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Abstract. The present work is devoted to the analysis of non-linear heat transfer problems
using the recent development of consective-interpolation procedure. Approximation of
temperature is enhanced by taking into account both the nodal values and their averaged
nodal gradients, which results in an improved finite element model. The novel formula-
tion possesses many desirable properties including higher accuracy and higher-order con-
tinuity, without any change of the total number of degrees of freedom. The non-linear heat
transfer problems equation is linearized and iteratively solved by the Newton-Raphson
scheme. To show the accuracy and efficiency of the proposed method, several numerical
examples are hence considered and analyzed.
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1. INTRODUCTION

Heat transfer is an important phenomenon in engineering as temperature varies in
both space and time. Working under undesirable temperature may reduce the durability
of industrial components. Therefore, studying on heat transfer problems has become
one of major topics in both industrial and academic communities. Although closed-form
solutions derived by analytical approaches are available, they are relatively limited to
some specific problems with relatively simple geometry and/or boundary conditions.
For engineering applications, which usually include geometries with complicated shape
as well as sophisticated boundary conditions, numerical methods have arisen as more
suitable alternatives.

A numerical approach is expected to produce reliable results with reasonable com-
putational cost, while implementation should also be convenient. The finite element
method (FEM) has been shown to be one of the most popular numerical methods that
has been constantly used for engineering problems. However, the FEM itself owns sev-
eral inherent shortcomings [1], for example, the gradient fields (i.e. heat flux in the case
of heat transfer problems) reproduced by FEM are non-physically discontinuous at node.
Such a flaw requires treatment during post-processing. Issues of FEM have motivated
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researchers to propose alternative numerical methods, for instances the boundary el-
ement method (BEM) [2, 3], and meshfree methods [4–6]. Nevertheless, each method
has its own advantages and disadvantages. The BEM is relatively fast as it does not
need discretization inside the problem domain, however fundamental solutions for each
specific problem are often essential. Finding such fundamental solutions is not a trivial
task, especially in complicated applications. The class of meshfree methods possesses
the advantage that the problem domains are discretized into scattered nodes while nodal
connectivities, i.e elements, are no longer required. Therefore, it offers more flexibil-
ity during updating geometry or discretization, for example in case of mesh refinement
or optimization problems. However, most of the meshfree methods do not possess the
Kronecker-delta property, causing difficulties in enforcement of boundary conditions.

The recent development of consecutive-interpolation procedure (CIP) [7, 8] does not
attempt to introduce an alternative method, rather it is an improved version of FEM. In
this concept, all the advantages of FEM are preserved, such as simplicity and Kronecker-
delta property. By taking both the nodal values and the averaged nodal gradients into
interpolation scheme, a finite element enhanced by CIP is able to reproduce smooth gra-
dient fields, and increase accuracy. Furthermore, the total number of degrees of freedom
are the same as in FEM, given the same mesh. Extension of CIP into three-dimensional
finite elements was investigated by the authors [9, 10] for analysis of linear heat transfer
and linear elasticity, in which advantages of the proposed approach over traditional FEM
are verified. The thermal process cannot always be considered as linear. Nonlinearities
are usually involved, for example, in cases of temperature-dependent thermal proper-
ties [5, 11, 12] or during heat radiation [13, 14]. In this paper, the ability of CIP-enhanced
finite element method in dealing with non-linear analysis of heat transfer is studied.

The paper is organized as follows. After the Introduction, a brief review on CIP
formulation is presented. In Section 3, numerical aspects of the proposed approach for
non-linear heat transfer are discussed. Two examples of heat transfer with nonlinearities
involved are considered in Section 4, demonstrating the efficiency of CIP-enhanced ele-
ments in this particular problem type. The last Section is reserved for Conclusions and
Remarks.

2. BRIEF ON CIP FORMULATION

Details on the CIP formulation have been reported in our previous works, e.g., see
Refs. [8–10]. In this Section, we briefly present fundamentals of the CIP. Let us consider
a solid body occupying in the domain Ω bounded by Γ. The domain is discretized into
non-overlapping sub-domains Ωe namely finite elements. An arbitrary u(x) defined in Ω
can be approximated using CIP as

u (x) =
n

∑
I=1

RI (x) ûI = Rû, (1)

where n is the number of nodes, ûI is the nodal value of function u(x) at node I (global
index), and RI is the CIP shape function associated with node I. The vector of shape
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functions R is computed by [9]

R (x) =
n

∑
I=1

(
φI (x)N[I] + φIx (x) N̄[I]

.x + φIy (x) N̄[I]
.y + φIz (x) N̄[I]

.z

)
, (2)

in which N[I] is the vector of Lagrangian shape functions evaluated at node I; N̄[I]
.x , N̄[I]

.y ,

N̄[I]
.z are respectively the averaged derivative of Lagrangian shape functions with respect

to x-, y-, and z-directions. The calculation is as follows

N̄[I]
.x = ∑

e∈SI

(
we ·N[I][e]

,x

)
, (3)

where N[I][e]
,x is the derivative of N[I] computed in element e, and we is a weight function

defined by

we =
∆e

∑
ē∈SI

∆ē
, e ∈ SI . (4)

Here, SI is the set of elements interconnected at node I. ∆e is a measure of the size of
element e, which can be taken as the volume for a 3D element and area for a 2D element.

It is emphasized that the set of auxiliary functions φI , φIx, φIy, φIz have to be seper-
ately developed for each type of elements [7–9], which is an issue that limits the applica-
bility of CIP. Recently, the bottleneck is resolved due to the introduction of a general for-
mulation to determine auxiliary functions for a wide range of finite elements [9]. Given
an element e with ne number of nodes, the auxiliary functions associated with the local
ith (i = 1, 2, ..., ne) is calculated by [9]

φi (x) = Ni + N2
i (Σ1 − Ni)− Ni

(
Σ2 − N2

i
)

, (5)

φix (x) =
ne

∑
j=1, j 6=i

(
xj − xi

) (
N2

i Nj +
1
2

NiNj
(
Σ1 − Ni − Nj

))
, (6)

where N is the Lagrange shape functions. Quantities Σ1 and Σ2 are defined by

Σ1 (x) =
ne

∑
i=1

Ni, Σ2 (x) =
ne

∑
i=1

N2
i (7)

Replacing the x-coordinates in Eq. (6) by y- and z-coordinates, the functions φiy and
φiz are obtained. With the above general formulation, it is able to incorporate CIP into
a wide range of finite elements from one-dimensional to three-dimensional elements to
develop a new class of CIP-enhanced elements. Indeed, CIP can be implemented as an
add-on into existing FEM codes.

3. HEAT TRANSFER PROBLEMS

Being derived from energy conservation, the governing equation of heat transfer
problem is written by

∇ · (k∇T) + Q = ρc
∂T
∂t

. (8)
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Without consideration of heat radiation, the following boundary conditions are given

T = T̄, on Γ1: Dirichlet boundary, (9)

(k∇T) · n = q̄, on Γ2: Neumann boundary, (10)

(k∇T) · n = h (Ta − T) , on Γ3: convection boundary. (11)

In Eq. (8), k = diag(kxx, kyy, kzz) is the tensor of conductivities; T is the temperature;
Q is the heat sink/source; t is time; ρ and c are the density and specific heat capacitance,
respectively. In the boundary conditions in Eqs. (9)–(12), T̄ is the prescribed temperature;
q̄ is the prescribed heat flux; n is the outward normal unit vector of the boundary; Ta is the
ambient temperature; h is the coefficient of convection. Nonlinearity is implied in Eq. (12)
due to the dependency of material parameters on temperature, for example conductivity.

By some mathematical manipulation, the partial differential Eq. (8) is transformed
into weak formulation as follows∫

Ω

ρc
∂T
∂t

δTdΩ +
∫
Ω

(δ∇T)k∇TdΩ−
∫
Ω

QδTdΩ−
∫
Γ

q̄δTdΓ−
∫
Γ

h (Ta − T) δTdΓ = 0.

(12)
The partial derivative of temperature with respect to time can be approximated by

Backward–Euler scheme, which is known to be less vulnerable to spurious oscillation
[6, 11, 15]

∂T
∂t

(t + ∆t) =
1

∆t
(T (t + ∆t)− T (t)) . (13)

Similar to the spatial domain, the time domain can also be discretized into many time
steps. By knowing the temperature at the beginning of the simulation, i.e. the initial con-
dition, temperature at any given time steps within the time domain can be solved. Solu-
tion of the nonlinear equation (13) is then obtained using the iterative Newton–Raphson
scheme (see [16, 17]). Convergence is achieved when the residual evaluated in Eq. (12) is
less than a pre-set tolerance, which is chosen to be 10−6 in this paper. A detailed expla-
nation on Newton-Raphson procedure and flowchart of the scheme are presented in the
Appendix.

4. NUMERICAL EXAMPLES

Two numerical examples inluding one two-dimensional (2D) problem and one three-
dimensional (3D) problem are analyzed. The discretization of 2D domain is conducted
by using the four-node quadrilateral element, in which Q4 is denoted as the FEM version
and CQ4, on the other hand, is the CIP-enhanced element. For 3D domain, the eight-node
hexahedral is employed, in which HH8 and CHH8 are respectively the traditional FEM
and the CIP-based element. In heat transfer problems, each node is associated with one
degree of freedom (DOF), i.e. nodal temperature.
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4.1. Transient heat conduction in a hollow cylinder
The first example considers heat conduction in an aluminum hollow cylinder as

shown in Fig. 1. Due to symmetry of the problem configuration, only one-fourth is thus
modeled. Initially (at t = 0), the temperature is T0 = 400 Kin the whole cylinder. Then
inner wall is prescribed by T1 = 600 K, while the outer wall is thermally insulated. It is
expected that the cylinder will be gradually heated from the inner wall to the outer wall.
The dependency of specific heat capacity [18] and thermal conductivity [19] on tempera-
ture from 400 K to 600 K is presented in Tab. 1. Values that are not found in Tab. 1 will
be linearly interpolated. Mass density is assumed to be constant: ρ = 2700 kg/m3. This
example serves to verify the applicability of the proposed method, i.e. the CIP-enhanced
finite element, on analysis of nonlinear heat transfer.
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Figure 2. Example 4.1: Variation of temperature with respect to time 

Fig. 1. Example 4.1. Geometry (left) and Finite element mesh for one-fourth
of the cross-section (right)

Table 1. Example 4.1: Variation of temperature with respect to time

Temperature [K] Heat capacity [J/(kgK)] Conductivity [W/(mK)]

400 951 240
500 991.6 236
600 1036.8 231

For numerical analysis, a mesh of 20 × 20 quadrilateral element is used to discretize
the spatial domain (one-fourth of the cross-section), see Fig. 1. The backward Euler time
marching scheme is use for a total time span of 100 secs with 100 uniform time steps, i.e.
time increment in each step is ∆t = 1 secs. Fig. 2 depicts the variation of temperature with
respect to time. It is clearly observed that the temperature gradually increases from 400
K to 600 K, starting from the inner wall to the outer wall of the cylinder. This observation
is further supported by Fig. 3, which plots the variation of temperature along the line
passing to the center and being inclined with horizontal direction an angle of 45◦. In
Fig. 3, temperature profiles are obtained by three levels of quadrilateral elements: 10 ×
10, 20 × 20 and 40 × 40 elements. It is evidenced that results are mesh-independent.
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Table 1. Specific heat capacity [16] and thermal conductivity [17] of Aluminum 

Temperature [K] Heat capacity [J/(kgK)] Conductivity [W/(mK)] 

400 951 240 

500 991.6 236 

600 1036.8 231 

 

Figure 3. Example 4.1: Variation of temperature about the line passing through center and being inclined 

with the horizontal direction by an angle of 45o 

 The desirable property of physically smooth gradient fields of CQ4, as reported in previous 
works for linear problems [8, 18] is still preserved, as depicted in Figure 4 for x-component of heat flux. 

Fig. 3. Example 4.1: Variation of temperature about the line passing through center and being
inclined with the horizontal direction by an angle of 45◦
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The desirable property of physically smooth gradient fields of CQ4, as reported in
previous works for linear problems [8, 20] is still preserved, as depicted in Fig. 4 for
x-component of heat flux. The field evaluated by Q4 elements are non-physically discon-
tinuous, while that by CQ4 elements is continuous.
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Fig. 4. Example 4.1: The x-component of heat flux provided by (left) Q4 elements and (right) CQ4
elements using the same mesh of 20 × 20 elements

4.2. Transient heat transfer in a square plate with a cylindrical hole
The second numerical example deals with transient heat transfer problem in a square

plate with a cylindrical hole at center. The plate is subjected to both Dirichlet and Robin
(i.e. convection) boundary conditions, as illustrated in Fig. 5. Similar to the previous
example, only a quarter of the plate is modeled in this simulation due to the symmetry.
Material properties on temperature are given as follows: thermal conductivity k = 15 +
0.01T W/m◦C, mass density ρ = 7800− 0.03T kg/m3, and specific heat capacitance c =
125− 0.015T J/kg◦C. Initially, the temperature of the entire domain is T0 = 50 ◦C. The
prescribed temperature on Dirichlet boundary, i.e. the wall of cylindrical hole, is = 200 ◦C.
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For the Robin condition, ambient temperature is Ta = 100 ◦C and convective coefficient is
h = 200 W/m2.

Three-level of hexahedral meshes are considered: 150 elements (264 nodes), 600 el-
ements (924 nodes) and 2400 elements (3444 nodes). Fig. 6 visualizes the discretization
of 600 elements. The time domain is divided into 100 time steps, with step size ∆t = 7.5
secs. After 750 secs, the solution can be considered as steady-state, which is clearly ob-
served from Fig. 7, where the graph of evolution of temperature at point A (see Fig. 5
for position of A) is provided. The data obtained by the 600 elements and 2400 elements
are almost identical, while the those by coarsest mesh are a little bit lower. These results
evidently exhibit the mesh-independency of the temperature predicted by the proposed
scheme. The temperature field at 750s computed by the CHH8 elements is depicted in
Fig. 8.
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(52164 nodes), i.e equivalent thermal energy is approximately 3533 J/m3 oC, is adopted as reference 
value. The graph of numerical error versus number of DOFs (which is equal to the number of nodes) is 
depicted in Figure 9, exhibiting that CHH8 has higher rate of convergence than HH8.  

 
Figure 8. Example 4.2: Steady-state temperature distribution (after 750 secs) 

 

Figure 9. Example 4.2: Accuracy of steady-state thermal energy with respect to mesh density, presented 

in log-log scale. Here N is the number of DOFs (which is equal to the number of nodes) 

A comparison of accuracy achieved in term of computational time between HH8 and CHH8 
elements is shown in Figure 10, where the graphs are plotted in log-log scale. It is clearly demonstrated 
that the CHH8 is more time efficiency than the HH8. 

Fig. 8. Example 4.2: Steady-state temperature distribution (after 750 secs)
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Once temperature distribution is known, the equivalent thermal energy over the
whole domain can be computed by

Ue =
∫
Ω

(∇T)Tk (∇T) dΩ. (14)

In order to assess the performance of CHH8 element and the FEM counterpart, i.e. HH8
element, convergence of steady-state thermal energy (evaluated at t = 750 secs) with re-
spect to mesh density is studied. To serve for comparison, the FEM solution obtained
by the fine mesh of 38400 HH8 elements (52164 nodes), i.e equivalent thermal energy is
approximately 3533 J/m3 ◦C, is adopted as reference value. The graph of numerical error
versus number of DOFs (which is equal to the number of nodes) is depicted in Fig. 9,
exhibiting that CHH8 has higher rate of convergence than HH8.
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5. CONCLUSION AND OUTLOOKS 

In this research, the CIP-enhanced formulation for finite element analysis, in short CFEM, has 
been successfully extended for nonlinear transient heat transfer problems. Performance of CFEM on 
nonlinear analysis is so far still not reported in literatures. The proposed extension is achieved 
straightforwardly with the aid of backward Euler time marching scheme and Newton-Rapshon iteration 
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A comparison of accuracy achieved in term of computational time between HH8 and
CHH8 elements is shown in Fig. 10, where the graphs are plotted in log-log scale. It is
clearly demonstrated that the CHH8 is more time efficiency than the HH8.

5. CONCLUSION AND OUTLOOKS

In this research, the CIP-enhanced formulation for finite element analysis, in short
CFEM, has been successfully extended for nonlinear transient heat transfer problems.
Performance of CFEM on nonlinear analysis is so far still not reported in literatures. The
proposed extension is achieved straightforwardly with the aid of backward Euler time
marching scheme and Newton-Rapshon iteration to linearize and solve the governing
equation. At each time step, only three to four iterations are needed to reach the chosen
tolerance, i.e. 10−6 in this paper. This is as expected, due to the quadratic convergence of
the Newton-Raphson scheme.
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The gradient fields obtained by traditional finite elements are non-physically dis-
continuous at node. The CIP-enhanced formulation, on the other hand, which is able to
reproduce smooth gradient fields, and hence it offers better solutions.

One drawback of CIP-based approach is due to the fact that more computation is
required to construct basis functions in comparison with that of the conventional FEM.
Another drawback is the larger band of matrices due to the higher continuity. However,
it should be noted that CIP-based elements are more computational efficiency, in terms of
less DOFs needed (i.e. coarser mesh) to achieve the same accuracy, as already discussed
in our previous works [9, 10, 21]. Additionally, in traditional FEM, further techniques are
demanded to treat the non-physically nodal-discontinuous gradient fields during post-
processing, which are not necessary in CIP-based elements.

Though the current work focuses only in nonlinear transient heat transfer analysis,
it would be able to apply the proposed formulation to other types of nonlinear problems
without much difficulties. The positive results of the current research are preliminary
for further investigation in heat transfer. A possible extension in future works would
be the consideration of moving heat sources, which is essential in many engineering ap-
plications [22, 23]. When a pulsed electrical source or laser is used to induce thermal
shock, the non-Fourier heat equation [24, 25], which include additional term containing
the relaxation time, should be considered.
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APPENDIX

Using the formulation in Eq. (1), the temperature and temperature gradient are ap-
proximated by

T (x) =
n

∑
I=1

RI (x) T̂I = RT̂, (15)

∇T (x) =
[

∂T
∂x

∂T
∂y

∂T
∂z

]T

= BT̂. (16)

Analogously, the test function and gradient of test function can be written as

δT (x) = RδT̂, δ∇T (x) = BδT̂. (17)

Substitution of Eqs. (15)–(17) into Eq. (12) and approximate the time derivative of tem-
perature using Eq. (13) yields the following equation at time step n + 1

G (Tn+1) =
∫
Ω

RTρc
1

∆t
(Tn+1 − Tn) dΩ +

∫
Ω

BTk∇TdΩ

−
∫
Ω

NTQdΩ−
∫
Γ

NT q̄dΓ−
∫
Γ

NTh (Ta − Tn+1) dΓ = 0,
(18)

where Tn+1 = T (t = tn+1) is the temperature at time step n + 1 and Tn = T (t = tn) is
the temperature at previous time step, which is already known. Due to the dependency
of material parameters on temperature, e.g. ρ = ρ (T), c = c (T) and k = k (T), Eq. (18)
is non-linear. Applying the Newton–Raphson iterative scheme, the following linearized
form with respect to the unknowns, i.e. the nodal values of temperature T̂n+1, is obtained
at iteration step k + 1

(K1 + K2 + K3 + K4 + K5 + K6) ·
(

T̂k+1
n+1 − T̂k

n+1

)
= −G

(
T̂k

n+1

)
, (19)

where

K1 =
∫
Ω

RT · 1
∆t
· ∂ρ

∂T
· c ·

(
Tk

n+1 − Tn

)
·RdΩ, (20)

https://doi.org/10.1016/j.ijthermalsci.2010.12.012
https://doi.org/10.1016/j.ijthermalsci.2014.12.009
https://doi.org/10.1007/s11706-010-0090-4
https://doi.org/10.1007/s00419-013-0814-x


An enhanced nodal gradient finite element for non-linear heat transfer analysis 139

K2 =
∫
Ω

RT · 1
∆t
· ρ · ∂c

∂T
·
(

Tk
n+1 − Tn

)
·RdΩ, (21)

K3 =
∫
Ω

RT · 1
∆t
· ρ · c ·RdΩ, (22)

K4 =
∫
Ω

BT · k · BdΩ, (23)

K5 =
∫
Ω

BT · ∂k
∂T
· ∇Tk

n+1 ·RdΩ, (24)

K6 =
∫
Γ

RT · ha ·RdΓ. (25)

Notice that the term K6 only exists when the convection boundary condition is taken
into account.

The nodal values of temperature at time step n is chosen as the starting guess for
the time step n + 1, i.e. T̂0

n+1 = T̂n. Then Eq. (19) allows the iteratively update of the
solutions. The solution at time step n + 1 is said to be converged if the residual of Eq. (18)
is less than a pre-defined tolerance, which is chosen to be 10−6 in this paper.

At each time step, if converged solution cannot be achieved after 15 iterations, the
time step is considered as “Not converged” and will be re-calculate with smaller time
increment. If the time increment is smaller than a pre-set “minimum time increment”
∆tmin then the procedure stops due to non-convergence.

In summary, a flowchart is presented in Fig. 11.
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