
Missouri University of Science and Technology Missouri University of Science and Technology 

Scholars' Mine Scholars' Mine 

Chemistry Faculty Research & Creative Works Chemistry 

01 Oct 2019 

State-To-State Inelastic Rotational Cross Sections in Five-Atom State-To-State Inelastic Rotational Cross Sections in Five-Atom 

Systems with the Multiconfiguration Time Dependent Hartree Systems with the Multiconfiguration Time Dependent Hartree 

Method Method 

Steve Ndengue 

Yohann Scribano 

Fabien Gatti 

Richard Dawes 
Missouri University of Science and Technology, dawesr@mst.edu 

Follow this and additional works at: https://scholarsmine.mst.edu/chem_facwork 

 Part of the Chemistry Commons 

Recommended Citation Recommended Citation 
S. Ndengue et al., "State-To-State Inelastic Rotational Cross Sections in Five-Atom Systems with the 
Multiconfiguration Time Dependent Hartree Method," Journal of Chemical Physics, vol. 151, no. 13, 
American Institute of Physics (AIP), Oct 2019. 
The definitive version is available at https://doi.org/10.1063/1.5119381 

This Article - Journal is brought to you for free and open access by Scholars' Mine. It has been accepted for 
inclusion in Chemistry Faculty Research & Creative Works by an authorized administrator of Scholars' Mine. This 
work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the 
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu. 

http://www.mst.edu/
http://www.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/chem_facwork
https://scholarsmine.mst.edu/chem
https://scholarsmine.mst.edu/chem_facwork?utm_source=scholarsmine.mst.edu%2Fchem_facwork%2F2989&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/131?utm_source=scholarsmine.mst.edu%2Fchem_facwork%2F2989&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1063/1.5119381
mailto:scholarsmine@mst.edu


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

State-to-state inelastic rotational cross sections
in five-atom systems with the multiconfiguration
time dependent Hartree method

Cite as: J. Chem. Phys. 151, 134301 (2019); doi: 10.1063/1.5119381
Submitted: 11 July 2019 • Accepted: 11 September 2019 •
Published Online: 1 October 2019

Steve Ndengué,1,2 Yohann Scribano,3 Fabien Gatti,4 and Richard Dawes2,a)

AFFILIATIONS
1 ICTP-East African Institute for Fundamental Research, University of Rwanda, Kigali, Rwanda
2Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, USA
3Laboratoire Univers et Particule de Montpellier, Université de Montpellier, UMR-CNRS 5299, 34095 Montpellier Cedex, France
4Institut de Sciences Moléculaires d’Orsay, UMR 8214, Université Paris-Sud - Université Paris-Saclay, 91405 Orsay, France

a)dawesr@mst.edu

ABSTRACT
We present a MultiConfiguration Time Dependent Hartree (MCTDH) method as an attractive alternative approach to the usual quantum
close-coupling method that approaches some computational limits in the calculation of rotational excitation (and de-excitation) between
polyatomic molecules (here collisions between triatomic and diatomic rigid molecules). We have performed a computational investigation of
the rotational (de-)excitation of the benchmark rigid rotor H2O–H2 system on a recently developed Potential Energy Surface of the complex
using the MCTDH method. We focus here on excitations and de-excitations from the 000, 111, and 110 states of H2O with H2 in its ground
rotational state, looking at all the potential transitions in the energy range 1–200 cm−1. This work follows a recently completed study on the
H2O–H2 cluster where we characterized its spectroscopy and more generally serves a broader goal to describe inelastic collision processes of
high dimensional systems using the MCTDH method. We find that the cross sections obtained from the MCTDH calculations are in excellent
agreement with time independent calculations from previous studies but does become challenging for the lower kinetic energy range of the
de-excitation process: that is, below approximately 20 cm−1 of collision energy, calculations with a relative modest basis become unreliable.
The MCTDH method therefore appears to be a useful complement to standard approaches to study inelastic collision for various collision
partners, even at low energy, though performing better for rotational excitation than for de-excitation.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5119381., s

I. INTRODUCTION

Our understanding of energy transfer between colliding atoms
and molecules is crucial for several fields such as chemical pro-
cesses in the Earth’s atmosphere, combustion chemistry processes
for industrial and aeronautic applications, and also outside Earth’s
environment, such as in the InterStellar Medium (ISM), and stel-
lar and planetary (and exoplanetary) atmospheres.1–4 For exam-
ple, determination of molecular abundances in protostellar clouds
requires one to solve radiative transfer equations, which themselves
require knowledge of state-to-state rotational excitation (and de-
excitation) rate constants. The most accurate technique to determine
accurate rotational inelastic cross sections (and thus rate constants)

is certainly the time independent quantum method based on Close
Coupling (CC) that solves the nuclear Schrödinger equation. The
CC methodology is a powerful and intuitive method to solve for the
rovibrational states and obtain the collisional cross sections using
a potential energy function typically obtained by means of accu-
rate ab initio methods. This approach was intensively used in the
past for the simulation of rotationally inelastic collisions of nonre-
active diatomic and polyatomic molecules with atoms and molec-
ular colliders such as H2, which is the most abundant molecule
in space. The other well-known technique is the quasiclassical tra-
jectory method, which solves the classical Hamilton’s equations of
motion, and is usually processed by quantizing the classical action
of trajectories using binning histogram methods. This approach is
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numerically very efficient since computational time decreases as
the collision energy increases. However, the QCT approach is best
suited for the high temperature regime where quantum effects are
expected to be less important, whereas for low temperature, its
validity could be questionable. More recently, the mixed quantum-
classical trajectory (MQCT)5 and statistical adiabatic channel model
(SACM)6,7 have been proposed as alternative approaches to the
CC method and they both have shown very promising results
in certain cases, but less accurate behavior in other cases, with
their domain of validity not yet fully known and needing to be
investigated.

In this work, we want to address another alternative approach
that can have some numerical advantages compared to CC
approaches and especially when we consider high-dimensional
molecular systems for which the density of internal rovibrational
states is large leading to unfeasible CC simulations. Here, we extend
a recently reported MCTDH investigation8 of Ar colliding with
a rigid triatomic rotor (H2O) by studying the collision between
diatomic rigid rotors with triatomic rigid rotors using the MCTDH
methodology. This five-dimensional system corresponds to the
description of rigid rotors inelastic rotational excitation, an example
of which is H2O colliding with H2, a system of interest for ISM and
astrochemistry. In the past, the spectroscopy of the weakly bounded
complex H2O–H2 was intensively studied9–13 but also the colli-
sional dynamics between those two molecules with various meth-
ods. Those methods used Time Independent CC formalism,11,14–20

as well as quasiclassical approach,21 which makes this system a
very good five-dimensional benchmark. The MCTDH method has
emerged in recent years as one of the methods of choice for the study
of the quantum molecular dynamics (spectroscopy or collisional
dynamics) for the system in high dimensionality. We are particu-
larly focused here on the low-energy collision region in order to most
stringently test the method. This is because of the resonance struc-
tures mentioned before, and also because of the known difficulty
for time-dependent approaches to describe low-energy collisions,
since the wavepacket in that case moves slowly, and the propaga-
tion then takes a very long time (which may lead to a propagation of
errors).

This paper is organized as follows: in Sec. II, we will first give
a brief introduction to the MCTDH method and the Hamiltonian
[the kinetic energy operator (KEO) and the potential energy surfaces
(PES)] used for the dynamics, and in Sec. II D, we will describe how
the cross sections are obtained and discuss the convergence of the
calculations. In Sec. III, we will present our results and their com-
parison to CC simulations. We will finally conclude in Sec. IV and
give some perspectives of this method for more complex molecular
systems.

II. COMPUTATIONAL METHODOLOGY
A. MCTDH method

The MultiConfiguration Time Dependent Hartree
(MCTDH)22–25 is a time-dependent method in which each degree of
freedom is associated with a small number of orbitals or single par-
ticle functions (SPFs) which, through their time dependence, allow
an efficient description of the molecular dynamic process. The total
MCTDH wave function is expanded in Hartree products, that is,

products of single-particle functions,

Ψ(Q1, . . . , Qf , t) =
n1

∑
j1=1
⋯

nf

∑
jf =1

Aj1⋯jf (t)
f

∏
κ=1

φ(κ)jκ (Qκ, t)

=∑
J

AJΦJ , (1)

where f is the number of degree of freedom of the system and Q1,
. . ., Qf are the nuclear coordinates. J is a composite index such
that

AJ ≡ Aj1⋯jf and ΦJ ≡

f

∏
κ=1

φ(κ)jκ .

Aj1⋯jf denotes the MCTDH expansion coefficients, and φ(κ)jκ (Qκ, t)
are the nκ SPFs associated with each degree of freedom κ. The sub-
sequent equation of motion for the coefficients and single particle
functions, obtained by applying the Dirac-Frenkel variational prin-
ciple to the wave function ansatz, are a set of coupled nonlinear
differential equations that conserve the norm and the total energy
(for time-independent Hamiltonian).

The MCTDH equations of motion are solved at every time step
and require to build the mean fields and the Hamiltonian matrix. The
Hamiltonian matrix and mean fields require evaluation of integrals
of the type

⟨φ(1)j1
⋯φ( f )

jf
∣Ĥ∣φ(1)l1

⋯φ( f )
lf
⟩. (2)

Because of the considerable time those calculations take in the pro-
cess of a computation, the MCTDH approach relies in transforming
the Hamiltonian operator Ĥ to a sum-of-products of single particle
operators,

Ĥ =
s

∑
r=1

cr

f

∏
κ=1

ĥ(κ)r , (3)

which then significantly simplifies the evaluation of the Hamiltonian
matrix and the mean fields

⟨φ(1)j1
⋯φ( f )

jf
∣Ĥ∣φ(1)l1

⋯φ( f )
lf
⟩ =

s

∑
r=1

cr

f

∏
κ=1
⟨φ(κ)jκ ∣ĥ

(κ)
r ∣φ

(κ)
lκ
⟩. (4)

In Subsections II B and II C, we will describe the expression of the
Kinetic Energy Operator and the Potential Energy Operator as a
sum-of-products of single particle operators.

B. MCTDH kinetic energy operator
We described quite extensively in the previous paper26 on

this system the Hamiltonian [Kinetic Energy Operator (KEO) and
Potential Energy Surface (PES)]. The Kinetic Energy Operator
(KEO) expressed in Jacobi coordinates is used in this work, follow-
ing the subsystem KEO derivation presented by Brocks et al.27 and
generalized by Gatti and Iung.28 Here, just as in our previous work26

on the same system, we work in the E2 frame obtained by rotation of
the first two Euler angles of the SF frame. Althrough this section, we
express the KEO in atomic units.

2T̂ = −
1
μR

∂2

∂R2 +2T̂1 +2T̂2 +
1

μRR2 (
ˆ⃗J†ˆ⃗J + ( ˆ⃗L1 + ˆ⃗L2)

2
− 2( ˆ⃗L1 + ˆ⃗L2)

ˆ⃗J)
E2

,

(5)
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where in the expression of the KEO a factor R is assumed to
be included in the wavefunctions, μR is the reduced mass of the
H2O–H2 cluster, the 1 and 2 subscripts refer respectively to the H2O
and H2 fragments. The rigid rotor Hamiltonian of the H2O molecule
is expressed as27,29

T̂1 =
A
2
(L̂2

1,+ + L̂2
1,− + L̂1,+L̂1,− + L̂1,−L̂1,+)BF1

−
C
2
(L̂2

1,+ + L̂2
1,− − L̂1,+L̂1,− − L̂1,−L̂1,+)BF1

+ BL̂2
zBF1 , (6)

where the rotational constants10 have values A = 27.8572 cm−1,
B = 14.5145 cm−1, and C = 9.2799 cm−1. The rigid rotor kinetic
energy of the H2 fragment is written simply as T̂2 = BH2

ˆ⃗L2
2 where

the rotational constant BH2 = 59.2434 cm−1. The final form of
the KEO obtained after some analytical development and which is
implemented in the MCTDH code is then

2T̂ = −
1
μR

∂2

∂R2 + 2T̂1 + 2T̂2

+
1
μR2 (J(J + 1) + ˆ⃗L2

1 + ˆ⃗L2
2 − 2L̂2

1,z − 2L̂2
2,z)

E2

+
1
μR2 (L̂1,+L̂2,− + L̂1,−L̂2,+ − 2L̂1,zL̂2,z)E2

+
1
μR2 (C+(J, K)(L̂1,+ + L̂2,+))E2

+
1
μR2 (C−(J, K)(L̂1,− + L̂2,−))E2

, (7)

with

C±(J, K) =
√

(J(J + 1) − K(K ± 1). (8)

In the preceding equations, the total angular momentum has been
integrated over the Wigner matrix elements D J

MK of the overall
rotation, M = 0 (the projection of J on zSF is arbitrary), and K is
the projection of J on the intermolecular axis zBF . ˆ⃗LX (X = 1, 2)
is the total angular momentum of fragment 1 or 2, and L̂X,± are
their corresponding creation and lowering operators expressed as
L̂X,± = L̂X,x ± L̂X,y. In terms of angles, we can write for their
expressions in the E2 frame

L̂2
1 = −

1
sinβ

∂

∂β
sinβ

∂

∂β
+

k1

sin2 β
, (9)

L̂2
2 = −

1
sin θ

∂

∂θ
sin θ

∂

∂θ
+

k2

sin2 θ
(10)

and

L̂1± = ±
∂

∂β
− k1 cotβ, (11)

L̂2± = ±
∂

∂θ
− k2 cot θ, (12)

with an additional shift k → k ± 1 in Eqs. (11) and (12) to lower
or raise the magnetic quantum number. In the BF1 frame (for
H2O), we have similar expressions with k1 changed into m1 and the
corresponding additional shift m1 →m1 ± 1,

L̂2
1 = −

1
sinβ

∂

∂β
sinβ

∂

∂β
+

m1

sin2 β
, (13)

and

L̂1± = ±
∂

∂β
−m1 cotβ. (14)

C. MCTDH potential energy operator
We use as in our previous work26 the same PES of Valiron

et al.30 and transform it to the appropriate set of coordinates,26 but
now for scattering calculations. Using the multipolar description
of Valiron PES and the transformation suggested by Avoird and
Nesbitt,9 we can have an analytically exact representation of the PES
in the set of coordinates used for the dynamics and thus are able to
extend the PES to any distance without doing an additional refitting
with MCTDH. This analytical representation of the PES is particu-
larly useful as the R coordinate’s range can be extended as much as
needed to accurately describe the low energy region of the cross sec-
tion. The surface from Ref. 30 after transformation from its original
set of coordinates to the E2 frame can be expressed as

V(R,β1, γ1,α1, θ2,ϕ2) = ∑
rβ ,rγ
rα ,rθ

Ṽrβ ,rγ
rα ,rθ
(R)frβ ,rγ

rα ,rθ
(ω1,ω2), (15)

where

frβ ,rγ
rα ,rθ
(ω1,ω2) = D(rβ)rα ,rγ(β1, γ1,α1)

⋆Crθ ,−rα(θ2,ϕ2). (16)

D(rβ)rα ,rγ(β1, γ1,α1) is the Wigner D-matrix and Crθ ,−rα(θ2,ϕ2) is the
Racah normalized spherical harmonics. As we work in the momen-
tum representation for the degrees of freedom γ, α, and ϕ, we replace
γ1, α1, and ϕ1 by their momentum representation m1, k1, and k2
where we dropped the 1 and 2 indices to simplify the notation.

D. Inelastic cross section calculations
The H2O + H2 scattering calculations were designed in a sim-

ilar way as our previous scattering studies,8,13,31 where we used the
MCTDH program: we will repeat those steps here.

(i) First, a wavepacket defining the initial state has to be con-
structed: it is here (since we are in the rigid rotor approx-
imation) the product of the initial rotational state of H2O,
the initial rotational state of H2, and a Gaussian func-
tion along the dissociative coordinate R, starting far away
from the interaction region. The Gaussian’s parameters (with
a negative impulsion) are selected in order to cover the
energy range of interest. The initial wavefunction is thus
expressed as

Ψi(R,β, m1, k1, θ̃, k2) = ψi(β, m1, k1, θ̃, k2)χ(R)
= τ1,i(β, m1, k1)τ2,i(θ, k2)χ(R), (17)

where ψi is a product of the initial rotation states of H2O
(τ1,i) and H2 (τ2,i). The initial rotational state of H2O are lin-
ear combination of Wigner-D matrices usually written in the
simplified notation j1KaKc, where j1 is the molecular rota-
tional angular momentum and Ka, Kc the projection on the
molecular BF z-axis along the prolate and oblate limits. If,
for example, we write the Wigner D-matrices as | j1, k1, m1⟩,
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with m1 as the projection along the molecule BF z-axis and
k1 as the projection along the SF z-axis (which for the dimer
is the intermolecular axis), then the rotational state for the
asymmetric top is written as | j1, k1, m⟩, where

∣ j1, k1, m⟩ =
j1

∑
m=−j1

cm,m1 ∣ j1, k1, m1⟩,

where | j1, k1, m1⟩ is the Wigner D-matrix and m = Ka − Kc
is an index running from −j1 to j1. For j1 = 0, the rotational
state for the asymmetric top is |000⟩ = |0, 0, 0⟩with eigenvalue
0. The rotational states for j1 = 1 are10

∣110, k1⟩ =
1
√

2
[∣1, 1, k1⟩ + ∣1,−1, k1⟩],

∣111, k1⟩ = ∣1, 0, k1⟩,

∣101, k1⟩ =
1
√

2
[∣1, 1, k1⟩ − ∣1,−1, k1⟩], (18)

with respective eigenvalues A + B, A + C, and B + C (clearly
with a 2j1 + 1 = 3 degeneracy) with A, B, and C being the
rotational constants of H2O given above and k1 = −1, 0, 1
the magnetic quantum number projections. For j1 = 2, we
used the symbolic arithmetic program Sympy32 to obtain
the normalized eigenfunctions and related eigenvalues that
helped to analytically generate the initial but also the final
rotational functions. While it is obviously not compulsory
to obtain the initial and final functions analytically, it nev-
ertheless helps to verify that these results match the known
analytical results for this rotational Hamiltonian. For any
j’s, we more generally use a numerical program to gen-
erate the eigenvalues and eigenvectors of the asymmetric
top and is thus used to build any initial or final rotational
function.

The initial state of H2 is an associated Legendre poly-
nomial that we write simply as j2k2, where j2 is the molecular
angular momentum of the H2 fragment and k2 the projection
along the BF-axis. The Gaussian χ is written as

χ(R) =
1

√
2πw

exp[−(
R − R0

2w
)

2
]eip0(r−R0) (19)

with R0, p0, and w being respectively its center in coordinate
and momentum space and its width. For this work, we tested
various parameters and two sets of energy distributions (for
which a state-to-state cross section will be presented later)
are shown in Fig. 2.

When the initial rotational states of H2O or H2 have
a nonzero angular quantum number (j1 ≠ 0 in j1KaKc or
j2 ≠ 0 in j2k2), then calculations for each magnetic quantum
number projection have to be done also in order to obtain the
state-to-state cross-sections from a specific initial rotational
state. The lowest para and ortho rotational levels of H2O and
H2 are presented in Table I. The parameters were taken to
be similar to the ones used for the MOLSCAT calculations
which are considered to be exact.20 Using MOLSCAT, cal-
culations for para-H2 were done with j1,max = 5, j2,max = 2,
and JTOT ,max = 35. A test of j2,max = 4 was done and displayed
a change of less than 0.1% in the Time Independent cross

TABLE I. Rotational energy levels (cm−1) or ortho and para H2O and H2.
The rotational constants used to generate those levels are A = 27.8572 cm−1,
B = 14.5145 cm−1, and C = 9.2799 cm−1 for H2O and BH2 = 59.2434 cm−1 for
H2. Ortho levels of H2 are displayed in italics.

H2O H2

ortho para ortho and para

101 23.7995 000 0.000 00 0 0.0000
110 42.4024 111 37.158 3 1 118.4868
212 79.5133 202 70.132 9 2 355.4604
221 135.3220 211 95.245 4 3 710.9208
312 173.5976 220 136.587 6 4 1184.8680

sections. The 2j1 + 1 (and 2j2 + 1) repetition of the calcula-
tions is avoided due to the symmetry of H2O (and H2). If we
write an initial rotational eigenstate of H2O as | j1, k1, m1⟩

(H2 as | j2, k2⟩), then the state-to-state probabilities from
the initial states | j1, k1, m1⟩ and | j1, −k1, m1⟩ (| j2, k2⟩ and
|j2,−k2⟩) are identical, and instead of running for a rotational
state j1KaKc of H2O and j2 of H2 (2j1 + 1) × (2j2 + 1) calcu-
lations, we can simply run (j1 + 1) × (j2 + 1) calculations to
obtain the cross sections.

(ii) Next, we have to use a suitable Complex Absorbing Potential
(CAP). The intensity of the CAP was determined using the
program plcap included in the MCTDH package. As before
the form of the CAP is W(x) = η|x − xc|bΘ(x − xc), where Θ is
the Heaviside step function, xc the starting point of the CAP
was selected such that the length of the CAP is 20 bohrs, η its
strength is 4.76 × 10−9, and b its order is 4.

(iii) We then have to select primitive basis and SPF bases for
the calculation. The primitive basis, its range, and the num-
ber of the SPFs used for the wavepacket propagation are
summarized in Table II. A primitive basis composed of
Fast Fourier Transform (FFT) functions for the intermolec-
ular distance R was coupled with a Wigner-DVR29 and a
two dimensional Legendre-K DVR33 (a two dimensional
extended Legendre DVR similar to Corey and Lemoine’s34)
to describe respectively the orientation of the H2O and
the H2 fragments in the E2 frame. For these calculations,

TABLE II. Parameters of the primitive basis used for the rovibrational calculations of
H2O–H2. FFT stands for the Fast Fourier Transform. Wigner stands for the Wigner
DVR. KLeg is the K-Legendre DVR. The units for distance and angle are bohrs and
radians, respectively.

Primitive Number of Size of
Coordinate basis points Range SPF basis

R FFT 960 2.0–72.0 10–20
β Wigner 6 0–5 10–25
m1 K 11 −5 to 5
k1 K 11 −5 to 5
θ̃ KLeg 3 0–2 10–12
k2 K 5 −2 to 2
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the same primitive basis was used for the calculations of
both para and ortho states of H2O since the symmetry
has not been incorporated yet for the Wigner-DVR in
MCTDH.

(iv) As we are interested in the low-energy region of the cross
sections, we need to propagate the wavepacket for a very
long time. In order to control the propagation and the con-
vergence of the calculation, we allowed the wave packet to
propagate for a maximum of 200 ps (with the wavefunction
printed every 20 fs) or when 99.0% of the wavepacket has
been absorbed by the CAP. For higher values of J, the propa-
gations complete very quickly: for example, for J = 35, the
calculation stops after about 10 ps while for J = 0 a com-
plete 200 ps of propagation is needed and still by that time
only about 98.5% of the wavepacket has been absorbed by
the CAP. Once the propagations are completed, two proce-
dures can be used to obtain the various state-to-state transi-
tion probabilities: it is either the flux25,35,36 approach or the
Tannor and Weeks37 method. We tested both methods, but
we will mainly present results from the Tannor and Weeks
method as both results were similar. Unless specified oth-
erwise, in the following equations and text, E = Etot , that
is, the total energy in the collisional process. The kinetic or
collision energy will be labelled Ekin. Using the Tannor and
Weeks method, the state-to-state reaction probabilities are
expressed as37,38

PJ
f←i(E) = ∣S

J
fi(E)∣

2

=
1

4π2∣Δi(E)∣2∣Δj(E)∣2
∣∫

T

0
eiEtCfi(t)dt∣

2

, (20)

where Sfi is the S-matrix element and Cfi is the autocorrelation func-
tion obtained in term of the propagated function Ψi and the final
state function Ψf ,

Cfi(t) = ⟨Ψf ∣e
−iHt
∣Ψi⟩, (21)

whereΔi andΔf are the energy distribution39,40 of the initial and final
wavepackets, respectively. The functions Ψi and Ψf are expressed as
in Eq. (17) where we can rewrite the labelled transition f ← i as

j′1k′1m′1, j′2k′2 ← j1k1m1, j2k2. (22)

Here, j1(j1’) and j2(j′2) are respectively the orbital angular momen-
tum quantum numbers of the H2O and H2 molecule, k1(k′1) and
m1(m′1) are respectively the projection of j1(j′1) along the dimer
BF z-axis and the projection of j1(j′1) along the z-axis of the H2O
monomer Body-Fixed frame. m1(m′1) along with j1(j′1) identify spe-
cific rotational states of H2O. k2(k′2) is the dimer z-axis Body-Fixed
projection of j2(j′2) running from − j2 to j2(−j′2 to j′2). In the lit-
erature, m1(m′1) is often replaced by KaKc where Ka and Kc are
respectively the projection of the molecular orbital angular momen-
tum along the Body-Fixed (monomer) axis in the prolate and oblate
limits.

As mentioned in a previous publication,8 while the flux and
Tannor and Weeks methods lead to similar probabilities, the flux
method usually produces a small, but non-negligible flux in an ener-
getically forbidden region (at energies lower than the total energy
threshold). This numerical issue can easily be corrected by zero-
ing the probabilities in the energetically forbidden region when

summing the cross sections [Eq. (23)]. Conversely, the Tannor and
Weeks method requires a broad energy distribution of the final
wavefunctions (wavefunctions on which the propagated wavefunc-
tion is projected) to make the correlation function disappear more
quickly. Following the calculation of the state-to-state transition
probabilities, a weighted sum (by the 2J + 1 factor) of these prob-
abilities then produces the inelastic scattering cross section from the
relation

σ j′1m′1j′2
j1m1j2

(E) =
πh̵2

2μR(2j1 + 1)(2j2 + 1)Ekin

j1

∑
k1=−j1

j2

∑
k2=−j2

j′1
∑

k′1=−j′1

j′2
∑

k′2=−j′2

Jmax

∑
J=0

× (2J + 1)P J
j′1k′1m′1 ,j′2k′2←j1k1m1 ,j2k2

(E), (23)

where Ekin = E − Eint = E − ϵH2 − ϵH2O with Eint , ϵH2 , and ϵH2O as the
internal initial energy of the whole system and the initial rotational
energies of the H2 and H2O fragments, respectively.

III. RESULTS AND DISCUSSION
Before presenting and discussing the results, it is worth point-

ing out that the purpose of this work was not simply to demon-
strate precise agreement between the MCTDH results and those
obtained with the Time-Independent Close-Coupling method (if
any could be found), but rather to highlight the computational effi-
ciency with which MCTDH makes it possible to accurately obtain
the cross section with reasonably limited resources. However, as the
following results will show, we were able to obtain overall a good
agreement with Close Coupling results. For all of the calculations
reported in this work, we used a primitive and single particle func-
tions basis as reported in Table II. Between 1000 and 6000 single
particle functions were used to describe the dynamics of the sys-
tem compared with more than 1 000 000 primitive basis functions
that would have been needed overall for a standard wave packet
calculation.

A. Convergence of the calculations
The convergence of the MCTDH calculations depends on var-

ious parameters: the primitive basis, the SPF basis, the range of the
propagation, the intensity of the CAP, and the duration of the propa-
gation. For this work, we used a primitive basis with angular param-
eters similar to the one used by Scribano et al.:19 the number of DVR
points for the radial degree of freedom was selected to be sufficiently
dense for the range selected.

1. Convergence: Radial coordinate range
To determine the range of integration, we performed 2 scat-

tering calculations: one going from 2 to 52 bohrs (with 768 radial
DVR points) and the other from 2 to 72 bohrs (with 960 radial
DVR points), that is, with about the same density of points along
the radial coordinate for the 2 calculations, but also the same num-
ber of SPF (1000 SPF for these tests). Those 2 calculations were
compared with the available close-coupling calculations (considered
exact) as depicted in Fig. 1. As expected, extending the grid and
displacing the position of the CAP (which however keeps the same
length) improves the quality of the results. Also, the contraction of
the grid induces a very small blue shift in the position of the reso-
nance structures of the cross section. We computed the transition

J. Chem. Phys. 151, 134301 (2019); doi: 10.1063/1.5119381 151, 134301-5

Published under license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

FIG. 1. Comparison of MCTDH calculations for Rmax = 52 and Rmax = 72 with time
independent close coupling results for the 000 → 111 rotational transition of H2O.
A zoom of the [40, 90] cm−1 is displayed in the inset.

probabilities for each individual J from 0 to 35 (the maximum J
value considered for the time independent close coupling calcula-
tions) in parallel using 32 processors for each J-calculation. These
calculations with 1000 SPF lasted from less than a day for the higher
J-values to about 7 days for the lower J-values that require a longer
propagation. With respect to memory, the calculation for a given J
used less than 1Gb of memory to run, but the accumulation of the
time dependent wavefunction at each time step can request up to
25 Gb of memory for very long propagations with the largest basis.
However, once the probabilities are computed, the wavefunctions
are no longer necessary and can be deleted. The duration of these
calculations is significantly longer than standard time independent
calculations in this energy range. For comparison, single processor
MOLSCAT calculations of a single energy point take approximately
1 h. To describe the 0–200 cm−1 energy range, 2500 points were
computed which is overall 2500 h of CPU time. This amount of
CPU time would be on average the time required to compute all
the 000 → jKaKc transitions using the parameters specified earlier.
If one is interested in all the cross sections up to j = 2 for H2O,
obtaining their cross sections using the approach we presented will
be about 22 times more expensive than the CC calculations. Fortu-
nately, several factors may play in favor of the MCTDH implemen-
tation. We anticipate, for example, that at higher energies because
of the basis increment and the speed of the processes (allowing
for a shorter propagation time) the MCTDH calculations for this
system and similar ones will become more advantageous than CC
calculations.

2. Convergence: The energy distribution
An important aspect of the calculation is the choice of the ini-

tial wavefunction. As stated before, the width and initial momentum
of the Gaussian are connected to the energy range that will be cov-
ered by the scattering calculation. We perform 2 separate scattering
calculations to see the influence of the final cross sections on the
choice of the energy range covered by the scattering. For the first

FIG. 2. Energy distribution used for the MCTDH calculations at J = 0. edist1 is
generated with a Gaussian of width 1.2 a.u. and an initial momentum of −1.6 a.u.
and edist2 with a Gaussian of width 1.0 a.u. and a momentum of −2.1 a.u.

calculation, we selected a Gaussian centered at 52 bohrs with a width
of 1.2 a.u. and an initial momentum of −1.6 a.u. (where the nega-
tive sign emphasizes the fact that the initial wave packet goes toward
the interaction region) and for the second calculation, the Gaussian
is centered at 52 bohrs but with a width of 1.0 a.u. and an initial
momentum of −2.1 a.u. The energy distributions of the 2 calcula-
tions at J = 0 are displayed in Fig. 2, and a comparison between the
cross sections for the 000 → 111 transition is compared with the time
independent close coupling calculation on Fig. 3. The comparison
shows that the calculation with the shorter energy distribution range
describes better the low energy than the one with the larger range.
Therefore, for calculations spanning a large collisional energy range,

FIG. 3. Comparison of MCTDH calculations for edist1 and edist2 with time inde-
pendent close coupling results for the 000 → 111 rotational transition of H2O. A
zoom of the (40, 90) cm−1 is displayed in the inset.
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it would be necessary to perform different sets of calculations with
two or more energy distribution ranges in order to cover accurately
a wide range of collision energies.

3. Convergence: The SPF basis
An advantage of the MCTDH method is that the approach,

just like the Close Coupling method, is variational. Therefore, we
know that once a suitable choice of a primitive basis is made, we
can improve the accuracy of the calculation by further increasing
the size of the SPF basis. A characteristic of the MCTDH method
is that it is designed to reproduce very well the most intense fea-
tures of a process with a limited number of functions: however, the
less intense features can be recovered easily by increasing the size of
the SPF basis. In the limit NSPF → NPBF , we can recover the exact
numerically exact calculations, where NSPF and NPBF are the total
number of single particle and primitive basis functions, respectively.
We were able to verify this feature by looking specifically at the
000 → 211 transition with an increasing SPF basis, and comparing
the results with the exact Time Independent results. One particular-
ity of that transition is that it is about 50 times less intense than the
000 → 111 transition which is the most intense one and also retrieved
from the same set of calculations. We thus selected 4 basis sets which
are presented in Table III for the 3 combined modes. During an
MCTDH calculation, the SPFs for each mode are arranged accord-
ing to their weight in the calculation. The parameters mentioned in
Table III give the largest combination of SPF basis use for a calcula-
tion. However, for calculation at higher J’s, the combination of basis
numbers that will be used is likely to be smaller. The comparison
of the results for the various basis sets is shown in Fig. 4. We can
see from the figure that as the SPF basis increases, the agreement
with the CC results (which are considered to be exact) improves also
significantly.

For the final results reported in this work, we had to decide on
convergence criteria. As we had to do several propagations (for each
J), and since the SPF basis size decreases as J increases, we chose
an SPF basis such that for each (combined) mode, the weight of the
last SPF (arranged in decreasing order of weight) should be less than
10−5 for all the calculations. This uniform criteria allowed to vary-
ing basis which will however maintain a consistent accuracy of the
calculation.

B. Rotational excitation cross sections
The calculated inelastic scattering cross sections for the transi-

tions from the ground state to the first excited states, i.e., 000 → 111,
000 → 202, and 000 → 211 are displayed on Figs. 5–7, respectively.
The figures show a very good agreement between the MCTDH cal-
culations and the CC calculations at these low energies. In partic-
ular, the positions of the resonances are well reproduced in each

TABLE III. Parameters of the SPF basis used in Fig. 4.

Basis 1 Basis 2 Basis 3 Basis 4

nR 10 12 15 20
nβ,m1 ,k1 10 15 20 25
nθ̃,k2

10 10 12 12

FIG. 4. Comparison between MCTDH calculations for the 000 → 211 transition with
4 different sets of basis and Exact (MOLSCAT) time independent close coupling
calculations. Each MCTDH calculation is shifted by 0.2 Å2 downward with respect
to the previous one, and the most accurate calculation is closer to the MOLSCAT
result. The parameters of the basis are given in Table III.

calculation and an even better agreement will certainly be met with
a larger SPF basis. The position and the intensity/width of the peaks
are connected in the calculations to the range and the duration of the
propagation, respectively. A too-narrow range of the propagation
shifts the peaks to higher energies because of confinement effects,
and a shorter duration of the propagation would make the reso-
nances too broad or even nonexistent. In fact, we actually see in
the course of the propagation that some resonances start to appear
only after a specific amount of propagation time has elapsed. Simi-
larly, just like with a rovibrational calculation, increasing the size of
the (SPF) basis improves the agreement on the peaks position with
the time independent calculations, which are considered here to be
numerically exact.

FIG. 5. Comparison of MCTDH calculations with time independent close coupling
results for the 000 → 111 rotational transition of H2O.
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FIG. 6. Comparison of MCTDH calculations with time independent close coupling
results for the 000 → 202 rotational transition of H2O.

Similar to the calculations involving the para-states, we per-
formed calculations for the ortho-states. Here however, as we men-
tioned before, we used the same basis sets (made of both para and
ortho rotational states of H2O) to run the propagation and obtain
the cross sections. The excitation cross sections for 2 ortho transi-
tions 101 → 110 and 101 → 212 are displayed, respectively, in Figs. 8
and 9. Here again, we observe a very good agreement between the
MCTDH and the time independent results, both with respect to the
position and the intensity of the peaks. We notice however some
small issues at the start of the cross sections where some peaks are
displayed with a smaller intensity than the time independent results,
an issue that is likely linked to the duration of the propagation. Also,
toward the high energy side of the spectrum, it appears that the
MCTDH calculations have a higher amplitude than the time inde-
pendent results, an issue that would be corrected if a wider energy

FIG. 7. Comparison of MCTDH calculations with time independent close coupling
results for the 000 → 211 rotational transition of H2O.

FIG. 8. Comparison of MCTDH calculations with time independent close coupling
results for the 101 → 110 rotational transition of H2O.

distribution appropriate to describe higher energy values were to be
selected.

C. Rotational de-excitation cross sections
We performed additional calculations to determine the state-

to-state cross sections from the first excited para-state. This allowed
us to obtain a de-excitation cross section 111 → 000 in addition to an
excitation cross section 111 → 202. These cross sections are displayed
in Figs. 10 and 11. Note in Fig. 10 the logarithmic scale used for the
y− axis (cross section intensity). We observe as in the previous cases
that the excitation cross section reproduces quite well the position
of the peaks/resonances of the spectrum; this is also the case for the
de-excitation process until we get to very low kinetic energy values.
However, while the intensities are usually quite well reproduced for

FIG. 9. Comparison of MCTDH calculations with time independent close coupling
results for the 101 → 212 rotational transition of H2O.
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FIG. 10. Comparison of MCTDH calculations with time independent close coupling
results for the 111 → 000 rotational transition of H2O. Note the logscale applied to
the y–axis (cross section intensity).

the excitation processes, the logarithmic scale cross sections (Fig. 10)
highlight how difficult it is to accomplish it for the de-excitation
process. This difference in accuracy between the 2 types of calcu-
lations (excitation and de-excitation) using the same SPF basis can
be understood from the cross sections equation [Eq. (23)] but also
from the calculation of state-to-state transition probabilities in the
flux formalism. Within this formalism, the transition probabilities
are obtained as a ratio of the flux going toward a specific channel
to the total flux. When the calculation is exact, the total flux is well
approximated by the energy distribution of the propagation. While
for the excitation processes the starting point of the state-to-state
cross-sections is often in an energy region where the absolute value
of the energy distribution is quite significant, for de-excitation pro-
cesses, this often corresponds to an energy region where the energy

FIG. 11. Comparison of MCTDH calculations with time independent close coupling
results for the 111 → 202 rotational transition of H2O.

FIG. 12. Comparison of MCTDH calculations—with the smaller (Basis 2) and larger
(Basis 1) basis—with time independent close coupling results for the 111 → 000
rotational transition of H2O. Note the logscale applied to the y–axis.

distribution is very small, 2 order of magnitude or more lower than
the peak of the energy distribution. As the flux to that channel at low
kinetic energy is also very small, it is quite difficult to describe with
a small contracted basis designed for the whole energy range, the
small features that mainly influence the low kinetic energy domain.
Additionally, the 1/Ec term amplifies the disagreement between the
MCTDH and time independent calculations at low collision energies
where its role is alleviated as energy increases as we can see from the
picture. However, we realized that by increasing the SPF basis size
we were able to significantly improve the comparison with the time
independent results. For example, while for most of the calculations
displayed in this work we used a SPF basis with parameters described
in Table II, and for the 111 → 000, we used up to 35 SPFs for the H2O
angular basis and up to 25 SPFs for the FFT on the R coordinate

FIG. 13. Comparison of MCTDH calculations—with the smaller (Basis 2) and larger
(Basis 1) basis—with time independent close coupling results for the 111 → 202
rotational transition of H2O.
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on some J propagation that we identified as the most problematic.
Despite this significant increase, we noted some (modest) change
on the low energy region of the de-excitation cross section for the
111 → 000 transition while only a modest to nonexistent one on the
excitation cross section for the 111 → 202 transition as we can see
on Figs. 12 and 13, respectively. So essentially, we only observe a
problem in the de-excitation cross section of the 111 → 000 transi-
tion within 10–20 cm−1 above the threshold energy, i.e., here, below
≈55 cm−1 of total energy E.

IV. CONCLUSION
We performed the first benchmark 5D calculations for the

inelastic scattering of an asymmetric top molecule (H2O) with a lin-
ear molecule (H2), all in the rigid rotor approximation, using the
MultiConfiguration Time Dependent Hartree procedure and with-
out any additional approximation on a recently constructed PES. We
find as expected a very good agreement between the time indepen-
dent close coupling results and our calculations which are done how-
ever with a significant amount of resources (CPU time) compared to
close-coupling calculations.

Time independent close coupling calculations are frequently
regarded as the benchmark for these types of atom/molecule or
molecule/molecule collisional processes. However, they quickly
become intractable when either the density of rotational states of
the partners or the dimensionality of the collisional system increases.
It then becomes essential to look for alternate means of computing
collisional cross sections. We anticipate that the MCTDH proce-
dure (and its variants MultiLayer-MCTDH—ML-MCTDH—, . . .)
could be one of those alternate methods to describe fully quantum
mechanically the collisional dynamics in these challenging cases. As
the MCTDH inelastic scattering calculations usually generate cross
sections for all transitions starting from an initial state, they will
also be very relevant for comparison with experimental results where
quite often only selected transitions could be measured.

With respect to astrophysical applications where one is often
interested in the state-to-state rates, instead of the specific state-
to-state cross sections, one can infer the state-to-state rate of a de-
excitation process (where the cross sections calculations appear to
be challenging at low kinetic energy using the MCTDH method)
from the reverse excitation process, which is known as detailed
balance.

The current MCTDH implementation of the Wigner-DVR
does not yet enable even/odd symmetry specified calculations.
Hence, it was not possible to selectively perform wavepacket prop-
agation calculations for the para and ortho cases which have a spe-
cific symmetry with respect to the H2O fragment axis. We thus did
not take advantage of the primitive basis size reductions that would
occur from the symmetry consideration. As an example, the CPU
time will likely be divided by 4, by integrating symmetry in our cal-
culations. Also, a rather conservative maximum time of 200 ps was
used for these calculations: it is likely that using 100 or even 50 fs
of propagation would generate very similar cross sections. This will
then allow us to reduce by about one half or more the cost of our
calculations and therefore make them very competitive to close cou-
pling calculations. Nevertheless, we found the calculations for this
system still tractable with respect to both the time and memory
requirements using our current implementation.

The usage of the MCTDH method for these types of applica-
tions is still at a development stage. However, we are working on
defining a scheme through which these types of computations would
become standard and straightforward for a broader group of peo-
ple interested in such applications. Imposing the symmetry for the
Wigner-DVR in the MCTDH package will be part of this process
and will obviously improve the results.

SUPPLEMENTARY MATERIAL

See the supplementary material for a Fortran program and the
eigenvalues and eigenvectors of an asymmetric top molecule given
the rotational constants A, B, and C.
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