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2D uniform Mesh

Outline

© 2D uniform Mesh
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2D uniform Mesh

Triangular mesh: uniform partition

e Consider Q) = [left, right] x [bottom, top|.

o First, we form a uniform rectangular partition of Q into Ny
elements in x — axis and Ny elements in y — axis with mesh

size

!

right — left top — bottom

h=1hy, hy] =
[h1, ho] = [ m N,
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2D uniform Mesh

Triangular mesh: global indices

@ For example, when Ny = N, = 8, we have
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2D uniform Mesh

Triangular mesh: global indices

@ Then we divide each rectangular element into two triangular
elements by connecting the left-top corner and the right-lower
corner of the rectangular element.

@ For example, when N; = N> = 8, we have
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2D uniform Mesh

Triangular mesh: global indices

@ This would give an uniform triangular partition.

@ There are N = 2N; N, elements and N, = (Ny + 1)(N> + 1)
mesh nodes.
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2D uniform Mesh

Triangular mesh: global indices

@ Define your global indices for all the mesh elements
E, (n=1,--- N) and mesh nodes Z, (k =1, Npy,).

@ For example, when N; = N> = 2, we have
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2D uniform Mesh

Triangular mesh: local node index

@ Let NV, denote the number of local mesh nodes in a mesh
element. Define your index for the local mesh nodes in a mesh
element.

3 1 3
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2D uniform Mesh

Triangular mesh: information matrices

@ Define matrix P to be an information matrix consisting of the
coordinates of all mesh nodes.

@ Define matrix T to be an information matrix consisting of the
global node indices of the mesh nodes of all the mesh
elements.

o We can use the j column of the matrix P to store the
coordinates of the jt mesh node and the nt" column of the
matrix T to store the global node indices of the mesh nodes
of the nt" mesh element. For example, when N; = Np = 2, we

have
p:(

T =

0 0 05 05 051 1 1
5 1 005 1)

0

0
1
4
2
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2D uniform Mesh
Triangular mesh: boundary edge index

@ Define your index for the boundary edges.

@ For example, when N; = N = 2, we have

6 5
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2D uniform Mesh
Triangular mesh: boundary edge information matrix

e Matrix boundaryedges:

o boundaryedges(1, k) is the type of the k¥ boundary edge e:
Dirichlet (-1), Neumann (-2), Robin (-3)......

@ boundaryedges(2, k) is the index of the element which
contains the k" boundary edge ey.

@ Each boundary edge has two end nodes. We index them as
the first and the second counterclock wise along the boundary.

@ boundaryedges(3, k) is the global node index of the first end
node of the k" boundary boundary edge e.

@ boundaryedges(4, k) is the global node index of the second
end node of the k" boundary boundary edge ey.

e Set nbe = size(boundaryedges, 2) to be the number of
boundary edges;
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2D uniform Mesh
Triangular mesh: boundary edge information matrix

@ For the mesh with N; = N, = 2 and all Dirichlet boundary
condition, we have:

-1 -1 -1 -1 -1 -1 -1 -1
1 5 6 8 8 4 3 1
1 4 7v 8 9 6 3 2
4 7 8 9 6 3 2 1

boundaryedges =
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2D uniform Mesh

Triangular mesh

@ What are the information matrices
P, T, boundaryedges

for the following mesh?
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2D uniform Mesh

Triangular mesh

@ What are the information matrices
P, T, boundaryedges

for a general uniform triangular mesh with the mesh size

right — left top — bottom
Ny ’ N>

h=[h1, ho] = ]

in the domain

Q = [left, right] x [bottom, top]?
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2D uniform Mesh

Rectangular mesh: uniform partition

o Consider Q = [left, right] x [bottom, top].

o Consider a uniform rectangular partition of {2 into Ny elements
in x — axis and N elements in y — axis with mesh size

right — left top — bottom

h=[h1, h] = m N, J-

@ There are N = Ny N, elements and N, = (N + 1)(No + 1)
mesh nodes.
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2D uniform Mesh

Rectangular mesh: uniform partition

@ For example, when Ny = N, = 8, we have
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2D uniform Mesh

Rectangular mesh: global indices

@ Define your global indices for all the mesh elements
E, (n=1,--- N) and mesh nodes Z; (k =1, -, Np,).

@ For example, when Ny = N, = 2, we have

3

6 9
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2D uniform Mesh

Rectangular mesh: local node index

@ Let NV, denote the number of local mesh nodes in a mesh
element. Define your index for the local mesh nodes in a mesh
element.
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2D uniform Mesh
Rectangular mesh: information matrices

@ Define matrix P to be an information matrix consisting of the
coordinates of all mesh nodes.

@ Define matrix T to be an information matrix consisting of the
global node indices of the mesh nodes of all the mesh
elements.

@ For example, when Ny = N>, = 2, we have

-

T —

0 0 05 05 051 1 1
51 0 05 1 005 1)’

0
0 0.
1 2
4 5
5 6
2 3

C1 00 N b
S © 00 o1
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2D uniform Mesh
Rectangular mesh: boundary edge index

@ Define your index for the boundary edges.

@ For example, when N; = N = 2, we have

6 5
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2D uniform Mesh
Rectangular mesh: boundary edge information matrix

e Matrix boundaryedges:

o boundaryedges(1, k) is the type of the k¥ boundary edge e:
Dirichlet (-1), Neumann (-2), Robin (-3)......

@ boundaryedges(2, k) is the index of the element which
contains the k" boundary edge ey.

@ Each boundary edge has two end nodes. We index them as
the first and the second counterclock wise along the boundary.

@ boundaryedges(3, k) is the global node index of the first end
node of the k" boundary boundary edge e.

@ boundaryedges(4, k) is the global node index of the second
end node of the k" boundary boundary edge ey.

e Set nbe = size(boundaryedges, 2) to be the number of
boundary edges;
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2D uniform Mesh
Rectangular mesh: boundary edge information matrix

@ For example, when N; = N, = 2 and all the boundary are
Dirichlet type, we have:

-1 -1 -1 -1 -1 -1 -1 -1

3 3 4 4 2 2 1
1 4 7v 8 9 6 3 2
4 7 8 9 6 3 2 1

boundaryedges =
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2D uniform Mesh

Rectangular mesh

@ What are the information matrices
P, T, boundaryedges

for the following mesh?
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2D uniform Mesh

Rectangular mesh

@ What are the information matrices
P, T, boundaryedges

for a general uniform rectangular mesh with the mesh size

right — left top — bottom
Ny ’ N>

h=[h1, ho] = ]

in the domain

Q = [left, right] x [bottom, top]?
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Triangular elements

Outline

© Triangular elements
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Triangular elements

2D linear finite element: reference basis functions

@ The “reference— local — global” framework will be used to
construct the finite element spaces.

e We only consider the nodal basis functions (Lagrange type) in
this course.

@ We first consider the reference 2D linear basis functions on

the reference triangular element E = AA;A>A3 where

A1 = (0,0), A2 = (1,0), and A3 = (07 1).
@ Define three reference 2D linear basis functions

i(%.9) = ak+by+g, j=123
such that
a0, ifj A,

1/)J(Al) - 6U - { 1, ifj — I'./

fori,j=1,2,3.
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Triangular elements

@ Then it's easy to obtain

<5 S S5 S N@) <5 S S5
SIS ICN A C NN AN ORI
D
I
_ O O O B O O O =

N A A

2D linear finite element: reference basis functions

a=1,
ai+ca =0,
bi+c =0,
o =0,
ao+o=1,
by + ¢ =0,
c3 =0,
az+ c3 =0,
bz + c3 = 1.

28

100



Triangular elements

2D linear finite element: reference basis functions

@ Hence

31:—1,b1:—1,C1:1,
32:1,b2:0,C2:0,
a3:0,b3:1,C3:0.

@ Then the three reference 2D linear basis functions are

hi(%,9) = —%-9+1,
L/}2(5\<7_)A/) - )A<:
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Triangular elements

2D linear finite element: reference basis functions

@ Plots of the three linear basis functions on the reference
triangle:
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Triangular elements

2D linear finite element: local node index

@ Let Ny, denote the number of local finite element nodes (local
finite element basis functions) in a mesh element. Here
Ny, = 3. Define your index for the local finite element nodes
in a mesh element.

3 1 3
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Triangular elements

2D linear finite element: information matrices

@ The mesh information matrices P and T are for the mesh
nodes.

@ We also need similar finite element information matrices Py
and T, for the finite elements nodes, which are the nodes
corresponding to the finite element basis functions.

@ Note: For the nodal finite element basis functions, the
correspondence between the finite elements nodes and the
finite element basis functions is one-to-one in a
straightforward way. But it could be more complicated for
other types of finite element basis functions in the future.

@ Let N}, denote the total number of the finite element basis
functions (= the number of unknowns = the total number of
the finite element nodes). Here N = Ny, = (Ny + 1)(Na + 1).
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Triangular elements

2D linear finite element: information matrices

@ Define your global indices for all the mesh elements
E, (n=1,---,N) and finite element nodes
X; (j=1,---, Np) (or the finite element basis functions).

@ For example, when N; = N> = 2, we have
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Triangular elements

2D linear finite element: information matrices

@ Define matrix Pp, to be an information matrix consisting of
the coordinates of all finite element nodes.

@ Define matrix T} to be an information matrix consisting of

the global node indices of the finite element nodes of all the
mesh elements.
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Triangular elements

2D linear finite element: information matrices

@ For the 2D linear finite elements, P, and T, are the same as
the P and T of the triangular mesh since the nodes of the 2D
linear finite element basis functions are the same as those of
the mesh. For example, when Ny = N, = 2, we have

0 0 00505051 1 1
Pb_P_( : 5 1 0 05 1)’
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Triangular elements

2D linear finite element: boundary node index

@ Define your index for the boundary finite element nodes.

@ For example, when N; = N, = 2, we have,

7 6 5
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Triangular elements

2D linear finite element: boundary node information matrix

e Matrix boundarynodes:

o boundarynodes(1, k) is the type of the k' boundary finite
element node: Dirichlet (-1), Neumann (-2), Robin (-3)......

@ The intersection nodes of Dirichlet boundary condition and
other boundary conditions usually need to be treated as
Dirichlet boundary nodes.

o boundarynodes(2, k) is the global node index of the k"
boundary finite element node.

e Set nbn = size(boundarynodes, 2) to be the number of
boundary finite element nodes;

@ For the above example with all Dirichlet boundary condition,
we have:

-1 -1 -1 -1 -1 -1 -1 -1 )

boundarynodes = ( 1 4 7 8 9 6 3 2
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Triangular elements

2D linear finite element: affine mapping

@ Now we can use the affine mapping between an arbitrary
triangle E = AA1A>As and the reference triangle
E = AA1A>As3 to construct the local basis functions from the

reference ones.
A = < i ) i=1,2,3.
Yi

@ Consider the affine mapping

(;) = (Az—Al,As—A1)< >+A1
=G o) G0
Yo—y1 ¥3—N y i)’

@ Assume

<> X

x>
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Triangular elements

2D linear finite element: affine mapping

@ The affine mapping actually maps

0 X3
Az = — = As.
’ ( 1 ) 12 ’
@ Hence the affine mapping maps AAIAA;s to AALAA3
@ Also,
. (s —y)x —x) — (s —x)(y —n)
X - )
(x2 —x1)(y3 — y1) — (x3 — x1)(y2 — y1)
; - (y2 = y1)(x = x1) — (x2 = x1)(y — 1)
(x2 = x1)(y3 — y1) — (x3 — x1)(y2 — y1)
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Triangular elements

2D linear finite element: affine mapping

@ Define the Jacobi matrix:

J_(X2_X1 X3—X1>
2=y y3—n /)’

@ Then
Ul = (e—x1)(ys—y1)— (x3—x1)(y2 — 1),
and
2~ =y)x=x) - (s —x)ly —»n)
J| ’
; = —(2 = y1)(x = x1) + G —x)(y —y1)
]
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Triangular elements

2D linear finite element: affine mapping

e For a given function 9)(%, ) where (%,9) € AA; Ay Az, we can
define the corresponding function for (x,y) € AA1A2As3 as

follows:
d}(xv)/) - 1/,;()%/5})7
where
s (y3 = y1)(x = x1) = (x3 = x1)(y — y1)
| ’
;= (2 —y1)(x —x1) + (0 — x1)(y — }/1)'

]
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Triangular elements

2D linear finite element: affine mapping

@ Then by chain rule, we get

o oY ox 0P oy
ox T oxox 9y ox
Wys—y | y—y
% |J] oy |
o o ox 9P oy
oy ~ 0%y ' ayoay
(97,3 X1 — X3 81/; Xo — X1
0% |J| oy I
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Triangular elements

2D linear finite element: local basis functions

e Consider the nt" element E, = AAp1AmAns Where

@ The three local 2D linear basis functions are

”ani(X;)/) - /l/l;i(jea.}/})a I = 172:37

where
s (Yn3 — Yn1)(X — Xn1) — (Xn3 — Xn1)(¥ — Y1)
|Jn] ’
y = —(ym2 — ¥ )(X = Xn1) + (Xn2 — Xa1)(Y — Yn1)
|Jn] ’
|Jn| = (Xn2 - an)()/n3 - )/nl) - (Xn3 - an)(}’n2 - }’nl)‘
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Triangular elements

2D linear finite element: local basis functions

@ And for i =1,2,3,

a/4/)ni _ 8&/ Yn3 — Yni al;, Ynl — Yn2
Ox 0% |nl 9y |l

Obni OUiXp1 — Xp3 OV Xnp — X1
dy 0% | oy |Jnl

@ The reference and local basis functions defined in this section
are what you need to input into the code in order to use the
“reference — local” framework to define the local basis
functions.
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Triangular elements

2D linear finite element: local basis functions

@ In more details, we have

¢n1(X,y) = 1//;1()?75}) = _)?_j}—i_ 1
(}/n3 - }/nl)(X - Xn1) - (Xn3 - an)()/ - )’nl)
|Jn]
=2 = ym)(x = Xn1) + (Xn2 — Xm1 ) (Y — Y1)
|Jn]

+1,

wnZ(X,}/) = 1/;2()?’5}) =X
(Yn3 — Yn1)(x — xn1) — (Xn3 — Xn1) (¥ — ¥n1)
|l ’

¢n3(X7Y) = 123(5\(;}7) = 57
—(ynz - )/nl)(X - an) + (Xn2 - an)(y - Ynl)
|In '
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Triangular elements

2D linear finite element: local basis functions

e And
Om _ YT Ym + Y2 —¥Ynl _ Yn2 — Yn3
Ox |l A [l 7
Oz Ym3 = ym
Ox [Jnl 7
% — _)/n2 — Ynm
Ox ||
OYm _ Xn3 = Xn1  Xn2 = Xml _ Xn3 — Xn2
dy B ‘Jn| |Jn| B |Jn| ’
% __Xn3 — Xn1
ay [al
Op3 _ Xn2 — Xn1
ay |

@ You can also directly input these local basis functions and

their derivatives into your code.
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Triangular elements

2D linear finite element: local basis functions

@ In another way, the local basis functions can be also directly
formed on the nth element E, = AA,1ApAns as follows:

¢nj(Xay) = apjX+ bnj)/+ Cnj, Jj=12.3,
such that
AN s 0, it A,
Vnj (Ani) = 05 = { 1, ifj=1i,

fori,j=1,2,3.

@ Obtain the local basis functions in the above way and
compare them with the ¥p,1, ¥,2, and ¥,3 obtained before.

@ They are the same!
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Triangular elements

2D linear finite element: global basis functions

“local — global” framework:
@ Define the local finite element space

Sh(En) = span{tn1, ¥n2, ¥n3}.

@ At each finite element node X; (j = 1,---, Np), define the
corresponding global linear basis function ¢; such that
qu’En € Sh(En) and

0, ifj#i,
¢J(X"):5’f':{ 1, ifj=i,

fori,j=1,--+, Np.

@ Then define the global finite element space to be

N
Un = span{¢;};2;.

48 /100



Triangular elements

2D linear finite element: global basis functions

@ Hence

¢n17 Iff = Tb(]-an)7
VY, if j = Tp(2,n),
¢n3> If./ = Tb(37 n)7
0, otherwise.

bjle, =

forj=1,--- ,Npandn=1,--- | N.
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Triangular elements

2D quadratic finite element: reference basis functions

@ We first consider the reference 2D quadratic basis functions
on the reference triangular element E= A2\12\22\3 where
Ap =(0,0), A = (1,0), and A3 = (0,1). Define
A4 = (0.5,0), As = (0.5,0.5), and Ag = (0,0.5).

@ Define six reference 2D quadratic basis functions
Di(%,9) = a2+ bR+ gy +diy ek +f, j=1,--,6,

such that

- 0, ifj#i,
d’f(A"):d"f':{ 1, ifj=i,

fori,j=1,--- 6.
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Triangular elements

2D quadratic finite element: reference basis functions

e For 1/31, it's easy to obtain

1/31(/2\1) =1 = fl = ].,
P1(A2)=0 = a+e+f=0,
01(A3)=0 = bi+d+f=0,
01(A)) =0 = 0.25a; +05e; +f; =0,
01(As) =0 = 0.25a; + 0.25b; + 0.25¢; + 0.5d; + 0.5, + , =0,
01(As) =0 = 0.25b; +0.5d; + f; = 0.
@ Hence
ai :2,b1:2,C1 :4,d1 :—3,61:—3,ﬂ =1.
@ Then

D1(%,9) = 2824292 +4%y — 39 — 38+ 1.
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Triangular elements

2D quadratic finite element: reference basis functions

@ Similarly, we can obtain all the six reference 2D quadratic
basis functions

D1(%,9) = 2824292 + 489 — 39 — 38 + 1,
Da(%,9) = 282 =%,

ha(%.9) = 29° -9,

Da(%,9) = —4%% —4%) + 4%,

Ds(%,9) = 489,

De(%,9) = —49% —4%9 +49.
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Triangular elements

2D quadratic finite element: reference basis functions

@ Plots of the six quadratic basis functions on the reference
triangle:
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Triangular elements

2D quadratic finite element: local node index

@ Define your index for the local finite element nodes in a mesh
element with N, = 6.
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Triangular elements

2D quadratic finite element: information matrices

@ Define your global indices for all the mesh elements
E, (n=1,---,N) and finite element nodes
X; (j=1,---,Np) (or the finite element basis functions) with
Ny = (2N1 + 1)(2/\/2 + ]_) 7£ Nn,.
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Triangular elements

2D quadratic finite element: information matrices

@ For example, when Ny = N, = 2, we have

56 /100



Triangular elements

2D quadratic finite element: information matrices

@ The P, and T, for 2D quadratic finite element are different
from the P and T for the triangular mesh. For the above
example we have

Pb:(ooooo%%%%% 11111>
0§ 3 310 5 3 ¢ 1 033z
1 3 3 5 11 13 13 15
11 11 13 13 21 21 23 23
,—| 3 13 5 15 13 23 15 25
6 7 8 9 16 17 18 19
7 12 9 14 17 22 19 24
2 8 4 10 12 18 14 20
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Triangular elements

2D quadratic finite element: boundary node index

@ Define your index for the boundary finite element nodes.

@ For example, when N; = N, = 2, we have,

¢

l4e

15

9

s

16e

e
NO

58 /100



Triangular elements

2D quadratic finite element: boundary node information

matrix

@ Matrix boundarynodes:

@ For example, when N;y = N> = 2 and all the boundary is
Dirichlet type, we have:

boundarynodes =

-1 -1 -1 -1 -1 -+ =1 +++ —=1 --- -1
1 6 1 16 21 --- 25 ... 5 ... 2 J°
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Triangular elements

2D quadratic finite element: affine mapping

@ The affine mapping we use here is exactly the same as the
previous one!

o Recall: for a given function 9)(%, ) where (X,9) € AA;AxAs,
we can define the corresponding function for
(x,y) € AA1A2A;z as follows:

Vix,y) = ¥(x9),
where
(y3 —y1)(x — x1) — (x3 — x1)(y — y1)
J| 7
. —(v2 —y1)(x —x1) + (2 — x1)(y — y1)

y = :
]

x>
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Triangular elements

2D quadratic finite element: affine mapping

@ Recall: by chain rule, we get

o oY ox 0P oy
ox T oxox 9y ox
Wys—y | y—y
% |J] oy |
o o ox 9P oy
oy ~ 0%y ' ayoay
(97,3 X1 — X3 81/; Xo — X1
0% |J| oy I
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Triangular elements

2D quadratic finite element: affine mapping

@ By chain rule again, we get
0% P)okys—yi | 0% 0%y —y,
Ix? 0%2 dx  |J| 0%0y Ox  |J|
P Oy ys—y1 POy —ye

9%0y dx  |J| ay2 ox  |J|

P (ys —y1)? 9% (ys—y1)n — y2)

%% |JP? 0ROy |

2P (1 — y2)?

+55
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Triangular elements

2D quadratic finite element: affine mapping

e And
0?1

azlz 8)? X1 — X3 3212 %Xg — X1

dy?

%2 dy  |J| %0y oy |J]
621/,; @Xl — X3 821//; 8)7 X2 — X1

Tozoyay O 02y ]
82’1/3 (x1 — X3)2 ) 02’1/3 (x1 — x3)(x2 — x1)
%2 |2 ox0y |

0% (x2 — x1)?
8)’}2 |J|2
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Triangular elements

2D quadratic finite element: affine mapping

e And
0%y PDoRys—n | 0P 0%y —y,
oxdy 920y |J T oxoydy |J]

%) 0yys—y | D0y —ye
0%0y oy  |J| 9y oy |J|
PP (x1 —x3) 3 —y1) 020 (x1—x3)(y1 — y2)
0x? 1) 0x0y 1|
Y (2 —x1)(ys —y1) | 0% (32 — x1)(y1 — y2)
0%y |J\2 92 ‘J|2 ’
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Triangular elements

2D quadratic finite element: local basis functions

o Consider the nt" element E, = AAp1AmAns Where
A, = < Xni ) i=1,23.
Yni

A, — An1 + An2 o A2+ Anz o Anz + Ant
n4—f7 n5_f7 n6_f-

@ Define
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Triangular elements

2D quadratic finite element: local basis functions

@ The six local 2D linear basis functions are

/¢ni(x7y) - ‘/,;’(;(*.)’})7 i:]-a"'-/67

where
. — (Yn3 — ym) (X = Xn1) — (Xn3 — Xn1)(¥ — ¥n1)
|Jn] ’
o —(Yn2 = yn)(x = xn1) + (Xn2 — Xn1)(y — Y1)
y - )
|Jnl
|Jn’ = (Xn2 - an)()/n3 - )/nl) - (Xn3 - an)()/n2 - }/nl)-
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Triangular elements

2D quadratic finite element: local basis functions

@ And fori=1,--- 6,

Oy
ox
OYnj
dy
Otni
Ox?
02’zj)n;
oy?
i
0x0y

8’[,;1 Yn3 — Yn1 81231 Yn1 — Yn2

%X |Jnl oy ||

i X — X3 Oi X — X

0% | Yy |Jnl

_ bl =), 0% (s =) — )
0x? |J? 0%0y |J?

_ 0%); (x1 — x3)? I 0%); (x1 — x3)(x2 — x1)
o2 |JP %0y |JP?

P (xa —x3)(ys — 1) | Phi (a—x3)(y —

PP (y1 — y2)?

{)5}2 |J‘2
621;,' (XQ — X1)2
o2 I
¥2)

0%? |J? 0%0y |J?

P (o —xi)(ys —y1) | 0% (e — x1)(n1 — y2)

0%0y |J? 0§72 |JP?
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Triangular elements

2D quadratic finite element: local basis functions

@ In another way, the local basis functions can be also directly
formed on the nth element E, = AAp1 An2Anz with edge
middle points A4, Ans, and Ape: Define

wnj(Xay) = aan2 + bnjy2 + CnjXy + dnjy + enjx + fnjv
.j: 17 767

such that
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Triangular elements

2D quadratic finite element: global basis functions

“local — global” framework:
@ Define the local finite element space

Sh(En) = 5P3”{1/1n1, ce 7wn6}-

@ At each finite element node X; (j = 1,---, Np), define the
corresponding global linear basis function ¢; such that
qu’En € Sh(En) and

0, ifj#i,
¢J(X"):5’f':{ 1, ifj=i,

fori,j=1,--+, Np.

@ Then define the global finite element space to be

N
Un = span{¢;};2;.
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Triangular elements

2D quadratic finite element: global basis functions

@ Hence

bjle, =

( wnly
¢n27
77bn37
wn4)
77bn57
77Z)n67

0,

if j = Tp(1,n),
'f./ = Tb(2a n)v
if j = Tp(3,n),
“c./ = Tb(4’a n)v
if j = Tp(5,n),
“c./ = Tb(6’ n)7
otherwise.

forj=1,--- ,Npand n=1,--- /| N.
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Rectangular elements

Outline

© Rectangular elements
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Rectangular elements

Bilinear finite element: reference basis functions

@ If we consider the reference bilinear basis functions on the
reference rectangular element E= D/2\1/A42/A43/A44 where
A; = (0,0), Ay = (1,0), , A3 =(1,1), and A, = (0, 1), then
the formation of these basis functions is very similar that of
the reference 2D linear basis functions.

@ Also, the affine mapping between E= D/2\1/2\2/2\3/2\4 and
e = A1 A2 A3Ay is very similar to the one we use for the
triangular mesh. The only change is to use A4 and A4 to
replace Az and As respectively. Think about why!

@ Hence the formation of the local and global bilinear basis
functions is also very similar to that of the local and global 2D
linear basis functions.

@ Derive the reference, local and global bilinear basis functions
in the above way by yourself.
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Rectangular elements

Bilinear finite element: reference basis functions

@ In this section, we consider the reference bilinear basis
functions on another reference rectangular element
E = |:|/2\1/2\2/2\3/2\4 where Al = (—17 —]_), /2\2 = (1, —1),
As = (1,1), and Ag = (—1,1). We will also take a look at a
different affine mapping.

@ Define four reference bilinear basis functions
0i(%,9) = aj+bx+cy+dxy, j=1,2,3,4
such that
RO B A
Vi(Ai) = 0 = { 1, ifj=1i,

fori,j=1,2,3,4.
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Rectangular elements

Bilinear finite element: reference basis functions

@ Then the four reference bilinear basis functions are

NN 1-X—-y+X%xy
h(%9) = ———F——

4
A 1+%x—y—Xy
T/)2(X,_y) - fa
A 1+X%x+y+ X%y
W3(X»)/) — 4 )
A 1-X+y—Xy
U4(X;_)/) =
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Rectangular elements

Bilinear finite element: reference basis functions

@ Plots of the four bilinear basis functions on the reference
triangle:
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Rectangular elements

Bilinear finite element: local node index

@ Define your index for the local finite element nodes in a mesh
element with N, = 4.

4 3
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Rectangular elements

Bilinear finite element: information matrices

@ Define your global indices for all the mesh elements
E, (n=1,---,N) and finite element nodes
X; (j=1,---,Np) (or the finite element basis functions) with
Np = Np, = (Ny + 1)(Na + 1).

@ For example, when Ny = N>, = 2, we have

3 6 9
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Rectangular elements

Bilinear finite element: information matrices

@ For the bilinear finite elements, P, and T, are the same as
the P and T of the rectangular mesh since the nodes of the
bilinear finite element basis functions are the same as those of
the mesh. For example, when Ny = N, = 2, we have

po_p_(0 0 00505051 1 1
b="=\0 051 0 05 1 0 05 1)°

T,=T=

N O B =
w o O1 N
S BENEN N
S © 00 O
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Rectangular elements

Bilinear finite element: boundary node index

@ Define your index for the boundary finite element nodes.

@ For example, when N; = N = 2, we have

7 6 5
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Rectangular elements

Bilinear finite element: boundary node information matrix

o Matrix boundarynodes:

@ For example, when Ny = N, = 2 and all the boundary is
Dirichlet type, we have:

-1 -1 -1 -1 -1 -1 -1 -1
boundarynode5:< 1 4 7 8 9 6 3 2 )

80 /100



Rectangular elements

Bilinear finite element: affine mapping

@ Now we can use the affine mapping between an arbitrary
rectangle E = [JA1A>A3A, and the reference rectangle
E= D/2\1/2\2/2\3/2\4 to construct the local basis functions from
the reference ones.

@ Assume A1, Az, As, and A4 are the left-lower, right-lower,
right-upper, and left-upper vertices respectively.

@ Assume

Xij .
Ai:< > (I:172>374)’ h1: 2 — X1, h2:y4_y1'

X1—|-lh1 >
+ .
> <y1+§h2

@ Consider the affine mapping

() = (% )

> X
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Rectangular elements

Bilinear finite element: affine mapping

@ The affine mapping actually maps
A = A, i=1,2,3,4.

@ Hence the affine mapping maps D/A41/A42;43;44 to A1 AxA3A, .

@ Also,
~ 2x — 2X1 — h1
X = ———
h1 ’
o 2y=2n—h
y = —F.

hy
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Rectangular elements

Bilinear finite element: affine mapping

@ For a given function 12(3(,)7) where (X,9) € OA1 A Az A, we
can define the corresponding function for
(x,y) € A1 A2A3A, as follows:

Vixy) = P&9),

where
~ 2X—2X1—h1
X = ——M=
h1 ’
o 2y=2n—h
yo= T
2
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Rectangular elements
Bilinear finite element: affine mapping

@ Then by chain rule, we get

v _ obox  oboy
ox 0x 0x 0y Ox
o 2
o' h
ov _ obox  oboy
Oy 0% dy 9y Oy
o 2
= oy
0% 202 9% 2 9% 9y
Ox0y — mox2dy  h 0%0ydy
4 9%

hihy 007
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Rectangular elements

Bilinear finite element: local basis functions

o Consider the nt" element E, = A1 AppAn3Ana where

Ani = < Xni ) .
Yni
Recall that the mesh size h = (hy, hy).

@ The four local bilinear basis functions are

Vni(x,y) = ¥i(%,9), i=1,2,3,4

where
R 2X — 2Xy1 —
X =
h1 ’
~ 2y — 2ynm — hy
.y - h .
2
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Rectangular elements

Bilinear finite element: local basis functions

@ And for i =1,2,3,4,

OV 2 Yy
ox  hm ox’
i 2 i
dy — h oy’
P A4 0%
Ox0y  hihy 0%0y

@ The reference and local functions defined in this section are
what you will need to input into the code!
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Rectangular elements

Bilinear finite element: local basis functions

@ In another way, the local basis functions can be also directly
formed on the nth element E, = OA1 ApaAn3Ana as follows:

1/)"U.(th) = anj + ban + any + dl‘le.y7 ./ = 17273747

such that

0, ifj#i,
Unj (Ani) = 0 = {1. ifj'#i.

fori,j=1,2,3,4.
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Rectangular elements

Bilinear finite element: global basis functions

“local — global” framework:
@ Define the local finite element space

Sh(En) = span{tn1, ¥n2,%n3, Yna}-

@ At each finite element node X; (j = 1,---, Np), define the
corresponding global linear basis function ¢; such that
qu’En € Sh(En) and

0, ifj#i,
¢J(X"):5’f':{ 1, ifj=i,

fori,j=1,--+, Np.

@ Then define the global finite element space to be

N
Un = span{¢;};2;.
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Rectangular elements

Bilinear finite element: global basis functions

@ Hence
Y, if j= Tp(1,n),
¢n2> If./ = Tb(za n)7
¢j|En = VYn3, ifj = Tb(37 n)?
¢n4> If./ = Tb(4a n)7
0, otherwise.

forj=1,--- ,Npandn=1,--- /| N.
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Rectangular elements

Biquadratic finite element: reference basis functions

@ We consider the reference biquadratic basis functions on the
reference rectangular element E= D/2\1/2\2/2\32\4 where
A =(—1,-1), Ay = (1,-1),, A3 = (1,1), and
A4 = (—1,1). Define As = (0, 1), A = (1,0), , A7 = (0,1),
Ag = (—1,0), and Ag = (0,0).

@ Define nine reference biquadratic basis functions

A~

Di(%,9) = aj+ bk + Gy +dixy + &%+ 9
+gi %%y + bk + kX292, j=1,---,9
such that

- 0, ifj#i,
wf(A"):(S"f:{l. if j =i,

fori,j=1,---,9.
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Rectangular elements

Biquadratic finite element: reference basis functions

@ Plots of the nine biquadratic basis functions on the reference
triangle:

'
R

'
2L a4
'

2L s o

'

O e
'

T I
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3D elements

Outline

@ 3D elements
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3D elements

3D linear finite element: reference basis functions

@ We consider the reference 3D linear basis functions on the
reference tetrahedron element E = A/A41/A42/A43/A44 where
A; = (0,0,0), Ay = (1,0,0), , A3 = (0,1,0), and
Ay = (0,0,1).

@ Define four reference 3D linear basis functions

Uj(%,9,2) = ak+by+qz+d, j=1,234
such that
7 0, ifj#i,
d’f(A"):d"f':{ 1, ifj=i,

fori,j=1,2,3,4.
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@ Then it's easy to obtain

L

\/vv\'_‘_/\_/\_/\_/v
Il

3D elements

3D linear finite element: reference basis functions

d =1,

ay+dy =0,
by +di =0,
a+d =0,
d» =0,

a+d =1,
by + d» =0,
o+ dr =0,
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3D linear finite element: reference basis functions

@ and

w

I
L T N

<5 S5 S5 w€> <5 <
[l

3D elements

d3 =0,

as+ d; =0,
bs+d3 =1,
c3+d3 =0,
dy =0,

ag+dy =0,
by +ds =0,
ey +dy = 1.
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3D elements

3D linear finite element: reference basis functions

@ Hence
alz—l,blz—l,q:—l,dlzl,
32:1,b2:0,C2:0,d2:0,
33:0,b3:1,C3:0,d3:0,
a4ZO,b4ZO,C4:1,d4:0.

@ Then the four reference 3D linear basis functions are

~
i
x>
<
\‘N>

= —%x—p—5+1,

\><>
f<>
N>
x>

5 S

~

x> x>

< <
ERCRURS
N> :<>
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3D elements

Trilinear finite element: reference basis functions

@ We consider the reference trilinear basis functions on the

AAAAAAAA

reference cube element E = A1 Ay A3A4 A5 AgA7Ag where
AL = (0,0,0), A = (1,0,0), Az = (1,1,0), Ay, =(0,1,0),
As =(0,0,1), As = (1,0,1), Az =(1,1,1), and
Ag = (0,1,1).
o Define eight reference 3D trilinear basis functions

N

Vi(%,9,2) = aj+bXx+cy+diz+ eky + fiXz
+giyz+ hikyz, j=1,---,8
such that

- 0, ifj#i,
wf(A"):(S"f:{l. if j =i,

fori,j=1,---,8.
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More discussion

Outline

© More discussion
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More discussion

More topics for finite elements

@ Higher degree finite elements......

@ Mixed finite elements: Raviart-Thomas elements, Taylor-Hood
elements, Mini elements......

@ Hermitian types of finite elements
@ Nonconforming finite elements

@ Another way to construct the basis functions: use the product
of 1D basis functions to form the corresponding basis
functions on rectangle or cube elements.
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More discussion

Approximation capability of the finite element spaces

@ Question: Given a function u and a finite element space
Un = span{g;} ">, with finite element nodes X; (j =1,--- , Np),
how small is inf |lu— wl?
we Uy

@ Finite element interpolation
N

u =y u(X))d;.

=1
@ Since u; € Uy, then

inf |lu—wl| < |lu—ul
we Uy

@ The finite element interpolation error |[u — ;]| is a traditional tool
to evaluate the approximation capability of a finite element space.
Here the norm || - || needs to be chosen properly according to the
interpolated basis function u. For example, if u € H}(Q), then || - ||
can be chosen as the L? norm || - ||o or H norm || - ||s.
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