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Abstract. Vibro-acoustic analysis of a finite orthotropic laminated double-composite plate with 

enclosed air cavity on an infinite acoustic rigid baffle is investigated analytically. Using the 

acoustic velocity potential to describe the acoustic vibration performance of a simple supported 

structure, the sound transmission loss (STL) is calculated from the ratio of incident to transmitted 

acoustic powers. Specifically, the focus is placed on the effects of several key system parameters 

on sound transmission including the plate dimensions, the laminate configurations, the boundary 

conditions and the composite materials are systematically examined. 
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1. INTRODUCTION 

       With the superior sound insulation characteristics of the double-plate compared to a single 

plate, the double-plate is increasingly widely used as in construction structures, ships, turbofan, 

aerospace, automobiles, etc. Therefore, research on sound insulation capacity of the double-

plate has received much attention from researchers in the world to produce the most optimal 

structures with the best sound insulation ability and the best applicability. 

For decades, the sound transmission loss across an infinite or finite double-plates is an 

interesting research topic with the different approaches used. Traditionally, Maidanik [1] 

analyzed the vibration behavior of a complex structure under force or sound excitation by the 

statistical energy analysis method (SEA). However, the SEA method is less effective at 

relatively low frequencies on account of its pre-assumption that enough structural modes need to 

be excited. Ruzzene [2] investigated the acoustic properties of sandwich beams in terms of 

structural response and sound transmission reduction index, which is more efficient for low 

frequencies but required high calculation costs for high frequencies by a finite element method 

model (FEM). London [3] has conducted the first experiment of sound insulation for double 

plate structure. Later, Carneal and Fuller [4] studied an analytical and experimental of active 
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structural acoustic control of sound transmission across aluminium double-plate systems. Chazot 

and Guyader [5] used the patch-mobility method to investigate the sound transmission loss 

through finite double-panels. The actual results are quite similar when compared with the FEM 

method. However, the path-mobility method allows for research in a wider frequency range. In 

addition, Bao and Pan [6] performed an experimental study of different approaches for active 

control of sound transmission through double walls. Sgard et al. [7] studied the sound 

transmission loss through a finite double-plate lined with poroelastic material by FEM. Villot et 

al. [8] have proposed a new way for calculating the reflectance and transmitting power of finite 

multi-layered structures based on spatial widowing of plane waves. 

       Nowadays, to reduce vibration and control noise, we use double-plates filled with absorbing 

materials. The study of sound transmission loss through a sandwich structure is getting more and 

more attention from domestic and foreign researchers. Brouard et al. [9] presented a general 

method for sound transmission through fluid-saturated porous layers. Based on Biot 

model, Lauriks et al. [10] have proposed a transfer matrix model for acoustic transmission 

through double-plate filled with porous material. By finite element method, Larbi et 

al. [11] studied the sound transmission through double wall sandwich panels with viscoelastic 

core. Panneton and Atalla [12] investigated a three-dimensional (3D) finite element model to 

calculate the sound transmission loss through multilayer structures containing porous absorbent 

materials. The structures considered vary according to whether the filling porous material is 

bonded or not to the faceplates. Chonan and Kugo [13] proposed a model to evaluate the sound 

propagation properties of a flane wave through a three-layered plate using two-dimensional (2D) 

elasticity theory. Kang et al. [14] used the method of Gauss distribution function for 

investigating the STL of multilayered plates such as double-plate structures embedded with 

porous materials. Bolton et al. [15] calculated sound transmission through multi-plate structures 

lined with elastic porous materials. 

 More recently, the problem of sound transmission across a finite double-plate structures 

was investigated with a simple supported boundary [16, 17] on the basis from different 

perspectives. Lu and Xin [17] presented the sound transmission across rectangular metallic 

double-panel structure with an air cavity with various boundary constraints by using the modal 

function and the Galerkin method. Numerous analytical investigations on the STL through a 

finite isotropic (metallic) double-plate have been performed [8, 10, 13]. However, there are only 

a few studies on the sound transmission loss across a finite simply supported double-composite 

plate. Thinh and Thanh studied the sound transmission loss through a finite clamped single 

composite plate [18]. 

The present study has expanded a model to calculate the sound transmission across a finite 

simply supported laminated double-composite plate with enclosed air cavity. The effect of several 

key system parameters on STL of this composite structure (e.g., the plate dimensions, the 

laminate configurations, the boundary conditions and the surface density of composite materials) 

is systematically examined.  

2. VIBROACOUSTIC COUPLED SYSTEM MODELING 

2.1. Geometry and assumption 

Supposedly, a finite rectangular double-composite plate with air cavity is in an infinite 

large acoustic rigid baffle. The two single-plates are orthotropic laminated composite and have 

similar geometric parameters and mechanical properties. The bottom and upper face plates (Fig. 
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1) have the same thickness h and is separated by an air cavity of thickness H. The double-plate 

partition divides the space into two fields, i.e., sound incidence field (z < 0) and sound 

transmitting field (z > H+2h). 

A plane sound wave varying harmonically in time is oblique (with the incident angle φ and 

azimuth angle θ) and stimulates the vibration of the bottom plate. This vibration changes the 

pressure in the air cavity and causes vibration of the upper plate then the sound wave is 

transmitted into the upper domain. 

        

Figure 1. Schematic of a simply supported composite double-plate: (a) Global view and (b) Side view. 

2.2. Theoretical formulation 

Based on the classical plate theory, the vibroacoustic behavior of an orthotropic symmetric 

laminated double-composite plate with enclosed air cavity (Fig. 1) induced by sound wave 

excitation is governed by [18, 19, 20, 21]: 
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where w1,2 are the transverse displacements of the upper and bottom faceplates; Dij (ij = 11, 12, 22, 

66) are the flexural rigidities;  m* is the surface density of the upper and bottom plates; ρ0 is the air 

density, ω is the angular frequency of the incident sound and Фi (i = 1, 2, 3) are the acoustic velocity 

potentials for the incident field, the air cavity, and the transmitting field, respectively. 

The flexural rigidity of the laminated composite plate is given by (see any textbook of 

Mechanics of composite materials): 
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where Qij are the reduced stiffnesses of the k
th
 layer and are defined as: 
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and E1, E2, G12, ν12 are the k
th
 layer elastic constants. 

For isotropic plates, D11 = D22 = Eh
3
/[12(1- ν

2
)], D12 = νD11 , D66 = Gh

3
/ 12. 

The displacements of the bottom and upper faceplates induced by the incident sound is given by: 
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The acoustic velocity potential in the incidence field (Fig.1) can be expressed by [10, 16, 

17]: 
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where I and β are the amplitudes of the incident (positive-going) and the reflected plus radiated 

(negative-going) waves, respectively. Similarly, the velocity potential in the air cavity can be written 

as: 
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where ε is the amplitude of the positive-going wave and ψ is the amplitude of the negative-going 

wave. In the transmitted field adjacent to the transmitting upper plate, there exist no reflected 

waves, and therefore the velocity potential in the transmitted waves is given by: 
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where γ is the amplitude of the transmitted wave. 

These wavenumbers are determined by the incident angle φ and azimuth angle θ of the 

incident field as: 
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where k0 =ω/c0 is the wave number in the air and c0 is the sound speed in the air. 

The boundary conditions for the simply supported double-composite plate can be obtained: 
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At the air-plate interface, the normal velocity is continuous, yielding the corresponding 

velocity compatibility condition equations 
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The flexural motions of the bottom and upper plates induced by a time-harmonic incident 

plate sound wave can be expressed in the form of double series as: 
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where the modal function φmn and modal displacements ui,mn (i = 1, 2) for simply supported 

boundary conditions are given by [20]: 
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where α1,mn; α2,mn are the modal coefficients of the bottom and upper plates, respectively. 

Thus, the velocity potentials for the sound incident field, air cavity, and sound transmitting 

field are given by: 
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where the coefficients Imn, βmn, εmn, ψmn and γmn for simply supported double-composite plate are 

determined by: 
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here, the symbol Ω can be coefficients I, β, ε, ψ and γ. 

2.3. Determination of modal coefficients of the bottom and upper plates 

Let ξ1, ξ2, and ξ3 represent the acoustic particle displacement in the incident field, the air 

cavity and the transmitted field, respectively. The air particle displacement and the sound 

pressure are related by the air momentum equation, as [22]: 
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where pi (i = 1,2,3) is the acoustic pressure that can be expressed by the Bernoulli equation, as 

[23]: 

  1,2,3i     0 













t
p i

i   (20) 

The displacements of the air particle adjacent to the plate in each region can be expressed as 
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Replace the equations (20) and (21) into (19), and applying equations (6) and (8), one can 

obtain: 
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The factual case that the composite plate immersed in an air medium requires that the 

displacements of the air particles adjacent to the panel should be the same as those of the 

attached plate particles. Accordingly, the displacement continuity condition can be written as: 
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The substitution of Eqs. (15) - (17) into Eqs. (11) leads to: 
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Substituting equations (12), (25 ) and (26) into equations (1) and (2) and applying the orthogonal 

functions, one gets: 
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The natural frequencies of two faceplates are determined by [24]: 
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Combine the equations (14), (27) and (28) can be rewritten in matrix form as: 
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After solving the system of equations (30), we determine the coefficients α1,mn and α2,mn from 

which we determine other quantities such as w1, w2 and the coefficients (βmn, εmn, ψmn and γmn). So, 

the analysis of sound transmission loss through a simply supported double-composite plate is 

completely solved. 
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3. CACULATION OF SOUND TRANSMISSION LOSS 

The power of incident sound is defined by [12, 17]: 

 
A

dAvp *

111 Re
2

1      (32) 

where  *

1 1 0 0v p c  is the local acoustic velocity, and 

    








 







1,

,10101 ),(2 0,, 
nm

mnmn

z

ykxkj
yx

k
Iejyxjp yx 




   

(33) 

is the sound pressure in the incident field. Substitution 
1p and *

1v  into (32) yields: 
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(34) 

The transmitted sound power is given by [12, 17]: 

 
A

dAvp *

333 Re
2

1      (35) 

where  *

3 3 0 0v p c is the local acoustic velocity and 
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is the sound pressure in the transmitted field. Combination of Eqs. (35) and (36) and the 

expression of  *

3v  results in: 
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The sound transmission loss across the laminated double-composite plate is defined by [12]: 
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4. NUMERICAL RESULTS AND DISCUSSION 

4.1. Validation 

For validation, the present analytical solutions are compared with the experimental results 

of Lu and Xin [17] for a simply supported double-plate, as shown in Fig. 2. The double-plate 

considered consists of two identical aluminum (isotropic) faceplates. The dimensions of the 

plates are: length of the plate a = 0.3 m, width of the plate b = 0.3 m. The faceplate has thickness 

h = 0.001 m while the thickness of the air cavity is H = 0.08 m. The mechanical properties of 

aluminum materials are: E = 70 GPa; ρ = 2700 kg/m
3
; ν = 0.33. The air speed of sound, c = 343 

m/s; ρ0 = 1.21 kg/m
3
; the amplitude of the acoustic velocity potential for the incident sound is              

I0 = 1 m
2
/s. 
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Looking at Figure 2, we can see that the current predictions are closely matched with the 

experimental measurements of [17]. The obvious difference between theory and experiment is 

attributed to a number of factors such as the incident wave has not satisfied the condition of a 

plane wave or the connection of the structure or due to interference between waves during the 

experiment. Note also that the experimental results at frequencies below 50 Hz are not reliable 

because the flanking transmission paths of the test facility play a prominent role in this 

frequency range. The results of Fig. 2 clearly demonstrate the intense peaks and dips in the STL 

versus frequency curve reflect the inherent modal behaviors of the double-panel system.  It 

should be pointed out that the STL dips (apart from the second dips in the two theoretical 

curves) are dominated by the modal behavior of the radiating plate. It has been established that 

the second dips are associated with the “plate-cavity-plate” resonance, which is insensitive to the 

imposed boundary condition. 

 

Figure 2. Comparison of STL between the present prediction and experimental result of [17].  

4.2. Effects of the plate dimensions on sound transmission loss 

In this section, numerical calculations are carried out to consider the influence of faceplate 

dimensions on STL of a finite simply supported double-composite plate with enclosed air cavity. 

Four double-composite plates: 1 × 1 m
2
; 4 × 4 m

2
; 16 × 16 m

2 
and 100× 100 m

2
 are chosen. The 

bottom and upper faceplates are graphite/epoxy with the plies being arranged in a [0/90/0/90]s 
pattern and the mechanical properties:  

E1 = 137 GPa; E2 = 10 GPa; G12 = 5 GPa; ν12 = 0.30; ρ=1590 kg/m
3
. 

The other geometric parameters are presented in above section 4.1. 

The results in Figure 3 show that, when increasing the dimensions of a finite plate to a 

certain extent, the plate is considered to be infinite and in this case so, with the size 100x100 m
2
, 

the plate can be considered infinite. For finite double plates, the initial behavior of the upper and 

lower plates interact strongly with system behavior (including plate-air cavity-plate resonance 

and standing wave resonance), which plays a major role in the vibration of all system. However, 

for infinite double plates the behavior of the original mode does not affect the negative 

oscillation behavior of the whole system. Results obtained, only dips related to system 

resonances show up in Fig. 3, with the first dip representing the mass-air-mass resonance and the 
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remaining dips caused by the standing-wave resonance. Over a wide frequency range, the 

maximum and dip points in the STL curve of the finite plate have a higher modal density than 

the infinite plate. Conversely in the low frequency range no mode exists for finite plates. In other 

words, the infinite plate is incapable of providing the right STL values at low frequencies for the 

practical finite plate. 

 

Figure 3. Influence of the plate dimension on STL of a simply supported double-composite plate with 

enclosed air cavity. 

4.3. Effects of laminate configurations on sound transmission loss 

In order to quantify the effects of lamination scheme on STL through the double-composite 

plate with an enclosed air cavity, four following configurations of the bottom and upper 

Graphite/epoxy composite plates are selected: [0/90/0/90]s, [0/0/0/0]s, [90/90/90/90]s and 

[90/0/0/90]s. The length of the plate a = 1 m and the width of the plate b = 1 m. The faceplates 

have thickness h = 0.005 m while the thickness of the air cavity is H = 0.08 m.  

 

Figure 4. Influence of laminate configuration on STL of a simply supported double-composite plate                 

with enclosed air cavity.  
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As can be seen from Fig. 4, the lamination scheme [90/90/90/90]s has enhanced the STL 

better than the other patterns for all ranges of considered frequency. 

4.4. Effects of different boundary conditions on sound transmission loss 

In this section, the STL is calculated for two double-composite plates subjected to clamped 

and simply supported  boundary conditions, respectively.  The results are compared for the sound 

incident with elevation angle, φ = 30
o
 and azimuth angle, θ = 30

o
. 

 

Figure 5. Compared the sound transmission loss of a finite double-composite plate with clamped 

boundary and simply supported boundary. 

One can see in Fig. 5 that the first dip is very sensitive to the flexural stiffness of the plate 

and the second dip (i.e., plate-air cavity-plate resonance) is not sensitive to the boundary 

conditions (clamped and simply supported). It can be seen that the STL values of the clamped 

system are distinctly higher than those of the simply supported system in whole frequency range. 

The STL values obtained with the two different boundary conditions have overall the same order 

of magnitude, although the resonance dips are not in accord with each other. 

4.5. Effect of composite materials on sound transmission loss 

Table 1. Composite materials properties. 

Composite E1 (GPa) E2 (GPa) G12 (GPa) ν12 ρ (Kg/m3) 

Boron/Epoxy 204.000 18.500 5.590 0.23 2000 

Glass/Epoxy 40.851 10.097 3.788 0.27 1946 

Graphite/Epoxy 181.000 10.300 7.170 0.28 1600 

Kevlar/Epoxy 76.000 5.500 2.300 0.34 1460 
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Figure 6. Effect of composite materials on STL of a simply supported double-composite plate with 

enclosed air cavity.  

The influence of composite materials on STL through a finite simply supported double-

composite plate is studied in this section by selecting four types of composite materials: 

Boron/Epoxy, Glass/Epoxy, Graphite/Epoxy, and Kevlar/Epoxy. The laminated composite 

configuration of the bottom and the upper faceplates is [0/90/0/90]s. The mechanical properties 

are shown in Table 1, the air speed of sound, the air density and the initial amplitude of the 

incident sound are presented in the above section 4.1. The dimensions of the double-plates are 

shown in section 4.3. 

Figure 6 shows that the STL value of Boron/Epoxy materials is the largest compared to the 

remaining materials and the STL value of Kevlar/Epoxy materials is the smallest at frequencies 

lower than 100Hz because in this region surface density is the deciding factor (the stiffness-

control zone). At frequencies greater than 100Hz, the STL value of Glass/Epoxy material is 

larger than other materials when it passes the plate-air cavity-plate resonance and the STL 

curves of the four materials operate according to specific rules when the plate-air cavity-plate 

resonance is synchronized. 

5. CONCLUSIONS 

In this investigation, a model was developed for the sound transmission loss through a 

finite double-laminated composite plate with simply supported boundary conditions excited by a 

plane sound wave that varying harmonically. The analytical model has been validated by 

comparing the present results of STL with previously published data on the double-plates. The 

influence of several key system parameters on STL including the plate dimensions, the laminate 

configurations, the boundary conditions, and the composite materials are systematically examined. 

From the results obtained, some conclusions can be drawn: 

 The theoretical predictions are in good agreement with existing results. 
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 The effect of the plate dimensions on STL is particularly strong for the finite systems at 

low-frequency range, which is useful when designing simply supported sound 
insulation the composite double-plates. 

 For the graphite/epoxy double-composite plate, the plies being arranged in a 
[90/90/90/90]s pattern of the bottom and upper plates appear to outperform other 

considered lamination schemes in terms of sound insulation.  

 The surface density of composite materials influences considerably on STL of finite 

simply supported double-composite plates. 

 The comparison of the STL versus frequency with the two different boundary conditions 

suggests that the STL values of the clamped system are distinctly higher than those of 

the simply supported system, especially in the lower frequency range. 
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