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Weak/Galerkin formulation FE discretization Dirichlet boundary condition FE Method More Discussion

Target problem

Consider the 2D second order elliptic equation

�r � (cru) = f ; in 


u = g ; on @
:

where 
 is a 2D domain, f (x ; y) and c(x ; y) are given
functions on 
, g(x ; y) is a given function on @
 and u(x ; y)
is the unknown function.

The gradient of a 2D function u is de�ned by

ru = (ux ; uy ):

The divergence of a 2� 1 vector �!v is de�ned by

r � �!v =
@v1
@x

+
@v2
@y

:

4 / 137
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Weak formulation

First, multiply a function v(x ; y) on both sides of the original
equation,

�r � (cru) = f in 


) �r � (cru)v = fv in 


) �
Z


r � (cru)v dxdy =

Z


fv dxdy :

u(x ; y) is called a trail function and v(x ; y) is called a test
function.
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Weak formulation

Second, using Green's formula (divergence theory, integration
by parts in multi-dimension)Z


r � (cru)v dxdy =

Z
@


(cru � ~n) v ds �
Z


cru � rv dxdy ;

we obtainZ


cru � rv dxdy �

Z
@


(cru � ~n) v ds =

Z


fv dxdy :
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Weak formulation

Since the solution on the domain boundary @
 are given by
u(x ; y) = g(x ; y), then we can choose the test function
v(x ; y) such that v = 0 on @
.

Hence Z


cru � rv dxdy =

Z


fv dxdy :

What spaces should u and v belong to? Sobolev spaces!
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Sobolev spaces

De�nition (Support)

If u is a function de�ned on a domain 
, then its support supp(u)
is the closure of the set on which u is nonzero.

De�nition (Compactly supported)

If u is a function de�ned on a domain 
 and supp(u) is a compact
subset (that is, a closed and bounded subset), then u is said to be
compactly supported in 
.

Lemma (I)

A function compactly supported in 
 is zero on and near the

boundary of 
.
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Sobolev spaces

De�nition

C10 (
) is the set of all functions that are in�nitely di�erentiable
on 
 and compactly supported in 
.

Recall integration by parts:Z



@u

@x
v dxdy =

Z
@


uvnx ds �
Z


u
@v

@x
dxdy :

For v 2 C10 (
), we have v = 0 on @
. ThenZ



@u

@x
v dxdy = �

Z


u
@v

@x
dxdy :
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Sobolev spaces

De�nition (weak derivative with respect to x in 2D)

Suppose u is a real-valued function de�ned on a domain 
 and
that u is integrable over every compact subset of 
. If there exists
another locally integrable function w de�ned on 
 such thatZ



wv dxdy = �

Z


u
@v

@x
dxdy :

for all v 2 C10 (
), then u is said to be weakly di�erentiable with
respect to x and w is called the weak partial derivative of u with
respect to x .
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Sobolev spaces

De�nition (general weak derivative in 2D)

Let � = (�1; �2). Suppose u is a real-valued function de�ned on a
domain 
 and that u is integrable over every compact subset of 
.
If there exists another locally integrable function w de�ned on 

such thatZ



wv dxdy = (�1)�1+�2

Z


u
@�1+�2v

@x�1@y�2
dxdy :

for all v 2 C10 (
), then u is said to be � weakly di�erentiable and
w is called the weak partial derivative of order � of u.
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Sobolev spaces

Lemma (II)

If u is di�erentiable, then u is weakly di�erentiable and its weak

derivative of order � = (�1; �2) is
@�1+�2u
@x�1@y�2 .

Remark

In the Sobolev spaces, which will be de�ned below, @�1+�2u
@x�1@y�2 is

used to represent the weak derivative of order � = (�1; �2).
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Sobolev spaces

De�nition (Lp space)

Lp(
) = fv : 
! R :

Z


vp dxdy <1g:

De�nition (L2 space)

L2(
) = fv : 
! R :

Z


v2 dxdy <1g:

De�nition (L1 space)

L1(
) = fv : 
! R : sup
(x ;y)2


ju(x ; y)j <1g:
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Sobolev spaces

De�nition (Hm space)

Hm(
) = fv 2 L2(
) :
@�1+�2v

@x�1@y�2
2 L2(
); 8�1+�2 = 1; � � � ;mg:

De�nition (H1 space)

H1(
) = fv 2 L2(
) :
@�1+�2v

@x�1@y�2
2 L2(
); 8�1 + �2 = 1g:

De�nition (H1
0 space)

H1
0 (
) = fv 2 H1(
) : v = 0 on @
g:
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Sobolev spaces

De�nition (Wm
p space)

Wm
p (
) = fv : 
! R :

Z



�
@�1+�2v

@x�1@y�2

�p
dxdy <1;

8�1 + �2 = 0; � � � ;mg:

Remark

Lp(
) = W 0
p (
);

L2(
) = W 0
2 (
);

Hm(
) = Wm
2 (
);

H1(
) = W 1
2 (
).
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Weak formulation

Weak formulation: �nd u 2 H1(
) such thatZ


cru � rv dxdy =

Z


fv dxdy :

for any v 2 H1
0 (
).

Let a(u; v) =
R

 cru � rvdxdy and (f ; v) =

R

 fvdxdy .

Weak formulation: �nd u 2 H1(
) such that

a(u; v) = (f ; v)

for any v 2 H1
0 (
).
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Galerkin formulation

Assume there is a �nite dimensional subspace Uh � H1(
).

Then the Galerkin formulation is to �nd uh 2 Uh such that

a(uh; vh) = (f ; vh)

,
Z


cruh � rvh dxdy =

Z


fvh dxdy

for any vh 2 Uh.

Basic idea of Galerkin formulation: use �nite dimensional
space to approximate in�nite dimensional space.

Here Uh = spanf�jgNb

j=1 is chosen to be a �nite element space

where f�jgNb

j=1 are the global �nite element basis functions.
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Discretization formulation

Recall the following de�nitions from Chapter 2:

N: number of mesh elements.

Nm: number of mesh nodes.

En (n = 1; � � � ;N): mesh elements.

Zk (k = 1; � � � ;Nm): mesh nodes.

Nl : number of local mesh nodes in a mesh element.

P:information matrix consisting of the coordinates of all mesh
nodes.

T : information matrix consisting of the global node indices of
the mesh nodes of all the mesh elements.
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Discretization formulation

We only consider the nodal basis functions (Lagrange type) in
this course.

Nlb: number of local �nite element nodes (=number of local
�nite element basis functions) in a mesh element.

Nb: number of the �nite element nodes (= the number of
unknowns = the total number of the �nite element basis
functions).

Xj (j = 1; � � � ;Nb): �nite element nodes.

Pb: information matrix consisting of the coordinates of all
�nite element nodes.

Tb: information matrix consisting of the global node indices
of the �nite element nodes of all the mesh elements.
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Discretization formulation

Recall the Galerkin formulation: �nd uh 2 Uh such that

a(uh; vh) = (f ; vh)

,
Z


cruh � rvh dxdy =

Z


fvh dxdy

for any vh 2 Uh.

Here Uh = spanf�jgNb

j=1 is chosen to be a �nite element space

where f�jgNb

j=1 are the global �nite element basis functions
de�ned in Chapter 2.

Since uh 2 Uh = spanf�jgNb

j=1, then

uh =

NbX
j=1

uj�j

for some coe�cients uj (j = 1; � � � ;Nb).
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Discretization formulation

In fact, since

�j(Xk) = �jk =

�
0; if j 6= k ;
1; if j = k :

then

uh(Xk) =

NbX
j=1

uj�j(Ak) = uk :

Hence the coe�cient uj is actually the numerical solution at
the node Xj (j = 1; � � � ;Nb).
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Discretization formulation

If we can set up a linear algebraic system for
uj (j = 1; � � � ;Nb) and solve it, then we can obtain the �nite
element solution uh.

Therefore, we choose the test function
vh = �i (i = 1; � � � ;Nb). Then the �nite element formulation
gives

Z


cr
0@ NbX

j=1

uj�j

1A � r�i dxdy =

Z


f �i dxdy ;

)
NbX
j=1

uj

�Z


cr�j � r�i dxdy

�
=

Z


f �i dxdy ; i = 1; � � � ;Nb:
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Matrix formulation

De�ne the sti�ness matrix

A = [aij ]
Nb

i ;j=1 =

�Z


cr�j � r�i dxdy

�Nb

i ;j=1

:

De�ne the load vector

~b = [bi ]
Nb

i=1 =

�Z


f �i dxdy

�Nb

i=1

:

De�ne the unknown vector

~X = [uj ]
Nb

j=1:

Then we obtain the linear algebraic system

A~X = ~b:
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Assembly of the sti�ness matrix

Once ~X is obtained, the �nite element solution uh and the
numerical solutions at all the mesh nodes are obtained.

From the de�nition of �j (j = 1; � � � ;Nb), we can see that �j
are non-zero only on the elements adjacent to the node Xj ,
but 0 on all the other elements.

This observation motivates us to think about

aij =

Z


cr�j � r�i dxdy =

NX
n=1

Z
En

cr�j � r�i dxdy :

It is easy to see that most of
R
En
cr�j � r�i dxdy will be 0.

So we only need to use numerical integration to compute
those nonzero integrals.

25 / 137



Weak/Galerkin formulation FE discretization Dirichlet boundary condition FE Method More Discussion

Assembly of the sti�ness matrix

General local assembly idea for A:

Loop over all the elements;

Compute all non-zero local integrals on each element for A;

Assemble these non-zero local integrals into the corresponding
entries of the sti�ness matrix A.

26 / 137



Weak/Galerkin formulation FE discretization Dirichlet boundary condition FE Method More Discussion

Assembly of the sti�ness matrix

Compute all non-zero local integrals on each element for A:

On the nth element En, we get non-zero local integrals only
when the trial and test basis functions are corresponding to
the �nite element nodes of this element.

Let ps = Tb(s; n) (s = 1; � � � ;Nlb).

Then we only consider the trial and test basis functions to be
�ps (s = 1; � � � ;Nlb).

There are only N2
lb non-zero local integrals on En with the

global basis functions �ps (s = 1; � � � ;Nlb):Z
En

cr�j � r�i dxdy (i ; j = p1; � � � ; pNlb
):

In fact, we have

 ns = �ps jEn
(s = 1; � � � ;Nlb):
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Assembly of the sti�ness matrix

That is, instead of the original non-zero local integrals with
the global basis functions �ps (s = 1; � � � ;Nlb), we will
compute the following non-zero local integrals with the local
basis functions  ns (s = 1; � � � ;Nlb):Z

En

cr n� � r n� dxdy (�; � = 1; � � � ;Nlb):

Question: how to compute these integrals?

Gauss quadrature. The needed information is stored in the
matrices P and T .
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Assembly of the sti�ness matrix

Assemble the non-zero local integrals into A:

When the trial function is �i and the test function is �j , the
corresponding non-zero local integrals should be assembled to
ai j .

Therefore, if we �nd the global node indices of the trial and
test basis functions, we can easily locate where to assemble a
non-zero local integral.
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Assembly of the sti�ness matrix

Question: Since we computeZ
En

cr n� � r n� dxdy (�; � = 1; � � � ;Nlb)

instead of Z
En

cr�j � r�i dxdy (i ; j = p1; � � � ; pNlb
);

how do we obtain the corresponding global node indices of the
local trial and test basis functions  n� and
 n� (�; � = 1; � � � ;Nlb)?

Information matrix Tb!
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Assembly of the sti�ness matrix

Recall that Tb(�; n) and Tb(�; n) give the global node indices
of the local trial and test basis functions  n� and
 n� (�; � = 1; � � � ;Nlb).

That is, for n = 1; � � � ;N,Z
En

cr n� � r n� dxdy (�; � = 1; � � � ;Nlb)

should be assembled to aij where i = Tb(�; n) and
j = Tb(�; n).
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Assembly of the sti�ness matrix

Algorithm I-1:

Initialize the matrix: A = sparse(Nb;Nb);

Compute the integrals and assemble them into A:

FOR n = 1; � � � ;N:
FOR � = 1; � � � ;Nlb:

FOR � = 1; � � � ;Nlb:
Compute r =

R
En
cr n� � r n� dxdy ;

Add r to A(Tb(�; n);Tb(�; n)).
END

END

END
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Assembly of the sti�ness matrix

Algorithm I-2:

Initialize the matrix: A = sparse(Nb;Nb) and
S = zeros(Nlb;Nlb);

Compute the integrals and assemble them into A:

FOR n = 1; � � � ;N:
FOR � = 1; � � � ;Nlb:

FOR � = 1; � � � ;Nlb:
Compute S(�; �) =

R
En
cr n� � r n� dxdy ;

END

END

A(Tb(:; n);Tb(:; n)) = A(Tb(:; n);Tb(:; n)) + S ;
END
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Assembly of the sti�ness matrix

To make a general subroutine for di�erent cases, more information
needed for computing and assembling the integral should be
treated as input parameters or input functions of this subroutine:

the coe�cient function c ;

the quadrature points and weights for numerical integrals;

the mesh information matrices P and T , which can also
provide the number of mesh elements N = size(T ; 2) and the
number of mesh nodes Nm = size(P; 2);

the �nite element information matrices Pb and Tb for the trial
and test functions respectively, which can also provide the
number of local basis functions Nlb = size(Tb; 1) and the
number of the global basis functions Nb = size(Pb; 2) (= the
number of unknowns);

the type of the basis function for the trial and test functions
respectively;
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Assembly of the sti�ness matrix

Note thatZ
En

cr n��r n� dxdy =

Z
En

c
@ n�

@x

@ n�

@x
dxdy+

Z
En

c
@ n�

@y

@ n�

@y
dxdy :

Hence we can consider to develop an algorithm to assemble
the matrix arising from a more general integralZ

En

c
@r+s n�

@x r@y s
@p+q n�

@xp@yq
dxdy :

with parameters r , s, p, and q.
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Assembly of the sti�ness matrix

Algorithm I-3:

Initialize the matrix: A = sparse(Nb;Nb);

Compute the integrals and assemble them into A:

FOR n = 1; � � � ;N:
FOR � = 1; � � � ;Nlb:

FOR � = 1; � � � ;Nlb:

Compute r =
R
En
c @

r+s n�

@x r@y s

@p+q n�

@xp@yq dxdy ;
Add r to A(Tb(�; n);Tb(�; n)).

END

END

END
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Assembly of the sti�ness matrix

Algorithm I-4:

Initialize the matrix: A = sparse(Nb;Nb) and
S = zeros(Nlb;Nlb);

Compute the integrals and assemble them into A:

FOR n = 1; � � � ;N:
FOR � = 1; � � � ;Nlb:

FOR � = 1; � � � ;Nlb:

Compute S(�; �) =
R
En
c @

r+s n�

@x r@y s

@p+q n�

@xp@yq dxdy ;
END

END

A(Tb(:; n);Tb(:; n)) = A(Tb(:; n);Tb(:; n)) + S ;
END

37 / 137



Weak/Galerkin formulation FE discretization Dirichlet boundary condition FE Method More Discussion

Assembly of the sti�ness matrix

First, we call Algorithm I-3 with r = p = 1 and s = q = 0 to
obtain A1.

Second, we call Algorithm I-3 with r = p = 0 and s = q = 1
to obtain A2.

Then the sti�ness matrix A = A1 + A2.

That is, Algorithm I-1 is equivalent to calling Algorithm I-3
twice with two di�erent groups of parameters
(r = p = 1; s = q = 0 and r = p = 0; s = q = 1) and then
adding the two resulted matrices together.

Algorithm I-2 and Algorithm I-4 have a similar relationship.
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Assembly of the load vector

The idea for the assembly of the load vector is similar. We
have

bi =

Z


f �i dxdy =

NX
n=1

Z
En

f �i dxdy ; i = 1; � � � ;Nb:

Loop over all the elements;

Compute all non-zero local integrals on each element for the
load vector ~b;

Assemble these non-zero local integrals into the corresponding
entries of the load vector ~b.
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Assembly of the load vector

Compute all non-zero local integrals on each element for ~b:

On the nth element En, we get non-zero local integrals only
when the test basis functions are corresponding to the �nite
element nodes of the element.

Let ps = Tb(s; n) (s = 1; � � � ;Nlb).

Then we only consider the test basis functions to be
�ps (s = 1; � � � ;Nlb).

There are only Nlb non-zero local integrals on En with the
global basis functions �ps (s = 1; � � � ;Nlb):Z

En

f �i dxdy (i = p1; � � � ; pNlb
):

In fact, we have

 ns = �ps jEn
(s = 1; � � � ;Nlb):
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Assembly of the load vector

That is, instead of the original non-zero local integrals with
the global basis functions �ps (s = 1; � � � ;Nlb), we will
compute the following non-zero local integrals with the local
basis functions  ns (s = 1; � � � ;Nlb):Z

En

f  n� dxdy (� = 1; � � � ;Nlb):

Question: how to compute these integrals?

Gauss quadrature. The needed information is stored in the
matrices P and T .

41 / 137



Weak/Galerkin formulation FE discretization Dirichlet boundary condition FE Method More Discussion

Assembly of the load vector

Assemble the non-zero local integrals into ~b:

When the test function is �i , the corresponding non-zero local
integrals should be assembled to bi .

Therefore, if we �nd the global node indices of the test basis
functions, we can easily locate where to assemble a non-zero
local integral.

Question: Since we computeZ
En

f  n� dxdy (� = 1; � � � ;Nlb)

instead of Z
En

f �i dxdy (i = p1; � � � ; pNlb
);

how do we obtain the corresponding global node indices of the
local test basis functions  n� (� = 1; � � � ;Nlb)?

Information matrix Tb!
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Assembly of the load vector

Recall that Tb(�; n) give the global node indices of the local
test basis functions  n� (� = 1; � � � ;Nlb).

That is, for n = 1; � � � ;N,Z
En

f  n� dxdy (� = 1; � � � ;Nlb)

should be assembled to bi where i = Tb(�; n).

43 / 137



Weak/Galerkin formulation FE discretization Dirichlet boundary condition FE Method More Discussion

Assembly of the load vector

Algorithm II-1:

Initialize the matrix: b = sparse(Nb; 1);

Compute the integrals and assemble them into b:

FOR n = 1; � � � ;N:
FOR � = 1; � � � ;Nlb:

Compute r =
R
En
f  n� dxdy ;

b(Tb(�; n); 1) = b(Tb(�; n); 1) + r ;
END

END

44 / 137



Weak/Galerkin formulation FE discretization Dirichlet boundary condition FE Method More Discussion

Assembly of the load vector

Algorithm II-2:

Initialize the vector: b = sparse(Nb; 1) and d = zeros(Nlb; 1);

Compute the integrals and assemble them into b:

FOR n = 1; � � � ;N:
FOR � = 1; � � � ;Nlb:

Compute d(�; 1) =
R
En
f
@p+q n�

@xp@yq dxdy ;
END

b(Tb(:; n); 1) = b(Tb(:; n); 1) + d ;
END
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Assembly of the load vector

To make a general subroutine for di�erent cases, more information
needed for computing and assembling the integral should be
treated as input parameters or input functions of this subroutine:

the right hand side function f ;

the quadrature points and weights for numerical integrals;

the mesh information matrices P and T , which can also
provide the number of mesh elements N = size(T ; 2) and the
number of mesh nodes Nm = size(P; 2);

the �nite element information matrices Pb and Tb for the test
functions, which can also provide the number of local basis
functions Nlb = size(Tb; 1) and the number of the global basis
functions Nb = size(Pb; 2) (= the number of unknowns);

the type of the basis function for the test functions.
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Assembly of the load vector

We can also consider to develop an algorithm to assemble the
vector arising from Z

En

f
@p+q n�

@xp@yq
dxdy :
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Assembly of the load vector

Algorithm II-3:

Initialize the matrix: b = sparse(Nb; 1);

Compute the integrals and assemble them into b:

FOR n = 1; � � � ;N:
FOR � = 1; � � � ;Nlb:

Compute r =
R
En
f
@p+q n�

@xp@yq dxdy ;
b(Tb(�; n); 1) = b(Tb(�; n); 1) + r ;

END

END

48 / 137



Weak/Galerkin formulation FE discretization Dirichlet boundary condition FE Method More Discussion

Assembly of the load vector

Algorithm II-4:

Initialize the vector: b = sparse(Nb; 1) and d = zeros(Nlb; 1);

Compute the integrals and assemble them into b:

FOR n = 1; � � � ;N:
FOR � = 1; � � � ;Nlb:

Compute d(�; 1) =
R
En
f
@p+q n�

@xp@yq dxdy ;
END

b(Tb(:; n); 1) = b(Tb(:; n); 1) + d ;
END
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Assembly of the load vector

We call Algorithm I-3 with p = q = 0 to obtain b.

That is, Algorithm II-3 is equivalent to Algorithm II-1 with
p = q = 0.

Algorithm II-2 and Algorithm II-4 have a similar relationship.
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Outline

1 Weak/Galerkin formulation

2 FE discretization

3 Dirichlet boundary condition

4 FE Method

5 More Discussion
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Dirichlet boundary condition

Basically, the Dirichlet boundary condition u = g give the
solutions at all boundary �nite element nodes.

Since the coe�cient uj in the �nite element solution

uh =
PNb

j=1 uj�j is actually the numerical solution at the �nite
element node Xj (j = 1; � � � ;Nb), we actually know those uj
which are corresponding to the boundary �nite element nodes.

Recall that boundarynodes(2,:) store the global node indices
of all boundary �nite element nodes.

If m 2 boundarynodes(2; :), then the mth equation is called a
boundary node equation.

Set nbn to be the number of boundary nodes;
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Dirichlet boundary condition

One way to impose the Dirichlet boundary condition is to
replace the boundary node equations in the linear system by
the following equations

um = g(Xm):

for all m 2 boundarynodes(2; :).
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Dirichlet boundary condition

Algorithm III:

Deal with the Dirichlet boundary conditions:

FOR k = 1; � � � ; nbn:
If boundarynodes(1; k) shows Dirichlet condition, then

i = boundarynodes(2; k);
A(i ; :) = 0;
A(i ; i) = 1;
b(i) = g(Pb(:; i));

ENDIF

END
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Universal framework of the �nite element method

Generate the mesh information: matrices P and T ;

Assemble the matrices and vectors: local assembly based on P

and T only;

Deal with the boundary conditions: boundary information
matrix and local assembly;

Solve linear systems: numerical linear algebra (Math 6601:
Numerical Analysis).

56 / 137



Weak/Galerkin formulation FE discretization Dirichlet boundary condition FE Method More Discussion

Algorithm

Generate the mesh information matrices P and T .

Assemble the sti�ness matrix A by using Algorithm I. (We will
choose Algorithm I-3 in class)

Assemble the load vector ~b by using Algorithm II. (We will
choose Algorithm II-3 in class)

Deal with the Drichlet boundary condition by using Algorithm
III.

Solve A~X = ~b for ~X by using a direct or iterative method.
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Algorithm

Recall Algorithm I-3:

Initialize the matrix: A = sparse(Nb;Nb);

Compute the integrals and assemble them into A:

FOR n = 1; � � � ;N:
FOR � = 1; � � � ;Nlb:

FOR � = 1; � � � ;Nlb:

Compute r =
R
En
c @

r+s n�

@x r@y s

@p+q n�

@xp@yq dxdy ;
Add r to A(Tb(�; n);Tb(�; n)).

END

END

END
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Algorithm

Recall

First, we call Algorithm I-3 with r = p = 1 and s = q = 0 to
obtain A1.

Second, we call Algorithm I-3 with r = p = 0 and s = q = 1
to obtain A2.

Then the sti�ness matrix A = A1 + A2.
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Algorithm

Recall Algorithm II-3:

Initialize the matrix: b = sparse(Nb; 1);

Compute the integrals and assemble them into b:

FOR n = 1; � � � ;N:
FOR � = 1; � � � ;Nlb:

Compute r =
R
En
f
@p+q n�

@xp@yq dxdy ;
b(Tb(�; n); 1) = b(Tb(�; n); 1) + r ;

END

END

Recall: We call Algorithm I-3 with p = q = 0 to obtain b.
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Algorithm

Recall Algorithm III:

Deal with the Dirichlet boundary conditions:

FOR k = 1; � � � ; nbn:
If boundarynodes(1; k) shows Dirichlet condition, then

i = boundarynodes(2; k);
A(i ; :) = 0;
A(i ; i) = 1;
b(i) = g(Pb(:; i));

ENDIF

END
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Measurements for errors

Recall

De�nition (L2 space)

L2(
) = fv : 
! R :

Z


v2 dxdy <1g:

De�nition (H1 space)

H1(
) = fv 2 L2(
) :
@�1+�2v

@x�1@y�2
2 L2(
); 8�1 + �2 = 1g:

De�nition (L1 space)

L1(
) = fv : 
! R : sup
(x ;y)2


ju(x ; y)j <1g:
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Measurements for errors

L1 norm: kuk1 = sup
(x ;y)2


ju(x ; y)j for u 2 L1(
).

L1 norm error: ku � uhk1 = sup
(x ;y)2


ju(x ; y)� uh(x ; y)j.

L2 norm: kuk0 =
qR


 u2dxdy for u 2 L2(
).

L2 norm error: ku � uhk0 =
qR


(u � uh)2dxdy .

H1 semi-norm: juj1 =
rR




�
@u
@x

�2
dxdy +

R



�
@u
@y

�2
dxdy for

u 2 H1(
).

H1 semi-norm error:

ju � uhj1 =
rR




�
@(u�uh)
@x

�2
dxdy +

R



�
@(u�uh)
@y

�2
dxdy .
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Measurements for errors

By using uh =
NbP
j=1

uj�j , the de�nition of Tb, and the de�nition

of the local basis functions  nk , we get

ku � uhk1 = sup
(x ;y)2


ju(x ; y)� uh(x ; y)j

= max
1�n�N

max
(x ;y)2En

ju(x ; y)� uh(x ; y)j

= max
1�n�N

max
(x ;y)2En

������u(x ; y)�
NbX
j=1

uj�j

������
= max

1�n�N
max

(x ;y)2En

�����u(x ; y)�
NlbX
k=1

uTb(k;n) nk(x ; y)

����� :
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Measurements for errors

De�ne

wn(x ; y) =

NlbX
k=1

uTb(k;n) nk(x ; y):

Then

ku � uhk1 = max
1�n�N

max
(x ;y)2En

ju(x ; y)� wn(x ; y)j :

max
(x ;y)2En

ju(x ; y)� wn(x ; y)j can be approximated by choosing

the maximum values of ju(x ; y)� wn(x ; y)j on a group of
chosen points in En, such as some Gauss quadrature nodes in
this element. We denote the approximation by rn.
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Measurements for errors

Algorithm IV:

Initialize the error error = 0;

Approximate the maximum absolute errors on all elements
and then choose the largest one as the �nal approximation:

FOR n = 1; � � � ;N:
Compute rn � max

(x ;y)2En

ju(x ; y)� wn(x ; y)j;
IF rn > error , THEN

error = rn;
END

END
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Measurements for errors

By using uh =
NbP
j=1

uj�j , the de�nition of Tb, and the de�nition

of the local basis functions  nk , we get

ku � uhk0 =

sZ



(u � uh)2dxdy

=

vuut NX
n=1

Z
En

(u � uh)2dxdy

=

vuuut NX
n=1

Z
En

0
@u �

NbX
j=1

uj�j

1
A

2

dxdy

=

vuut NX
n=1

Z
En

 
u �

NlbX
k=1

uTb(k;n) nk

!2

dxdy :
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Measurements for errors

De�ne

wn =

NlbX
k=1

uTb(k;n) nk :

Then

ku � uhk0 =

vuut NX
n=1

Z
En

(u � wn)2dxdy :

Each integral
R
En
(u � wn)

2dxdy can be computed by
numerical integration.

68 / 137



Weak/Galerkin formulation FE discretization Dirichlet boundary condition FE Method More Discussion

Measurements for errors

By using uh =
NbP
j=1

uj�j , the de�nition of Tb, and the de�nition

of the local basis functions  nk , we get

ju � uhj1;x =

sZ



�
@(u � uh)

@x

�2

=

vuut NX
n=1

Z
En

�
@(u � uh)

@x

�2

dxdy

=

vuuut NX
n=1

Z
En

0@@u
@x

�
NbX
j=1

uj
@�j
@x

1A2

dxdy

=

vuut NX
n=1

Z
En

 
@u

@x
�

NlbX
k=1

uTb(k;n)
@ nk

@x

!2

dxdy :
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Measurements for errors

Similarly,

ju � uhj1;y =

sZ



�
@(u � uh)

@y

�2

dxdy

=

vuut NX
n=1

Z
En

�
@(u � uh)

@y

�2

dxdy

=

vuuut NX
n=1

Z
En

0@@u
@y

�
NbX
j=1

uj
@�j
@y

1A2

dxdy

=

vuut @u
@y

�
NlbX
k=1

uTb(k;n)
@ nk

@y

!2

dxdy :
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Measurements for errors

Then

ju � uhj21
= ju � uhj21;x + ju � uhj21;y

=
NX

n=1

Z
En

 
@u

@x
�

NlbX
k=1

uTb(k;n)
@ nk

@x

!2

dxdy

+
NX

n=1

Z
En

 
@u

@y
�

NlbX
k=1

uTb(k;n)
@ nk

@y

!2

dxdy :
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Measurements for errors

De�ne

wn1 =

NlbX
k=1

uTb(k;n)
@ nk

@x
;

wn2 =

NlbX
k=1

uTb(k;n)
@ nk

@y
:

Then

ju � uhj1

=

vuut NX
n=1

Z
En

�
@u

@x
� wn1

�2

dxdy +

NX
n=1

Z
En

�
@u

@y
� wn2

�2

dxdy :

Each integral
R
En

�
@u
@x � wn1

�2
dxdy or

R
En

�
@u
@y � wn2

�2
dxdy

can be computed by numerical integration.
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Measurements for errors

Develop a subroutine for a more general formulationvuut NX
n=1

Z
En

 
@�1+�2u

@x�1@y�2
�

NlbX
k=1

uTb(k;n)
@�1+�2 nk

@x�1@y�2

!2

dxdy :

ku � uhk0 is equivalent to calling this subroutine with �1 = 0
and �2 = 0.

ju � uhj1;x is equivalent to calling this subroutine with �1 = 1
and �2 = 0.

ju � uhj1;y is equivalent to calling this subroutine with �1 = 0
and �2 = 1.
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Measurements for errors

Algorithm V:

Initialize the error error = 0; input the parameters �1 and �2;

Compute the integrals and add them into the total error:

FOR n = 1; � � � ;N:

error = error+

Z
En

 
@�1+�2u

@x�1@y�2
�

NlbX
k=1

uTb(k;n)
@�1+�2 nk

@x�1@y�2

!2

dxdy ;

END

error =
p
error ;
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Numerical example

Example 1: Use the �nite element method to solve the
following equation on the domain 
 = [�1; 1]� [�1; 1]:

�r � (ru) = �y(1� y)(1� x � x2

2
)ex+y

�x(1� x

2
)(�3y � y2)ex+y ;

u = �1:5y(1� y)e�1+y on x = �1;
u = 0:5y(1� y)e1+y on x = 1;

u = �2x(1� x

2
)ex�1 on y = �1;

u = 0 on y = 1:

The analytic solution of this problem is
u = xy(1� x

2 )(1� y)ex+y , which can be used to compute the
error of the numerical solution.
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Numerical example

Let's code for the linear and quadratic �nite element method
of the 2D second order elliptic equation together!

Open your Matlab!
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Numerical example

h ku � uhk1 ku � uhk0 ju � uhj1
1=8 2:3620� 10�2 6:8300� 10�3 1:8774� 10�1

1=16 6:3421� 10�3 1:7189� 10�3 9:4167� 10�2

1=32 1:6430� 10�3 4:3049� 10�4 4:7121� 10�2

1=64 4:1810� 10�4 1:0767� 10�4 2:3565� 10�2

1=128 1:0546� 10�4 2:6922� 10�5 1:1783� 10�2

Table : The numerical errors for linear �nite element.

Any Observation?

Second order convergence O(h2) in L2/L1 norm and �rst
order convergence O(h) in H1 semi-norm, which match the
optimal approximation capability expected from piecewise
linear functions.
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Numerical example

h ku � uhk1 ku � uhk0 ju � uhj1
1=8 3:3678� 10�4 1:1705� 10�4 8:9192� 10�3

1=16 4:4273� 10�5 1:4637� 10�5 2:2414� 10�3

1=32 5:6752� 10�6 1:8289� 10�6 5:6131� 10�4

1=64 7:1839� 10�7 2:2853� 10�7 1:4042� 10�4

1=128 9:0366� 10�8 2:8560� 10�8 3:5114� 10�5

Table : The numerical errors for quadratic �nite element.

Any Observation?

Third order convergence O(h3) in L2/L1 norm and second
order convergence O(h2) in H1 semi-norm, which match the
optimal approximation capability expected from piecewise
quadratic functions.
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Outline

1 Weak/Galerkin formulation
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Neumann boundary conditions

Consider

�r � (cru) = f in 
; ru � ~n = p on @
:

RecallZ


cru � rv dxdy �

Z
@


(cru � ~n) v ds =

Z


fv dxdy :

Hence Z


cru � rv dxdy =

Z


fv dxdy +

Z
@


cpv ds:

Is there anything wrong? The solution is not unique!

If u is a solution, then u + c is also a solution where c is a
constant.
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Neumann boundary condition

Consider

�r � (cru) = f in 
;

ru � ~n = p on �1�@
;
u = g on @
=�1:

RecallZ


cru � rv dxdy �

Z
@


(cru � ~n) v ds =

Z


fv dxdy :

Since the solution on @
=�1 is given by u = g , then we can
choose the test function v(x) such that v = 0 on @
=�1.
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Neumann boundary condition

SinceZ
@


(cru � ~n) v ds =

Z
�1

(cru � ~n) v ds +

Z
@
=�1

(cru � ~n) v ds

=

Z
�1

cpv ds;

then Z


cru � rv dxdy �

Z
�1

cpv ds =

Z


fv dxdy :

Hence the weak formulation isZ


cru � rv dxdy =

Z


fv dxdy+

Z
�1

cpv ds:
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Neumann boundary condition

Then the Galerkin formulation is to �nd uh 2 Uh such thatZ


cruh � rvh dxdy =

Z


fvh dxdy+

Z
�1

cpvh ds

for any vh 2 Uh.

Recall: Since uh 2 Uh = spanf�jgNb

j=1, then

uh =

NbX
j=1

uj�j

for some coe�cients uj (j = 1; � � � ;Nb).

Recall: Choose vh = �i (i = 1; � � � ;Nb).
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Neumann boundary condition

Then for i = 1; � � � ;Nb, the �nite element formulation givesZ


cr(

NbX
j=1

uj�j) � r�i dxdy =

Z


f �i dxdy+

Z
�1

cp�i ds;

)
NbX
j=1

uj

�Z


cr�j � r�i dxdy

�
=

Z


f �i dxdy+

Z
�1

cp�i ds:
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Neumann boundary condition

Recall

De�ne the sti�ness matrix

A = [aij ]
Nb

i ;j=1 =

�Z


cr�j � r�i dxdy

�Nb

i ;j=1

:

De�ne the load vector

~b = [bi ]
Nb

i=1 =

�Z


f �i dxdy

�Nb

i=1

:

De�ne the unknown vector

~X = [uj ]
Nb

j=1:
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Neumann boundary condition

De�ne the additional vector from the Neumann boundary
condition

~v = [vi ]
Nb

i=1 =

�Z
�1

cp�i ds

�Nb

i=1

:

De�ne the new vector
e~b = ~b+~v .

Then we obtain the linear algebraic system

A~X =
e~b:

Code?

Add one more subroutine for ~v to the existing code!
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Neumann boundary condition

Recall

Matrix boundaryedges:

boundaryedges(1; k) is the type of the kth boundary edge ek :
Dirichlet (-1), Neumann (-2), Robin (-3)......

boundaryedges(2; k) is the index of the element which
contains the kth boundary edge ek .

Each boundary edge has two end nodes. We index them as
the �rst and the second counterclock wise along the boundary.

boundaryedges(3; k) is the global node index of the �rst end
node of the kth boundary boundary edge ek .

boundaryedges(4; k) is the global node index of the second
end node of the kth boundary boundary edge ek .

Set nbe = size(boundaryedges; 2) to be the number of
boundary edges;
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Neumann boundary condition

The idea for the assembly of the vector ~v is similar to that of
the load vector. We have

vi =

Z
�1

cp�i ds =
X
ek��1

1�k�nbe

Z
ek

cp�i ds; i = 1; � � � ;Nb:

Loop over all the boundary edges;

Compute all non-zero local integrals on each Neumann
boundary edge for the vector ~v ;

Assemble these non-zero local integrals into the corresponding
entries of the vector ~v .
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Neumann boundary condition

Compute all non-zero local integrals on each Neumann boundary
edge for ~v :

The index of the element which contains the kth boundary
edge ek is nk = boundaryedges(2; k). Then on ek , we get
non-zero local integrals only when the test basis functions are
corresponding to the �nite element nodes of the nthk element
Enk .

Let ps = Tb(s; nk) (s = 1; � � � ;Nlb).

Then we only consider the test basis functions to be
�ps (s = 1; � � � ;Nlb).

There are only Nlb non-zero local integrals on ek with the
global basis functions �ps (s = 1; � � � ;Nlb):Z

ek

cp�i ds (i = p1; � � � ; pNlb
):
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Neumann boundary condition

In fact, we have

 nk s = �ps jEnk
(s = 1; � � � ;Nlb):

That is, instead of the original non-zero local integrals with
the global basis functions �ps (s = 1; � � � ;Nlb), we will
compute the following non-zero local integrals with the local
basis functions  nk s (s = 1; � � � ;Nlb):Z

ek

cp nk� ds (� = 1; � � � ;Nlb):

Question: how to compute these integrals?

Gauss quadrature. The needed information is stored in the
matrices P and boundaryedges.
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Neumann boundary condition

P(:; boundaryedges(3 : 4; k)) provides the coordinates of the
two end points of the kth boundary edge. We discuss three
cases based on these coordinates.

Case 1: If a boundary edge is vertical, then it can be
described as x = c (y1 � y � y2). The y�coordinates of the
Gauss quadrature nodes on this boundary edge and the Gauss
quadrature weights can be obtained from the 1D local Gauss
quadrature on [y1; y2]. And the x�coordinates of the Gauss
quadrature nodes are �xed to be c .
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Neumann boundary condition

Case 2: If a boundary edge is horizontal, then it can be
described as y = c (x1 � x � x2). The x�coordinates of the
Gauss quadrature nodes on this boundary edge and the Gauss
quadrature weights can be obtained from the 1D local Gauss
quadrature on [x1; x2]. And the y�coordinates of the Gauss
quadrature nodes are �xed to be c .

Case 3: Otherwise, a boundary edge can be described as
y = ax + b (x1 � x � x2). The x�coordinates of the Gauss
quadrature nodes on this boundary edge and the Gauss
quadrature weights can be obtained from the 1D local Gauss
nodes in [x1; x2]. And the y�coordinates of the Gauss
quadrature nodes are obtained from y = ax + b.

The case 3 with a = 0 and b = c is equivalent to case 2.
Hence case 2 and case 3 can be combined into one case.
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Neumann boundary condition

Assemble the non-zero local integrals into ~v :

When the test function is �i , the corresponding non-zero local
integrals should be assembled to vi .

Therefore, if we �nd the global node indices of the test basis
functions, we can easily locate where to assemble a non-zero
local integral.

Question: Since we computeZ
ek

cp nk� ds (� = 1; � � � ;Nlb)

instead of Z
ek

cp�i ds (i = p1; � � � ; pNlb
);

how do we obtain the corresponding global node indices of the
local test basis functions  nk� (� = 1; � � � ;Nlb)?

Information matrix Tb!
93 / 137



Weak/Galerkin formulation FE discretization Dirichlet boundary condition FE Method More Discussion

Neumann boundary condition

Recall that Tb(�; nk) give the global node indices of the local
test basis functions  nk� (� = 1; � � � ;Nlb).

That is, Z
ek

cp nk� ds (� = 1; � � � ;Nlb)

should be assembled to vi where i = Tb(�; nk).
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Neumann boundary condition

Algorithm VI-1:

Initialize the vector: v = sparse(Nb; 1);

Compute the integrals and assemble them into v :

FOR k = 1; � � � ; nbe:
IF boundaryedges(1; k) shows Neumann boundary

condition, THEN
nk = boundaryedges(2; k);
FOR � = 1; � � � ;Nlb:

Compute r =
R
ek
cp nk� ds;

v(Tb(�; nk); 1) = v(Tb(�; nk); 1) + r ;
END

ENDIF

END
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Neumann boundary condition

If we follow Algorithm VI-1 to develop a subroutine to
assemble the vector arising fromZ

ek

~p
@a+b nk�

@xa@yb
ds;

then Algorithm VI-1 is equivalent to calling this subroutine
with parameters: a = b = 0 and ~p = cp.

96 / 137



Weak/Galerkin formulation FE discretization Dirichlet boundary condition FE Method More Discussion

Neumann boundary condition

Algorithm VI:

Initialize the vector: v = sparse(Nb; 1);

Compute the integrals and assemble them into v :

FOR k = 1; � � � ; nbe:
IF boundaryedges(1; k) shows Neumann boundary

condition, THEN
nk = boundaryedges(2; k);
FOR � = 1; � � � ;Nlb:

Compute r =
R
ek
~p
@a+b nk�

@xa@yb ds;

v(Tb(�; nk); 1) = v(Tb(�; nk); 1) + r ;
END

ENDIF

END
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Neumann boundary condition

Recall

Matrix boundarynodes:

boundarynodes(1; k) is the type of the kth boundary �nite
element node: Dirichlet (-1), Neumann (-2), Robin (-3)......

The intersection nodes of Dirichlet boundary condition and
other boundary conditions usually need to be treated as
Dirichlet boundary nodes.

boundarynodes(2; k) is the global node index of the kth

boundary boundary �nite element node.

Set nbn = size(boundarynodes; 2) to be the number of
boundary �nite element nodes;
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Neumann boundary condition

Example 2: Use the �nite element method to solve the
following equation on the domain 
 = [�1; 1]� [�1; 1]:

�r � (ru) = �2ex+y ;

u = e�1+y on x = �1;
u = e1+y on x = 1;

ru � ~n = �ex�1 on y = �1;
u = ex+1 on y = 1:

The analytic solution of this problem is u = ex+y , which can
be used to compute the error of the numerical solution.
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Neumann boundary condition

Let's code for the linear and quadratic �nite element method
of the 2D second order elliptic equation with Neumann
boundary condition!

Open your Matlab!
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Neumann boundary condition

h ku � uhk1 ku � uhk0 ju � uhj1
1=8 1:3358� 10�2 5:1224� 10�3 1:8523� 10�1

1=16 3:4487� 10�3 1:2793� 10�3 9:2559� 10�2

1=32 8:7622� 10�4 3:1973� 10�4 4:6273� 10�2

1=64 2:2084� 10�4 7:9928� 10�5 2:3136� 10�2

1=128 5:5433� 10�5 1:9982� 10�5 1:1568� 10�2

Table : The numerical errors for linear �nite element.

Any Observation?

Second order convergence O(h2) in L2/L1 norm and �rst
order convergence O(h) in H1 semi-norm, which match the
optimal approximation capability expected from piecewise
linear functions.
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Neumann boundary condition

h ku � uhk1 ku � uhk0 ju � uhj1
1=8 1:0956� 10�4 3:9285� 10�5 2:9874� 10�3

1=16 1:4074� 10�5 4:9015� 10�6 7:4668� 10�4

1=32 1:7835� 10�6 6:1244� 10�7 1:8667� 10�4

1=64 2:2447� 10�7 7:6549� 10�8 4:6667� 10�5

1=128 2:8155� 10�8 9:5686� 10�9 1:1667� 10�5

Table : The numerical errors for quadratic �nite element.

Any Observation?

Third order convergence O(h3) in L2/L1 norm and second
order convergence O(h2) in H1 semi-norm, which match the
optimal approximation capability expected from piecewise
quadratic functions.
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Robin boundary conditions

Consider

�r � (cru) = f in 
;

ru � ~n + ru = q on �2�@
;
u = g on @
=�2:

RecallZ


cru � rv dxdy �

Z
@


(cru � ~n) v ds =

Z


fv dxdy :

Since the solution on @
=�2 is given by u = g , then we can
choose the test function v(x) such that v = 0 on @
=�2.
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Robin boundary condition

SinceZ
@


(cru � ~n) v ds =

Z
�2

(cru � ~n) v ds +

Z
@
=�2

(cru � ~n) v ds

=

Z
�2

c(q � ru)v ds

=

Z
�2

cqv ds �
Z
�2

cruv ds;

thenZ


cru � rv dxdy �

�Z
�2

cqv ds �
Z
�2

cruv ds

�
=

Z


fv dxdy :

Hence the weak formulation isZ


cru � rv dxdy+

Z
�2

cruv ds =

Z


fv dxdy+

Z
�2

cqv ds:
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Robin boundary condition

Then the Galerkin formulation is to �nd uh 2 Uh such thatZ


cruh � rvh dxdy+

Z
�2

cruhvh ds =

Z


fvh dxdy+

Z
�2

cqvh ds

for any vh 2 Uh.

Recall: Since uh 2 Uh = spanf�jgNb

j=1, then

uh =

NbX
j=1

uj�j

for some coe�cients uj (j = 1; � � � ;Nb).

Recall: Choose vh = �i (i = 1; � � � ;Nb).
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Robin boundary condition

Then for i = 1; � � � ;Nb, the �nite element formulation givesZ


cr(

NbX
j=1

uj�j) � r�i dxdy+
Z
�2

cr(

NbX
j=1

uj�j)�i ds

=

Z


f �i dxdy+

Z
�2

cq�i ds;

)
NbX
j=1

uj

�Z


cr�j � r�i dxdy

�
+

NbX
j=1

uj

�Z
�2

cr�j�i ds

�
=

Z


f �i dxdy+

Z
�2

cq�i ds:
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Robin boundary condition

Recall: De�ne the sti�ness matrix

A = [aij ]
Nb

i ;j=1 =

�Z


cr�j � r�i dxdy

�Nb

i ;j=1

:

Recall: De�ne the load vector

~b = [bi ]
Nb

i=1 =

�Z


f �i dxdy

�Nb

i=1

:

Recall: De�ne the unknown vector

~X = [uj ]
Nb

j=1:

De�ne the additional vector from the Robin boundary
condition

~w = [wi ]
Nb

i=1 =

�Z
�2

cq�i ds

�Nb

i=1

:
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Robin boundary condition

De�ne the additional matrix from the Robin boundary
condition

R = [rij ]
Nb

i ;j=1 =

�Z
�2

cr�j�i ds

�Nb

i ;j=1

:

De�ne the new vector
e~b = ~b+~w .

De�ne the new matrix eA = A+R.

Then we obtain the linear algebraic system

eA~X =
e~b:

Code?

Add one more subroutine for ~w and R to the existing code!
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Robin boundary condition

Recall

Matrix boundaryedges:

boundaryedges(1; k) is the type of the kth boundary edge ek :
Dirichlet (-1), Neumann (-2), Robin (-3)......

boundaryedges(2; k) is the index of the element which
contains the kth boundary edge ek .

Each boundary edge has two end nodes. We index them as
the �rst and the second counterclock wise along the boundary.

boundaryedges(3; k) is the global node index of the �rst end
node of the kth boundary boundary edge ek .

boundaryedges(4; k) is the global node index of the second
end node of the kth boundary boundary edge ek .

Set nbe = size(boundaryedges; 2) to be the number of
boundary edges;
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Robin boundary condition

The idea for the assembly of the matrix R and the vector ~w is
similar to that of the sti�ness matrix and the load vector. We
have

wi =

Z
�2

cq�i ds =
X
ek��2

1�k�nbe

Z
ek

cq�i ds; i = 1; � � � ;Nb;

rij =

Z
�2

cr�j�i ds =
X
ek��2

1�k�nbe

Z
ek

cr�j�i ds; i ; j = 1; � � � ;Nb:

Loop over all the boundary edges;

Compute all non-zero local integrals on each Robin boundary
edge for the vector ~w and the matrix R;

Assemble these non-zero local integrals into the corresponding
entries of the vector ~w and the matrix R.
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Robin boundary condition

Compute all non-zero local integrals on each Robin boundary edge
for the vector ~w and the matrix R:

The index of the element which contains the kth boundary
edge ek is nk = boundaryedges(2; k). Then on ek , we get
non-zero local integrals only when the test and trial basis
functions are corresponding to the �nite element nodes of the
nthk element Enk .

Let ps = Tb(s; n) (s = 1; � � � ;Nlb).

Then we only consider the test basis functions to be
�ps (s = 1; � � � ;Nlb).
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Robin boundary condition

There are only Nlb non-zero local integrals on ek with the
global basis functions �ps (s = 1; � � � ;Nlb):Z

ek

cq�i ds; i = p1; � � � ; pNlb
;Z

ek

cr�j�i ds; i ; j = p1; � � � ; pNlb
:

In fact, we have

 nk s = �ps jEnk
(s = 1; � � � ;Nlb):
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Robin boundary condition

That is, instead of the original non-zero local integrals with
the global basis functions �ps (s = 1; � � � ;Nlb), we will
compute the following non-zero local integrals with the local
basis functions  nk s (s = 1; � � � ;Nlb):Z

ek

cp nk� ds; � = 1; � � � ;Nlb;Z
ek

cr nk� nk� ds; �; � = 1; � � � ;Nlb:

Question: how to compute these integrals?

Gauss quadrature. The needed information is stored in the
matrices P and boundaryedges.
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Robin boundary condition

Recall

P(:; boundaryedges(3 : 4; k)) provides the coordinates of the
two end points of the kth boundary edge. We discuss three
cases based on these coordinates.

Case 1: If a boundary edge is vertical, then it can be
described as x = c (y1 � y � y2). The y�coordinates of the
Gauss quadrature nodes on this boundary edge and the Gauss
quadrature weights can be obtained from the 1D local Gauss
quadrature on [y1; y2]. And the x�coordinates of the Gauss
quadrature nodes are �xed to be c .
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Robin boundary condition

Case 2: If a boundary edge is horizontal, then it can be
described as y = c (x1 � x � x2). The x�coordinates of the
Gauss quadrature nodes on this boundary edge and the Gauss
quadrature weights can be obtained from the 1D local Gauss
quadrature on [x1; x2]. And the y�coordinates of the Gauss
quadrature nodes are �xed to be c .

Case 3: Otherwise, a boundary edge can be described as
y = ax + b (x1 � x � x2). The x�coordinates of the Gauss
quadrature nodes on this boundary edge and the Gauss
quadrature weights can be obtained from the 1D local Gauss
nodes in [x1; x2]. And the y�coordinates of the Gauss
quadrature nodes are obtained from y = ax + b.

The case 3 with a = 0 and b = c is equivalent to case 2.
Hence case 2 and case 3 can be combined into one case.
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Robin boundary condition

Assemble the non-zero local integrals into ~w and R:

When the test function is �i , the corresponding non-zero local
integrals should be assembled to wi .

When the trial function is �i and the test function is �j , the
corresponding non-zero local integrals should be assembled to
rij .

Therefore, if we �nd the global node indices of the trial and
test basis functions, we can easily locate where to assemble a
non-zero local integral.
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Robin boundary condition

Question: Since we computeZ
ek

cq nk� ds (� = 1; � � � ;Nlb)

instead of Z
ek

cq�i ds (i = p1; � � � ; pNlb
);

how do we obtain the corresponding global node indices of the
local test basis functions  nk� (� = 1; � � � ;Nlb)?
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Robin boundary condition

Question: Since we computeZ
ek

cr nk� nk� ds (�; � = 1; � � � ;Nlb)

instead of Z
ek

cr�j�i ds (i ; j = p1; � � � ; pNlb
);

how do we obtain the corresponding global node indices of the
local trial and test basis functions  nk� and
 nk� (�; � = 1; � � � ;Nlb)?

Information matrix Tb!
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Robin boundary condition

Recall that Tb(�; nk) and Tb(�; nk) give the global node
indices of the local trial and test basis functions  nk� and
 nk� (�; � = 1; � � � ;Nlb).

That is, Z
ek

cq nk� ds (� = 1; � � � ;Nlb)

should be assembled to wi where i = Tb(�; nk).

And Z
ek

cr nk� nk� ds (�; � = 1; � � � ;Nlb)

should be assembled to rij where i = Tb(�; nk) and
j = Tb(�; nk).
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Robin boundary condition

Algorithm VII-1:

Initialize R = sparse(Nb;Nb) and w = sparse(Nb; 1);

Compute the integrals and assemble them into R and w :

FOR k = 1; � � � ; nbe:

IF boundaryedges(1; k) shows Robin boundary condition, THEN

nk = boundaryedges(2; k);

FOR � = 1; � � � ;Nlb:

Compute r =
R
ek
cq nk� ds;

w(Tb(�; nk); 1) = w(Tb(�; nk); 1) + r ;

END

FOR � = 1; � � � ;Nlb:

FOR � = 1; � � � ;Nlb:

Compute r =
R
ek
cr nk� nk� ds;

Add r to R(Tb(�; nk);Tb(�; nk));

END

END

ENDIF

END
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Robin boundary condition

Algorithm VII-2:

Initialize R = sparse(Nb;Nb) and w = sparse(Nb; 1);

Compute the integrals and assemble them into R and w :

FOR k = 1; � � � ; nbe:

IF boundaryedges(1; k) shows Robin boundary condition, THEN

nk = boundaryedges(2; k);

FOR � = 1; � � � ;Nlb:

Compute r =
R
ek
cq nk� ds;

w(Tb(�; nk); 1) = w(Tb(�; nk); 1) + r ;

FOR � = 1; � � � ;Nlb:

Compute r =
R
ek
cr nk� nk� ds;

Add r to R(Tb(�; nk);Tb(�; nk));

END

END

ENDIF

END
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Robin boundary condition

If we follow Algorithm VII-1 to develop a subroutine to
assemble the vector arising fromZ

ek

~p
@a+b nk�

@xa@yb
ds;

and the vector arising fromZ
ek

~r
@m+s nk�

@xm@y s
@d+l nk�

@xd@y l
ds;

then Algorithm VII-1 is equivalent to calling this subroutine
with parameters: a = b = r = s = d = l = 0, ~p = cq, and
~r = cr .

Note that the vector part is exactly the same as what we had
for the Neumann boundary condition!
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Robin boundary condition

Algorithm VII:

Initialize R = sparse(Nb;Nb) and w = sparse(Nb; 1);

Compute the integrals and assemble them into R and w :

FOR k = 1; � � � ; nbe:

IF boundaryedges(1; k) shows Robin boundary condition, THEN

nk = boundaryedges(2; k);

FOR � = 1; � � � ;Nlb:

Compute r =
R
ek
~p
@a+b n

k
�

@xa@yb
ds;

w(Tb(�; nk); 1) = w(Tb(�; nk); 1) + r ;

END

FOR � = 1; � � � ;Nlb:

FOR � = 1; � � � ;Nlb:

Compute r =
R
ek
cr nk� nk� ds;

Add r to R(Tb(�; nk);Tb(�; nk));

END

END

ENDIF

END
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Robin boundary condition

Recall

Matrix boundarynodes:

boundarynodes(1; k) is the type of the kth boundary �nite
element node: Dirichlet (-1), Neumann (-2), Robin (-3)......

The intersection nodes of Dirichlet boundary condition and
other boundary conditions usually need to be treated as
Dirichlet boundary nodes.

boundarynodes(2; k) is the global node index of the kth

boundary boundary �nite element node.

Set nbn = size(boundarynodes; 2) to be the number of
boundary �nite element nodes;
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Robin boundary condition

Example 3: Use the �nite element method to solve the
following equation on the domain 
 = [�1; 1]� [�1; 1]:

�r � (ru) = �2ex+y ;

u = e�1+y on x = �1;
u = e1+y on x = 1;

ru � ~n + u = 0 on y = �1;
u = ex+1 on y = 1:

The analytic solution of this problem is u = ex+y , which can
be used to compute the error of the numerical solution.
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Robin boundary condition

Let's code for the linear and quadratic �nite element method
of the 2D second order elliptic equation with Neumann
boundary condition!

Open your Matlab!
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Robin boundary condition

h ku � uhk1 ku � uhk0 ju � uhj1
1=8 1:3358� 10�2 5:1094� 10�3 1:8523� 10�1

1=16 3:4487� 10�3 1:2760� 10�3 9:2559� 10�2

1=32 8:7622� 10�4 3:1893� 10�4 4:6273� 10�2

1=64 2:2084� 10�4 7:9727� 10�5 2:3136� 10�2

1=128 5:5433� 10�5 1:9932� 10�5 1:1568� 10�2

Table : The numerical errors for linear �nite element.

Any Observation?

Second order convergence O(h2) in L2/L1 norm and �rst
order convergence O(h) in H1 semi-norm, which match the
optimal approximation capability expected from piecewise
linear functions.
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Robin boundary condition

h ku � uhk1 ku � uhk0 ju � uhj1
1=8 1:0956� 10�4 3:9278� 10�5 2:9874� 10�3

1=16 1:4074� 10�5 4:9012� 10�6 7:4668� 10�4

1=32 1:7835� 10�6 6:1243� 10�7 1:8667� 10�4

1=64 2:2447� 10�7 7:6549� 10�8 4:6667� 10�5

1=128 2:8155� 10�8 9:5686� 10�9 1:1667� 10�5

Table : The numerical errors for quadratic �nite element.

Any Observation?

Third order convergence iO(h3) in L2/L1 norm and second
order convergence O(h2) in H1 semi-norm, which match the
optimal approximation capability expected from piecewise
quadratic functions.
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Dirichlet/Neumann/Robin mixed boundary condition

Consider

�r � (cru) = f in 
;

ru � ~n = p on �1 � @
;

ru � ~n + ru = q on �2 � @
;

u = g on @
=(�1 [ �2):

RecallZ


cru � rv dxdy �

Z
@


(cru � ~n) v ds =

Z


fv dxdy :

Since the solution on @
=(�1 [ �2) is given by u = g , then we
can choose the test function v(x) such that v = 0 on
@
=(�1 [ �2).
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Dirichlet/Neumann/Robin mixed boundary condition

Hence Z


cru � rv dxdy+

Z
�2

cruv ds

=

Z


fv dxdy+

Z
�1

cpv ds +

Z
�2

cqv ds:

Code?

Combine all of the subroutines for Dirichlet/Neumann/Robin
boundary conditions.
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Non-isotropic equation

Consider

�r � (cru) = f in 
;

cru � ~n = p on �1 � @
;

cru � ~n + ru = q on �2 � @
;

u = g on @
=(�1 [ �2);

where

c =

�
c11 c12
c21 c22

�
:

RecallZ


cru � rv dxdy �

Z
@


(cru � ~n) v ds =

Z


fv dxdy :
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Non-isotropic equation

Since the solution on @
=(�1 [ �2) is given by u = g , then we
can choose the test function v(x) such that v = 0 on
@
=(�1 [ �2).

Hence Z


cru � rv dxdy +

Z
�2

ruv ds

=

Z


fv dxdy +

Z
�1

pv ds +

Z
�2

qv ds:

where

cru � rv =

�
c11 c12
c21 c22

��
ux
uy

�
�
�

vx
vy

�
=

�
c11ux + c12uy
c21ux + c22uy

�
�
�

vx
vy

�
= c11uxvx + c12uyvx + c21uxvy + c22uyvy :
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Non-isotropic equation

Code? Just call Algorithm I-3 four times! Everything else is
the same as before!

Call Algorithm I-3 with r = 1, s = 0, p = 1, q = 0, and
c = c11 to obtain A1;

Call Algorithm I-3 with r = 0, s = 1, p = 1, q = 0, and
c = c11 to obtain A2;

Call Algorithm I-3 with r = 1, s = 0, p = 0, q = 1, and
c = c21 to obtain A3;

Call Algorithm I-3 with r = 0, s = 1, p = 0, q = 1, and
c = c22 to obtain A4.

Then the sti�ness matrix is A = A1 + A2 + A3 + A4.
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A more general second order equation

Consider

�r � (cru)+au = f in 
;

cru � ~n = p on �1 � @
;

cru � ~n + ru = q on �2 � @
;

u = g on @
=(�1 [ �2);

where

c =

�
c11 c12
c21 c22

�
:

ThenZ



cru � rv dxdy �

Z
@


(cru � ~n) v ds+

Z



auv dxdy =

Z



fv dxdy :
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A more general second order equation

Since the solution on @
=(�1 [ �2) is given by u = g , then we
can choose the test function v(x) such that v = 0 on
@
=(�1 [ �2).

Hence Z


cru � rv dxdy +

Z


auv dxdy +

Z
�2

ruv ds

=

Z


fv dxdy +

Z
�1

pv ds +

Z
�2

qv ds:

where

cru � rv = c11uxvx + c12uyvx + c21uxvy + c22uyvy :
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A more general second order equation

Code? Just call Algorithm I-3 �ve times! Everything else is
the same as before!

Call Algorithm I-3 with r = 0, s = 0, p = 0, q = 0, and c = a

to obtain A0;

Call Algorithm I-3 with r = 1, s = 0, p = 1, q = 0, and
c = c11 to obtain A1;

Call Algorithm I-3 with r = 0, s = 1, p = 1, q = 0, and
c = c11 to obtain A2;

Call Algorithm I-3 with r = 1, s = 0, p = 0, q = 1, and
c = c21 to obtain A3;

Call Algorithm I-3 with r = 0, s = 1, p = 0, q = 1, and
c = c22 to obtain A4.

Then the sti�ness matrix is A = A0+A1 + A2 + A3 + A4.
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Linear regression for the convergence order

Consider ku � uhk = Chr .

The goal is to design a linear regression to obtain the C and r

based on the h and errors given in the table.

First,

log (ku � uhk) = log(Chr )

= log(C ) + log(hr )

= log(C ) + r log(h):

Let y = log (ku � uhk) ; x = log(h); a = r ; b = log(C ).

Then y = ax + b.

For di�erent h, we can obtain the corresponding x and y .

Then by the regular linear regression, we can obtain a and b,
which give us the C = eb and r = a.
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