neighborhood. Proceeding analogously, we show that the claim holds for mem-

bers of all other hybrid classes Wk : 2 ≤ k ≤ K. We formalize this intuition in Lemma 5

in Appendix A.

Since there is a finite number of players, there exists the weakest player in a stable

network (not necessarily just one player). From Lemma 1 we know that a player who

wins at least one contest must be connected to the weakest players in the network. This,

in particular, holds for the weakest class of hybrids. Players that are not connected to the

weakest players must be the weakest players themselves. The set of the weakest players

in the network constitutes the class of victims.

So far we have argued that in a non-empty stable network we can partition players

into M < n classes with respect to their strength. There is only one class of attackers

and only one class of victims. The remaining M −2 classes, provided that they exist, are

classes of hybrids of different strength. Each player i ∈ Wℓ is in a contest with all players

11For the formal statement and proof see Lemma 3 in Appendix A.
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outside Wℓ. This means that a stable network must have a complete M-partite structure.

We are now ready to state the main result about LFPS networks, which follows directly

from the intermediate results discussed above.

Proposition 3

A non-empty stable network g(s∗) has a complete M-partite network structure with |Wk| >
|Wk+1| ∀k ∈ {1, ...,M − 1}. The empty network is stable.

It is clear that not all complete M-partite networks with property |Wk| > |Wk+1|
are stable. The difference in strengths, and consequently in the class sizes, must be at

least large enough to ensure that every bilateral contest in the network is profitable for

the stronger opponent. For the sake of simplicity, we discuss this issue focusing on the

particular class of networks from Proposition 3 with M = 2. For the remaining part

of this section, and Section 4we assume that φ(x) = x and c(x) = αx2, with α > 0,

and r > 0 is small enough such that each s∗ij > 0 and s∗ji > 0 for each ij ∈ g(s∗) (see

Proposition 1). We denote two partitions by A and V , and the sizes of those partitions by

a and v respectively. Class A is the class of attackers, and class V is the class of victims.

We use Ka,v to denote a complete (unweighted) bipartite network with partitions of sizes

a and v. We keep the number of players in the population fixed (a+v = n). The following

proposition holds.

Proposition 4

Consider population with n players. There exists v∗ such that complete bipartite network

Ka,v = Kn−v,v is LFPS only when v < v∗.

We first show is a unique strategy profile s such that condition (U) from Definition

3 holds, and that g(s) has complete bipartite network structure Kn−v,v. Then we show

that there exists v∗ such that g(s) also satisfies condition (B) from Definition 3 only when

v < v∗. To understand the intuition, it is illustrative to think about how the payoff of an

attacker i ∈ A behaves when we move from g(s) which is Ka,v to g(s′) which is Ka−1,v+1.

There are two effects on πi. A higher v means that there are more contests. This means

that the amount of resources that can be appropriated increases which is beneficial for

i ∈ A, but at the same time the number of opponents of i ∈ A increases, and therefore it is

more difficult for i to defend herself. The trade-off between these two effects is illustrated

in Figure 1. The net effect depends on the size of v in a nonlinear way - for a small v the

first effect dominates, while for higher values of v the second effect dominates. Similar

reasoning holds when i ∈ A contemplates to end the contest with j ∈ V . After deleting

ij, i can relocate some of the freed resources in her other contests, and earn a higher

payoff from the remaining contests. On the other hand, i will be involved in a smaller

number of contests, and therefore the maximal amount of resources she can extract will

decrease. Note that j ∈ V always prefers to delete the link with i ∈ A.
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Figure 1: The payoff of i ∈ A for fixed n = 50 when v varies and players play the unique
s consistent with (U). r = 0, c(x) = x2, and φ(x) = x.

4 Comparative statics

In this section we are primarily interested in the inefficiencies associated with stable

networks. We focus on the total wasteful spending w∗ =
∑

i w
∗
i . We analyze the effects

of small changes in the parameters of the model on w∗ and s
∗ while keeping the network

structure fixed, and the role of the network structure in mediating the propagation of

small shocks hitting a player in the network. We start by analyzing how changes in the

likelihood of a draw, the marginal cost, and transfer size affect w∗. Not surprisingly, we

find that when the effort becomes less expensive at the margin for all players, or when

the transfer T increases in all contests, w∗ increases. Interestingly, when the likelihood of

a draw r increases, the total spending in the equilibrium may both increase and decrease.

The direction of the effect crucially depends on how asymmetric the stable network is,

and on the value of r. The following proposition summarizes these comparative static

findings:

Proposition 5

Let φ(x) = x and c(x) = αx2. Let Ka,v : v < a be a stable network, then:

1. w∗ decreases with α, and increases with transfer size T .

2. w∗ may both increase and decrease with r. When r → 0 w∗ will increase in r when
a > 37v.

The non-monotonic effect of a change in r on w∗ is a consequence of the non-

monotonicity of the best reply function in r. When r is small enough, the best reply

function of i ∈ A, BRi(·), will be increasing in r as long as BRi(sji; r) > 3sji+ r. There-

fore, a priori it is not clear if an increase in r will result in an increase or a decrease in

the equilibrium spending per contest. To illustrate this point, Figure 2 depicts the best

response curves for a contest ij ∈ Ka,v when r changes from 0 to 0.05. The left panel is

the plot for K4,1. In this case the change r from 0 to 0.05 will lead to the new equilibrium

(intersection of dotted lines) in which both i ∈ A and j ∈ V spend less, and therefore the
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intensity of contest ij decreases. The situation is different on the right panel, where we

consider the effect of the same change but for K40,1. In this case, in the new equilibrium

i invests more, and the intensity of each contest ij is larger when r = 0.05 than when

r = 0.
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Figure 2: The equilibrium for r = 0 and r = 0.05. i ∈ A and j ∈ V . When Ka,1 is stable
then s∗ji = s∗jk and s∗ij = s∗kj, k ∈ A.

When r increases, keeping the contest efforts fixed, the probability of losing for weak

players (members of V ) decreases. Since weak players already have a high marginal

cost of spending at their current total investment level, they will have an incentive to

decrease their spending. On the other hand, an increase in r will lead to a decrease in the

probability of winning for stronger players (members of A). When strong players’ total

effort is not high, this will lead to an increase in their per contest effort. An increase

in the investment of strong players will further increase the incentive of weak players to

spend less. What will be the final effect on w∗ depends on the relative magnitudes of the

two effects discussed above. In Figure 3 we consider network K200,1 in which an increase

in r can lead to an increase in w∗.
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Figure 3: Star network (a = 200, v = 1): Graph depicts the equilibrium efforts of the
center node i and the periphery node j in a single contest, and w∗, as functions of r.

The effects of changes in the likelihood of a draw on the equilibrium outcomes in con-

test games have been already studied in (Nti, 1997) and (Acemoglu and Jensen, 2013).
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Both of these papers find that a decrease in the likelihood of a draw unambiguously leads

to an increase in the total equilibrium effort. The reason why we find qualitatively differ-

ent results is that we take into account asymmetries implied by the network structure. In

(Nti, 1997) the author studies symmetric n-lateral contests. In (Acemoglu and Jensen,

2013) the authors consider changes in r which are a positive shock to a player. When the

network is asymmetric enough, a decrease in r is a negative shock for weak players, and

positive shock for strong players. Hence, the results from (Acemoglu and Jensen, 2013)

cannot be applied.

In Proposition 5 we have considered changes that simultaneously affect all players in

the network. Now we discuss the effects of a change that affects only one player. We

contemplate a scenario in which the cost function of player k for an exogenous reason

changes to ck = (α + ǫk)x
2. We will refer to this change as the cost shock hitting player

k.12 in case of conflict, for instance, the shock can be a third party intervention which

makes it more costly for a party to acquire weapons. We are interested to see how s
∗

and w∗ change in response to the shock, and how this depends on the structure of the

network. We focus on small shocks, ǫk → 0. As before, we focus on stable Ka,v. To

answer this question we note that the total equilibrium spending is implicitly defined

with a system of equations (5), where di denotes the degree of node i (see Lemma 8 in

Appendix A).

w∗
k =

∑

j∈Nk

αw∗
j

(αw∗
j + (α + ǫk)w

∗
k)

2
− dk

r

2
,

w∗
i =

∑

j∈Ni,j 6=k

αw∗
j

(αw∗
j + αw∗

i )
2
+

(α + ǫk)w
∗
k

(αw∗
i + (α + ǫk)w∗

k)
2
1ik∈g − di

r

2
, i 6= k.

(5)

System (5) provides the expression for the strength of player i as a function of the

strengths of her neighbors. It is interesting to note that, even though the actions of a

player are link-specific, the equilibrium payoff of a player can be expressed as a function

of her total equilibrium spending (see Lemma 8 in Appendix A). Taking derivatives of

(5) with respect to ǫk and solving for
∂w∗

i

∂ǫk
, i ∈ N we get the following result:

Proposition 6

Let Ka,v be a stable network. Suppose player k experiences a cost shock.

(i) If k ∈ A then
∂w∗

k

∂ǫk
< 0,

∂w∗

i

∂ǫk
< 0 i ∈ A, i 6= k, and

∂w∗

j

∂ǫk
> 0, j ∈ V . If k ∈ V then

∂w∗

k

∂ǫk
< 0,

∂w∗

j

∂ǫk
< 0 j ∈ V, j 6= k, and

∂w∗

i

∂ǫk
< 0, i ∈ A.

(ii)

∂w∗

∂ǫk
< 0, k ∈ N.

12Other types of small shocks can be studied using the same approach.
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To understand (i) from Proposition 6, notice that, when k ∈ A, the direct effect of the

shock hitting k will be that k will decrease her contest investment w∗
k. Because members

of V are weaker than k, their effort in contests with k will increase. At the same time,

they will decrease their investment in contests with other players from A. When k ∈ V ,

the direct effect of the shock will again cause a decrease in w∗
k. Since all opponents of

k are stronger than k, they will also decrease their investment in contests with k, but

will increase their investment in contests with other members of V . This will, in turn,

lead to a decrease in the total equilibrium effort of other members of V . This result is a

consequence of the network structure of interactions, and the property of the best reply

function, which increases with the effort of a weaker opponent and decreases with the

effort of a stronger opponent. Even though some players may spend more in contests

after the shock, w∗ still decreases after the shock.

5 Discussion

In this section we discuss the relation between LFPS and other concepts of stability

used in the analysis of the formation of weighted networks. We point out some is-

sues when these equilibrium concepts are applied to the formation of contest networks,

and argue that LFPS addresses some of these issues. Two stability concepts employed

in the literature on weighted network formation are: the Nash stability (Rogers, 2006,

Bloch and Dutta, 2009, Baumann, 2017), and the strong pairwise stability (Bloch and Dutta,

2009, Baumann, 2017). In this section we do not rely on the additional assumption stated

in Section 3.3 that φ′(0) = ∞ or that, in case when φ(x) = x, we have r → 0.

We first discuss Nash stable networks in our model (Definition 2). In case when, at

zero investment level, the marginal benefit of investing in a contest against player who

does not defend herself is greater than the marginal cost, the complete network will be

the only Nash stable network structure. Otherwise, the empty network is the only Nash

stable network structure. The following proposition holds:

Proposition 7

The Nash stable network is the empty network, when φ′(0)
r

≤ c′(0). Otherwise the unique

Nash stable network g(s) is the complete network, with sij = sji > 0, ∀i, j ∈ N .

We note that the condition φ′(0)
r

> c′(0) will be satisfied in the special case when φ

is the identity mapping and c is a quadratic function defined with c(x) = αx2, for any

finite r > 0 and α > 0.

Proposition 7 states that a non-empty Nash stable network is the complete network.

This is true even though no contest in the complete network is profitable for any player,

and any two players i and j would benefit from ending contest ij. However, the de-

struction of a link is never a profitable unilateral deviation. This is a consequence of a
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coordination problem which often arises in non-cooperative models of network formation

in which the link formation is a bilateral decision (Bloch and Dutta, 2009). In our model,

the link destruction is essentially a bilateral decision, which creates similar coordination

problem. To address this issue (Bloch and Dutta, 2009, Definition 3) introduces the con-

cept of strong pairwise stability, which considers both unilateral and bilateral deviations.

We show that a non-empty strongly pairwise stable contest network does not exist. To

see why, recall that the strong pairwise stability is a refinement of the Nash stability.

According to Proposition 7 the unique non-empty Nash stable network is the complete

network. In the complete network, each pair of players has an incentive to bilaterally de-

viate by destroying the link between them, since they have the same strength. Therefore,

the complete network is not immune to bilateral deviations.

Proposition 8

The strong pairwise stable network is the empty network if φ′(0)
r

≤ c′(0). Otherwise, it

does not exist.

When initiating a contest, one may expect that a player takes into account that

the opponent will fight back. For instance, this is the case in litigation, lobbying, and

conflict. Therefore, in the definition of LFPS networks, we assume that a player takes

into account the expected effort that a new opponent will devote to this contest. In

particular, we assume that, when calculating the expected payoff of starting contest ij

with action sij, player i assumes that j will fight back by choosing the best response

sji = BR(sij), given j′s current total spending wj. Thus, i is limited farsighted, since she

does not take into account further adjustments in investments that will take place in the

network once ij is formed. Since calculating all the adjustments in equilibrium strategies

when forming a link is equivalent to solving a highly nonlinear system of equations,

which is even numerically a very difficult problem, we believe that this is a reasonable

assumption. Experimental results suggest that in network formation games players are

limited farsighted (Kirchsteiger et al., 2016), even in models that are much simpler than

the model considered in this paper. Furthermore, experimental evidence indicates that

the difficulty in forming correct beliefs about the opponent’s best response may be one of

the main reasons behind the fact that in experiments subjects rarely play Nash strategies

in Tullock contest games (Masiliunas et al., 2014).

6 Conclusion

To the best of our knowledge this is the first model of weighted network formation in

which the interaction between neighbors is an antagonistic one. Moreover, in the model,

actions of neighbors are neither strategic substitutes nor strategic complements. This

type of strategic interaction has not been considered in the literature on weighted network
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formation so far. In the paper, we describe efficient and stable networks using different

notions of stability. We also derive several comparative statics results illustrating the fact

that taking into account the structure of the contest network may lead to very different

results compared to cases when the network structure is ignored. We believe that the

qualitative insights of the model are applicable to many situations, including competitions

between divisions in companies, lobbying, and allocation of property rights.

There are several promising directions for further research . First, our model con-

siders only enmity links. It would be interesting to extend the model by allowing the

formation of weighted friendship links that imply positive spillovers (i.e. reduction of cost

of fighting), and see if this leads to different stable network configurations. Introducing

heterogeneity is a step which is necessary to make the model’s predictions empirically

testable. Heterogeneity in the effectiveness of the contest technology (function φ), cost

of fighting, and transfers can be directly included in the model. Furthermore, one could

consider a position in the network as a source of heterogeneity. For instance, we can

imagine that the amount of resources each enemy of a country expects to extract de-

creases with the number of opponents of that country. Finally, we focus on bilateral

contests. It would be interesting to study contest network formation allowing also for

multilateral contests. A starting point for this may be the model presented in this paper

and (Matros and Rietzke, 2018).
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Appendix A: Proofs

Contest Game on a Given Network

To understand the proofs in Appendix A, it is useful to revisit the case when the set contests

is exogeneously given and fixed. This is the case studied in Franke and Ozturk (2015). So, let

the set of possible contest in the society be defined with a binary, undirected network ḡ. The

contest game on network ḡ is defined by:

C(ḡ) = {N, {Si(ḡ)}ni=1, {πi}ni=1}. (6)

In (6), N is the set of players, payoff functions πi are defined in (2), and the strategy space of

player i is given by:

Si(ḡ) ≡ {si ∈ Rn−1
≥0 : sij = 0 whenever ij /∈ ḡ}.

The following proposition, which is a version of the existence and uniqueness result for the

contest game on a given network (Franke and Ozturk, 2015, Proposition 1 and Lemma 1), holds

as well when the payoff function are given with (2).

Proposition 9

For any binary network ḡ, there exists a unique pure strategy Nash equilibrium of game C(ḡ),

s̄. The equilibrium s̄ is interior (s̄ij > 0 ∀ij ∈ ḡ) if φ′(0) = ∞. When φ(x) = x and c(x) = x2

the equlibrium will be interior for r small enough.

Proof of Proposition 9.

Existence and Uniqueness. It is enough to follow the same steps as in the proof of

(Franke and Ozturk, 2015, Proposition 1 and Lemma 1) when the payoff function are given

with (2). The main part of the proof is showing that game C(ḡ) is a concave game, as defined

in Rosen (1965), and then directly applying Rosen’s result.

Interiority. Assume that ij ∈ ḡ, in the Nash equilibrium, s̄, of C(ḡ), and that s̄ij =

0 ∨ s̄ji = 0. We show that when this logical disjunction is true, there is a profitable deviation

for either player i or player j. Hence, s̄ij = 0 ∨ s̄ji = 0 cannot be a part of the Nash

equilibrium of game C(ḡ) when ij ∈ ḡ. We consider the case when φ′(0) = ∞, and the case

φ(x) = x, c(x) = x2 separately.

Case 1: φ′(0) = ∞.

Suppose, without loss of generality, that s̄ij = 0. There is a profitable deviation in which i

invests ǫ > 0 in contest with j. The marginal cost of this deviation c′(w̄i + ǫ). The marginal

benefit of the deviation is
r+2φ(s̄ji)

(φ(0)+φ(s̄ji)+r)2
φ′(0) ( which becomes r

(r+φ(ǫ))2φ
′(ǫ) in case when also

s̄ji = 0). It is clear that the marginal benefit at ǫ = 0 is infinite, while the marginal cost remains

bounded.

Case 2: φ(x) = x and c(x) = x2.

(i) Suppose first that s̄ij = s̄ji = 0. We show that this cannot happen for any finite r > 0.

25



(a) If w̄i = 0 consider a deviation in which player i invests ǫ > 0 in contest ij. The cost

of this deviation is ǫ2. The benefit is ǫ
ǫ+r

. It is easy to see that the benefit is larger

than the cost, for ǫ small enough, since

ǫ

ǫ+ r
− ǫ2 = ǫ

(

1− rǫ− ǫ2

r + ǫ

)

.

(b) If w̄i > 0 then there exists contest ik such that s̄ik > 0. Consider a deviation in

which player i reallocates ǫ > 0 from ik to ij (keeping w̄i fixed). The marginal

benefit of this deviation for player i, calculated at ǫ = 0 is:

∂

∂ǫ

ǫ

ǫ+ r

∣

∣

∣

∣

ǫ=0

=
1

r
.

The marginal cost of the deviation is:

∂

∂ǫ

(s̄ik − ǫ)− s̄ki
s̄ik − ǫ+ s̄ki + r

∣

∣

∣

∣

ǫ=0

= − r + 2s̄ki
(r + s̄ik + s̄ki)2

.

It is easy to check that the marginal benefit outweights the marginal cost. Indeed

1

r
− r + 2s̄ki

(r + s̄ik + s̄ki)2
=

2rs̄ik + (s̄ik + s̄ki)
2

r (r + s̄ik + s̄ki)
2 > 0.

(ii) We now show that when ij ∈ ḡ it cannot be that s̄ij = 0 and s̄ji > 0 when r becomes

infinitesimal. Suppose otherwise, so suppose that this is the case for some two players i

and j.

(a) If w̄i = 0 then a profitable deviation for player i is to exert ǫ > 0 in contest ij.

The marginal cost of this deviation, 2ǫ, approaches to 0 when ǫ → 0. The marginal

benefit of the proposed deviation,
r+2s̄ji
r+s̄ji+ǫ

, is positive and bounded away from 0.

Hence for ǫ small enough, the proposed deviation is profitable.

(b) Finally, we consider the case when w̄i > 0. First we show that when r → 0 then

s̄ji → 0. Using that, we show that the marginal benefit for player i of investing in

contest ij calculated at 0 becomes unbounded when r approaches 0.

Since, by assumption, s̄ji is greater than zero, it must satisfy the first order opti-

mality (sufficient and necessary) conditions. Thus, the following holds:

r

(s̄ji + r)2
= 2

∑

ℓ

s̄jℓ ⇒

r =



2
∑

ℓ 6=i

s̄jℓ + 2s̄ji



 (r + s̄ji)
2.

From the last equation above, it is clear that when r → 0 then s̄ji → 0. In this case

(r → 0), the marginal benefit of player i of investing in contest against player j calculated
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at 0 ( equal to
r+2s̄ji
(r+s̄ji)2

) becomes unbounded. Indeed, it can be verified that:

lim
r→0

r + 2s̄ji(r)

(r + s̄ji(r))2
= +∞, (7)

since limr→0 s̄ji(r) = 0. The marginal cost of this deviation is obviously bounded from

above. Therefore, it cannot be that s̄ij = 0 and s̄ji > 0 when r is small enough.

Proofs of Claims from Section 3

Proof of Proposition 1.

Uniqueness. Since both g(s∗) and g(s′) are stable, condition (U) from Definition 3 must

hold. In particular, it must hold for any player i and Li = ∅. We note that weighted network

g(s) with structure ḡ will satisfy the condition (U) if and only if s = s̄, where s̄ is the Nash

equilibrium of game C(ḡ). Then, Proposition 9 implies that, if g(s∗) and g(s′) are two stable

networks with the same network structure, ḡ, then s
′ = s

∗ = s̄.

Interiority. Follows directly from the proof of the interiority part of Proposition 9.

The following proposition is an extension of Proposition (Franke and Ozturk, 2015, Propo-

sition 2) and provides a foundation for definition of strength (Definition 5).

Proposition 10

Suppose that conditions for the interiority from Proposition 1 are satisfied. Then: w∗
i ≥ w∗

j ⇒
s∗ij ≤ s∗ji, with equality when w∗

i = w∗
j .

Proof of Proposition 10. The following first-order conditions for contest ij ∈ g(s∗) must hold:

(

(r + 2φ(s∗ji))φ
′(s∗ij)

(r + φ(s∗ij) + φ(s∗ji))
2
− c′(w∗

i ) = 0

)

∧
(

(r + 2φ(s∗ij))φ
′(s∗ji)

(r + φ(s∗ij) + φ(s∗ji))
2
− c′(w∗

j ) = 0

)

. (8)

From (8) we get:
(r + 2φ(s∗ji))φ

′(s∗ij)

(r + 2φ(s∗ij))φ
′(s∗ji)

=
c′(w∗

i )

c′(w∗
j )
.

Since φ′(x) > 0, φ′′(x) ≤ 0 and c′′(x) > 0:

w∗
i ≥ w∗

j ⇒ c′(w∗
i )

c′(w∗
j )

≥ 1 ⇒
(r + 2φ(s∗ji))φ

′(s∗ij)

(r + 2φ(s∗ij))φ
′(s∗ji)

≥ 1 ⇒ s∗ji ≥ s∗ij, (9)

where the last implication in (9) follows from the facts that φ is an increasing function and φ′

is a decreasing function, and the equality holds when w̄i = w̄j.

Proof of Proposition 2. To prove the claim, we compare the solutions of the FOC system

associated to links ab and ac. To do this, it is helpful to first consider the following parameterized
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system of equations on R2
≥0 with unknowns x and y, and positive parameters β1 and β2:

(r + 2φ(y))φ′(x)

(r + φ(x) + φ(y))2
− c′(β1) = 0,

(r + 2φ(x))φ′(y)

(r + φ(x) + φ(y))2
− c′(β2) = 0. (10)

It is easy to verify that (10) satisfies the conditions of the implicit function theorem. Note that

when β1 = w∗
a and β2 = w∗

b , then x = s∗ab and y = s∗ba is the unique solution of system (10).

Taking the derivative of x and y defined by (10) with respect to β1 we get:

∂x

∂β1
=

c′′(β1) (r + 2φ(x)) (r + φ(x) + φ(y))2
[

φ′′(y)(r + φ(x) + φ(y))− 2φ′(y)2
]

Den
,

∂y

∂β1
=

2c′′(β1)(φ(x) − φ(y))φ′(x)φ′(y)(r + φ(x) + φ(y))2

Den
,

where

Den =2φ′(x)2
(

2φ′(y)2(r + φ(x) + φ(y))− (r + 2φ(x))(r + 2φ(y))φ′′(y)
)

+ (r + 2φ(x))(r + 2φ(y))φ′′(x)
(

φ′′(y)(r + φ(x) + φ(y)) − 2φ′(y)2
)

.

For positive x and y, expression Den will be positive, given the properties of functions φ and

c stated in Subsection 2.1. Furthermore, the numerator of ∂x
∂β1

is negative, while the numerator

of ∂y
∂β1

will be negative when φ(x) < φ(y) (and therefore when x < y), and otherwise positive.

Therefore, for the unique solution (x, y) of system 10 the following holds comparative statics

result holds:

∂x

∂β1
< 0,

∂y

∂β1
≤ 0 when x ≤ y,

∂y

∂β1
> 0 when x > y.

(11)

We prove now that s∗ab > s∗ac. The other inequalities stated in the claim of the Proposition

are proven analogously. Consider (8) associated to ab and (8) associated to ac, which must hold

in an interior equilibrium s
∗.

(r + 2φ(s∗ba))φ
′(s∗ab)

(r + φ(s∗ab) + φ(s∗ba))
2
− c′(w∗

a) = 0,
(r + 2φ(s∗ab))φ

′(s∗ba)

(r + φ(s∗ab) + φ(s∗ba))
2
− c′(w∗

b ) = 0. (8 ab)

(r + 2φ(s∗ca))φ
′(s∗ac)

(r + φ(s∗ac) + φ(s∗ca))
2
− c′(w∗

a) = 0,
(r + 2φ(s∗ac))φ

′(s∗ca)

(r + φ(s∗ac) + φ(s∗ca))
2
− c′(w∗

c ) = 0. (8 ac)

We can think of (8 ab) as a system of equations (10) with unknowns s∗ab, s
∗
ba, where w

∗
a and

w∗
b are playing a role of β1 and β2, and analogously for (8 ac). By assumption w∗

a < w∗
b and

w∗
a < w∗

b . Then, Proposition 10 implies that s∗ab > s∗ba, and s∗ac > s∗ca respectively. Taking this

into account and comparing systems (8 ab) and (8 ac), the second inequality in (11) implies

that s∗ab > s∗ac.
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We now state and prove an important corollary of Proposition 2 which states that the total

equilibrium investment w∗ is increasing with the neighborhood of a player, with respect to the

relation of set inclusion.

Corollary 1 (of Proposition 2)

Let Ni ( Nj in stable network g, then w∗
i < w∗

j .

Proof of Corollary 1. Suppose the claim does not hold. So, suppose that Ni ( Nj and w∗
i ≥

w∗
j . Then, from Proposition 2 it follows that for every k ∈ Ni ∩ Nj s∗ik ≤ s∗jk. But then

w∗
i =

∑

k∈Ni
s∗ik ≤∑k∈Ni

s∗jk <
∑

k∈Nj
s∗jk = w∗

j , which is in contradiction with w∗
i ≥ w∗

j .

We now state and prove Lemmas 1 to 4 which are concerned with attackers in a stable

network. Our main goal is to show that there can be only one class of attackers in LFPS

network. For clarity, we do this in several steps, each step being a separate lemma. We first

show that attackers always have links with weakest players in the network (Lemma 1). We use

Lemma 1 extensively in proofs of subsequent claims in the paper. An useful corollary of this

lemma is that a stable network must be connected. We continue by showing that members of

the same class of attackers must have the same neighborhood (Lemma 2), and that two different

class of attackers cannot have nested neighborhoods (Lemma 3). Finally, using Lemmas 1 - 3

we show that there can be only one class of attackers (Lemma 4).

Lemma 1

If ij ∈ g(s∗), and g is LFPS, then ik ∈ g ∀(k ∈ N) : w∗
k ≥ w∗

j .

Proof of Lemma 1. Assume that g(s∗) is stable, and such that for some player i and two

other players j, k with w∗
j < w∗

k we have ij ∈ g(s∗) and ik /∈ g(s∗). We show that in this case

there exists a profitable deviation for players i and j, hence g(s∗) cannot be stable.

First note that if contest ij is not profitable for i, then it cannot be part of the stable

network ((B) does not hold).

When ij is profitable for i, it must be w∗
i < w∗

j . We show that there is a profitable bilateral

deviation for i and j. Consider a deviation in which j deviates from s
∗
j to s

′
j such that s′ji = 0

and s′jℓ = s∗jℓ for all ℓ 6= i. At the same time, i deviates to s
′
i such that s′ik = s∗ij, s

′
ij = 0 and

s′iℓ = s∗iℓ for all ℓ /∈ {j, k}. It is clear that this deviation is profitable for j. We prove that it

is also profitable for i. It is enough to prove that the expected reaction of k to the proposed

deviation, denoted by ŝki, is such that ŝki < s∗ji. To do this, we note that s∗ji must satisfy the

following optimality condition:

(r + 2φ(s∗ij))φ
′(s∗ji)

(r + φ(s∗ij) + φ(s∗ji))
2
= c′(w∗

j ). (12)

The expected reaction of player k to the proposed deviation is determined with the following

condition:

(r + 2φ(s∗ij))φ
′(ŝki)

(r + φ(s∗ij) + φ(ŝki))2
= c′(w∗

k + ŝki). (13)
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Since w∗
k + ŝki > w∗

k ≥ w∗
j it must be that c′(w∗

k + ŝki) > c′(w∗
j ). This is due to strict

convexity of c. Thus the right hand side of (13) is strictly larger than the right hand side

of (12). The same relation must hold for the left hand sides of (12) and (13). Since φ is an

increasing function and φ′ is a decreasing function, this holds only when ŝki < s∗ji.

Corollary 2 (of Lemma 1)

A non-empty stable network g(s∗) is connected.

Proof of Corollary 2: We use a proof by contradiction. Assume that the claim does not

hold, so there are at least two components in stable network g. Choose two components (C1

and C2) from g such that the weakest player in the network (v1) belongs to C1. All opponents

of v1 must find the contest with v1 profitable, otherwise the network would not be stable ((B)

would not hold). Then, the strongest player in C2 (denote her with a2) by Lemma 1 has an

incentive to form a link with v1 instead of a link with one of her current opponents, who by

definition is not weaker than v1. If |C2| = 1, a2 does not have any opponents. Then, she has

an incentive to form a link with v1 with action s∗a1,v1 , since a1v1 ∈ g is a profitable contest for

a1.

Lemma 2

Two players that belong to the same class of attackers Wa have the same neighborhood in stable

network g.

Proof of Lemma 2: Let g be a stable network. Consider any two attackers i, j ∈ Wa, and

suppose, contrary to what is asserted, that Ni 6= Nj . It cannot be that Ni ⊂ Nj because then

the total spending of i and j would not be equal (by Corollary 1). Since Ni 6= Nj , there exist

nodes h ∈ Ni\Nj and k ∈ Nj\Ni. Suppose that, without loss of generality, w
∗
k ≥ w∗

h. Then it is

profitable for player i to replace ih with link ik according to Lemma 1. This is in contradiction

with the assumption that g is stable.

Lemma 3

Let i and j be two attackers in stable network g(s∗). It cannot be that Ni ⊂ Nj .

Proof of Lemma 3. If i and j belong to the same class, then Lemma 2 implies Ni = Nj.

Consider now the case when i and j belong to different classes of attackers. We assume that

Ni ⊂ Nj and show that there will always exist a profitable deviation. We will use Ni to denote

the neighborhood of i in network g(s∗).

Since Ni ⊂ Nj , by Corollary 1 it must be w∗
i < w∗

j .

Suppose first that πj(g(s
∗)) ≥ πi(g(s

∗)). We show that in this case i can form links to all

players in Li = Nj \Ni, and obtain a payoff greater than πj(g(s
∗)). To show this, consider the

deviation in which player i deviates to s̃i = s
∗
j . Let us denote the payoff of player i after this

deviation with πi(g(s̃i, ŝLi
, s∗−i−Li

)) where ŝLi
is defined in (4). We proceed by showing that

πi(g(s̃i, ŝLi
, s∗−i−Li

)) > πj(g(s
∗)).

Because w∗
i < w∗

j , Proposition 2 implies that s∗ki < s∗kj k ∈ Ni ∩ Nj . The convexity of

the cost function implies that ŝki < s∗kj for all k ∈ Li under the contemplated deviation. This
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means that after the deviation the expected cost of i will be equal to the cost of j, i and j

will have the same set of opponents, and φ(s̃ik)−φ(ŝki)
φ(s̃ik)+φ(ŝki)+r

>
φ(s∗

jk
)−φ(s∗

kj
)

φ(s∗
jk
)+φ(s∗

kj
)+r

∀k ∈ Nj . Therefore

πi(g(s̃i, ŝLi
, s∗−i−Li

)) > πj(g(s
∗)) ≥ πj(g(s

∗)).

Suppose now that πi(g(s
∗)) > πj((s

∗)), and suppose that j does not have an incentive to

update her strategy (otherwise the network would not be stable).13 From πi(g(s
∗)) > πj((s

∗))

it follows that:

∑

k∈Ni

πik(s
∗
ik, s

∗
ki; r) > −c(w∗

j ) + c(w∗
i ) +

∑

k∈Nj

πjk(s
∗
jk, s

∗
kj; r). (14)

Consider now the same deviation of player i, as contemplated in the first part of the proof. We

get (using Ni to denote neighborhood of i in network g(s∗)):

πi(g(s̃i, ŝLi
, s∗−i−Li

))− πi(g(s
∗)) =

∑

k∈Ni

πik(s
∗
jk, s

∗
ki; r) +

∑

k∈Li

πik(s
∗
jk, ŝki; r)−

∑

k∈Ni

πik(s
∗
ik, s

∗
ki; r)− c(w∗

j ) + c(w∗
i ) >

∑

k∈Ni

πik(s
∗
jk, s

∗
ki; r) +

∑

k∈Li

πik(s
∗
jk, ŝki; r)−



−c(w∗
j ) + c(w∗

i ) +
∑

k∈Nj

πjk(s
∗
jk, s

∗
kj; r)



− c(w∗
j ) + c(w∗

i ) =

∑

k∈Ni

πik(s
∗
jk, s

∗
ki; r) +

∑

k∈Li

πik(s
∗
jk, ŝki; r)−

∑

k∈Nj

πjk(s
∗
jk, s

∗
kj; r) > 0,

where the first inequality comes directly from (14) and the last inequality comes from the fact

that ŝki < s∗kj for all k ∈ Li. This completes the proof.

Lemma 4

There is only one class of attackers (W1) in stable network g(s∗). Members of W1 are connected

to all players outside W1.

Proof of Lemma 4: Suppose, contrary to what is asserted, that there are two different classes

of attackers W1 and W2 in LFPS network g(s∗). Since Lemma 2 implies that all members of the

same class of attackers have the same neighborhood, we restrict our attention to representative

nodes i ∈ W1 and j ∈ W2.

Since w∗
j > w∗

i there are 2 possible situations that we need to consider:

(i) Ni ⊂ Nj is ruled out by Lemma 3.

(ii) Ni 6⊂ Nj =⇒ (∃k ∈ Ni\Nj ∧ ∃h ∈ Nj\Ni). If w
∗
k ≥ w∗

h Lemma 1 implies that j has a

profitable deviation. If w∗
k < w∗

h the same lemma implies that i has a profitable deviation.

We now prove a lemma which is concerned with hybrids. In the proof we rely on arguments

which are analogous to those used in the proof of Lemma 4.

13Recall that since j is an attacker, any of her opponents would be better off by destroying a link with
j.
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Lemma 5

In a stable network g(s∗) all members of a hybrid class are connected to all other nodes in the

network that do not belong to their class.

Proof of Lemma 5: If there are only two classes of nodes in a stable network (W1 and W2)

then there are no hybrid types. Suppose there are more than two classes of nodes in a stable

network. First, let us consider the strongest mixed type class (W2). A node h ∈ W2 must

be connected to all nodes from W1. This is because hybrid h must be connected to at least

one player that is stronger than her, who must be an attacker since h ∈ W2. Then, Lemma 4

implies that h must be connected to all players from W1, since all nodes in W1 have the same

neighborhood. This holds for any h ∈ W2.

Let us now prove that all members of the class W2 have the same neighborhood. Suppose

this is not true. Let h1 and h2 be two players from W2 such that Nh1
6= Nh2

. The following

implication holds: (W1 ⊂ Nh1
∧ W1 ⊂ Nh2

) ⇒ ((Nh1
/Nh2

) ∪ (Nh2
/Nh1

)) ∩ W1 = ∅. Thus,

N̄h1
= N̄h2

and
¯
Nh1

6=
¯
Nh2

. It cannot be
¯
Nh1

⊂
¯
Nh2

∨
¯
Nh2

⊂
¯
Nh1

because then it would be

w∗
h1

6= w∗
h2

by Corollary 1. Consider two nodes, k ∈
¯
Nh1

\
¯
Nh2

and ℓ ∈
¯
Nh2

\
¯
Nh1

. If w∗
k ≥ w∗

ℓ

then h2 and ℓ have a profitable deviation (link h2ℓ is destroyed, link h2k is formed). If w∗
k < w∗

ℓ ,

then h1 and k have an analogous profitable deviation.

Let W3 be the third strongest class in the network. If M = 3 then, by definition, all

players in W2 must be connected to some players from W3, because otherwise they would not

be hybrid types. Note that if player i ∈ W3 is connected to some player from class W2 then she

is connected to all players from class W2 - because we have shown that all members of class W2

have the same neighborhood. If there exists player j ∈ W3 who is not connected to all players

from W2, then j is only connected to all players from W1. But then i and j cannot belong to

the same class. So, for K = 3 the claim of the lemma holds.

SupposeM > 3. Lemma 1 implies that all members of W1 must be connected to all members

of W3 since they are connected to all members of W2. We now show that all players from W2

are connected to all players from W3. Again we proceed by using a proof by contradiction.

Suppose that there exist players i ∈ W2 and j ∈ W3 such that ij /∈ g(s∗). We show that in

this case there is a profitable deviation. Since all players from W2 have the same neighborhood

there are no links between members of class W2 and j. This means that j loses only in contests

with players from W1. Hence, j has control over all of her links except links with players from

W1. Furthermore, w∗
i < w∗

j ⇒ Ni 6= Nj . There are two possibilities for relation between Ni and

Nj that we need to consider:

(i) Ni ⊂ Nj case can be ruled out by applying the same argument as in Lemma 3 to
¯
Ni and

¯
Nj .

(ii) Ni 6⊂ Nj ⇒ (∃k ∈ Ni\Nj ∧ ∃h ∈ Nj\Ni). But then, if w
∗
k ≥ w∗

h Lemma 1 implies that

j has a profitable deviation, and if w∗
k < w∗

h, the same Lemma implies that i has a profitable

deviation.

We have shown that in a stable network it cannot happen that there are no links between

members of W2 and W3. If two players from W2 and W3 are connected, than all players from W2

and W3 are connected, because all players from W2 have the same neighborhood, and because
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of Lemma 1.

Using the same reasoning as above, we can show that all players from Wk must be connected

to all players from Wk+1. Since the number of nodes in the network is finite, the number of

classes is finite and this procedure reaches WM in a finite number of steps.

Corollary 3

There is only one class of victims in a stable network g and all victims have the same neighbor-

hood

Proof of Corollary 3: Follows from Lemma 4 and Lemma 5.

We show now that classes must be of different sizes, and that stronger players belong to

more numerous classes.

Lemma 6

Let |Wk| denote the number of nodes that belong to class Wk in stable network g(s∗). Then

|Wk| > |Wk+1| ∀k ∈ {1, 2, ...,M − 1}.

Proof of Lemma 6: Suppose that the claim does not hold, so |Wk| ≤ |Wk+1| for some k =

1, ...,M − 1. The system (8) implies that for any player a, s∗ac = s∗ad whenever d and c belong

to the same class. Therefore, for any two players a, b such that a ∈ Wk and b ∈ Wk+1, we

have that w∗
a =

∑

i 6=k,c∈Wi
|Wi|s∗ac and w∗

b =
∑

i 6=k+1,c∈Wi
|Wi|s∗bc. Since w∗

a < w∗
b , Proposition

2 implies s∗ac > s∗bc, c ∈ {W1,W2..,WK} \ {Wk,Wk+1}. Furthermore, since w∗
a < w∗

b we have

that s∗ab > s∗ba according to Proposition 10. But then |Wk| < |Wk+1| ⇒
∑

i 6=k,c∈Wi
|Wi|s∗ac >

∑

i 6=k+1,c∈Wi
|Wi|s∗bc ⇒ w∗

a > w∗
b . This is in contradiction with a ∈ Wk and b ∈ Wk+1.

Proof of Proposition 3: From Lemma 4, Lemma 5 and Corollary 3 it directly follows that a

nonempty stable network g must be a complete M -partite network. Lemma 6 directly implies

the asymmetry in sizes.

Proof of Proposition 4: Consider game C(Kn−v,v). Proposition 9 states that there is a

unique pure strategy Nash equilibrium s̄ of game C(Kn−v,v). The equilibrium is interior, under

maintained assumptions. Since s̄ is the NE of C(Kn−v,v), g(s̄) satisfies (U) for Li = ∅. The

only new links that can possibly be formed in g(s̄) are with members of own partition. It is

easy to see that no player will have an incentive to form a link with a member of own partition

in g(s̄), since all members of the same partition have the same total spending. Hence, s̄ satisfies

condition (U) from Definition 3. In the remaining part of the proof we show that part (B) of

Definition 3 will be satisfied when v < v∗.

First note that a deviation in which players i ∈ A and j ∈ V destroy link ij is profitable for

player j ∈ V , simply because she is a victim. We will now show that there exists v∗ > 0 such

that i ∈ A prefers to destroy link with j ∈ V in Kn−v,v whenever v ≥ v∗. To this end, let us

define functions h : R3
≥0 → R≥0 and f : R3

≥0 → R≥0 by:

h(v, s, r) = max
x

{

x− s

x+ s+ r
v − α(vx)2

}

, (15)
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f(n, v, r) = h(v − 1, s̄v,n−v, r)− h(v, s̄v,n−v , r), (16)

where s̄v,n−v denotes the Nash equilibrium per-contest investments of a member of V in C(Kn−v,v).

Due to symmetry, all members of the same partition will play the same strategy in s̄. Note that

f(n, v, r) is the expected benefit of destroying a link of an attacker in network g(s̄), where s̄ is

the Nash equilibrium of C(Kn−v,v).

We now show that function f is monotonically increasing in v ∈ [1, a] and that it takes a

positive value when v is big. We will treat v as a continuous variable in the remaining part of

the proof.

We show now that for v ∈ [1, a] = [1, n − v],

f (n, v − 1, r) < f (n, v, r) .

In order to do this, we first show that h decreases with s, and that it decreases faster with

s for higher values of v (∂h
∂s

decreases with v). Indeed, taking the derivative of h with respect

to s we get:

∂h

∂s
=

∂h

∂x

∂x

∂s
+

∂h

∂s
= − 2x+ r

(x+ s+ r)2
v, (17)

where we used the fact that ∂h
∂x

= 0, since x is the maximizer of h. Differentiating with respect

to v we get:

∂2h

∂v∂s
= 2

[

− x+ r
2

(x+ s+ r)2
+ v

x− s

(x+ s+ r)3
∂x

∂v

]

. (18)

The above derivative will be negative for all positive values of s and x such that x ≥ s and
∂x
∂v

< 0. This will hold in particular when v ∈ [1, a] - since in the Nash equilibrium of C(Kn−v,v),

the attackers exert a higher effort than the victims (x ≥ s) and the investment of members of

A decreases with v (∂x
∂v

< 0).

From (17) and (18) we have that when v ∈ [1, a)

∂ [h(v − 1, s, r)− h(v, s, r)]

∂s
> 0. (19)

Since s̄v−1,n−v+1 < s̄v−1,n−v < s̄v,n−v from (19) directly follows that:

h(v − 1, s̄v,n−v , r)− h(v, s̄v,n−v , r) > h(v − 1, s̄v−1,n−v+1, r)− h(v, s̄v−1,n−v+1, r) ⇒
f(n, v, r) > h(v − 1, s̄v−1,n−v+1, r)− h(v, s̄v−1,n−v+1, r).

Finally, using the fact that h is concave in v (directly follows from the concavity of payoff

function x−s
x+s+r

v− (vx)2 in v, see (De la Fuente, 2000, Theorems 2.12. and 2.13) for the formal
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argument), the following holds:

h(v − 1, s̄v−1,n−v+1, r)− h(v, s̄v−1,n−v+1, r) > h(v − 2, s̄v−1,n−v+1, r)− h(v − 1, s̄v−1,n−v+1, r),

and therefore:

f(n, v, r) > f(n, v − 1, r),

which is what we wanted to prove.

If for v = 1, f takes a positive value, than no Kn−v,v is stable, and v∗ = 1. If for v = 1 f

takes a negative value, this means that star network is stable. We also know that when v = a

no player earns positive payoff from any contest, so f takes a positive value in this case. The

fact that f is strictly monotone, and that it changes sign implies that there exists v∗ ∈ [1, a]

such that f(n, v, r) ≥ 0 for v ≥ v∗ and f(n, v, r) < 0 for v < v∗, which completes the proof.

Proofs of Claims from Section 4

We first show that the contest game on a complete bipartite network is a nice aggregative game

(Acemoglu and Jensen, 2013), so we can use results from that paper for some of our comparative

statics exercises. For the cases when results from (Acemoglu and Jensen, 2013) cannot be

directly applied, we rely on the implicit function derivation of the equilibrium conditions.

Lemma 7

The contest game on a complete bipartite network C (Ka,v) can be represented as a nice aggrega-

tive game as defined in Acemoglu and Jensen (2013).

Proof of Lemma 7: The pure strategy Nash equilibrium of game C(Ka,v) is such that all

players from the same class play the same strategy and invest the same amount of effort in

each of their contest. When with φ(x) = x the conditions which determine the equilibrium

investments in C(Ka,v) are equivalent to the system of FOCs that pins down the pure strategy

Nash equilibrium of two players game in which the strategy space of each player is the set of

nonnegative real numbers and the payoffs are defined by:

πi(sij , sji; r) =
sij − sji

sij + sji + r
− 1

v
c(vsij),

πj(sji, sij; r) =
sji − sij

sij + sji + r
− 1

a
c(asij).

Since
sij−sji

sij+sji+r
= −1 +

2sij+r

sij+sji+r
it is straightforward to verify that this game is a nice

aggregative game studied in (Acemoglu and Jensen, 2013).

Proof of Proposition 5.

1. According to Lemma 7, the contest game on a complete bipartite network can be rep-

resented as a nice aggregative game. To prove that w∗ decreases with α, it is sufficient

to show that a decrease in α is a positive shock (Acemoglu and Jensen, 2013, Definition
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9). A decrease in α will lead to a new cost function c̃ such that c̃′(x) < c′(x) ∀x ∈ R≥0.

Denote with π̃i the payoff function of player i ∈ A (and symmetrically for j ∈ V ) after c

becomes c̃. It is straightforward to see that ∂π̃i

∂sij
≤ ∂πi

∂sij
when c̃′(vsij) ≤ c′(vsij). Therefore

a decrease in α is a positive shock. Analogously, a change in transfer T from T = 1 to

T = T̃ > 1 is a positive shock to both players.

2. To conduct a comparative statics exercise with respect to r we cannot apply the result

for aggregative games, as an increase in r can be a positive shock for one player, and, at

the same time, a negative shock for some other player. Indeed,

∂2πi
∂sij∂r

=
sij − 3sji − r

(sij + sji + r)3
,

does not have the same sign for all non-negative arguments. Therefore, we rely on the

implicit function theorem. The strategy profile s
∗ satisfies the first order optimality

conditions:

r + 2s∗ji
(s∗ij + s∗ji + r)2

= c′

(

∑

k∈V

s∗ik

)

, i ∈ A,

r + 2s∗ij
(s∗ij + s∗ji + r)2

= c′

(

∑

k∈A

s∗jk

)

, j ∈ V.

(20)

Taking the derivative of (20) with respect to r we get the following system of equations:

1 + 2s∗ji(r)

(r + s∗ij(r) + s∗ji(r))
2
− 2

(r + 2s∗ji(r))(1 + s∗ij
′(r) + s∗ji

′(r))

(1 + s∗ij(r) + s∗ji(r))
2

= c′′

(

∑

k∈V

s∗ik(r)

)

∑

k∈V

s∗ik
′(r), i ∈ A

1 + 2s∗ij(r)

(r + s∗ij(r) + s∗ji(r))
2
− 2

(r + 2s∗ij(r))(1 + s∗ij
′(r) + s∗ji

′(r))

(1 + s∗ij(r) + s∗ji(r))
2

= c′′

(

∑

k∈A

s∗jk(r)

)

∑

k∈A

s∗jk
′(r), j ∈ V

Using the symmetry, and solving for s∗ij
′(r) and s∗ji

′(r) we get:

s∗ij
′(r) = −

2 + a(r + s∗ij + s∗ji)(r − s∗ij + 3s∗ji)c
′′
2

Ω

s∗ji
′(r) = −

2 + v(r + s∗ij + s∗ji)(r − s∗ji + 3s∗ij)c
′′
1

Ω

(21)

where

Ω = 4+ (r+ s∗ij + s∗ji)×
[

2vc′′1(r+ s∗ij)+ ac′′2
(

r3vc′′1 +3r2vc′′1(s
∗
ij + s∗ji)+ r(2+ 3v(s∗ij + s∗ji)

2c′′1)+ 4s∗ji + v(s∗ij + s∗ji)
3c′′1
)]

,

and c′′1 = c′′
(
∑

k∈V s∗ik
)

and c′′2 = c′′
(

∑

k∈A s∗jk

)

.

The expression Ω is positive, since c is a convex function. Furthermore a > v and

s∗ij > s∗ji imply that s∗ji
′(r) in (21) is always negative. On the other hand, s∗ij

′(r) can be
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both positive and negative. It will take a positive value whenever:

s∗ij >
2

a(r + s∗ij + s∗ji)c
′′
2

+ r + 3s∗ji.

We now discuss the sign of ∂w∗

∂r
. From (21) we get:

∂w∗(r)

∂r
> 0 ⇔ −

[

v(r + 3s∗ij − s∗ji)c
′′
1 + a(r + 3s∗ji − s∗ij)c

′′
2

]

>
4

r + s∗ij + s∗ji
. (22)

When c(x) = αx2, equation (22) simplifies to

∂w∗(r)

∂r
> 0 ⇔ −α

[

v(r + 3s∗ij − s∗ji) + a(r + 3s∗ji − s∗ij)
]

>
2

r + s∗ij + s∗ji
.

The above inequality will hold when a(r + 3s∗ji − s∗ij) is sufficiently small and negative.

This will happen when a is large enough relative to v, and r is small enough.

In a specific case when r → 0 (22) becomes

−
[

a(3s∗ji − s∗ij) + v(3s∗ij − s∗ji)
]

>
2

α(s∗ij + s∗ji)
.

In this case (see Franke and Ozturk (2015) for derivation) s∗ji =
(

v
a

) 1

2 s∗ij and s∗ij + s∗ji =
1

α
1
2 (av)

1
4

, so the above inequality can be written as

[

(a− 3v) +
(v

a

) 1

2

(v − 3a)

]

s∗ij >
2

α
1

2

(av)
1

4 . (23)

From (21) it follows that (23) can hold only when s∗ij > 3s∗ji, as otherwise s∗ij
′(r) ≤ 0.

Using the fact that s∗ij + s∗ji =
1

α
1
2 (av)

1
4

, we rewrite this condition as s∗ij > 3

4α
1
2

(av)−
1

4

which, together with (23), gives that ∂w∗

∂r
> 0 if

[

(a− 3v) +
(v

a

) 1

2

(v − 3a)

]

3

4α
1

2

(av)−
1

4 >
2

α
1

2

(av)
1

4 ,

which is true whenever a ≥ 37v.

Lemma 8

The total spending of each node in the equilibrium is defined as a solution of system (5). Fur-

themore

πi(s
∗) =

∑

j∈Ni

w∗
j − w∗

i

w∗
j + w∗

i

− αw∗
i
2. (24)

Proof of Lemma 8. Expressing s∗ij from (8), when φ is identity mapping, and ci(x) = αix
2

we get that in the equilibrium:
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s∗ij =
4αjw

∗
j

(2αiw∗
i + 2αjw∗

j )
2
− r

2
. (25)

Summing over all contests of player i, and setting αi = α i 6= k and αk = α+ ǫk we get (5).

Plugging in (25) in (2) we get (24).

Proof of Proposition 6. Suppose first that k ∈ A. Due to the symmetry, (5) is reduced to

the following system of equations:

w∗
k = v

αw∗
j

(αw∗
j +(α+ ǫk)w

∗
k)

2
− v

r

2
,

w∗
i = v

αw∗
j

(αw∗
j +αw∗

i )
2
− v

r

2
, i ∈A and i 6= k,

w∗
j = (a− 1)

αw∗
i

(αw∗
j +αw∗

i )
2
+

(α+ ǫk)w
∗
k

(αw∗
j +(α+ ǫk)w

∗
k)

2
− a

r

2
, j ∈ V.

(26)

Differentiating with respect to ǫk, and letting ǫk → 0 we get the following linear system in first

derivatives:

(

1+
2

α
v

w∗
j

(w∗
k +w∗

j )
3

)

w∗
k
′ =

v

α

w∗
k −w∗

j

(w∗
k +w∗

j )
3
w∗
j
′ − v

2α2

w∗
kw

∗
j

(w∗
k +w∗

j )
3
,

(

1+
2

α
v

w∗
j

(w∗
i +w∗

j )
3

)

w∗
i
′ =

v

α

w∗
i −w∗

j

(w∗
i +w∗

j )
3
w∗
j
′,

(

1+
2

α

(a− 1)w∗
i +w∗

k

(w∗
i +w∗

j )
3

)

w∗
j
′ =

a− 1

α

w∗
j −w∗

i

(w∗
j +w∗

i )
3
w∗
i
′ +

1

α

w∗
j −w∗

k

(w∗
j +w∗

i )
3
w∗
k
′− 1

α2

w∗
k
2−w∗

jw
∗
k

(w∗
j +w∗

k)
3
.

(27)

Using the fact that, when ǫk → 0, then w∗
i = w∗

k, we get

(

(w∗
i + w∗

j ) +
2

α
v

w∗
j

(w∗
i + w∗

j )
2

)

w∗
k
′ =

v

α

w∗
i − w∗

j

(w∗
i + w∗

j )
2
w∗
j
′ − v

2α2

w∗
iw

∗
j

(w∗
i + w∗

j )
2
,

(

(w∗
i + w∗

j ) +
2

α
v

w∗
j

(w∗
i + w∗

j )
2

)

w∗
i
′ =

v

α

w∗
i − w∗

j

(w∗
i + w∗

j )
2
w∗
j
′,

(

(w∗
j + w∗

i ) +
2

α
a

w∗
i

(w∗
i + w∗

j )
2

)

w∗
j
′ =

a− 1

α

w∗
j − w∗

i

(w∗
i + w∗

j )
2
w∗
i
′ +

1

α

w∗
j − w∗

i

(w∗
i + w∗

j )
2
w∗
k
′ − 1

α2

w∗
i
2 − w∗

jw
∗
i

(w∗
i + w∗

j )
2
.

When r → 0, w∗
i and w∗

j simplify to

w∗
i =

v

α

w∗
j

(w∗
i + w∗

j )
2
, w∗

j =
a

α

w∗
i

(w∗
i + w∗

j )
2
,
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and therefore we can write (27) as

(3w∗
i + w∗

j )w
∗
k
′ =

vw∗
j − aw∗

i

a
w∗
j
′ − 2

α
w∗
i
2,

(3w∗
i + w∗

j )w
∗
i
′ =

vw∗
j − aw∗

i

a
w∗
j
′,

(w∗
i + 3w∗

j )w
∗
j
′ =

aw∗
i − vw∗

j

va
w∗
k
′ + (a− 1)

aw∗
i − vw∗

j

va
w∗
i
′ +

w∗
i

α

aw∗
i − vw∗

j

va
.

(28)

We note that the equilibrium strengths in Ka,v can be expressed as (see Franke and Ozturk

(2015) for derivation):

w∗
i =

1√
α

v
√
a√

v +
√
a

1

(av)
1

4

,

w∗
j =

1√
α

a
√
v√

v +
√
a

1

(av)
1

4

.

(29)

Plugging (29) in (28) and solving the resulting linear system we get:

w∗
k
′ = −(av)

3

4

(

(
√
a−√

v)2 + 8a
√
v (

√
a+

√
v)
)

4a
√
a(
√
a+ 3

√
v)(

√
a+

√
v)2α

√
α

< 0,

w∗
i
′ = − (av)

3

4 (
√
a−√

v)2

4a
√
a(
√
a+ 3

√
v)(

√
a+

√
v)2α

√
α

< 0,

w∗
j
′ =

√
v(
√
a−√

v)

4α
√
α(va)

1

4 (
√
a+

√
v)2

> 0.

(30)

The case when k ∈ V is analogous (or just change switch v and a).

Finally from (30) and (29) we get:

∂w∗

∂ǫk
|ǫk=0 =

1

av

(

w∗
k
′ + (a− 1)w∗

i
′ + vw∗

j
′
)

= − v

4α
3

2 (av)
5

4

< 0,

which completes the proof.

Proofs of Claims from Section 5

Proof of Proposition 7. Consider contest network g(s) such that ij /∈ g for some players i

and j. We show that g(s) is not Nash stable when φ′(0)
r

> c′(0).

(i) Consider first the case when player i is not involved in any contest, thus wi = 0. The

marginal benefit of investing ǫ > 0 in contest ij calculated at ǫ = 0 is φ′(0)
r

. The marginal

cost of this action is c′(0). As long as φ′(0)
r

> c′(0) player i will wish to start a contest

with player j.

(ii) When wi > 0, there must exist some some k such that sik > 0. We discuss two possible

cases:

(a) There exists a contest ik ∈ g(s) such that sik ≥ ski. Consider a deviation in which i
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reallocates ǫ > 0 from contest ik to start contest with j. The marginal benefit of this

action for i is φ′(0)
r

. The marginal cost of a proposed deviation is (r+2φ(ski))φ
′(sik)

(r+φ(sik)+φ(ski))2
.

The following chain of inequalities holds:

(r + 2φ(ski))φ
′(sik)

(r + φ(sik) + φ(ski))2
≤ r + 2φ(ski)

(r + 2φ(ski))2
φ′(sik) ≤

1

r + 2φ(ski)
φ′(0) <

1

r
φ′(0), (31)

where we have used the fact that φ is increasing and concave function. So, in this

case, the marginal benefit of the proposed deviation is greater than it’s marginal

cost.

(b) There is no ik ∈ g(s) such that sik ≥ ski. In this case consider a deviation in which

i reallocates sik from contest ik to ij. The change in payoff due to this deviation is

equal to
(

φ(sik)
φ(sik)+r

− φ(ski)
φ(ski)+r

)

− φ(sik)−φ(ski)
φ(sik)+φ(ski)+r

. Simplifying we get:

φ(sik)

φ(sik) + r
− φ(ski)

φ(ski) + r
=

φ(sik)− φ(ski)
φ(sik)φ(ski)

r
+ φ(sik) + φ(ski) + r

>
φ(sik)− φ(ski)

φ(sik) + φ(ski) + r
,

where for the last inequality we used the fact that sik < ski, and φ is increasing.

Hence, provided that φ′(0)
r

> c′(0), Nash stable network g(s) must be such that sij + sji > 0,

for any pair of players i and j, that is ij ∈ g,∀i, j ∈ N .

We have proved that a Nash stable network must be the complete network. We now argue

that there is a unique strategy profile s such that the complete network g(s) is Nash stable.

Moreover, s is such that sij = sji = s > 0, for any two players i and j.

To do that, we recall that there exists a unique pure strategy Nash equilibrium of the game

C(ḡ) when ḡ is the complete network. In this equilibrium each player must play the symmetric

strategy, as otherwise the uniqueness result would not hold.14 The condition φ′(0)
r

> c′(0)

ensures that s̄ 6= 0, by same argument as used in (i) of this proof. It directly follows from the

definition of a Nash stable network that it must be sij = s̄ij, where s̄ is the Nash equilibrium

of the contest game on the complete network.

Finally, when φ′(0)
r

≤ c′(0) exerting positive amount of resources in contest against opponent

who invests 0 is never profitable. Furthermore, if for any pair of players we have sij > 0 and

sji > 0 and, without loss of generality, sij ≥ sji, then the marginal loss of i in decreasing sij is

always smaller then the marginal gain measured by the cost decrease, as long as φ′(0)
r

≤ c′(0).

Indeed, the following chain of inequalities hold:

(r + 2φ(sji))φ
′(sij)

(r + φ(sij) + φ(sji))2
<

1

r
φ′(0) ≤ c′(0) < c′(wi),

where the first inequality comes from (31). This completes the proof.

Proof of Proposition 8. Omitted.

14If s̄ was asymmetric, by relabeling players we could find more than one pure strategy NE of the
contest game on the complete network, which would contradict the uniqueness result.
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Online Appendix B

LPFS as a resting point of a dynamic process of network forma-

tion

We can think of the stable networks from Definition 3 as stable states of the coupled dynamic

process we present in this section. Players make decisions about their links and about actions

assigned to these links. We assume that a link between players i and j is formed if one player

decides to form it (unilateral), while link ij is destroyed if both agents agree to destroy it

(bilateral). Time is indexed with t ∈ N ∪ {0}. In t = 0 an arbitrary contest network g(s) is

given.

For each period t:

(i) At the beginning of period t strategy profile st−1 is a pure strategy NE of game C(ḡt−1),

where network ḡt−1 describes the set of contests from the end of period t− 1.

(ii) Players i and j are chosen randomly from the population. They jointly choose their linking

patterns which leads to a network of interactions ḡt. Players calculate the expected benefit

from forming a link as described in Subsection 2.2.

(iii) The second dynamic process (action adjustment process15) starts, and all agents update

their actions given ḡt according to the action adjustment process formally described below.

This process settles at the pure strategy NE of game C(ḡt).

We now formally describe the action adjustment process mentioned in (iii) above. Let ∇iπi

denote the gradient of the payoff function with respect to si. Define function J :
∏

iR
n
≥0 →

∏

iR
n
≥0 with:

J(s) =













∇1π1(s)

∇2π2(s)

...

∇nπn(s)













.

The action adjustment process is defined with:

ṡ = λJ(s), (32)

where λ is a constant. It is clear that s̄ is the stable state of this process. We also prove that s̄ is

a globally asymptotically stable state of (32). To show this, we show that the rate of change of

||J || = JJ ′ is always negative (and equal to 0 in the equilibrium). Denote with H the Jacobian

of J . The following holds:

˙JJ ′ = (Hṡ)′J + J ′Hṡ = (J ′H′J + J ′HJ) = J ′(H′ +H)J < 0,

15We assume that this process takes place in continuous time and therefore on a faster time-scale than
the network formation process. That is players infinitely more often revise their investment in ongoing
contests compared to contemplating starting/ending a contest
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where the last inequality follows from the fact that (H′ + H) is a negative definite matrix,

and H′ is the transposed matrix H. Thus, if every player adjusts her actions according to the

adjustment process in (32), the action adjustment process converges, irrespective of the initial

conditions. Thus, we have proved Proposition 11.

Proposition 11

The action adjustment process given by equation (32) is globally asymptotically stable.

We do not study the properties of the dynamical process of network formation. However,

it is clear from the definition that if this process settles on a single network configuration, then

this network must be LPFS. It is interesting to note that Proposition 11 has a very practical

application. It provides an efficient way to numerically calculate the Nash equilibrium of game

C(ḡ).
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