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Abstract—This paper proposed to use genetic algorithm (GA) 

as an adaptive algorithm for mode division multiplexing (MDM) 

equalization in order to minimize the mean square error as well 

as to maximize the similarity between the ideal signal and the 

MDM distorted signal. A significant result has been obtained of 

implementing GA on MDM equalization compared to other 

conventional algorithm such as least mean square (LMS) which 

is used dominantly in current equalizations. 

 

Index Terms—Mode Division Multiplexing; Equalization; 

Genetic Algorithm; Mode Coupling. 

 

I. INTRODUCTION 

 

The exponential rate of increase in Internet-driven demand in 

recent years is leading to the nonlinear Shannon limit in 

single mode fibers (SMFs) being approached [1]. Therefore, 

the need for new technologies and subsystems is necessary to 

cost-effectively increase capacity in a single fiber as well as 

in multimode fiber.  

Recently, an additional multiplexing technique that is 

actively being investigated to overcome the capacity limit is 

mode division multiplexing (MDM). In MDM, multiple 

spatial modes over multimode fiber (MMF) has been used [1-

6], using spatial modes to transfer the data as independent 

channels accordingly, a larger transmission capacity with 

respect to conventional MMFs can be achieved. 

The imperfection in MMF manufacturing such as 

microbending lead to the coupling between different modes 

where modes tend to interchange the power and causes a 

delay in receiving modes and disparity of power distribution 

between modes these undesirable phenomena lead to ISI [7]. 

For that, this undesirable effect of ISI causes neighboring 

symbols to interfere with each other at the receiver [8-16]. In 

addition, the received signal is wrongly decoded as the 

receiver cannot predict the correct form of the wave guides 

As a result, this will cause higher bit error rate and reduce 

data rate of MMF. Recently, multiple-input-multiple-output 

(MIMO) digital signal processing (DSP) has been 

successfully applied to enable MDM in transmission 

experiments.  

This paper proposed a new equalization scheme for MDM 

system based on GA as an adaptive algorithm to mitigate 

mode coupling.  GA based equalization implementation to 

mitigate the ISI effects on the MDM signals. The current 

algorithms which are used in MDM equalization are basically 

based on the conventional algorithms such as LMS and RLS 

these algorithms suffer from some problems; the main 

drawback of the LMS and RLS algorithms is that it is 

sensitive to the scaling of its input. This makes it very hard 

(if not impossible) to choose a learning rate that guarantees 

stability of the algorithm as well as the disability to solve the 

nonlinear problems [17], for these reasons GA based 

equalization is proposed to solve the ISI problem and 

overcome the conventional algorithm limitations. 

This paper organized as follows, the MDM is presented in 

Section II. Section III   presents the analytical model. Section 

IV presents the MDM channel equalization. Section V 

presents the results and discussion. Section VI presents the 

performance evaluation of GA against other algorithms and 

the paper conclusion is presented in Section VII.   

  

II. MODE DIVISION MULTIPLEXING MODEL  

 

MDM has been modeled to identify the ISI problem 

practically in order to collect the distorted signal from it; 

MDM is modeled in OptiSystem 7.0, as shown in Figure 1. 

Main elements for the model starting from the transmitter, 

Spatial optical transmitter is used which contain the PRBS, 

the coder which responsible for the signal generator for each 

channel, spatial VCSEL. Three channels transmitted over the 

MMF the transmitted modes are two LG01 and one LG00 

over 1550 nm wavelength and 40Gbits/s data rates. Spatial 

connector is used to connect the MMF spatially, this 

component connects signals with transverse mode profiles. 

Modes can be translated and rotated. The output modes from 

the first MMF will be as an input for the second MMF and 

the something with the third MMF until reaching the 

receiver, spatial optical receiver is used this component is an 

optical receiver subsystem built using the spatial Aperture 

and the optical receiver components such as a PIN or APD 

photodetector, a Bessel filter and a 3R regenerator. The 

received modes are 5 channels which increased because of 

the mode coupling phenomena. 
 

 
 

Figure 1:  MDM model
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III. ANALYTICAL MODELING FOR MDM CHANNEL 

EQUALIZATION 
 

In MDM system, the detrimental effects of ISI may be 

mitigated by equalization. It is one of the earliest techniques 

to alleviate ISI, since the channel is time shifting.  an 

equalization evens out the signal in a manner in which the 

equalizer adjusts itself depends on the changing channel the 

adaptive equalization will be used for this purpose [6].   

Many equalization schemes have been investigated for 

MDM equalization.  Equalization scheme based on least 

mean square algorithm (LMS) and Recursive least square 

algorithm (RLS) are used to solve the linear distortion of the 

transmitted signals. The structure of the adaptive channel 

equalizer based on LMS algorithm is shown in Figure 2. As 

illustrated in Figure, the received signal y(n) is different from 

the original signal x(n) because it was distorted by the overall 

channel transfer function C(z), which includes the transmit 

filter, the transmission medium, and the receive filter. To 

recover the original signal x(n), we need to process y(n) using 

the equalizer W(z), which is the inverse of the channel’s 

transfer function C(z) in order to compensate for the channel 

distortion. That is, we have to design the equalizer 
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such that 
( ) ( ).nx x n  An adaptive filter requires the 

desired signal d(n) for computing the error signal e(n) for the 

LMS adaptive algorithm. During the training stage, the 

adaptive equalizer coefficients are adjusted by transmitting a 

short training sequence. This known transmitted sequence is 

also generated in the receiver and is used as the desired signal 

d(n) for the LMS algorithm. After the short training period, 

the transmitter begins to transmit the data sequence. In the 

data mode, the output of the equalizer. 
( )nx is used by a 

decision device to produce binary data. Assuming that the 

output of the decision device is correct, the binary sequence 

can be used as the desired signal d (n) to generate the error 

signal e (n) for the LMS algorithm. The signal samples at the 

equalizer input are of the form: 
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where x(n) denotes the data sample at time index n, v(n) is the 

additive noise with the variance 2v, and h(j) is the channel 

impulse response. The data samples take on values of x(n) 

1, and the noise is assumed to be independent. 

The equalizer output is: 

 

     ˆ  x n T n n w x  (3) 

 

where x(n) [x (n), x (n 1), x (n 2), x (n N 1)] T is the 

vector of data sample at the equalizer input, and w(n)  [w 

(n), w (n 1), w (n 2), w (n N 1)] T is the vector of 

weighting coefficients of the adaptive filter.  

 

 
Figure 2: LMS channel equalizer 

 

 The output  x̂ n  is used in estimating the transmitted 

data symbol x (n k), with k denoting the delay. The n-th 

output error sample is: 

 

 (4) 

 

The weighting coefficients in the LMS algorithm are 

updated according to the following expression: 
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where is the step size which controls the rate of 

convergence of the LMS algorithm. The output means square 

error (MSE) is: 
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where 
1

1
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N

n

R x n x n
N 

  . The average output MSE after 

n th iteration can be expressed as:  
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where (n) is the minimum MSE as given by (6) for optimal 

weighting coefficients vector wopt (n). In contrast to the LMS 

algorithm, the RLS algorithm uses information from all past 

input samples (and not only from the current tap-input 

samples) to estimate the (inverse of the) autocorrelation 

matrix of the input vector. To decrease the impudence of 

input samples from the far past, a weighting factor for the 

impudence of each sample is used. The limitation of using 

LMS and RLS equalization scheme are the disability of 

solving the nonlinear distortion as well as the instability 

where by using these algorithms the filter weights do not 

reach to their optimum values due to the mean square error 

(MSE) being trapped to local minimum, for that purpose GA 

based equalization has been proposed to solve the ISI as 

shown in the following sections. 

 

IV. GA BASED MDM EQUALIZATION  

 

The GA implements a multi-objective optimization 

approach, the general process of GA can be illustrated in 

Figure 3. In this work, there are two discrete signals: a 

reference signal which is Gaussian signal and a distorted 

signal which we get it from the MDM simulation, and the 

main target of using GA is to rearrange and to change values 

   ˆ ( )e n x n x n K  
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of the distorted signal to get a MSE value between the 

reference signal and distorted signal less than a predefined 

limit with minimum change in values of the distorted signal. 

In order to achieve this target, the work has been split into 

two stages each stage will achieve one objective: rearranging 

the distorted signal and then changing values of the distorted 

signal. 

 

A. The first stage 

In order to rearrange the distorted signal, careful analysis 

of the proposed problem has been done. Let’s assume that the 

length of the signals is n, so the search space must be n. The 

bigger the length is, the bigger the search space is. Therefore, 

a search algorithm must be used because it is impossible to 

check the whole search space in numerous cases. GA is a 

great heuristic search algorithm, and it has been used in this 

research. In order to use GA, crossover, mutation, objective 

function, and structure of the chromosome must be defined. 

The chromosome is an array of two elements representing 

two indices from the distorted signal (two elements to swap). 

The value of each one of these two elements must be integer 

value in the range [1: n].  The objective function of the first 

stage is the MSE value between the Gaussian signal and the 

distorted signal after swap operation. GA has been used in 

repeated manner to determine the best swap operations 

minimizing the MSE value as low as possible. This stage 

finishes when the MSE value converges into a constant value, 

and the output of this stage is the “new arranged distorted 

signal”.  

 

 
 

Figure 3: GA main processes 

 

B. The second GA stage 

After minimizing the MSE value as low as possible by 

rearranging the signal elements, the second stage starts. The 

output of the last stage constitutes with the Gaussian signal 

the input to this stage.  

The objective function of the second stage is to minimize 

the MSE by changing some of the value of elements of 

arranged distorted signal produces a new signal with the 

name “Equalized signal”, and must guarantee that the MSE 

value between the changed distorted signal and the Gaussian 

signal is less than the allowed limit, and the MSE value 

between the arranged distorted signal and the changed 

distorted signal is as small as possible (i.e. minimizing the 

distortion in the arranged distorted signal). The chromosome 

is an array of n elements representing the values which must 

be added to or subtracted from the arranged distorted signal 

to minimize the MSE. To determine the range of these 

elements, refer to the following equations: 

 

Difference = Gaussian signal – Arranged distorted signal (8) 

 

For each element, I in the chromosome: 

If the difference (I) is equal to zero then Lower bound = 0 

and higher bound = 0, If the difference (i) is bigger than zero 

then: 

 
Lower bound=difference L(i)*(1-exp(-Const * Max_limit)) (9) 

 

and higher bound = difference (I) , If the difference (I) is 

smaller than zero then  Lower bound = difference (I) and: 

 
Higherbound=difference(i)* (1-exp(-Const * Max_limit)) (10) 

 

where Lower bound and higher bound constitute together the 

required range, exp is the exponential function, cost is a 

constant chosen as needed, maxLimit is the maximum 

allowed limit of the MSE value and the final equalized signal 

is computed from the following equation: 

 
Equalized signal=Arranged distorted signal Chromosome (11) 

 

Optimization problem must satisfy the following 

constraints: MSE between the Gaussian signal and the 

equalized signal < maxLimit (maxLimit is predefined). 

Objective function is minimizing the MSE value between the 

Gaussian signal and the arranged distorted signal if the 

previous constraint is satisfied or the fitness value will be 

infinity.  When the maxLimit variable is chosen to be very 

small, the range of value of chromosome elements must also 

be small in order to guarantee the convergence of GA into 

suitable solution (i.e. searching between more effective 

solutions making the distorted signal more similar to the 

reference signal), and that is the main reason for using the 

exponential function and constant in lower bound and higher 

bound equation. If decrease the maxLimit, increase the 

constant until you get a suitable solution. 

 

V. RESULT AND DISCUSSION 

 

The distorted signals which collected from the MDM 

system are compared with the Gaussian signals to compute 

the MSE. The SSIM for the distorted signal before the 

equalization is shown in Figure. 4. The MSE is high and the 

pulse shape for the distorted signal is broadening. While the 

LMS and RLS results show a slight improvement in both 

MSE and in the pulse shape similarity the LMS main 

parameters and results can be summarized below in Table 1 

and Table 2. 

 
Table 1 

RLS parameters and results 

 

CH 

FIR 

weight 

length 

RLS 

forget 

factor 

RLS 

initialization 

parameter 

MSE SSIM 

CPU 

time in 

sec 

CH1 18 0.54 0.999 0.0327 0.303 0.4836 
CH2 22 1 0.55 0.0607 0.280 0.4368 

CH3 55 0.99 0.912 0.0441 0.435 0.4680 

CH4 18 0.9 0.12 0.0325 0.557 0.4872 
CH5 18 0.8 0.912 0.0590 0.561 0.4684 
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Table 2 

LMS parameters and results 
 

CH 

FIR 

weight 
length 

LMS 

step 
size 

LMS 

leakage 
factor 

MSE SSIM 
CPU 

time 

CH1 18 1 0.03 0.03086 0.5157 0.405 

CH2 18 0.8 0.03 0.014014 0.5926 0.374 

CH3 18 0.2 0.03 0.0576 0.5527 0.405 
CH4 18 0.39 0.03 0.0465 0.4852 0.390 

CH5 18 0.9 0.03 0.014987 0.6942 0.421 

 

 
 

Figure 4:  Distorted signal compared with Gaussian signal 

 

From the Figure 5 and 6 it can be seen that LMS 

successfully solve the ISI problem while RLS fail where 

there is still overlapping between the channels and in terms 

of pulse shape both LMS and RLS couldn’t recover the signal 

to be as optimal as Gaussian signal. 

 

 
 

Figure 5:  LMS running results 

 

 
 

Figure 6: RLS running results 

 

VI.  EVALUATION PERFORMANCE  

 

In this section, the performance of GA based equalization 

will be compared with the performance of LMS equalizer 

based on the following evaluation measurements: 

 

A.  Mean Square Error (MSE) 

Table 3 shows the comparison of MSE for 5 channels 

between LMS and GA. from the Figure it is obviously can be 

seen that the best MSE is obtained from GA based 

equalization which successfully minimizes the MSE to be 

almost 0 for the five channels while LMS also minimize the 

MSE but very slight which make GA exceed the LMS in term 

of minimizing MSE.  

 

 

Table 3 

 MSE comparison for LMS, RLS and GA 
 

Channel 
MSE before 
equalization 

MSE after 

LMS 

equalization 

MSE after r 

RLS 

equalization 

MSE after 

GA 

equalization 

CH 1 0.10421 0.03086 0.0327 0.00007452 

CH 2 0.0925 0.01401 0.0607 0.00007592 

CH 3 0.10384 0.05761 0.0441 0.00006215 
CH 4 0.08396 0.04658 0.0325 0.00006974 

CH 5 0.14336 0.01502 0.0590 0.00006972 

 

Figure 7 shows the comparison between the performance 

of LMS and the performance of GA in terms of minimizing 

the MSE. 
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Figure 7: MSE comparison for LMS, RLS and GA 

 

B. SSIM 

The implementation of LMS and GA gave 5 equalized 

channels each channel are compared with Gaussian channel 

to evaluate the similarity index between them from Table 4 

which shows the SSIM comparisons between LMS and GA 

and from the Figure it can easily see that the GA successfully 

shape the output signal to be almost the same as the Gaussian 

the SSIM index improved from around 0.1 to be almost the 

same where the GA record almost 0.9 similarity between the 

two signals for the all channels while the LMS reduce the  

difference gap between the distorted signal and the Gaussian 

signal but very slightly , generally the GA is the best which 

can be seen clearly in Figure 8. 

 
Table 4 

SSIM comparison between LMS, RLS and GA 

 

Channel 
SSIM before 

equalization 

SSIM after 
LMS 

equalization 

SSIM after 
RLS 

equalization 

SSIM after 
GA 

equalization 

CH 1 0.1271 0.5157 0.3033 0.9407 
CH 2 0.0817 0.5926 0.2805 0.9450 

CH 3 0.1001 0.5527 0.4354 0.9529 

CH 4 0.1850 0.4852 0.5571 0.9525 
CH 5 0.0664 0.6942 0.5611 0.9498 

 

 
 

Figure 8: SSIM comparison for GA, LMS and RLS 

 

C. CPU time 

The CPU consumption is compared between the three 

algorithms where the GA consider the most time-consuming 

comparing with LMS which consume around 0.5 sec to get 

the result per channel while the GA exceed the 2 minutes to 

produce the result per channel, the GA is the worse in terms 

of CPU time consuming, Table 5 and Figure 9 shows the 

comparison between LMS and GA in terms of CPU time 

consumption. 
 

 
 

 

 
 

Table 5 

CPU time comparison for GA and LMS 
 

Channel 

CPU time for 

LMS 
equalization 

CPU time 

for RLS 
equalization 

CPU time for GA 

equalization in sec 

CH 1 0.4056 0.4836 120.2456 

CH 2 0.3744 0.4368 124.5356 

CH 3 0.4056 0.4680 124.0542 
CH 4 0.3900 0.4872 142.8969 

CH 5 0.4122 0.4684 129.7441 

* CPU times are measured under similar conditions 
 

 
 

Figure 9: CPU time comparison for GA and LMS 

 

VII. CONCLUSION 

 

This paper proposed an equalization scheme for MDM 

system based on using GA the results compared with the 

LMS and RLS results based on performance measurement 

MSE, SSIM and CPU time, it is proven that GA is the best 

on solving ISI problems comparing with RLS and LMS even 

if it is slower than them but the improvement in the MSE and 

SSIM is very good which makes using GA effective 

compared with the traditional algorithms such as LMS and 

RLS. 
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