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Abstract. Two new homogenization schemes together with the classical generalized self-
consistent scheme (GSC) and its extension are proposed to deal with the effective viscosity
of fresh concrete. All these models exploit the composite sphere morphology of suspen-
sion made of a viscous fluid and spherical particles. They differ from each other by the
ways the extra fluid zone (EFZ) located in between the composite sphere are treated. The
comparison with experimental data shows that the GSC provides very good result for a
well arranged particle size scale that allows mapping the whole medium by composite
spheres of different size scales. However, the GSC cannot be used for a suspension with a
non negligible volume of the EFZ. For such a case, extensions of the GSC those take into
account the contribution of the EFZ to the overall viscous behavior of the system is neces-
sary to fit with experimental data. Two of them work very well for non-cohesive particles
and the other can be employed for suspension with cohesive particles such as the case of
fresh cement paste.

Keywords: homogenization, viscosity, fresh concrete, coated morphology.

1. INTRODUCTION

The knowledge of the viscosity of fresh concrete is very important for modeling dif-
ferent construction processes such as the prediction of the pumping pressure [1], sim-
ulation of the capacity of concrete to pass through the reinforcement grid of deep ele-
ments [2], etc. Fresh concrete can be considered as a suspension of gravel in fresh cement
paste that is in turn a suspension of partially hydrated cement particles in water. Due to
an extreme contrast between the constituents and their mobility, the overall viscosity of
such a mixture is highly sensitive to the microstructure including the volume fraction, the
shape and the spatial distribution of the phases. Here we precise that the static viscosity,
i.e. the viscosity at zero-frequency loading, is considered.

In a seminal study, Einstein was the first who developed an analytical formula to
relating the viscosity of a suspension to its particle volume fraction [3]. His theoreti-
cal result is limited to suspension containing a very low volume fraction of mono micro
size spherical particles of which the interaction between the particles and the effect of
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the transition zone between particles and fluid are negligible. Since Einsteins study, nu-
merous experimental studies followed by empirical formulas have been developed for
suspensions at high range of particle volume fraction [4, 5], bi-modal and multi-modal
particle sizes [6–8], divers shape [9–11] and nano particles [12–14]. Following experi-
mental studies, theoretical concepts are also largely developed to deal with the effective
viscosity of suspensions. Belong them, the homogenization theory is the most appro-
priate method to take into account the effect of microstructure of the composite to its
overall viscosity. It is well-known that the homogenization method of elasticity can be
employed to model the effective viscosity of a suspension thank to the analogy between
linear elasticity and linear viscous behaviors [15]. Eshelby [16] based homogenization
schemes such as dilute scheme or Mori-Tanaka [17, 18] scheme or the generalized self-
consistent scheme (GSC) [19,20] can be directly employed to deal with a suspension con-
taining a small or average volumetric fraction of particles. For a high concentration of
mono-size particles, close to the percolation state, a modified generalized self-consistent
scheme, that takes into account the binding fluid that is located inside the percolated par-
ticle packing, appears to be appropriate at least for a mono-size problem [21]. Multi-scale
homogenization technique can be employed to deal with a well defined scale separation
of particle size [22, 23]. The later requires a sophisticated concept of percolated particle
packing [24–26]. For example, Vu [27] measured the effective viscosity of suspensions
containing two sizes particles and calibrated percolated packing parameters to fit the
generalized self-consistent scheme with experimental data.

Fig. 1 shows a comparison between the largely used empirical formula of Krieger
and Dougherty [5], the theoretical GSC scheme [19, 20] and experimental data measured
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Fig. 1. Viscosity of fresh cement versus the volume fraction of particles:
a comparison between experimental data and existent models
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on fresh cement by Struble and Sun [28] and Toutou et al. [22]. It is clear that both models
are not appropriate for fresh cement. Indeed, Struble and Sun [28] and Toutou et al. [22]
tried to fit the Krieger and Dougherty’s formula with their data and they need to totally
modify, case by case, the values of the parameters [η] and φM. Of cause such modification
can allow fitting the data but it work for case by case and more importantly the calibrated
parameters have no physical meaning. For example, Struble and Sun [28] obtained values
[η] = 5 to 6 while the theoretical value is [η] = 5/2 [5].

Indeed, most of the existent empirical and theoretical models are limited to the sit-
uation of non cohesive particles, i.e. the solid particles are not pasted together when the
volume fraction of particle is below the maximal value of the particle packing φM. In
other words, each single particle is isolated by the fluid phase if the particle volume frac-
tion is smaller than φM. Such assumption may not appropriate for fresh cement of which
the partially hydrated cement particles may locally pasted together if they are placed
closely in the space as illustrated by Fig. 2. Such coating morphology can form compos-
ite particles in which a part of the fluid content is blocked and becomes immobile. More
precisely, part of the fluid content may act by the similar ways as the solid content that
increases the viscosity of the whole medium.

Fig. 2. Assumption of blocked fluid zone for the case of cohesive particles

For the best of our knowledge, no appropriate homogenization scheme exists in liter-
ature for predicting the effective viscosity of suspension containing cohesive particles as
described by Fig. 2. Then it is of a great interest to develop solutions for such a problem
to deal with fresh concrete and other similar materials.

This paper is dedicated to develop closed form solution for effective viscosity of fresh
concrete on the basis of the homogenization theory. It is organized as following: first, the
theoretical basis of the homogenization method and a review of existent homogenization
method for effective viscosity of suspension are presented in Section 2. In Section 3, two
appropriate homogenization models are developed to adapt with the morphologies of
fresh concrete at both cement and gravel scales. These models are calibrated and vali-
dated against experimental data available in literature. Some important conclusions are
given at the end of the paper.
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NOTATIONS
µ Shear viscosity

hom Index stands for a homogenized/effective value
B Strain rate localization factor of a multi inclusion problem
φ Volume fraction of particles

2. THE BASIC OF THE HOMOGENIZATION THEORY AND
A REVIEW OF EXSITENT MODELS

A suspension can be regarded as a matrix-inclusion system. The classical dilute
scheme [3] and Mori-Tanaka scheme [17] can be employed for a small to medium amount
of particles. For a large volume fraction of particles, it is necessary to consider the mix-
ture with more complex microstructure concept of the generalized self-consistent scheme
that was previously developed for an equivalent elastic problem [19, 20].

2.1. The basis of the homogenization theory
The homogenization method consists to estimate the effective shear viscosity of a

suspension by considering a special weighted average over its representative elementary
volume (REV) such as

µhom = 〈µB〉, (1)

where the notation 〈.〉 stands for a volumetric average over the REV; µ the viscosity of the
constituents in the mixture; B the strain rate localization factor that relates the local devi-
atoric strain rate ε̇D and the volumetric average of the deviatoric strain rate (macroscopic
deviatoric strain rate) 〈ε̇D〉 such as ε̇D = B〈ε̇D〉. The localization factor B must satisfy the
conditions: 〈B〉 = 1. The viscosity of the matrix fluid and the volume fraction of the solid
particles are supposed to be known so the problem reduces to finding the localization
factor B for both the particles inclusion and fluid matrix.

2.2. The classical GSC scheme
The GSC scheme consists to map the suspension containing spherical particles by a

system of composite sphere that is then simplified to a problem of a single coated sphere
in an infinite matrix of which the viscosity is the effective viscosity of the initial suspen-
sion. For an equivalent elastic problem, analytical solution of the effective shear modulus
is first given by Christensen and Lo [19]. The analogy between a linear elastic problem
and a linear viscous problem allows using that solution to predict the effective shear vis-
cosity of a composite. For the case of suspension of particles in a viscous fluid with a
viscous Poisson ratio equals to ν = 1/2, similar mathematical developments of the elas-
tic problem can be realized with attention to avoid the division to the term (1− 2ν) that
equal to zero in this case. Following analytical solution for the effective viscosity can be
obtained after some mathematical manipulations

µGSC

µ f
=
−bGSC −

√
b2

GSC − 4aGSCcGSC

aGSC
, (2)
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where µ f is the shear viscosity of fluid. The parameters aGSC, bGSC and cGSC are defined by

aGSC =− 8(δ− 1)4
(

4δ6 + 16δ5 + 40δ4 + 55δ3 + 40δ2 + 16δ + 4
)

,

bGSC =− 2(δ− 1)
(

8δ9 + 8δ8 + 8δ7 + 208δ6 + 208δ5 − 128δ4 − 128δ3 − 3δ2 − 3δ− 3
)

,

cGSC = 48δ10 + 200δ7 − 336δ5 + 225δ3 + 38,

(3)

with δ3 = φ, in which φ is the volume fraction of the particles. For a suspension with
a small amount of particles, i.e. φ ≤ 1, the series expansion of the solution (2) in the
vicinity of zero yields

µGSC

µ f
≈ 1 + 2.5φ + 2.5φ2. (4)

It is of interest to note that the first two terms on the right side of Eq. (4) corresponds
to the Einstein’s model. Fig. 3 shows the evolution of the normalized effective viscosity
µGSC/µ f estimated by the GSC (Eq. (2)) together with its second order series expansion
(Eq. (4)) in comparison with Einstein’s solution (that corresponds to the first order series
expansion of GSC solution). The simple first order approximation can be employed for
a suspension with smaller than 5% in volume of particles and the second order approxi-
mation and be used for less than 10% of particles.
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Fig. 3. Effective viscosity of suspension
estimated by the GSC scheme and

its series expansions
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Fig. 4. A comparison between the generalized
self-consistent scheme and data collected from

different sources in literature

A comparison with experimental data shows also that for a low ranges of particle
volume up to 30%, the GSC fit very well with experimental data collected from different
sources on mono-disperse suspension [8, 26, 29] (Fig. 4). However the GSC underesti-
mates the effective viscosity at a higher volume fraction of particles.

It is important to remark that the GSC scheme ignores the extra fluid zone (EFZ) lo-
cated in-between the coated spheres (Fig. 5(a)). Therefore this method is appropriate for
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an ideally arranged particle sizes of which small particles filled in between big particles
to reduce the volume fraction of the EFZ to zero (Fig. 5(b)). But it is the main reason
of the under-estimation of the GSC scheme for the case of mono-disperse suspension at
high particle volume fraction as shown on Fig. 4. Therefore additional homogenization
concept for the EFZ is necessary to improve the GSC scheme.

Fig. 5. Composite sphere mapping of suspensions containing spherical particles

2.3. An improvement of the GSC considering the EFZ
Marcadon et al. [21] modeled the effective elastic properties of composites those have

the same microstructure of the considering suspension. Such model is straightforward
for the present problem thank to the analogy between the linear elastic and linear viscous
behaviors (as previously mentioned). The localization strain rate in the EFZ is obtained
from the Eshelby’s solution [16] while the localization strain rate in the composite spheres
made of the particles and the coated fluid phase is given by Herve and Zaoui [20].

It is important to remark that in the solution of the average local strain derived by
Herve and Zaoui [20] for a phase located in a composite sphere (equation 36 of their
paper), there is a division to (1− 2µ) that equal to zero for the case of fluid because the
Poisson ratio µ of fluid is 1/2. Therefore some technical treatments are necessary when
using their solution. For example, the Poisson ratio of fluid can be taken a little bit smaller
than 1/2 to avoid division to zero. By a more rigorous ways, the development of Herve
and Zaoui [20] needs to be redeveloped in a ways that allows avoiding the division to the
term (1− 2µ) that equals to zero. One the localization factors of all the phases are known,
the effective viscosity of the mixture can be computed by Eq. (1). Analytical solution
of the effective viscosity issues from this combination concept is a lot more cumbersome
comparing to the solution (2) and could not be presented in this paper.

Consider for example the case of mono disperse of which the volume fraction of
the EFZ is 36% and the volume fraction of the composite sphere is 64%. A comparison
with measured data shows that this concept (that is named by concept 1) reproduces
very well the experimental observation (Fig. 6). It is a lot better than the GSC at high
volume fraction of particles. We compare also the results obtained by the homogenization
concept 1 with the famous empirical formula of Krieger and Dougherty [5] (KD) using the
parameters φmax = 0.64 (that correspond to the maximum volume fraction of the solid
phase of a random close packing of mono size sphere) and [η] = 2.5. We have φmax =
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1− VEFZ with VEFZ the volume fraction of the EFZ. We observe that if the value φmax =
0.64 for the case of mono disperse of spherical particle is used, the KD method under
estimate the effective viscosity of suspension close to percolation state. In literature, a
value φmax ≈ 0.57 that is smaller than the theoretical value 0.64 is usually considered for
the empirical KD method to fit with experimental data of mono-disperse suspension.
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Fig. 6. The improved GSC scheme: a comparison with the GSC, data
and the empirical KD method

3. APPROPRIATE HOMOGENIZATION METHODS FOR FRESH CEMENT
AND CONCRETE

The effective viscosity of fresh concrete is modeled in two scales: the cement scale
and the gravel scale. At the first scale, it is necessary to model the effective viscosity of
fresh cement as function of the volume fraction of cement particles. Here we assume
that the volume fraction of the particles is given, i.e. the evolution of the volume of the
solid phase due to hydration is out of the scope of the present paper. At the second scale,
the effective viscosity of fresh concrete is modeled assuming the viscosity of the cement
phase as well as the volume fraction of gravels are given.

3.1. The first scale: fresh cement
As previously described by Fig. 2, cement particles are assumed to not suspending

separately in fluid but they locally pasted together, event at small or medium volume
fraction, to form alternative composite particles those block inside a part of the fluid
phase. Therefore, a suspension with cohesive particles of volume fraction φ can be con-
sidered as a suspension with alternative particles of volume fraction φ + φb, where φb the
total volume of the blocked fluid. Theoretically, φb must be smaller or equal to 1− φmax
that is 0.36(φ + φb) for a packing of mono size sphere.
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It is important to remark that such assumption allows reducing the volume fraction
of the EFZ to zero. Therefore the GSC can be employed for the mixture of alternative
particles and remaining (non blocked) fluid. Fig. 7 shows that the results obtained by
considering a minimum possible value of φb that is φb = 0 provides a lower bound of the
experimental data. A maximum value φb = 0.36(φ+φb), i.e. φb = 0.56φ, (with mono-size
assumption for cement particles) seems provides a good fit with the experimental data.
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Fig. 7. Effective viscosity of cement: a comparison of the homogenization scheme
and experimental data of fresh cement

3.2. The second scale: fresh concrete
A comparison with experimental data shows that the improved GSC scheme (IGSC),

that was presented in Section 2.3, works very well for fresh concrete at the second scale
that is a mixture of fresh cement and gravels (Fig. 8). That method assumes a spherical
shape of the EFZ and employs the Eshelbys solution to estimate the local strain rate of
the EFZ. However analytical results are very cumbersome.

Let consider a more simple assumption such that the average localization strain rate
of the fluid phase located in the coated phase surrounding the gravel particles equal
to that of the EFZ. This assumption allows using the solution of the localization factor
obtained for the coated fluid phase of the composite sphere for the EFZ. We note by B1
the localization factor of the particles and B2 the localization factor of the coated fluid and
the EFZ. Using Eq. (1), to calculate the effective viscosity of the suspension, we obtain

µhom = lim
µp→∞

[
φµpB1 + (1− φ)µ f B2

]
. (5)

The closed-form solution to this problem is

µ

µcement
=
−b−

√
b2 − 4ac
a

, (6)
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Fig. 8. Relative viscosity between concrete and cement versus the volume fraction of gravels:
a comparison between the present model and data of Toutou et al. [22]

where the parameters a, b and c are defined by

a = − 24
5
(
δ2 + δ + 1

)
(δ− 1)4

(
4δ6 + 16δ5 + 40δ4 + 55δ3 + 40δ2 + 16δ + 4

)
,

b = − 24δ3(δ− 1)
(

2δ8 + 4δ7 + 6δ6 + 13δ5 + 20δ4 + 13δ3 + 6δ2 + 4δ + 2
)

φmax

+
6
5
(δ− 1)

(
32δ11 + 64δ10 + 96δ9 + 36δ8 − 24δ7 − 28δ6 + 168δ5

+ 339δ4 + 174δ3 + 9δ2 + 6δ + 3),

c = 3δ3 [56δ3(δ + 1)
(
δ2 − 1

)
+
(
16δ7 + 19

) (
δ2 + δ + 1

)]
φmax

− 6
5
(δ− 1)

(
16δ11 + 32δ10 + 48δ9 + 88δ8 + 128δ7

+ 56δ6 + 84δ5 + 187δ4 + 122δ3 + 57δ2 + 38δ + 19),

(7)

with δ3 = φ/φmax and φmax = 1− VEFZ. For the particular case with no EFZ zone, i.e.
VEFZ = 0, the solution (6) is simplified to the solution (2) of the GSC. Note that φmax =
0.64 for a packing of sphere. A comparison of the solution (6) with experimental data of
fresh concrete [22] as well as with the improved GSC presented in Section 2.3 is shown
on Fig. 8. In this figure, the viscosity of fresh concrete is normalized to the viscosity
of the fresh cement paste so the input parameters such as the viscosity of fluid and the
porosity of concrete are not required for the simulation. The only parameter needed is
the volume fraction of gravels. Of course, the viscosity of fluid is needed for determining
the absolute viscosity of the mixture. Even though a very simplified assumption of the
mechanical field in the EFZ is considered, the solution (6) fit very well with data and the
model of Section 2.3. More importantly, solution (6) is explicit and then very easy to use
in practice.
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4. CONCLUSIONS

Two homogenization concepts are proposed to model fresh concrete at two scales:
fresh cement scale and gravel scale. At the first scale, fresh cement is regarded as a sus-
pension of cohesive particles in viscous fluid. The cohesive particles are assumed to
locally pasted together to form alternative particles, each of them is a particle packing
containing blocked fluid. We consider a mono suspension and an ideal polydisperse sus-
pension (such as the volume fraction of the blocked zone tends to zero) and we observed
that the ideal polydisperse suspension provide an under bound while the mono size sus-
pension correspond to a upper bound. Most of experimental data fit with the mono size
assumption but some point lay in between the bounds.

At the second scale, the mixture between fresh cement and gravel is modeled by
an improved GSC. Analytical solutions are derived considering a simplified assumption
of uniform mechanical field in the extra fluid zone (EFZ). A mono size suspension for
gravels is a good approximation and a comparison with experimental data show that
such assumption allows the model to fit very well with data.

The workflow of the present homogenization model for the prediction of the effective
viscosity of fresh concrete is resumed as following:

(1) Input: volume fraction of gravels φg, volume fraction of cement particles φc0 and
viscosity of fluid µ f .

(2) First scale: compute the relative volume fraction of cement in cement-fluid mix-
ture (fresh cement) φc = φc0/(1 − φg) then compute the volume fraction of the local
cement particle parkings φcp = φc/0.64. Introducing the volume fraction φcp together
with the input viscosity of the fluid phase µ f in Eqs. (2) and (3) to compute the effective
viscosity of fresh cement.

(3) Second scale: Once the viscosity of fresh cement is obtained from the first scale
and the volume fraction of gravel particles is given by input data, we can compute the
final effective viscosity of fresh concrete using Eqs. (6) and (7).

The dependence of effective viscosity on the thixotropic and curing behavior of cement-
based materials are out of the scope of the present paper that focus on a homogenization
method and the effect of the microstructure of the suspension.
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APPENDIX
The mathematical development of the proposed closed form solutions

The homogenization method consists to estimate the effective shear viscosity of a
suspension by an average over its representative elementary volume (REV) (see Eq. (1)).
To deal with a large range of particle concentration, it is preferred to adopt the concept
of the generalized self-consistent homogenization theory [19, 20]. Unfortunately, the an-
alytical solutions developed by Herve and Zaoui [20] are not straightforward for the
problem of suspension of solid particles in viscous fluid because of a fluid’s Poisson ratio
of ν f = 0.5 that leads to several undefined terms containing a division to (1− 2ν f ). Their
workflow can be followed but a major modification is necessary.

Indeed, following Herve and Zaoui [20], we consider a two phase concentric sphere,
made of a rigid core and a linear viscous fluid coated layer, surrounded by an infinite
homogeneous viscous matrix (Fig. 9). The rigid core and the coated phase of the coated
inclusion are numbered by 1 and 2, respectively. The infinite matrix is the phase 3.

Under a simple uniform macroscopic shear stress, the fluid velocity in the system
has following components in spherical coordinates

vr = Vr(r) sin2 θ cos 2φ, vθ = Vθ(r) sin θ cos θ cos 2φ,

vφ = Vφ(r) sin θ sin 2φ, Vφ(r) = −Vθ(r).
(8)
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fraction φcp together with the input viscosity of the fluid phase µf in Eqs. (2)
and (3) to compute the effective viscosity of fresh cement.

(3) Second scale: One the viscosity of fresh cement is obtained from the first scale
and the volume fraction of gravel particles is given by input data, we can
compute the final effective viscosity of fresh concrete using equations (6) and
(7).

The dependence of effective viscosity on the thixotropic and curing behavior of
cement-based materials are out of the scope of the present paper that focus on a homog-
enization method and the effect of the microstructure of the suspension.
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APPENDIX: THE MATHEMATICAL DEVELOPMENT OF THE
PROPOSED CLOSED FORM SOLUTIONS

The homogenization method consists to estimate the effective shear viscosity of
a suspension by an average over its representative elementary volume (REV) (see Eq.
(1)). To deal with a large range of particle concentration, it is preferred to adopt the
concept of the generalized self-consistent homogenization theory [18, 19]. Unfortunately,
the analytical solutions developed by Herve and Zaoui [19] are not straightforward for the
problem of suspension of solid particles in viscous fluid because of a fluid’s Poisson ratio
of νf=0.5 that leads to several undefined terms containing a division to (1-2νf ). Their
workflow can be followed but a major modification is necessary.

Indeed, following Herve and Zaoui [19], we consider a two phase concentric sphere,
made of a rigid core and a linear viscous fluid coated layer, surrounded by an infinite
homogeneous viscous matrix (Fig. 9). The rigid core and the coated phase of the coated
inclusion are numbered by 1 and 2, respectively. The infinite matrix is the phase 3.

Fig. 9. Coated spherical inclusion in an infinite reference matrix.Fig. 9. Coated spherical inclusion in an infinite reference matrix

The correspondent strain rates are

ε̇rr = V ′r sin2 θ cos 2φ,

ε̇θθ =
1
r

Vr sin2 θ cos 2φ +
1
r

Vθ cos 2θ cos 2φ,

ε̇φφ =
2
r

Vφ cos 2φ +
1
r

Vr sin2 θ cos 2φ +
1
r

Vθ cos2 θ cos 2φ,

ε̇rθ =
1
2

(
2
r

Vr + V ′θ −
1
r

Vθ

)
sin θ cos θ cos 2φ,

ε̇rφ = −1
2

(
2
r

Vr −V ′φ −
1
r

Vφ

)
sin θ sin 2φ,

ε̇θφ = −1
r
(
2Vθ + Vφ

)
cos θ sin 2φ.

(9)

The volumetric strain rate is

tr ε̇ =

(
V ′r +

2
r

Vr −
3
r

Vθ

)
sin2 θ cos 2φ. (10)

The stresses components are: σjk = 2µ

(
ν

(1− 2ν)
tr ε̇ + ε̇ jk

)
with j, k = r, θ, φ. The veloci-

ties Vr and Vθ , those are solutions of the combinations of the constitutive equation and the

equilibrium equation, and the correspondent radial and tangent stress:
[
Vr, Vθ , S(i)

rr , S(i)
rθ

]t

= L(i)
r [A, B, C, D]t with i = 1 or 2 and

L(i)
r =



r − 6νi

4νi − 7
r3 − 3

2r4
5− 4νi

2 (1− 2νi)

1
r2

r r3 1
r4

1
r2

2µi
6νi

4νi − 7
µir2 12

r5 µi
2 (νi − 5)

1− 2νi

µi

r3

2µi −2
7 + 2νi

4νi − 7
µir2 − 8

r5 µi
2 (νi + 1)

1− 2νi

µi

r3


. (11)



300 Tuan Nguyen-Sy, Duong Nguyen-The

The strain rate concentration factors of the coated layer (see Eq. (1)) is

B̃1 =
A1

A3
− B1

A3

21R2
1

5 (4ν1 − 7)
, (12)

and

B̃2 =
A2

A3
− B2

A3

21R2
2

5 (4ν2 − 7)
1− X5

1− X3 , (13)

where we noted the ratio between the radii of the inner core and the coated inclusion
by: X = R1/R2; ν1 and ν2 the Poissons ratios of the core and the coated phase of the
inclusion, respectively. They are related to the bulk and shear moduli by the classical
formula: νi = (3ki − 2µi)/(6ki + 2µi) with i = 1 or 2. The terms A1/A3, A2/A3, B1/A3
and B2/A3 are determined by

A1

A3
=

P(2)
22

P(2)
11 P(2)

22 − P(2)
12 P(2)

21

,
B1

A3
=

−P(2)
21

P(2)
11 P(2)

22 − P(2)
12 P(2)

21

, (14)

and
A2

A3
=

P(1)
11 P(2)

22 − P(1)
12 P(2)

21

P(2)
11 P(2)

22 − P(2)
12 P(2)

21

,
B2

A3
=

P(1)
22 P(2)

21

P(2)
11 P(2)

22 − P(2)
12 P(2)

21

. (15)

where the [4×4] matrix P(1) and P(2) are determined by

P(1) = M(1); P(2) = M(2)M(1), (16)

with
M(i) =

(
L(i+1)

Ri

)−1
L(i)

Ri
, (17)

in which the matrix L(i)
r is defined by Eq. (11).

The parameters B̃1 and B̃2 are functions of the elastic properties of the coated inclu-
sion and the matrix phase as well as the ratio X of the coated inclusion. It is of interest to
remark that for the case of solid with ν1 6= 0.5 and ν2 6= 0.5, the solutions (12) and (13)
are equivalent to the classical solution obtained by Herve and Zaoui [20]. However the
solutions obtained herein are also valid for fluid with ν2 = 0.5.
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