MISSOURI
E Missouri University of Science and Technology

Scholars' Mine

Course Materials Open Educational Resources (OER)

01 Aug 2019

Chapter 3: Finite Elements for 2D second order elliptic equation

Xiaoming He
Missouri University of Science and Technology, hex@mst.edu

Follow this and additional works at: https://scholarsmine.mst.edu/oer-course-materials

b Part of the Mathematics Commons

Recommended Citation

He, Xiaoming, "Chapter 3: Finite Elements for 2D second order elliptic equation” (2019). Course Materials.
6.

https://scholarsmine.mst.edu/oer-course-materials/6

This work is licensed under a Creative Commons Attribution 4.0 License.

This Course materials is brought to you for free and open access by Scholars' Mine. It has been accepted for
inclusion in Course Materials by an authorized administrator of Scholars' Mine. This work is protected by U. S.
Copyright Law. Unauthorized use including reproduction for redistribution requires the permission of the copyright
holder. For more information, please contact scholarsmine@mst.edu.

http://www.mst.edu/
http://www.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/oer-course-materials
https://scholarsmine.mst.edu/oer
https://scholarsmine.mst.edu/oer-course-materials?utm_source=scholarsmine.mst.edu%2Foer-course-materials%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=scholarsmine.mst.edu%2Foer-course-materials%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/oer-course-materials/6?utm_source=scholarsmine.mst.edu%2Foer-course-materials%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
mailto:scholarsmine@mst.edu

Mathematical Foundation of Finite Element
Methods

Chapter 3: Finite Elements for 2D second order elliptic equation

Xiaoming He
Department of Mathematics & Statistics
Missouri University of Science & Technology

1/137

Outline

@ Weak/Galerkin formulation
© FE discretization

© Dirichlet boundary condition
Q@ FE Method

© More Discussion

2/137

Weak/Galerkin formulation

Outline

@ Weak/Galerkin formulation

3/137

Weak/Galerkin formulation
Target problem
@ Consider the 2D second order elliptic equation

-V (cVu)="f, inQ
u=g, on Jf.
where Q is a 2D domain, f(x, y) and c(x, y) are given

functions on Q, g(x,y) is a given function on 9Q and u(x,y)
is the unknown function.

@ The gradient of a 2D function u is defined by

Vu = (ux, uy).
o The divergence of a 2 x 1 vector V is defined by
V.V = 3"1 Y
oy

4/137

Weak/Galerkin formulation
Weak formulation

e First, multiply a function v(x, y) on both sides of the original
equation,

=V -(cVu)=f inQ
= —V-(cVu)v=1 inQ

= —/ V - (cVu)v dxdy :/ fv dxdy.
Q Q

@ u(x,y) is called a trail function and v(x, y) is called a test
function.

5/137

Weak/Galerkin formulation
Weak formulation

@ Second, using Green's formula (divergence theory, integration
by parts in multi-dimension)

/V-(CVU)V dxdy:/ (cVu-n)v ds—/ cVu- Vv dxdy,
Q o0 Q

we obtain

/CVU-VV dxdy—/ (cVu-n)v dsz/ fv dxdy.
Q N Q

6 /137

Weak/Galerkin formulation

Weak formulation

@ Since the solution on the domain boundary 9X2 are given by
u(x,y) = g(x,y), then we can choose the test function
v(x,y) such that v =0 on 9Q.

@ Hence

/ cVu - Vv dxdy :/ fv dxdy.
Q Q

@ What spaces should v and v belong to? Sobolev spaces!

7/137

Weak/Galerkin formulation

Sobolev spaces

Definition (Support)

If uis a function defined on a domain €, then its support supp(u)
is the closure of the set on which u is nonzero.

Definition (Compactly supported)

If uis a function defined on a domain Q and supp(u) is a compact
subset (that is, a closed and bounded subset), then v is said to be
compactly supported in Q.

Lemma (1)

A function compactly supported in L is zero on and near the
boundary of Q.

8/137

Weak/Galerkin formulation
Sobolev spaces
Definition

C5°(2) is the set of all functions that are infinitely differentiable
on and compactly supported in €.

@ Recall integration by parts:

/ —v dxdy —/ uvny ds — u@ dxdy.
a0 o Ox

e For v € C§°(£2), we have v =0 on 0. Then

/ —v dxdy = — gv dxdy.
X

9/137

Weak/Galerkin formulation

Sobolev spaces

Definition (weak derivative with respect to x in 2D)

Suppose u is a real-valued function defined on a domain £ and
that v is integrable over every compact subset of Q. If there exists
another locally integrable function w defined on € such that

/ wv dxdy = / u— dxdy.

for all v € C5°(Q2), then u is said to be weakly differentiable with
respect to x and w is called the weak partial derivative of u with
respect to x.

10 /137

Weak/Galerkin formulation

Sobolev spaces

Definition (general weak derivative in 2D)

Let @ = (a1, a2). Suppose u is a real-valued function defined on a
domain Q and that v is integrable over every compact subset of .
If there exists another locally integrable function w defined on Q
such that

arta ootz
/Qwv dxdy = (—1) A UW dxdy.

for all v € C5°(2), then u is said to be a weakly differentiable and
w is called the weak partial derivative of order a of u.

11/137

Weak/Galerkin formulation

Sobolev spaces

Lemma (II)

If u is differentiable, then u is weakly differentiable and its weak
2 a . o)+
derivative of order o = (a1,) is aaxall%.

Remark

In the Sobolev spaces, which will be defined below, %

used to represent the weak derivative of order a = (a1, a2).

Weak/Galerkin formulation
Sobolev spaces
Definition (LP space)

P ={v:Q—R: /vpdxdy<oo}.
Q

Definition (L2 space)

[2(Q)={v:Q—=R: /vzdxdy<oo}.
Q

Definition (L* space)

L(Q)={v:Q—=R: sup |u(x,y)| < oo}
(x,y)eQ

13 /137

Weak/Galerkin formulation
Sobolev spaces

Definition (H™ space)

H™(Q) = {v € 12(Q) : TV ¢ 12(Q), Yor+an =1, -+, m}
={v axo19y02 , Vai+ap =1, ,m}.
Definition (H! space)

(‘)Oéﬁ-oézv

HY(Q) = {v e L*}Q): € 1%(Q), Yai + ap = 1}.

Ox1Qy@

Definition (Hg space)

H3(Q) = {v e HY(Q): v =0 on 0Q}.

14 /137

Weak/Galerkin formulation
Sobolev spaces
Definition (W," space)

m aaﬁ»agv P
WP (Q) = {V:Q-}R:/ﬂ |:8X0418y042:| dXd_y<OO7

Yoy +ap=0,--- ,m}.

o HM() = Wi(Q);
o HY(Q) = Wi(Q).

15 /137

Weak/Galerkin formulation
Weak formulation

o Weak formulation: find u € H(Q) such that

/ cVu- Vv dxdy = / fv dxdy.
Q Q
for any v € H}(Q).
o Let a(u,v) = [cVu- Vvdxdy and (f,v) = [, fvdxdy.

o Weak formulation: find u € H(Q) such that
a(u,v) = (f,v)

for any v € H}(Q).

16 /137

Weak/Galerkin formulation

Galerkin formulation

o Assume there is a finite dimensional subspace U, C H().

@ Then the Galerkin formulation is to find u, € Uy such that

a(uh, Vh) = (f, Vh)

& / cVuy - Vv dxdy :/ fvy, dxdy
Q Q

for any vy € Uh.

@ Basic idea of Galerkin formulation: use finite dimensional
space to approximate infinite dimensional space.

e Here Uy = span{gbj}j-v:bl is chosen to be a finite element space

where {gzﬁj}j-v:bl are the global finite element basis functions.

17 /137

FE discretization

Outline

© FE discretization

18 /137

FE discretization

Discretization formulation

Recall the following definitions from Chapter 2:

@ N: number of mesh elements.

@ Np: number of mesh nodes.

e E,(n=1,---,N): mesh elements.

o Zy (k=1,---,Npy): mesh nodes.

@ N;: number of local mesh nodes in a mesh element.

@ P:information matrix consisting of the coordinates of all mesh
nodes.

@ T: information matrix consisting of the global node indices of
the mesh nodes of all the mesh elements.

19 /137

FE discretization

Discretization formulation

We only consider the nodal basis functions (Lagrange type) in
this course.

Njp: number of local finite element nodes (=number of local
finite element basis functions) in a mesh element.

@ Np: number of the finite element nodes (= the number of
unknowns = the total number of the finite element basis
functions).

e X; (j=1,---,Np): finite element nodes.

@ P, information matrix consisting of the coordinates of all
finite element nodes.

@ T, information matrix consisting of the global node indices

of the finite element nodes of all the mesh elements.

20 /137

FE discretization

Discretization formulation

@ Recall the Galerkin formulation: find up € Uy such that
a(un, va) = (f, va)
& / cVup - Vvy, dxdy :/ fvy, dxdy
Q Q

for any vy € Up.
o Here Uy, = span{qu "1 is chosen to be a finite element space

where {gzﬁj}j:"l are the global finite element basis functions
defined in Chapter 2.
@ Since up € Uy = span{ng g ®,, then

Np
up =) Ui
J=1
for some coefficients u; (j =1,--- , Np).

21/137

FE discretization

Discretization formulation

@ In fact, since

, _ s)0, ifj#Kk,
#(Xi) = Jk_{ 1, ifj=k
then
Np
un(Xie) = uji(Ar) = .
j=1

@ Hence the coefficient u; is actually the numerical solution at
the node X; (j =1,---, Np).

22 /137

FE discretization

Discretization formulation

@ If we can set up a linear algebraic system for
ui (j =1,---,Np) and solve it, then we can obtain the finite

element solution wuy,.

@ Therefore, we choose the test function

vh = @i (i=1,---,Np). Then the finite element formulation
gives
Np
/ cV D uj | - Vi dxdy = / féi dxdy,
Q = Q

Np
= >y [/ cV; - Vi dxdy] :/qu,- dxdy, i=1,---,Np.
= Q Q

23 /137

FE discretization

Matrix formulation

@ Define the stiffness matrix

Np
A=la], = [/Q eV - Vi dxdy]

ij=1

@ Define the load vector

Np
b=[b]" = [/Q f i dxdy] :

i=1
@ Define the unknown vector
X = [UJ]JI'V:br
@ Then we obtain the linear algebraic system
AX = b.

24 /137

FE discretization

Assembly of the stiffness matrix

@ Once X is obtained, the finite element solution uy and the
numerical solutions at all the mesh nodes are obtained.

o From the definition of ¢; (j = 1,---, N}), we can see that ¢;
are non-zero only on the elements adjacent to the node X;,
but 0 on all the other elements.

@ This observation motivates us to think about
aj = / cV@;j-Vo; dxdy = / cVe;- Vo, dxdy.
Q E,

@ It is easy to see that most of fEn cV¢; - V¢; dxdy will be 0.

@ So we only need to use numerical integration to compute
those nonzero integrals.

FE discretization

Assembly of the stiffness matrix

General local assembly idea for A:
@ Loop over all the elements;
@ Compute all non-zero local integrals on each element for A;

@ Assemble these non-zero local integrals into the corresponding
entries of the stiffness matrix A.

26 /137

FE discretization

Assembly of the stiffness matrix

Compute all non-zero local integrals on each element for A:

@ On the n' element E,, we get non-zero local integrals only
when the trial and test basis functions are corresponding to
the finite element nodes of this element.

o Let ps = Tp(s,n) (s=1,---, Np).

@ Then we only consider the trial and test basis functions to be
bp, (s =1, Np).

@ There are only N,2b non-zero local integrals on E, with the
global basis functions ¢, (s =1, , Np):

/E V- Vi dxdy (i = pro--- pay)-

@ In fact, we have

Pns = bpslE, (=1, , Npp).

FE discretization

Assembly of the stiffness matrix

@ That is, instead of the original non-zero local integrals with

the global basis functions ¢, (s =1,---, Njp), we will
compute the following non-zero local integrals with the local
basis functions ¥ps (s =1, , Npp):

/ CV@[)na . V?,[)ng dxdy (aﬂg = 1, s 7I\//b).

@ Question: how to compute these integrals?

@ Gauss quadrature. The needed information is stored in the
matrices P and T.

28 /137

FE discretization

Assembly of the stiffness matrix

Assemble the non-zero local integrals into A:

@ When the trial function is ¢; and the test function is ¢;, the
corresponding non-zero local integrals should be assembled to
ajj.

@ Therefore, if we find the global node indices of the trial and

test basis functions, we can easily locate where to assemble a
non-zero local integral.

29 /137

FE discretization

Assembly of the stiffness matrix

@ Question: Since we compute
/ CV@[}na . vd)nﬁ dxdy (Oz7 ﬁ =].7 e ,N/b)
instead of

/ CV; - Vi dxdy (i = pry-- -+ Pruy).

n

how do we obtain the corresponding global node indices of the
local trial and test basis functions %,, and

Yng (0, B=1,---, Njp)?

@ Information matrix Tp!

30/137

FE discretization
Assembly of the stiffness matrix

@ Recall that Tp(«r,n) and Tp(B, n) give the global node indices
of the local trial and test basis functions v, and

"}bnﬁ (Oé,,B - 17' e aNIb)-
@ That is, for

/ Vihna - Vg dcdy (0, B = 1,--- , Nip)

should be assembled to a;; where and
.j: Tb(aa f'l).

31/137

FE discretization
Assembly of the stiffness matrix

Algorithm I-1:
o Initialize the matrix: A = sparse(Np, Np);

@ Compute the integrals and assemble them into A:
FORa=1,--- Ny

Compute r = [¢ cVipna - Vibng dxdy;
Add r to A(, Tp(a, n)).

END

32/137

FE discretization
Assembly of the stiffness matrix

Algorithm 1-2:

e Initialize the matrix: A = sparse(Np, Np) and
5= zeros(N,b, Nlb);
@ Compute the integrals and assemble them into A:
FORn=1,--- N:
FOR a=1,--- Np:
FORB=1,---,Np:
Compute S(8,a) = [¢ ¢Vihna - Vg dxdy;
END
END
A(Tb(:’ n)7 Tb(:a n)) = A(Tb(:’ n)7 Tb(:a n)) +5;
END

33/137

FE discretization

Assembly of the stiffness matrix

To make a general subroutine for different cases, more information
needed for computing and assembling the integral should be
treated as input parameters or input functions of this subroutine:

o the coefficient function c;
@ the quadrature points and weights for numerical integrals;

@ the mesh information matrices P and T, which can also
provide the number of mesh elements N = size(T,2) and the
number of mesh nodes N, = size(P, 2);

@ the finite element information matrices Py and T for the trial
and test functions respectively, which can also provide the
number of local basis functions Ny, = size(Tp,1) and the
number of the global basis functions Nj, = size(Pp,2) (= the
number of unknowns);

@ the type of the basis function for the trial and test functions
respectively;

34 /137

FE discretization

Assembly of the stiffness matrix

@ Note that

o a"/}na 8¢n6 / a"/}noz 8¢n6
/ECV'I/Jna Vipns dxdy—/E"c o Ox dxdy+ | ¢ 3y dy dxdy.

n

@ Hence we can consider to develop an algorithm to assemble
the matrix arising from a more general integral

r+s p+q
/ 0" 1hpe OP T I9hng dxdy.
Ox"dys OxPOy1

with parameters r, s, p, and q.

35/137

FE discretization
Assembly of the stiffness matrix

Algorithm 1-3:
o Initialize the matrix: A = sparse(Np, Np);
@ Compute the integrals and assemble them into A:

FORn=1,--- N:
FORa:l,---,N/b:

FORB=1,--- Ny

r+s AP+,
Compute r = fEn c%x,g}’/’? 3ng;q5 dxdy;
Add r to A(Tp(B, n), Tp(a, n)).

END
END
END

36 /137

FE discretization
Assembly of the stiffness matrix

Algorithm 1-4:
o Initialize the matrix: A = sparse(Np, Np) and
5= zeros(N/b, N/b);
@ Compute the integrals and assemble them into A:
FORn=1,--- /N:
FOROézl, ,N/bi
FOR B =1,---, Np:
rts AP+ays,
Compute S(f,a) = [¢ C%Xrg’;? axpg;f dxdy;
END
END
A(Tb(:a n)7 Tb(:u n)) = A(Tb(:v n)7 Tb(:u n)) +S;
END

37/137

FE discretization

Assembly of the stiffness matrix

o First, we call Algorithm -3 with r=p=1and s=g =0 to
obtain Al.

@ Second, we call Algorithm -3 with r=p=0ands=qg=1
to obtain A2.

@ Then the stiffness matrix A = Al + A2,

@ That is, Algorithm I-1 is equivalent to calling Algorithm -3
twice with two different groups of parameters
(r=p=1s=g=0and r=p=0,5s =g =1) and then
adding the two resulted matrices together.

@ Algorithm I-2 and Algorithm 1-4 have a similar relationship.

38 /137

FE discretization

Assembly of the load vector

@ The idea for the assembly of the load vector is similar. We
have

b,-:/qu,- dxdy = /f¢ dxdy, i=1,---, Np.
Q

En

@ Loop over all the elements;

Compute all non-zero local integrals on each element for the
load vector b;

Assemble these non-zero local integrals into the corresponding
entries of the load vector b.

39/137

FE discretization

Assembly of the load vector

Compute all non-zero local integrals on each element for b:

@ On the n' element E,, we get non-zero local integrals only
when the test basis functions are corresponding to the finite
element nodes of the element.

o Let ps = To(s,n) (s =1, , Nip).
@ Then we only consider the test basis functions to be
¢P5 (5 = 17' o aNIb)-

@ There are only Ny, non-zero local integrals on E, with the
global basis functions ¢, (s =1, , Np):

[fi axdy (= pue o)
@ In fact, we have

Pns = bpslE, (=1, , Npp).

40 /137

FE discretization

Assembly of the load vector

@ That is, instead of the original non-zero local integrals with

the global basis functions ¢, (s =1,---, Njp), we will
compute the following non-zero local integrals with the local
basis functions ¥ps (s =1, , Npp):

/' Fibns dxdy (=1, Nip).

@ Question: how to compute these integrals?

@ Gauss quadrature. The needed information is stored in the
matrices P and T.

41 /137

FE discretization

Assembly of the load vector

Assemble the non-zero local integrals into b:

@ When the test function is ¢;, the corresponding non-zero local
integrals should be assembled to b;.

@ Therefore, if we find the global node indices of the test basis
functions, we can easily locate where to assemble a non-zero
local integral.

@ Question: Since we compute

/ Fibns dxdy (B=1,--- , Nip)

n

instead of
f¢i dXd)/ (I = p1,- apN/b)v

how do we obtain the corresponding global node indices of the
local test basis functions 1,3 (6 =1,---, Njp)?

@ Information matrix Tp!
42 /137

FE discretization
Assembly of the load vector

@ Recall that Tp(3, n) give the global node indices of the local
test basis functions ¢pg (8 =1,---, Npp).

@ That is, for)

/ fipng dxdy (B =1,---, Np)

En

should be assembled to b; where

43 /137

FE discretization
Assembly of the load vector

Algorithm [1-1:
e Initialize the matrix: b = sparse(Np, 1);

@ Compute the integrals and assemble them into b:

Compute r = [¢ fins dxdy;
BT 1), 1) = BT), 1)+ 7

44 /137

FE discretization
Assembly of the load vector

Algorithm [1-2:
e Initialize the vector: b = sparse(Np,1) and d = zeros(Nj, 1);
@ Compute the integrals and assemble them into b:
FORn=1,--- ,N:
FOR B =1,---, Np:
+q'¢’nﬂ
Compute d(f,1) = [¢ f axraye axdy;
END
b(Tb(:a n)a 1) = b(Tb(:a n)7 1) +d;
END

45 /137

FE discretization

Assembly of the load vector

To make a general subroutine for different cases, more information
needed for computing and assembling the integral should be
treated as input parameters or input functions of this subroutine:

@ the right hand side function f;
o the quadrature points and weights for numerical integrals;

@ the mesh information matrices P and T, which can also
provide the number of mesh elements N = size(T,2) and the
number of mesh nodes N, = size(P, 2);

@ the finite element information matrices P, and Tp for the test
functions, which can also provide the number of local basis
functions Ny, = size(Tp,1) and the number of the global basis
functions N, = size(Pp,2) (= the number of unknowns);

@ the type of the basis function for the test functions.

46 /137

FE discretization

Assembly of the load vector

@ We can also consider to develop an algorithm to assemble the
vector arising from

AP, g
f——— dxdy.
/En OxPOyd Xy

47 /137

FE discretization
Assembly of the load vector

Algorithm [1-3:
o Initialize the matrix: b = sparse(Np, 1);
@ Compute the integrals and assemble them into b:
FORn=1,--- ,N:
FOR B =1,---,Np:
Compute r = [agqug”f dxdy;

b(Tp(B,n),1)_b(Tb(ﬁu n),1) +r;
END

END

48 /137

FE discretization
Assembly of the load vector

Algorithm [1-4:
e Initialize the vector: b = sparse(Np,1) and d = zeros(Nj, 1);
@ Compute the integrals and assemble them into b:
FORn=1,--- ,N:
FOR B =1,---, Np:
+q'¢’nﬂ
Compute d(f,1) = [¢ f axraye axdy;
END
b(Tb(:a n)a 1) = b(Tb(:a n)7 1) +d;
END

49 /137

FE discretization

Assembly of the load vector

o We call Algorithm -3 with p = g = 0 to obtain b.

@ That is, Algorithm II-3 is equivalent to Algorithm II-1 with
p=q=0.

@ Algorithm [1-2 and Algorithm [1-4 have a similar relationship.

50 /137

Dirichlet boundary condition

Outline

© Dirichlet boundary condition

51/137

Dirichlet boundary condition

Dirichlet boundary condition

o Basically, the Dirichlet boundary condition u = g give the
solutions at all boundary finite element nodes.

@ Since the coefficient u; in the finite element solution
up = Zsz"l uj¢; is actually the numerical solution at the finite
element node X; (j =1,---, Np), we actually know those u;
which are corresponding to the boundary finite element nodes.

@ Recall that boundarynodes(2,:) store the global node indices
of all boundary finite element nodes.

o If m € boundarynodes(2,:), then the m*" equation is called a
boundary node equation.

@ Set nbn to be the number of boundary nodes;

Dirichlet boundary condition

Dirichlet boundary condition

@ One way to impose the Dirichlet boundary condition is to
replace the boundary node equations in the linear system by
the following equations

um = g(Xm)-

for all m € boundarynodes(2,:).

53 /137

Dirichlet boundary condition

Dirichlet boundary condition

Algorithm I1I:

@ Deal with the Dirichlet boundary conditions:
FOR k=1,--- nbn:
If boundarynodes(1, k) shows Dirichlet condition, then
i = boundarynodes(2, k);

A,)_o
A(i i) =
b(i) = g(b(:5 1))
ENDIF

END

54 /137

FE Method
QOutline

Q@ FE Method

55 /137

FE Method

Universal framework of the finite element method

Generate the mesh information: matrices P and T

@ Assemble the matrices and vectors: local assembly based on P
and T only;

@ Deal with the boundary conditions: boundary information
matrix and local assembly;

Solve linear systems: numerical linear algebra (Math 6601:
Numerical Analysis).

56 /137

FE Method

Algorithm

@ Generate the mesh information matrices P and T.

@ Assemble the stiffness matrix A by using Algorithm |. (We will
choose Algorithm 1-3 in class)

o Assemble the load vector b by using Algorithm II. (We will
choose Algorithm 1I-3 in class)

@ Deal with the Drichlet boundary condition by using Algorithm
1.

e Solve AX = b for X by using a direct or iterative method.

57 /137

FE Method
Algorithm

Recall Algorithm 1-3:
o Initialize the matrix: A = sparse(Np, Np);
@ Compute the integrals and assemble them into A:

FORn=1,--- N:
FORa:l,---,N/b:

FORB=1,--- Ny

r+s AP+,
Compute r = fEn C%X,g]}';f 3ng;q5 dxdy;
Add r to A(Tp(B, n), Tp(a, n)).

END
END
END

58 /137

FE Method

Algorithm

Recall
o First, we call Algorithm -3 with r=p=1and s=g =20 to
obtain Al.

@ Second, we call Algorithm -3 with r=p=0ands=¢g=1
to obtain A2.

@ Then the stiffness matrix A = Al + A2,

59 /137

FE Method
Algorithm

Recall Algorithm 11-3:
e Initialize the matrix: b = sparse(Np, 1);
@ Compute the integrals and assemble them into b:
FORn=1,--- ,N:
FOR B =1,---,Np:
Compute r = [fag’qu(;p,,f dxdy;

(Tb(ﬁa)7)_b(Tb(ﬁa)7)+r;
END

END
@ Recall: We call Algorithm 1-3 with p = g = 0 to obtain b.

60 /137

FE Method
Algorithm

Recall Algorithm IlI:

@ Deal with the Dirichlet boundary conditions:
FOR k=1,--- nbn:
If boundarynodes(1, k) shows Dirichlet condition, then
i = boundarynodes(2, k);

A,)_o
A(i i) =
b(i) = g(b(:5 1))
ENDIF

END

61 /137

FE Method
Measurements for errors

Recall

Definition (L2 space)

L2(Q)={v:Q—R: /Qv2dxdy<oo}.

Definition (H! space)

HY(Q) = 1200): 2 gy =1
(@) = {v e L(Q): oot € L2(Q), You +az = 1),

Definition (L* space)

L) ={v:Q—=R: sup |u(x,y)| < oo}
(x:y)eQ

62 /137

FE Method
Measurements for errors

o L% norm: ||ull = sup |u(x,y)| for u e L>(Q).
(xy)eR

L norm error: ||u — upl|, = sup |u(x,y) — us(x,y)|
(x.y)eQ

L% norm: |lully = 4/ [q u?dxdy for u € L2(Q).

o L2 norm error: |lu— uplly = \/fﬂ(u — up)2dxdy.
o H! semi-norm: |u|; = \/fﬂ dxdy+ o (8u) dxdy for
u € HY(Q).

e H! semi-norm error:
2 2
U — uply = \/fﬂ (W) dxdy + [, (0(”8;%)) dxdy.

63 /137

FE Method

Measurements for errors

Np
@ By using up = > uj¢;, the definition of T, and the definition
Jj=1
of the local basis functions ., we get

lu—unllye = sup |u(x,y) — un(x,y)]
(xy)eQ

= max, max lu(x,) — un(x, y)|

Np
= max, max |ulx,y) = ,; ujj
Nip
= max, max U(XaY)_;UTb(km)@/}nk(XvY) :

64 /137

FE Method

Measurements for errors

@ Define
Nip
Wa(X,y) = Z UTb(k,n)dﬂnk(Xd/)-
k=1
Then
o=l = max max Ju(xy) = wnxy)]

e max_ |u(x,y)— wp(x,y)| can be approximated by choosing
(x.y)€EEn
the maximum values of |u(x,y) — wp(x, y)| on a group of

chosen points in E,, such as some Gauss quadrature nodes in
this element. We denote the approximation by rp,.

65 /137

FE Method

Measurements for errors

Algorithm IV:
@ Initialize the error error = 0;

o Approximate the maximum absolute errors on all elements
and then choose the largest one as the final approximation:

FORn=1,--- N:

Compute r, = max_ |u(x,y) — wa(x,y)|
(x,y)EER
IF r, > error, THEN
error = rp;
END
END

66 /137

FE Method

Measurements for errors

Np
@ By using up = > uj¢;, the definition of T, and the definition
Jj=1
of the local basis functions ., we get

lu—uplly, = /(u — up)?dxdy
Q

/ u — up)?dxdy

17En

[
™=

n

[
M=

/ Z uig; | dxdy

; 2

Nip
< ZUTb(k,n)wnk> dxdy.
n k=1

n

1

3

I
P}
I Mz
L

67 /137

FE Method

Measurements for errors

@ Define
Nip
Wo =) U, (kn)Ynk-
k=1
Then

N
lu=wlly = > [(u— wn)aa.
n=1 n

o Each integral [(u— wn)?dxdy can be computed by
numerical integration.

68 /137

FE Method
Measurements for errors

Np
@ By using up = > u;j¢;, the definition of T}, and the definition
Jj=1
of the local basis functions t,,, we get

o= e - Wﬂ (e
= (8 th) dxdy

b
= 8u ¢J dxdy

N
= Z/ (gi Z“Tbkna¢"k> dxdy.

2

69 /137

FE Method
Measurements for errors

@ Similarly,

MNu — 2
lu—uply, = \//Q ((Uayuh)) dxdy
N

2
3(U—Uh)> dxdy
dy

70 /137

FE Method

Measurements for errors

@ Then

71/137

FE Method

Measurements for errors

@ Define
_ i 8djnk
Wn1 = ZUTb(k,n)Wa
k=1
_ i 8djnk
Wp2 = ZUTb(km)iay .
Then
|u— upl

N Ou 2 A Oou 2
= nZ:;/E ((‘3)(- W,,1> dxdy + ; /En <8y - w,,2> dxdy.

: 2 2
e Each integral fEn (% — W,-,1) dxdy or fEn (g—; — an) dxdy
can be computed by numerical integration.

72 /137

FE Method

Measurements for errors

@ Develop a subroutine for a more general formulation

Nip 2
gty 9ty
Z/ <3xalayaz B Z uTb(k’n)W dxdy.
k=1
® ||u — up||y is equivalent to calling this subroutine with a1 = 0
and ar = 0.

® |u— up|,, is equivalent to calling this subroutine with a; =1
and ap = 0.

o |u— upl, , Is equivalent to calling this subroutine with a; =0
and ap = 1.

73 /137

FE Method

Measurements for errors

Algorithm V:
@ Initialize the error error = 0; input the parameters a; and ap;

o Compute the integrals and add them into the total error:
FORn=1,--- N:

2
ooz, Nip gortozy,
(8)(0418)/0‘2 N Z UTb(k’n)W dxdy;

error = error-+ /
k=1

En

END

error = error;

74 /137

FE Method

Numerical example

@ Example 1: Use the finite element method to solve the
following equation on the domain Q =[-1,1] x [-1,1]:

2
—V-(Vu) = —y(1-y)d—x—)t
x
—x(1=2)(=3y = y)e?,
u = —15y(1—y)e™™ onx=—1,
u = 05y(1—y)e'™ onx=1,
u = —2x(1- %)ex_1 ony=-1,

u = 0 ony=1.

@ The analytic solution of this problem is
u=xy(l—3%)(1—y)e*™, which can be used to compute the
error of the numerical solution.

75 /137

FE Method

Numerical example

@ Let’s code for the linear and quadratic finite element method
of the 2D second order elliptic equation together!

@ Open your Matlab!

76 /137

FE Method
Numerical example

h | Tu—ualle | Tu— ull |4 = uply
1/8 | 2.3620 x 1072 | 6.8300 x 10~> | 1.8774 x 107!
1/16 | 6.3421 x 1073 | 1.7189 x 1073 | 9.4167 x 10~2
1/32 | 1.6430 x 1073 | 4.3049 x 10~ | 4.7121 x 102
1/64 | 4.1810 x 10~* | 1.0767 x 10~* | 2.3565 x 102

1/128 | 1.0546 x 10~* | 2.6922 x 10° | 1.1783 x 102

Table : The numerical errors for linear finite element.

o Any Observation?

o Second order convergence O(h?) in L2/L> norm and first
order convergence O(h) in H! semi-norm, which match the
optimal approximation capability expected from piecewise
linear functions.

FE Method
Numerical example

h | Tu—ulle | o= unllg [u = uply
1/8 |3.3678 x 10 % | 1.1705 x 10 % | 8.9192 x 103
1/16 | 4.4273 x 107> | 1.4637 x 107> | 2.2414 x 10~3
1/32 | 5.6752 x 107° | 1.8289 x 107° | 5.6131 x 10~*
1/64 | 7.1839 x 10~7 | 2.2853 x 10~ | 1.4042 x 10~*

1/128 | 9.0366 x 10~% | 2.8560 x 1078 | 3.5114 x 10~°

Table : The numerical errors for quadratic finite element.

o Any Observation?

o Third order convergence O(h®) in L2/L> norm and second
order convergence O(h?) in H! semi-norm, which match the

optimal approximation capability expected from piecewise
quadratic functions.

More Discussion

Outline

© More Discussion

79 /137

More Discussion

Neumann boundary conditions

o Consider
—V - (cVu)=1Ff inQ, Vu-i=p on .

@ Recall
/ cVu-Vv dxdy — / (cVu-n)v ds = / fv dxdy.
Q o0 Q

@ Hence

/ cVu-Vyv dxdy = / fv dxdy +/ cpv ds.
Q 0 o0

@ Is there anything wrong? The solution is not unique!

@ If uis a solution, then u + ¢ is also a solution where c is a
constant.

80 /137

More Discussion
Neumann boundary condition

o Consider
-V - (cVu) =1 inQ,
Vu-n=p on[1C0Q,
u=g on /T

@ Recall

/CVU-VV dxdy—/ (cVu-h)v ds:/ fv dxdy.
Q oQ Q

@ Since the solution on 9Q/I'1 is given by u = g, then we can
choose the test function v(x) such that v =0 on 0Q/T;.

81/137

More Discussion
Neumann boundary condition

@ Since
/ (cVu-d)vds = /(cVu-ﬁ)vds+/ (cVu-A)v ds
o0 M a9/
= / cpv ds,
M
then

/ cVu - Vv dxdy —/ cpv ds :/ fv dxdy.
Q M Q

@ Hence the weak formulation is

/ cVu-Vv dxdy = / fv dxdy+ / cpv ds.
Q Q JI

82 /137

More Discussion

Neumann boundary condition

@ Then the Galerkin formulation is to find u, € Uy such that
/ cVup - Vv, dxdy = / fvp dxdy+/ cpvy ds
Q Q r

for any vy € Up.
Np

@ Recall: Since up € Uy = span{¢; yalr then
Ny
up =) ujg);
j=1
for some coefficients u; (j =1,--- , Np).

@ Recall: Choose vy, = ¢ (i =1, -+, Np).

83 /137

More Discussion
Neumann boundary condition

@ Then for i =1,--- , Np, the finite element formulation gives
Np
/ V(> uigj) - Vi dxdy = / foi dxdy+ / cpgi ds,
Q 1 Q M

Jj=

Ny .
= Zuj [/ cV; - Vi dxdy] = / foi dxdy+ / cpg; ds.
Q Q [

J=1

84 /137

More Discussion
Neumann boundary condition

Recall

@ Define the stiffness matrix

Np

A= [aU]I{\,Ijl?Zl — |:/Q CV¢J . V¢l dXdy:| B
ij=

@ Define the load vector

Np
b=[b]M, = [/Q f; dxdy] :

i=1

@ Define the unknown vector

v N
X = [”j]j:bl'

85 /137

More Discussion

Neumann boundary condition

@ Define the additional vector from the Neumann boundary

condition
Np
V= [v,-],'-\l:b1 = [/ cpodi ds] .
M

i=1

o Define the new vector b = B+\7.

@ Then we obtain the linear algebraic system
AX = b.
o Code?

@ Add one more subroutine for v to the existing code!

86 /137

More Discussion
Neumann boundary condition

Recall
e Matrix boundaryedges:
o boundaryedges(1, k) is the type of the k" boundary edge e:
Dirichlet (-1), Neumann (-2), Robin (-3)......
@ boundaryedges(2, k) is the index of the element which
contains the k¥ boundary edge e.

@ Each boundary edge has two end nodes. We index them as
the first and the second counterclock wise along the boundary.

e boundaryedges(3, k) is the global node index of the first end
node of the k" boundary boundary edge e.

@ boundaryedges(4, k) is the global node index of the second
end node of the k™ boundary boundary edge ey.

e Set nbe = size(boundaryedges, 2) to be the number of
boundary edges;

87 /137

More Discussion

Neumann boundary condition

@ The idea for the assembly of the vector v is similar to that of
the load vector. We have

i=[wtids = X [eppids izt M
r1 ekcrl €k
1<k<nbe

@ Loop over all the boundary edges;

@ Compute all non-zero local integrals on each Neumann
boundary edge for the vector V;

@ Assemble these non-zero local integrals into the corresponding
entries of the vector V.

88 /137

More Discussion

Neumann boundary condition

Compute all non-zero local integrals on each Neumann boundary
edge for v:

@ The index of the element which contains the k" boundary
edge ey is ny = boundaryedges(2, k). Then on ey, we get
non-zero local integrals only when the test basis functions are
corresponding to the finite element nodes of the n,t(h element
En,.

o Let ps = Tp(s,nk) (s=1,---, Np).

@ Then we only consider the test basis functions to be
bp, (s =1, Np).

@ There are only Ny, non-zero local integrals on e, with the
global basis functions ¢, (s =1,---, Np):

/ cpgi ds (i = p1,--+ ., Pn,,)-

€k

89 /137

More Discussion

Neumann boundary condition

@ In fact, we have

Yms = PpelEn, (s =1,-+, Nip).

@ That is, instead of the original non-zero local integrals with

the global basis functions ¢p, (s =1,---, Njp), we will
compute the following non-zero local integrals with the local
basis functions 1n,s (s =1, -, Njp):

/ cphnp ds (B=1,---, Np).

€k

@ Question: how to compute these integrals?

@ Gauss quadrature. The needed information is stored in the
matrices P and boundaryedges.

90 /137

More Discussion

Neumann boundary condition

e P(:, boundaryedges(3 : 4, k)) provides the coordinates of the
two end points of the k" boundary edge. We discuss three
cases based on these coordinates.

@ Case 1: If a boundary edge is vertical, then it can be
described as x = ¢ (y1 <y < y»). The y—coordinates of the
Gauss quadrature nodes on this boundary edge and the Gauss
quadrature weights can be obtained from the 1D local Gauss
quadrature on [y, y2]. And the x—coordinates of the Gauss
quadrature nodes are fixed to be c.

91 /137

More Discussion

Neumann boundary condition

o Case 2: If a boundary edge is horizontal, then it can be
described as y = ¢ (xq < x < x»). The x—coordinates of the
Gauss quadrature nodes on this boundary edge and the Gauss
quadrature weights can be obtained from the 1D local Gauss
quadrature on [x1, x2]. And the y—coordinates of the Gauss
quadrature nodes are fixed to be c.

@ Case 3: Otherwise, a boundary edge can be described as
y = ax+ b (x1 < x < x2). The x—coordinates of the Gauss
quadrature nodes on this boundary edge and the Gauss
quadrature weights can be obtained from the 1D local Gauss
nodes in [x1, x2]. And the y—coordinates of the Gauss
quadrature nodes are obtained from y = ax + b.

@ The case 3 with a =0 and b = ¢ is equivalent to case 2.
Hence case 2 and case 3 can be combined into one case.

92 /137

More Discussion

Neumann boundary condition

Assemble the non-zero local integrals into v:

@ When the test function is ¢;, the corresponding non-zero local
integrals should be assembled to v;.

@ Therefore, if we find the global node indices of the test basis
functions, we can easily locate where to assemble a non-zero
local integral.

@ Question: Since we compute

/ prnkﬁ ds (/B - 17 e aN/b)
ex

instead of
C,D¢i ds (I = p1, - apN/b)v
€k
how do we obtain the corresponding global node indices of the
local test basis functions 4,5 (8 =1,---, Np)?

@ Information matrix Tp!
93 /137

More Discussion
Neumann boundary condition

@ Recall that Tp(3, nk) give the global node indices of the local
test basis functions 9,53 (B =1,---, Np).

@ That is,
/ b ds (6= 1, . Nip)

€k

should be assembled to v; where i = T(/3, ng).

94 /137

More Discussion
Neumann boundary condition

Algorithm VI-1:
o Initialize the vector: v = sparse(Np, 1);
@ Compute the integrals and assemble them into v:
FOR k=1,--- nbe:
IF boundaryedges(1, k) shows Neumann boundary
condition, THEN
nk = boundaryedges(2, k);
FOR B =1,---,Np:
Compute r = [, cpipn,ps ds;
V(Tb(ﬁa nk)7 1) = V(Tb(/67 nk)7 1) +r;
END
ENDIF
END

95 /137

More Discussion

Neumann boundary condition

o If we follow Algorithm VI-1 to develop a subroutine to
assemble the vector arising from

/ aa—l—bwnkﬁ d
Ox20y?

then Algorithm VI-1 is equivalent to calling this subroutine
with parameters: a=b =0 and p = cp.

96 /137

More Discussion
Neumann boundary condition

Algorithm VI:
e Initialize the vector: v = sparse(Np,1);
@ Compute the integrals and assemble them into v:

FOR k=1,--- , nbe:
IF boundaryedges(1, k) shows Neumann boundary
condition, THEN
nk = boundaryedges(2, k);
FORB=1,---, Np:

a+b
Compute r = fek ﬁaaxag;ﬁﬂ ds;
v(To(B,nk),1) = v(Th(B, nk), 1) + r;
END
ENDIF

END

97 /137

More Discussion

Neumann boundary condition

Recall

e Matrix boundarynodes:

o boundarynodes(1, k) is the type of the k¥ boundary finite
element node: Dirichlet (-1), Neumann (-2), Robin (-3)......

@ The intersection nodes of Dirichlet boundary condition and
other boundary conditions usually need to be treated as
Dirichlet boundary nodes.

o boundarynodes(2, k) is the global node index of the k'/
boundary boundary finite element node.

e Set nbn = size(boundarynodes, 2) to be the number of
boundary finite element nodes;

98 /137

More Discussion

Neumann boundary condition

o Example 2: Use the finite element method to solve the
following equation on the domain Q = [-1,1] x [-1,1]:

—V-(Vu) = =27,
u = e MY onx=-1,
u = e onx=1,
Vu-i = — 1 ony=-1,
u = &t oony=1

@ The analytic solution of this problem is u = XY, which can
be used to compute the error of the numerical solution.

99 /137

More Discussion

Neumann boundary condition

@ Let’s code for the linear and quadratic finite element method
of the 2D second order elliptic equation with Neumann
boundary condition!

@ Open your Matlab!

100 /137

More Discussion
Neumann boundary condition

h [lu — unllog [[u — unllg |u — unly
1/8 [1.3358 x 1072 | 5.1224 x 1073 | 1.8523 x 10!
1/16 | 3.4487 x 1073 | 1.2793 x 1073 | 9.2559 x 102
1/32 | 8.7622 x 10~% | 3.1973 x 10~* | 4.6273 x 102
1/64 | 2.2084 x 10~% | 7.9928 x 10> | 2.3136 x 102

1/128 | 5.5433 x 1075 | 1.9982 x 10~° | 1.1568 x 102

Table : The numerical errors for linear finite element.

o Any Observation?

o Second order convergence O(h?) in L2/L> norm and first
order convergence O(h) in H! semi-norm, which match the
optimal approximation capability expected from piecewise
linear functions.

101 /137

More Discussion
Neumann boundary condition

h | u—ulle | o= usl, [u = uply
1/8 [1.0956 x 10~* | 3.9285 x 107 ° | 2.9874 x 103
1/16 | 1.4074 x 107> | 4.9015 x 107° | 7.4668 x 10~—*
1/32 | 1.7835 x 107° | 6.1244 x 10~ | 1.8667 x 10~*
1/64 | 2.2447 x 10~7 | 7.6549 x 107% | 4.6667 x 10~°

1/128 | 2.8155 x 1078 | 9.5686 x 107° | 1.1667 x 10~°

Table : The numerical errors for quadratic finite element.

o Any Observation?

o Third order convergence O(h®) in L2/L> norm and second

order convergence O(h?) in H! semi-norm, which match the

optimal approximation capability expected from piecewise
quadratic functions.

More Discussion
Robin boundary conditions

o Consider
-V - (cVu)=1f inQ,
Vu-i+ru=gq onl,C09,
u=g on 0Q/l>.

@ Recall

/CVU-VV dxdy—/ (cVu-h)v ds:/ fv dxdy.
Q oQ Q

@ Since the solution on 9/, is given by u = g, then we can
choose the test function v(x) such that v =0 on 0Q/T>.

103 /137

More Discussion
Robin boundary condition

@ Since
/ (cVu-Ayvds = / (CVu-ﬁ)vds—l—/ (cVu-n)v ds
o9 o9/,

)

c(g—ru)v ds

2

cqv ds —/ cruv ds,
2 I

— 5 3

then

/ cVu - Vv dxdy — (/ cqv ds —/ cruv ds) :/ fv dxdy
Q M2 M2 Q

@ Hence the weak formulation is

/cVu-Vv dxdy+/ cruv ds:/ fv dxdy+/ cqv ds.
0 r Q ry

104 /137

More Discussion

Robin boundary condition

@ Then the Galerkin formulation is to find u, € Uy such that

/ cVup -V, dxdy—l—/ crupvy ds :/ fvp dxdy+/ cqvy ds
Q I Q s

for any vy € Up.
Np

@ Recall: Since up € Uy = span{¢; yalr then
Ny
up =) ujg);
j=1
for some coefficients u; (j =1,--- , Np).

@ Recall: Choose vy, = ¢ (i =1, -+, Np).

105 /137

More Discussion
Robin boundary condition

@ Then for i = 1,--- , Np, the finite element formulation gives
Nb Nb
/ CV(Z uj;) - Vi dxdy+/ cr(z uip;)pi ds
Q - r -
J:]_ 2 _]:1

= /Q f¢; dxdy+ /r2 cqo; ds,
Nb Nb
. .. ; . i d
= j;u, [/ﬂcvqu Vo dxdy] +> [/r2 crojd s]

j=1
:/ f i dxdy+/ cq¢; ds.
Q I

106 / 137

More Discussion
Robin boundary condition

@ Recall: Define the stiffness matrix
Np

A= [aU]I{YJ?Zl = [/ﬂ cVj - Vi dxdy] .
I,j:

@ Recall: Define the load vector

b=[b];2; = [/ f i dXd)/] :
Q i=1
@ Recall: Define the unknown vector

v N
X = [ujli2y-

@ Define the additional vector from the Robin boundary

condition N
b
W= [W,-],/-V:”1 = [/r cqo; ds] .
2

i=1

107 /137

More Discussion

Robin boundary condition

@ Define the additional matrix from the Robin boundary
condition

Np

ij=1

R:pﬂ%lz[ﬁc@mmq

o Define the new vector b = b-- .

o Define the new matrix A = A+R.

Then we obtain the linear algebraic system
AX = b.
o Code?

@ Add one more subroutine for w and R to the existing code!

108 /137

More Discussion
Robin boundary condition

Recall
e Matrix boundaryedges:
o boundaryedges(1, k) is the type of the k" boundary edge e:
Dirichlet (-1), Neumann (-2), Robin (-3)......
@ boundaryedges(2, k) is the index of the element which
contains the k¥ boundary edge e.

@ Each boundary edge has two end nodes. We index them as
the first and the second counterclock wise along the boundary.

e boundaryedges(3, k) is the global node index of the first end
node of the k" boundary boundary edge e.

@ boundaryedges(4, k) is the global node index of the second
end node of the k™ boundary boundary edge ey.

e Set nbe = size(boundaryedges, 2) to be the number of
boundary edges;

109 /137

More Discussion

Robin boundary condition

@ The idea for the assembly of the matrix R and the vector w is
similar to that of the stiffness matrix and the load vector. We

have
wo= [capids= S [cavids i=1
M ekcrz €k
1<k<nbe

rp = /cr¢j¢,- ds= > crgjpi ds, i,j=1,---, Np.
M

ekcr2 €k
1<k<nbe

@ Loop over all the boundary edges;

o Compute all non-zero local integrals on each Robin boundary
edge for the vector w and the matrix R;

@ Assemble these non-zero local integrals into the corresponding
entries of the vector w and the matrix R.
110 /137

More Discussion

Robin boundary condition

Compute all non-zero local integrals on each Robin boundary edge
for the vector w and the matrix R:

@ The index of the element which contains the k" boundary
edge ey is nx = boundaryedges(2, k). Then on ey, we get
non-zero local integrals only when the test and trial basis
functions are corresponding to the finite element nodes of the
nf(h element Ep, .

o Let ps = Tp(s,n) (s=1,---, Np).

@ Then we only consider the test basis functions to be
$p, (s =1, Np).

111 /137

More Discussion

Robin boundary condition

@ There are only Ny, non-zero local integrals on e, with the
global basis functions ¢, (s =1,---, Njp):

/ ngb,‘ dS, i:pla"' y PN »

€k
/ CI’QZSij,‘ d57 I7J =P1," " 3 PNy-
€k
@ In fact, we have

wnks = ¢P5’Enk (5 =1, 7N/b)'

112 /137

More Discussion

Robin boundary condition

@ That is, instead of the original non-zero local integrals with

the global basis functions ¢p, (s =1,---, Njp), we will
compute the following non-zero local integrals with the local
basis functions 9, s (s =1, , Np):

/ Pms ds, B=1,-- Nip,

€k

/ by stPmpe 5, s =1, Nip.
€k

@ Question: how to compute these integrals?

@ Gauss quadrature. The needed information is stored in the
matrices P and boundaryedges.

113 /137

More Discussion

Robin boundary condition

Recall

e P(:, boundaryedges(3 : 4, k)) provides the coordinates of the
two end points of the k" boundary edge. We discuss three
cases based on these coordinates.

o Case 1: If a boundary edge is vertical, then it can be
described as x = ¢ (1 <y < y»). The y—coordinates of the
Gauss quadrature nodes on this boundary edge and the Gauss
quadrature weights can be obtained from the 1D local Gauss
quadrature on [y1, y2]. And the x—coordinates of the Gauss
quadrature nodes are fixed to be c.

114 /137

More Discussion

Robin boundary condition

o Case 2: If a boundary edge is horizontal, then it can be
described as y = ¢ (xq < x < x»). The x—coordinates of the
Gauss quadrature nodes on this boundary edge and the Gauss
quadrature weights can be obtained from the 1D local Gauss
quadrature on [x1, x2]. And the y—coordinates of the Gauss
quadrature nodes are fixed to be c.

@ Case 3: Otherwise, a boundary edge can be described as
y = ax+ b (x1 < x < x2). The x—coordinates of the Gauss
quadrature nodes on this boundary edge and the Gauss
quadrature weights can be obtained from the 1D local Gauss
nodes in [x1, x2]. And the y—coordinates of the Gauss
quadrature nodes are obtained from y = ax + b.

@ The case 3 with a =0 and b = ¢ is equivalent to case 2.
Hence case 2 and case 3 can be combined into one case.

115 /137

More Discussion

Robin boundary condition

Assemble the non-zero local integrals into w and R:

@ When the test function is ¢;, the corresponding non-zero local
integrals should be assembled to w;.

@ When the trial function is ¢; and the test function is ¢;, the
corresponding non-zero local integrals should be assembled to
rij.

o Therefore, if we find the global node indices of the trial and

test basis functions, we can easily locate where to assemble a
non-zero local integral.

116 /137

More Discussion

Robin boundary condition

@ Question: Since we compute

/ Cqins ds (B=1,--- , Nip)

€k

instead of
ngbl‘ ds (I = pP1, apN/b)v

€k

how do we obtain the corresponding global node indices of the
local test basis functions 1, (8 =1,---, Njp)?

117 /137

More Discussion

Robin boundary condition

@ Question: Since we compute
/e crpp, g%¥nga ds (a, f=1,---, Npp)
k
instead of
/e crojdi ds (i,j = p1, -, PNy)-
k

how do we obtain the corresponding global node indices of the
local trial and test basis functions 1, and

Y (0, =1,---,Np)?

@ Information matrix Tp!

118 /137

More Discussion
Robin boundary condition

@ Recall that Tp(a, ng) and Tp(B, nk) give the global node
indices of the local trial and test basis functions v, o and

Y (0, B=1,---,Np).
@ That is,
/ Cqbns ds (B=1,- . Nip)

73
should be assembled to w; where i = T([, nk).
e And
C”,[)nkoﬂ/}nk/i ds (oz./ ,3 = 1, T, N/b)

ek
should be assembled to rjj where i = T,(/3, n) and
J = To(e, n).

119 /137

More Discussion

Robin boundary condition

Algorithm VII-1:
@ Initialize R = sparse(Np, Np) and w = sparse(Np, 1);
@ Compute the integrals and assemble them into R and w:
FOR k =1,--- ,nbe:
IF boundaryedges(1, k) shows Robin boundary condition, THEN
nk = boundaryedges(2, k);
FORB=1, -, Np:
Compute r = fek €qtn, 5 ds;
w(Ts(B, i), 1) = w(Ts(B, i), 1) + 1
END
FOROLZJ.,"' ,N[b:
FORB=1, -, Np:
Compute r = [, cripn gthn.a ds;
Add r to R(Tu(B, nk), Te(c, nk));
END
END
ENDIF
END

More Discussion

Robin boundary condition

Algorithm VII-2:
@ Initialize R = sparse(Np, Np) and w = sparse(Np, 1);
@ Compute the integrals and assemble them into R and w:
FOR k=1,--- nbe:
IF boundaryedges(1, k) shows Robin boundary condition, THEN
nk = boundaryedges(2, k);
FORB =1, Np:
Compute r = fek €qn, 5 ds;
w(To(B, nk), 1) = w(Ts(B, n), 1) + r;
FORa=1,---,Np:
Compute r = [, cripn p¥na ds;
Add r to R(Tu(B, nk), Te(c, nk));
END
END
ENDIF
END

More Discussion

Robin boundary condition

o If we follow Algorithm VII-1 to develop a subroutine to
assemble the vector arising from

/ aa—l—bwnkﬁ d
Ox20y?

and the vector arising from

/ 8m+s,¢ ad ¢nk5 d
Oxmdys Ox90y!

then Algorithm VII-1 is equivalent to calling this subroutine
with parameters: a=b=r=s=d=/=0, p = cq, and
F=cr.

@ Note that the vector part is exactly the same as what we had
for the Neumann boundary condition!

122 /137

More Discussion

Robin boundary condition

Algorithm VII:
@ Initialize R = sparse(Np, Np) and w = sparse(Np, 1);
@ Compute the integrals and assemble them into R and w:
FOR k =1,--- ,nbe:
IF boundaryedges(1, k) shows Robin boundary condition, THEN
nk = boundaryedges(2, k);
FOR B =1, -+, Np:

Compute r = fek f)a:xig;ﬁ,ﬁ ds;
W(Tb(ﬁa nk): 1) = W(Tb(ﬂz nk): 1) +r;
END
FOR a=1,--+,Np:
FORﬂZ].,--- ,N[b:
Compute r = [, cripn p¥na ds;
Add r to R(Tb(ﬁ, nk), Tb(a, nk));
END
END
ENDIF
END

More Discussion

Robin boundary condition

Recall

Matrix boundarynodes:

boundarynodes(1, k) is the type of the k' boundary finite
element node: Dirichlet (-1), Neumann (-2), Robin (-3)......

The intersection nodes of Dirichlet boundary condition and
other boundary conditions usually need to be treated as
Dirichlet boundary nodes.

boundarynodes(2, k) is the global node index of the k"
boundary boundary finite element node.

Set nbn = size(boundarynodes, 2) to be the number of
boundary finite element nodes;

124 /137

More Discussion

Robin boundary condition

o Example 3: Use the finite element method to solve the
following equation on the domain Q = [-1,1] x [-1,1]:

—V-(Vu) = =27,
u = e M onx=-1,
u = e onx=1,
Vu-i+u = 0 ony=-1,
u = &t oony=1

@ The analytic solution of this problem is u = XY, which can
be used to compute the error of the numerical solution.

125 /137

More Discussion

Robin boundary condition

@ Let’s code for the linear and quadratic finite element method
of the 2D second order elliptic equation with Neumann
boundary condition!

@ Open your Matlab!

126 /137

More Discussion
Robin boundary condition

h [lu — unllog [[u — unllg |u — unly
1/8 [1.3358 x 1072 | 5.1094 x 10~3 | 1.8523 x 107!
1/16 | 3.4487 x 1073 | 1.2760 x 107> | 9.2559 x 102
1/32 | 8.7622 x 10~* | 3.1893 x 10~* | 4.6273 x 102
1/64 | 2.2084 x 10~% | 7.9727 x 10> | 2.3136 x 102

1/128 | 5.5433 x 107° | 1.9932 x 10~° | 1.1568 x 102

Table : The numerical errors for linear finite element.

o Any Observation?

o Second order convergence O(h?) in L2/L> norm and first
order convergence O(h) in H! semi-norm, which match the
optimal approximation capability expected from piecewise
linear functions.

127 /137

More Discussion
Robin boundary condition

h | u—ulle | o= usl, [u = uply
1/8 [1.0956 x 10~* [3.9278 x 107° | 2.9874 x 103
1/16 | 1.4074 x 107> | 4.9012 x 107° | 7.4668 x 10~*
1/32 [1.7835 x 107° | 6.1243 x 10~ | 1.8667 x 10~*
1/64 | 2.2447 x 10~7 | 7.6549 x 107% | 4.6667 x 10~°

1/128 | 2.8155 x 1078 | 9.5686 x 107° | 1.1667 x 10~°

Table : The numerical errors for quadratic finite element.

o Any Observation?

o Third order convergence iO(h%) in L2/L> norm and second
order convergence O(h?) in H! semi-norm, which match the

optimal approximation capability expected from piecewise
quadratic functions.

128 /137

More Discussion

Dirichlet/Neumann/Robin mixed boundary condition

o Consider

@ Recall

-V - (cVu) =1 inQ,
u-i=p only COQ,
A

<4 4

u-n+ru=gq onlyC0Q,
u=g on 0Q/(FLUly).

/cVu-Vv dxdy—/ (cVu-h)v ds:/ fv dxdy.
Q Elo) Q

@ Since the solution on 9Q/(I'; UT?y) is given by u = g, then we
can choose the test function v(x) such that v =0 on

89/(F1 U F2).

129 /137

More Discussion

Dirichlet/Neumann/Robin mixed boundary condition

@ Hence
/ cVu- Vv dxdy+/ cruv ds
Q P}
= /fv dxdy+/ cpv ds+/ cqv ds.
Q JIq JTo
o Code?

e Combine all of the subroutines for Dirichlet/Neumann/Robin
boundary conditions.

130 /137

More Discussion

Non-isotropic equation

o Consider
V- (cVu)="f inQ,
cVu-A=p only C 02,
cVu-A+ru=gq onlyC0Q,
u=g on 0Q/(FUl),
where
c— (11 C12)
1 2
@ Recall

/CVU-VV dxdy—/ (cVu-h)v ds:/ fv dxdy.
Q Elo) Q

131/137

More Discussion

Non-isotropic equation

@ Since the solution on 9Q/(I'; UT?y) is given by u = g, then we
can choose the test function v(x) such that v =0 on
89/(F1 U F2).

@ Hence
/ cVu - Vv dxdy +/ ruv ds
Q I
= /fv dxdy+/ pv ds+/ qv ds.
Q r M
where

C C u V,
CVU . VV — 11 12 X . X
Co1 €22 uy Vy
_ Cl1lUx + Ciauy . Vx
Co1Ux + Co2Uy vy
= Cl1UxVx + CloUyVx + C21UxVy + CooUy Vy.

132 /137

More Discussion

Non-isotropic equation

@ Code? Just call Algorithm I-3 four times! Everything else is
the same as before!

Call Algorithm [-3 with r=1,s=0, p=1, g =0, and
C = ¢11 to obtain Ay;

Call Algorithm I-3 with r =0, s =1, p=1, g =0, and
¢ = cy1 to obtain As;

Call Algorithm I-3 with r=1,s =0, p=0, g =1, and
¢ = ¢o1 to obtain As;

Call Algorithm I-3 with r =0, s =1, p=10, g =1, and
€ = ¢y to obtain Aj.

@ Then the stiffness matrix is A = Ay + Ay + Az + As.

133 /137

More Discussion

A more general second order equation

o Consider
—V - (cVu)4+au=1f inQ,
cVu-Ai=p only C 09,
cVu-ni+ru=gq onlyCoQ,
u=g on 0Q/(F UTy),
where
o (C11 C12)
c= .
01 2
@ Then

/ cVu- Vv dxdy —/ (cVu-n)v ds—l—/ auv dxdy :/ fv dxdy.
Q 80 Q Q

134 /137

More Discussion

A more general second order equation

@ Since the solution on 9Q/(I'; UT?y) is given by u = g, then we
can choose the test function v(x) such that v =0 on
BQ/(Fl U F2)

@ Hence

/cVu-Vv dxdy+/ auv dxdy+/ ruv ds
Q Q I

= /fv dxdy+/ pv ds+/ qv ds.
Q r My

where

cVu-Vv = cCiiuxVx + CroUyVx + Co1lxVy + ColyVvy.

135 /137

More Discussion

A more general second order equation

@ Code? Just call Algorithm -3 five times! Everything else is
the same as before!

o Call Algorithm I-3 with r =0,s =0, p=0,g=0,and c=a
to obtain Ag;

e Call Algorithm I-3 with r=1,s=0,p=1, g=0, and
¢ = cy1 to obtain Aq;

e Call Algorithm I-3 with r =0,s =1, p=1, g =0, and
¢ = c11 to obtain Aj;

e Call Algorithm I-3 with r=1,s=0, p=0,g=1, and
C = ¢p1 to obtain As;

e Call Algorithm I-3 with r =0, s =1, p=0,g=1, and
C = Cp» to obtain Aj.

@ Then the stiffness matrix is A = Ag+A; + Ay + Az + As.

136 /137

Linear

More Discussion

regression for the convergence order

Consider ||u — up|| = Ch".

The goal is to design a linear regression to obtain the C and r
based on the h and errors given in the table.

First,
log (lu = unll) = log(Ch")
= log(C)+ log(h")
= log(C)+r log(h)
Let y = log (|u —), x = log(h), a=r, b= log(C).

@ Then y = ax + b.

For different h, we can obtain the corresponding x and y.

Then by the regular linear regression, we can obtain a and b,
which give us the C = e? and r = a.

137 /137

	Chapter 3: Finite Elements for 2D second order elliptic equation
	Recommended Citation

	Weak/Galerkin formulation
	FE discretization
	Dirichlet boundary condition
	FE Method
	More Discussion

