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Abstract—Currently, Convolutional Neural Networks (CNN) 
have been widely used in many applications. Image recognition 
is one of the applications utilizing CNN. For most of the 
research in this field, CNN is used mainly to increase the 
effectiveness of the recognition. However, the processing time 
and the amount of the parameters (or model size) are not taken 
into account as the main factors. In this paper, the image 
recognition for Thai food using a smartphone is studied. The 
processing time and the model size are reduced so that they can 
be properly used with smartphones. A new network called NU-
InNet (Naresuan University Inception Network) that adopts 
the concept of Inception module used in GoogLeNet is 
proposed in the paper. It is applied and tested with Thai food 
database called THFOOD-50, which contains 50 kinds of 
famousThai food. It is found that NU-InNet can reduce the 
processing time and the model size by the factors of 2 and 10, 
respectively, comparing to those obtained from GoogLeNet 
while maintaining the recognition precision to the same level as 
GoogLeNet. This significant reduction in the processing time 
and the model size using the proposed network can certainly 
satisfy users for Thai-food recognition application in a 
smartphone. 

 
Index Terms—Deep Learning; Food Recognition; 

Convolutional Neural Networks; Smartphone; Thai Food; 
Dataset; Inception. 
 

I. INTRODUCTION 
 

Food image recognition is one of the crucial applications 
used these days. It allows smartphone users to know the 
name of the food. This is quite important for travelers who 
travel to foreign countries. It also helps them to be able to 
order food properly and know the information about the 
food, for example the amount of calories, possible allergies, 
and so on. Currently, image recognition application in a 
smartphone mainly requires a computer [1,2] since the 
recognition process requires a considerably amount of 
resources to serve the used database. If the size of the 
database is large, the limited resource in a smartphone 
cannot keep up processing the data. Thus, the smartphone 
must send the data to be processed at the third-party 
computer. The effectiveness of the recognition in this case 
then depends on the performance of the computer and the 
speed of the internet connection. 

Research on food image recognition, however, has been 
mainly focused on the correctness [2–6] of the food name 
for the given food image. Many techniques are applied, for 
example using image segmentation [7, 8] to separate the 
food from the background image. This technique will 
increase the effectiveness of the food identification. 
However, it is not appropriate to be used in a smartphone 

application since more image processing is needed. To 
overcome such problem, one possible approach called 
Convolutional Neural Network (CNN) can be adopted. At 
present, CNN has been used widely with image recognition. 
In the ImageNet Large Scale Visual Recognition Challenge 
(ILSVRC) for the year 2012, AlexNet [9] won the 
competition by using the resized RGB (Red, Green, and 
Blue) images as the input for CNN to learn and produce the 
output probabilities of the categorized classes. Further, CNN 
has been adopted by the winning competitors of ILSVRC, 
that are GoogLeNet [10] and ResNet [11] in 2014 and 2015, 
respectively. 

CNN has been continuously studied and developed so that 
the recognition of the effectiveness of CNN is higher than 
that from the conventional techniques used in computer 
vision. CNN can help extracting the features including 
colors, textures, and shapes. Moreover, image classification 
can also be done by CNN. In a research [12], CNN has been 
applied to food image recognition by adopting AlexNet [9] 
and tuning the output in the fully connected layer from 
4,096 to 6,144. With a large-scale food database of 2,000 
categories, the pre-training technique was done with the 
tuned AlexNet, resulting in the extracted features with 6,144 
vectors per image. These extracted features were tested with 
food images from the databases UEC-FOOD100 and UEC-
FOOD256. It was found that the correctness of the food 
image recognition was improved. However, with AlexNet 
[9,12], the storage required is quite large; that is, at least 240 
MB, which is not suitable to be used with a smartphone. 
SqueezeNet [13] has been developed to reduce the storage 
size, while keeping the effectiveness of the recognition. The 
storage size was lessened by the factor of 50 that is, 4.8 MB.  

To further improve the effectiveness of recognition, 
GoogLeNet [10] was proposed by Google. It was developed 
under the concept of Inception module that allows CNN to 
analyze an image with 1×1, 3×3, and 5×5 filters. Having 
done these, the obtained effectiveness of recognition was 
better than that of AlexNet. Additionally, the dimension 
reduction can be achieved by adding a 1×1 convolutional 
layer prior to the 3×3 or 5×5 convolutional layers. The 
required storage was reduced by the factor of 4.8, in 
comparison to that of AlexNet, in which only 51.1 MB was 
needed.  

Considering the Food Image Recognition in a 
smartphone, it can seen that not just the correctness of the 
recognition, but the processing time and the required storage 
(or parameters) are important as well. In this paper, all these 
three important factors are taken into account. A new 
network called NU-InNet (Naresuan University Inception 
Network) is proposed. The concept of the inception module 
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adopted by GoogLeNet was utilized and further improved. 
The aim is to reduce the processing time and the parameters 
in comparison to those obtained from GoogLeNet, while 
maintaining the recognition accuracy to be at the same level. 

The organization of this paper is done as follows. The 
related technology is given in Section II. The proposed 
network in this paper is explained in Section III. In Section 
IV, the obtained results are presented and discussed. Finally, 
the conclusion is given in Section V 
 

II. RELATED TECHNOLOGY 
 

Considering the current computer technology, it is seen 
that the data can be processed much faster utilizing GPU 
(Graphics Processing Unit) to function with CPU (Central 
Processing Unit). This then allows the deep learning 
technique, which is widely used in object detection and 
image recognition, to perform much better in terms of the 
resulting accuracy in detection and recognition. 
Convolutional Neural Network (CNN), one of the variants 
of deep learning technique, is adopted in this paper to be 
used for Thai food image recognition. In this section, the 
detail about CNN and related ones will be given.  
 

A. Convolutional Neural Network (CNN) 
Convolutional Neural Network (CNN) is a type of feed-

forward artificial neural network (ANN). It contains 
different layers, including the input layer, convolutional 
layer, pooling layer, and fully-connected layer. These layers 
are stacked on top of each other according to the CNN 
architecture in order to do the recognition tasks. These 
layers are explained briefly as follows. 

Input layer is the layer that contains images of the training 
data and testing data. These images are in the format of 
RGB and the image size depends on the model used in the 
network. For example, an image of 256 × 256 pixels, the 
data contained in such image equal [256×256×3], where the 
number 3 refers to the 3 channels of RGB.  

Convolutional layer is the important layer of CNN where 
the dot product between the filter and the particular volume 
of the input data is determined according to the filter size. 
The product starts from the position (0, 0) of the input data 
and moves one pixel (stride 1) at a time from the left to the 
right and from the top to the bottom of the image. The 
obtained output from these products is the activation map. 
For example, with a data of [224×224×3] and 96 3×3 filters, 
moving the filter 2 pixels (stride 2) at a time, the size of the 
achieved activation map will be [111×111×96]. 

Pooling layer is the layer put after a convolutional layer in 
order to reduce the representation parameters of the 
network, resulting in a less computational process for the 
following steps. The function to be used in this layer can be 
one of the non-linear functions, for example max pooling, 
average pooling, L2 pooling, and so on. Among these 
functions, max pooling is currently the most common 
pooling to be used since it has shown to give a better 
performance. For the max pooling, the maximum value of 
the considered elements in the filtering area will be selected. 
The parameters of the whole network will be reduced 
depending on the size of the filter and the striding step. For 
example, with the input data sized [111×111×96], using a 
3×3 filter with striding step of 2, the resulting data size will 
be reduced to [55×55×96]. 

Fully-connected layer is the layer put at the end of the 
network. All activations in the preceding layers are 
connected to this layer. The layer reduces the size of the 
data to be one-dimension data. 

CNN has been developed to recognize the data in the deep 
level by adding more hidden layers to the network. An 
image can be recognized in three dimensions: the width, the 
height, and the depth. The network will divide the image 
into parts and analyze each to extract the important features, 
for example, colors, shapes, textures, and so on. These 
features can certainly be used to classify the image. 

 
B. Deep Learning Framework [14] 
In order to develop CNN, the framework to be used must 

be specifically designed. The designed framework can be 
chosen depending on the computer language or the 
operation system that users are working with. Considering 
this research, it is focused on the application to be used with 
an Android smartphone; hence, one possible choice is the 
framework called Caffe, which is widely used, developed 
with C++. Normally, to develop an application for an 
Android device, Java is commonly used. Hence, to work 
with Caffe framework in order to develop an Android 
application, certainly C/C++ has to be adopted, Native 
Development Kit (NDK) has to be used. 

 
III. THE PROPOSED NETWORK 

 
In this section, the dataset, the proposed network 

architecture, and the implementation of such network in 
Thai food image recognition in a smartphone will be 
described. 

 
A. THFOOD-50 Dataset 
The dataset of 50 kinds of Thai popular food images were 

collected as shown in Figure 1. These images were collected 
from search engines, namely the Google, Bing, and Flickr. 
In each kind of Thai food, there are approximately 200 to 
700 images. These images are divided into 2 groups; that is, 
90% of the images are in the training group and 10% of the 
images are in the testing group. The images are resized to 
have the size of 256×256 pixels suiting the CNN model to 
be used. 

 

 
 

Figure 1: Examples of Thai food images in the THFOOD-50 dataset 
 

B. Proposed Network Architecture 
Inception module used in GoogLeNet10 is adopted in the 

proposed network. Two versions of the network are 
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proposed. The architectures of these inception modules are 
shown in Figure 2. 

 
 

 
 

Figure 2: Module architecture of Inception (left), NU-Inception-1.0 
(middle), and NU-Inception-1.1 (right) 

 
Table 1 

Detail of layers in NU-InNet 1.0 
 

Type Patch Size/Stride Output Size 
Input Image - 224×224×3 
Convolution 7×7/2 109×109×96 

Max Pool 3×3/2 54×54×96 
Convolution 1×1/1 54×54×96 
Convolution 5×5/2 25×25×96 

Max Pool 3×3/2 12×12×96 
1× NU-Inception 1.0 As in Figure 2 12×12×256 

Average Pool - 1×1×256 
 

Table 2 
Detail of layers in NU-InNet 1.1 

 
Type Patch Size/Stride Output Size 

Input Image - 224×224×3 
Convolution 3×3/2 111×111×32 
Convolution 3×3/1 109×109×32 
Convolution 3×3/1 109×109×64 

Max Pool 3×3/2 54×54×64 
Convolution 1×1/1 54×54×64 
Convolution 5×5/2 25×25×96 

Max Pool 3×3/2 12×12×96 
1× NU-Inception 1.1 As in Figure 2 12×12×256 

Average Pool - 1×1×256 
 

a. NU-InNet 1.0  
The inception module (as shown in Figure 2 (left)) is 

modified by changing its 3×3 max pooling layer and 1×1 
convolutional layer to be 1×1 and 7×7 convolutional layers, 
respectively, as shown in Fig.2 (middle). The filter weights 
are set by “Xavier” with a constant filter bias of 0.2. And, 
for down sampling the size of the activation map after 
convolutional layers, the average pooling layer with a stride 
of 2 is used. The detail of this proposed NU-InNet 1.0 
network is shown in Table 1 and Figure 3. There are totally 
16 layers used in this network as shown in Figure 3 
(middle). The details of these layers  are given in Table 1. 
 

b. NU-InNet 1.1  
For this proposed network, the NU-Inception 1.0 module 

is modified by changing [15,16] any 5×5 convolutional layer 
to be 2 3×3 convolutional layers and changing any 7×7 
convolutional layer to be 3 3×3 convolutional layers. These 
changes can be viewed in Figure 2 (right). By doing this, the 
processing time in the module will be lessened. Similarly, 
the detail of this proposed NU-InNet 1.1 network is shown 
in Table 2 and Figure 3. There is a total of 21 layers used in 
this network, as shown in Figure 3 (right). The detail of 
these layers is given in Table 2. 
 
 
 

C. Implementation 
The speed of data processing and the size of model are 

very crucial in designing a neural network, especially for its 
usage with a smartphone. In the proposed networks, one of 
the benchmark is the recognition accuracy that has to be at 
least not poorer than that from GoogLeNet, while the 
processing time and model size have to be lower. To obtain 
these properties, the number of modules in the proposed 
networks is set to be one module; while in GoogLeNet, nine 
modules were used as seen in Figure 3. The use of less 
number of modules decrease the processing time and model 
size; however, the recognition efficiency is also lessened. To 
improve the recognition efficiency, Batch Normalization 
[16] has to be put at the end of each convolutional layer as 
performed in ResNet [11]. By doing this, the training 
accuracy can be improved. 

 

 
 

Figure 3: GoogLeNet, NU-InNet 1.0, and NU-InNet 1.1 architectures 
 

IV. RESULTS AND DISCUSSION 
 
The proposed networks were used in Thai food image 

recognition. For the training process, a HPC (High-
Performance Computer) with specifications Inter(R) 
Xeon(R) E5-2683 v3 @2.00-GHz 56-Core CPU, 64-GB 
RAM, and NVIDIA Tesla K80 GPU were used with the 
operating system Ubuntu Server 14.04.5 and Caffe14. For 
the testing process, a smartphone with specifications 
Intel(R) Atom(TM) Z3580 @2.33-GHz 4-Core CPU and 4-
GB RAM was used with Android 6.0.1 operating system.  
 

A. Comparisons between NU-InNets and Winning 
Models from ILSVRC 

For the training process, AlexNet, GoogLeNet, 
SqueezeNet, NU-InNet 1.0, and NU-InNet 1.1 were trained 
from scratch. The database was divided into 2 parts; that is, 
90% for training and 10% for testing. To get reliable testing 
results, 10-fold-cross-validation was used. The following 
hyper-parameters were used: adaptive gradient solver, mini-
batch size of 64, learning rate of 0.01, weight decay of 
0.0005, and epoch size of 100. 

Three aspects of performance were studied. The first one 
was the accuracy obtained from the average of 10-fold-
cross-validation. Top-1 and Top-5 accuracies were reported. 
The second one was the processing time required by each 
model. Batch size was set to be one in the data layer in order 
to allow CNN to process one iteration per image. 500 
images were randomly selected and the average forward-
backward time required per image was determined. The last 
one was the portability which contains two parameters; that 
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is, the total number of parameters and the storage required to 
store the trained model. 

 

 
Table 3 

Performance of NU-InNet 1.0, NU-InNet 1.1,  
and the winning models from ILSVRC 

 

Model 
Average 
Accuracy 

Average 
Forward-
Backward 

(ms/image) 

Para-
meters 
(×106) 

Model 
size 

(MB) Top1 
(%) 

Top5 
(%) 

AlexNet [9] 58.1 86.4 13.90 58.48 217 
SqueezeNet [13] 58.2 87.4 24.53 0.75 2.86 
GoogLNet [10] 68.4 91.7 40.13 10.45 39.9 
NU-InNet 1.0 69.8 92.3 18.16 0.88 3.37 
NU-InNet 1.1 68.7 92.3 36.52 0.89 3.42 

 
 

The performance of the proposed models and the winning 
models from ILSVRC is shown in Table 3. Considering 
Top-1 and Top-5 accuracies, it is seen that the proposed 
NU-InNet 1.0 and 1.1 are better than the winning models 
from ILSVRC. For example, for Top-1 accuracy, the best 
accuracy is from NU-InNet 1.0, that is 69.8% accuracy. 
However, considering the average forward-backward time, 
it was found that the smallest one is from AlexNet (that is, 
13.90 ms/image) since the architecture of AlexNet is less 
complicated. For the number of parameters and model size, 
it is seen that SqueezeNet requires the smallest number of 
these two factors, that are 0.75×106 and 2.86 MB, 
respectively. 

Comparing NU-InNets with AlexNet in terms of the 
average forward-backward time, NU-InNet 1.0 requires 
slightly longer time to process, that is, 4.26 ms/image 
longer. While NU-InNet 1.1 requires the average time of 
approximately 2 times larger than that from Nu-InNet 1.0 
since the number of layers in NU-InNet 1.1 is larger than the 
number of layers in NU-InNet 1.0. Additionally, considering 
NU-InNets with SqueezeNet in terms of the required 
number of parameters and the model size, it is seen that both 
NU-InNets require small numbers of parameters and model 
size similar to SqueezeNet. 

From the previous discussion, it has been shown that the 
proposed NU-InNet 1.0 and 1.1 can deliver the accuracy 
with the same range as that from GoogLeNet. Moreover, as 
shown in Figyure 4, the obtained average of the forward-
backward time, the number of parameters, and the model 
size of the proposed models are smaller, especially for the 
number of parameters and the model size. These impressive 
performances allow the proposed models to be appropriately 
utilized in a smartphone at which these factors are very 
limited. 

 

 
 

Figure 4: Comparisons between GoogLeNet, NU-InNet 1.0, and  
NU-InNet 1.1 

B. Thai Food Image Recognition Application for 
Android 

After the training process, the proposed models and 
GoogLeNet were applied to use with an Android 
smartphone in order to test for the required execution time. 
The tested image size is 1080×1080 pixels. The execution 
time for each model is shown in Table 4. 

 

Table 4 
Execution time required by GoogLeNet, NU- 

InNet 1.0, and NU-InNet 1.1 
 

Model Execution Time (ms) 
GoogLeNet 906 

NU-InNet 1.0 351 
NU-InNet 1.1 691 

 
From Table 4, it is seen that the use of NU-InNets 

significantly reduces the execution time in comparison to 
that from GoogLeNet. A reduction of 555 and 215 ms/image 
can be obtained from NU-InNet 1.0 and NU-InNet 1.1, 
respectively. The faster execution time in NU-InNets can 
then result in a fast responding time in the Thai Food Image 
Recognition application. Certainly, the use of these 
proposed models in the application improves the satisfaction 
of smartphone’s users. 

 
V. CONCLUSION 

 
In this paper, NU-InNet 1.0 and 1.1 have been proposed. 

The inception concept in GoogLeNet was adopted and 
modified in the proposed models. A new Convolutional 
Neural Network (CNN) was designed. The main objective 
of the proposed models was to reduce the processing time 
and the model size, while keeping the accuracy not to be 
poorer than that of GoogLeNet so that the proposed models 
can be used in a smartphone. The proposed models have 
been tested with the dataset THFOOD-50 which contains 
images of 50 famous Thai menu.  It is found that the 
accuracies obtained from NU-InNet 1.0 and 1.1 are slightly 
better than that of GoogLeNet. The required processing time 
is reduced by a factor of 2 for the case of NU-InNet 1.0 
comparing to GoogLeNet. The model size from both 
proposed models is less than one-tenth of the model size 
required by GoogLeNet. It is clearly shown that the 
significant reductions in terms of processing time and model 
size from the proposed NU-InNet 1.0 and 1.1 can lead to a 
more suitable Thai Food Image Recognition application in a 
smartphone. 
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