

 e-ISSN: 2289-8131 Vol. 9 No. 2-6 63

NU-InNet: Thai Food Image Recognition Using
Convolutional Neural Networks on Smartphone

Chakkrit Termritthikun, Paisarn Muneesawang and Surachet Kanprachar

Department of Electrical and Computer Engineering, Faculty of Engineering,
Naresuan University, Phitsanulok, Thailand.

surachetka@nu.ac.th

Abstract—Currently, Convolutional Neural Networks (CNN)
have been widely used in many applications. Image recognition
is one of the applications utilizing CNN. For most of the
research in this field, CNN is used mainly to increase the
effectiveness of the recognition. However, the processing time
and the amount of the parameters (or model size) are not taken
into account as the main factors. In this paper, the image
recognition for Thai food using a smartphone is studied. The
processing time and the model size are reduced so that they can
be properly used with smartphones. A new network called NU-
InNet (Naresuan University Inception Network) that adopts
the concept of Inception module used in GoogLeNet is
proposed in the paper. It is applied and tested with Thai food
database called THFOOD-50, which contains 50 kinds of
famousThai food. It is found that NU-InNet can reduce the
processing time and the model size by the factors of 2 and 10,
respectively, comparing to those obtained from GoogLeNet
while maintaining the recognition precision to the same level as
GoogLeNet. This significant reduction in the processing time
and the model size using the proposed network can certainly
satisfy users for Thai-food recognition application in a
smartphone.

Index Terms—Deep Learning; Food Recognition;

Convolutional Neural Networks; Smartphone; Thai Food;
Dataset; Inception.

I. INTRODUCTION

Food image recognition is one of the crucial applications
used these days. It allows smartphone users to know the
name of the food. This is quite important for travelers who
travel to foreign countries. It also helps them to be able to
order food properly and know the information about the
food, for example the amount of calories, possible allergies,
and so on. Currently, image recognition application in a
smartphone mainly requires a computer [1,2] since the
recognition process requires a considerably amount of
resources to serve the used database. If the size of the
database is large, the limited resource in a smartphone
cannot keep up processing the data. Thus, the smartphone
must send the data to be processed at the third-party
computer. The effectiveness of the recognition in this case
then depends on the performance of the computer and the
speed of the internet connection.

Research on food image recognition, however, has been
mainly focused on the correctness [2–6] of the food name
for the given food image. Many techniques are applied, for
example using image segmentation [7, 8] to separate the
food from the background image. This technique will
increase the effectiveness of the food identification.
However, it is not appropriate to be used in a smartphone

application since more image processing is needed. To
overcome such problem, one possible approach called
Convolutional Neural Network (CNN) can be adopted. At
present, CNN has been used widely with image recognition.
In the ImageNet Large Scale Visual Recognition Challenge
(ILSVRC) for the year 2012, AlexNet [9] won the
competition by using the resized RGB (Red, Green, and
Blue) images as the input for CNN to learn and produce the
output probabilities of the categorized classes. Further, CNN
has been adopted by the winning competitors of ILSVRC,
that are GoogLeNet [10] and ResNet [11] in 2014 and 2015,
respectively.

CNN has been continuously studied and developed so that
the recognition of the effectiveness of CNN is higher than
that from the conventional techniques used in computer
vision. CNN can help extracting the features including
colors, textures, and shapes. Moreover, image classification
can also be done by CNN. In a research [12], CNN has been
applied to food image recognition by adopting AlexNet [9]
and tuning the output in the fully connected layer from
4,096 to 6,144. With a large-scale food database of 2,000
categories, the pre-training technique was done with the
tuned AlexNet, resulting in the extracted features with 6,144
vectors per image. These extracted features were tested with
food images from the databases UEC-FOOD100 and UEC-
FOOD256. It was found that the correctness of the food
image recognition was improved. However, with AlexNet
[9,12], the storage required is quite large; that is, at least 240
MB, which is not suitable to be used with a smartphone.
SqueezeNet [13] has been developed to reduce the storage
size, while keeping the effectiveness of the recognition. The
storage size was lessened by the factor of 50 that is, 4.8 MB.

To further improve the effectiveness of recognition,
GoogLeNet [10] was proposed by Google. It was developed
under the concept of Inception module that allows CNN to
analyze an image with 1×1, 3×3, and 5×5 filters. Having
done these, the obtained effectiveness of recognition was
better than that of AlexNet. Additionally, the dimension
reduction can be achieved by adding a 1×1 convolutional
layer prior to the 3×3 or 5×5 convolutional layers. The
required storage was reduced by the factor of 4.8, in
comparison to that of AlexNet, in which only 51.1 MB was
needed.

Considering the Food Image Recognition in a
smartphone, it can seen that not just the correctness of the
recognition, but the processing time and the required storage
(or parameters) are important as well. In this paper, all these
three important factors are taken into account. A new
network called NU-InNet (Naresuan University Inception
Network) is proposed. The concept of the inception module

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universiti Teknikal Malaysia Melaka: UTeM Open Journal System

https://core.ac.uk/display/270215388?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Journal of Telecommunication, Electronic and Computer Engineering	

64 e-ISSN: 2289-8131 Vol. 9 No. 2-6

adopted by GoogLeNet was utilized and further improved.
The aim is to reduce the processing time and the parameters
in comparison to those obtained from GoogLeNet, while
maintaining the recognition accuracy to be at the same level.

The organization of this paper is done as follows. The
related technology is given in Section II. The proposed
network in this paper is explained in Section III. In Section
IV, the obtained results are presented and discussed. Finally,
the conclusion is given in Section V

II. RELATED TECHNOLOGY

Considering the current computer technology, it is seen
that the data can be processed much faster utilizing GPU
(Graphics Processing Unit) to function with CPU (Central
Processing Unit). This then allows the deep learning
technique, which is widely used in object detection and
image recognition, to perform much better in terms of the
resulting accuracy in detection and recognition.
Convolutional Neural Network (CNN), one of the variants
of deep learning technique, is adopted in this paper to be
used for Thai food image recognition. In this section, the
detail about CNN and related ones will be given.

A. Convolutional Neural Network (CNN)
Convolutional Neural Network (CNN) is a type of feed-

forward artificial neural network (ANN). It contains
different layers, including the input layer, convolutional
layer, pooling layer, and fully-connected layer. These layers
are stacked on top of each other according to the CNN
architecture in order to do the recognition tasks. These
layers are explained briefly as follows.

Input layer is the layer that contains images of the training
data and testing data. These images are in the format of
RGB and the image size depends on the model used in the
network. For example, an image of 256 × 256 pixels, the
data contained in such image equal [256×256×3], where the
number 3 refers to the 3 channels of RGB.

Convolutional layer is the important layer of CNN where
the dot product between the filter and the particular volume
of the input data is determined according to the filter size.
The product starts from the position (0, 0) of the input data
and moves one pixel (stride 1) at a time from the left to the
right and from the top to the bottom of the image. The
obtained output from these products is the activation map.
For example, with a data of [224×224×3] and 96 3×3 filters,
moving the filter 2 pixels (stride 2) at a time, the size of the
achieved activation map will be [111×111×96].

Pooling layer is the layer put after a convolutional layer in
order to reduce the representation parameters of the
network, resulting in a less computational process for the
following steps. The function to be used in this layer can be
one of the non-linear functions, for example max pooling,
average pooling, L2 pooling, and so on. Among these
functions, max pooling is currently the most common
pooling to be used since it has shown to give a better
performance. For the max pooling, the maximum value of
the considered elements in the filtering area will be selected.
The parameters of the whole network will be reduced
depending on the size of the filter and the striding step. For
example, with the input data sized [111×111×96], using a
3×3 filter with striding step of 2, the resulting data size will
be reduced to [55×55×96].

Fully-connected layer is the layer put at the end of the
network. All activations in the preceding layers are
connected to this layer. The layer reduces the size of the
data to be one-dimension data.

CNN has been developed to recognize the data in the deep
level by adding more hidden layers to the network. An
image can be recognized in three dimensions: the width, the
height, and the depth. The network will divide the image
into parts and analyze each to extract the important features,
for example, colors, shapes, textures, and so on. These
features can certainly be used to classify the image.

B. Deep Learning Framework [14]
In order to develop CNN, the framework to be used must

be specifically designed. The designed framework can be
chosen depending on the computer language or the
operation system that users are working with. Considering
this research, it is focused on the application to be used with
an Android smartphone; hence, one possible choice is the
framework called Caffe, which is widely used, developed
with C++. Normally, to develop an application for an
Android device, Java is commonly used. Hence, to work
with Caffe framework in order to develop an Android
application, certainly C/C++ has to be adopted, Native
Development Kit (NDK) has to be used.

III. THE PROPOSED NETWORK

In this section, the dataset, the proposed network

architecture, and the implementation of such network in
Thai food image recognition in a smartphone will be
described.

A. THFOOD-50 Dataset
The dataset of 50 kinds of Thai popular food images were

collected as shown in Figure 1. These images were collected
from search engines, namely the Google, Bing, and Flickr.
In each kind of Thai food, there are approximately 200 to
700 images. These images are divided into 2 groups; that is,
90% of the images are in the training group and 10% of the
images are in the testing group. The images are resized to
have the size of 256×256 pixels suiting the CNN model to
be used.

Figure 1: Examples of Thai food images in the THFOOD-50 dataset

B. Proposed Network Architecture
Inception module used in GoogLeNet10 is adopted in the

proposed network. Two versions of the network are

NU-InNet: Thai Food Image Recognition Using Convolutional Neural Networks on Smartphone

 e-ISSN: 2289-8131 Vol. 9 No. 2-6 65

proposed. The architectures of these inception modules are
shown in Figure 2.

Figure 2: Module architecture of Inception (left), NU-Inception-1.0
(middle), and NU-Inception-1.1 (right)

Table 1

Detail of layers in NU-InNet 1.0

Type Patch Size/Stride Output Size
Input Image - 224×224×3
Convolution 7×7/2 109×109×96

Max Pool 3×3/2 54×54×96
Convolution 1×1/1 54×54×96
Convolution 5×5/2 25×25×96

Max Pool 3×3/2 12×12×96
1× NU-Inception 1.0 As in Figure 2 12×12×256

Average Pool - 1×1×256

Table 2
Detail of layers in NU-InNet 1.1

Type Patch Size/Stride Output Size

Input Image - 224×224×3
Convolution 3×3/2 111×111×32
Convolution 3×3/1 109×109×32
Convolution 3×3/1 109×109×64

Max Pool 3×3/2 54×54×64
Convolution 1×1/1 54×54×64
Convolution 5×5/2 25×25×96

Max Pool 3×3/2 12×12×96
1× NU-Inception 1.1 As in Figure 2 12×12×256

Average Pool - 1×1×256

a. NU-InNet 1.0
The inception module (as shown in Figure 2 (left)) is

modified by changing its 3×3 max pooling layer and 1×1
convolutional layer to be 1×1 and 7×7 convolutional layers,
respectively, as shown in Fig.2 (middle). The filter weights
are set by “Xavier” with a constant filter bias of 0.2. And,
for down sampling the size of the activation map after
convolutional layers, the average pooling layer with a stride
of 2 is used. The detail of this proposed NU-InNet 1.0
network is shown in Table 1 and Figure 3. There are totally
16 layers used in this network as shown in Figure 3
(middle). The details of these layers are given in Table 1.

b. NU-InNet 1.1
For this proposed network, the NU-Inception 1.0 module

is modified by changing [15,16] any 5×5 convolutional layer
to be 2 3×3 convolutional layers and changing any 7×7
convolutional layer to be 3 3×3 convolutional layers. These
changes can be viewed in Figure 2 (right). By doing this, the
processing time in the module will be lessened. Similarly,
the detail of this proposed NU-InNet 1.1 network is shown
in Table 2 and Figure 3. There is a total of 21 layers used in
this network, as shown in Figure 3 (right). The detail of
these layers is given in Table 2.

C. Implementation
The speed of data processing and the size of model are

very crucial in designing a neural network, especially for its
usage with a smartphone. In the proposed networks, one of
the benchmark is the recognition accuracy that has to be at
least not poorer than that from GoogLeNet, while the
processing time and model size have to be lower. To obtain
these properties, the number of modules in the proposed
networks is set to be one module; while in GoogLeNet, nine
modules were used as seen in Figure 3. The use of less
number of modules decrease the processing time and model
size; however, the recognition efficiency is also lessened. To
improve the recognition efficiency, Batch Normalization
[16] has to be put at the end of each convolutional layer as
performed in ResNet [11]. By doing this, the training
accuracy can be improved.

Figure 3: GoogLeNet, NU-InNet 1.0, and NU-InNet 1.1 architectures

IV. RESULTS AND DISCUSSION

The proposed networks were used in Thai food image

recognition. For the training process, a HPC (High-
Performance Computer) with specifications Inter(R)
Xeon(R) E5-2683 v3 @2.00-GHz 56-Core CPU, 64-GB
RAM, and NVIDIA Tesla K80 GPU were used with the
operating system Ubuntu Server 14.04.5 and Caffe14. For
the testing process, a smartphone with specifications
Intel(R) Atom(TM) Z3580 @2.33-GHz 4-Core CPU and 4-
GB RAM was used with Android 6.0.1 operating system.

A. Comparisons between NU-InNets and Winning
Models from ILSVRC

For the training process, AlexNet, GoogLeNet,
SqueezeNet, NU-InNet 1.0, and NU-InNet 1.1 were trained
from scratch. The database was divided into 2 parts; that is,
90% for training and 10% for testing. To get reliable testing
results, 10-fold-cross-validation was used. The following
hyper-parameters were used: adaptive gradient solver, mini-
batch size of 64, learning rate of 0.01, weight decay of
0.0005, and epoch size of 100.

Three aspects of performance were studied. The first one
was the accuracy obtained from the average of 10-fold-
cross-validation. Top-1 and Top-5 accuracies were reported.
The second one was the processing time required by each
model. Batch size was set to be one in the data layer in order
to allow CNN to process one iteration per image. 500
images were randomly selected and the average forward-
backward time required per image was determined. The last
one was the portability which contains two parameters; that

Journal of Telecommunication, Electronic and Computer Engineering	

66 e-ISSN: 2289-8131 Vol. 9 No. 2-6

is, the total number of parameters and the storage required to
store the trained model.

Table 3

Performance of NU-InNet 1.0, NU-InNet 1.1,
and the winning models from ILSVRC

Model
Average
Accuracy

Average
Forward-
Backward

(ms/image)

Para-
meters
(×106)

Model
size

(MB) Top1
(%)

Top5
(%)

AlexNet [9] 58.1 86.4 13.90 58.48 217
SqueezeNet [13] 58.2 87.4 24.53 0.75 2.86
GoogLNet [10] 68.4 91.7 40.13 10.45 39.9
NU-InNet 1.0 69.8 92.3 18.16 0.88 3.37
NU-InNet 1.1 68.7 92.3 36.52 0.89 3.42

The performance of the proposed models and the winning
models from ILSVRC is shown in Table 3. Considering
Top-1 and Top-5 accuracies, it is seen that the proposed
NU-InNet 1.0 and 1.1 are better than the winning models
from ILSVRC. For example, for Top-1 accuracy, the best
accuracy is from NU-InNet 1.0, that is 69.8% accuracy.
However, considering the average forward-backward time,
it was found that the smallest one is from AlexNet (that is,
13.90 ms/image) since the architecture of AlexNet is less
complicated. For the number of parameters and model size,
it is seen that SqueezeNet requires the smallest number of
these two factors, that are 0.75×106 and 2.86 MB,
respectively.

Comparing NU-InNets with AlexNet in terms of the
average forward-backward time, NU-InNet 1.0 requires
slightly longer time to process, that is, 4.26 ms/image
longer. While NU-InNet 1.1 requires the average time of
approximately 2 times larger than that from Nu-InNet 1.0
since the number of layers in NU-InNet 1.1 is larger than the
number of layers in NU-InNet 1.0. Additionally, considering
NU-InNets with SqueezeNet in terms of the required
number of parameters and the model size, it is seen that both
NU-InNets require small numbers of parameters and model
size similar to SqueezeNet.

From the previous discussion, it has been shown that the
proposed NU-InNet 1.0 and 1.1 can deliver the accuracy
with the same range as that from GoogLeNet. Moreover, as
shown in Figyure 4, the obtained average of the forward-
backward time, the number of parameters, and the model
size of the proposed models are smaller, especially for the
number of parameters and the model size. These impressive
performances allow the proposed models to be appropriately
utilized in a smartphone at which these factors are very
limited.

Figure 4: Comparisons between GoogLeNet, NU-InNet 1.0, and
NU-InNet 1.1

B. Thai Food Image Recognition Application for
Android

After the training process, the proposed models and
GoogLeNet were applied to use with an Android
smartphone in order to test for the required execution time.
The tested image size is 1080×1080 pixels. The execution
time for each model is shown in Table 4.

Table 4
Execution time required by GoogLeNet, NU-

InNet 1.0, and NU-InNet 1.1

Model Execution Time (ms)
GoogLeNet 906

NU-InNet 1.0 351
NU-InNet 1.1 691

From Table 4, it is seen that the use of NU-InNets

significantly reduces the execution time in comparison to
that from GoogLeNet. A reduction of 555 and 215 ms/image
can be obtained from NU-InNet 1.0 and NU-InNet 1.1,
respectively. The faster execution time in NU-InNets can
then result in a fast responding time in the Thai Food Image
Recognition application. Certainly, the use of these
proposed models in the application improves the satisfaction
of smartphone’s users.

V. CONCLUSION

In this paper, NU-InNet 1.0 and 1.1 have been proposed.

The inception concept in GoogLeNet was adopted and
modified in the proposed models. A new Convolutional
Neural Network (CNN) was designed. The main objective
of the proposed models was to reduce the processing time
and the model size, while keeping the accuracy not to be
poorer than that of GoogLeNet so that the proposed models
can be used in a smartphone. The proposed models have
been tested with the dataset THFOOD-50 which contains
images of 50 famous Thai menu. It is found that the
accuracies obtained from NU-InNet 1.0 and 1.1 are slightly
better than that of GoogLeNet. The required processing time
is reduced by a factor of 2 for the case of NU-InNet 1.0
comparing to GoogLeNet. The model size from both
proposed models is less than one-tenth of the model size
required by GoogLeNet. It is clearly shown that the
significant reductions in terms of processing time and model
size from the proposed NU-InNet 1.0 and 1.1 can lead to a
more suitable Thai Food Image Recognition application in a
smartphone.

ACKNOWLEDGMENTS

This work was supported by Naresuan University,

Thailand.

REFERENCES

[1] T. Maruyama, Y. Kawano, and K. Yanai, “Real-time mobile recipe

recommendation system using food ingredient recognition,” in
Proceedings of the 2nd ACM international workshop on Interactive
multimedia on mobile and portable devices, 2012, pp. 27-34.

[2] N. Tammachat and N. Pantuwong, “Calories analysis of food intake
using image recognition,” in Information Technology and Electrical
Engineering (ICITEE), 2014 6th International Conference on, 2014,
pp. 1-4.

[3] M. M. Anthimopoulos, L. Gianola, L. Scarnato, P. Diem, and S. G.
Mougiakakou, “A food recognition system for diabetic patients based
on an optimized bag-of-features model,” Biomedical and Health
Informatics, IEEE Journal of, vol. 18, pp. 1261-1271, 2014.

NU-InNet: Thai Food Image Recognition Using Convolutional Neural Networks on Smartphone

 e-ISSN: 2289-8131 Vol. 9 No. 2-6 67

[4] Y. Kawano and K. Yanai, “Foodcam: A real-time food recognition
system on a smartphone,” Multimedia Tools and Applications, pp. 1-
25, 2015.

[5] V. Bettadapura, E. Thomaz, A. Parnami, G. D. Abowd, and I. Essa,
“Leveraging context to support automated food recognition in
restaurants,” in 2015 IEEE Winter Conference on Applications of
Computer Vision, 2015, pp. 580-587.

[6] Y. Matsuda, H. Hoashi, and K. Yanai, “Recognition of multiple-food
images by detecting candidate regions,” in Multimedia and Expo
(ICME), 2012 IEEE International Conference on, 2012, pp. 25-30.

[7] D. Mery and F. Pedreschi, “Segmentation of colour food images using
a robust algorithm,” Journal of Food engineering, vol. 66, pp. 353-
360, 2005.

[8] Y.-W. Chang and Y.-Y. Chen, “An improve scheme of segmenting
colour food image by robust algorithm,” Proc. Algo2006, 2006.

[9] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet
classification with deep convolutional neural networks,” in Advances
in neural information processing systems, 2012, pp. 1097-1105.

[10] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, et al.,
“Going deeper with convolutions,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2015, pp.
1-9.

[11] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for
Image Recognition,” arXiv preprint arXiv:1512.03385, 2015.

[12] K. Yanai and Y. Kawano, “Food image recognition using deep
convolutional network with pre-training and fine-tuning,” in
Multimedia & Expo Workshops (ICMEW), 2015 IEEE International
Conference on, 2015, pp. 1-6.

[13] F. N. Iandola, M. W. Moskewicz, K. Ashraf, S. Han, W. J. Dally, and
K. Keutzer, “SqueezeNet: AlexNet-level accuracy with 50x fewer
parameters and< 1MB model size,” arXiv preprint arXiv:1602.07360,
2016.

[14] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, et
al., “Caffe: Convolutional architecture for fast feature embedding,” in
Proceedings of the 22nd ACM international conference on
Multimedia, 2014, pp. 675-678.

[15] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna,
“Rethinking the Inception Architecture for Computer Vision,” arXiv
preprint arXiv:1512.00567, 2015.

[16] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” arXiv preprint
arXiv:1502.03167, 2015.

	

