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Abstract. The paper investigates the dynamic response of laminated composite plate un-
der the effect of blast loading. The cell-based smoothed discrete shear gap method (CS-
FEM-DSG3) based on the first-order shear deformation theory (FSDT) and the equivalent
layer theory (ELT) is used to model the behavior of the laminated composite plate. The
blast loading is simulated by a time diagram of rectangular, triangular, exponential, or
sinusoidal shape. The effects of the number of layers and fiber orientation to the displace-
ment and stress fields of the laminated composite plate are discussed. Numerical results
demonstrated the accuracy and reliability of the present method compared with previous
published methods.

Keywords: Laminated composite plate, blast loading, cell-based smoothed discrete shear
gap method (CS-FEM-DSG3), first-order shear deformation theory (FSDT), equivalent
layer theory (ELT).

1. INTRODUCTION

Nowadays, laminated composite plate has become one of indispensable compo-
nents in numerous engineering structures varying from automotive industry, civil in-
frastructure to aerospace structures. Owning to many superior properties such as high
stiffness, light weight, long fatigue life, flexible fiber orientation, electric resistant, etc, the
laminated composite plate is expected to sustain over many difficult situations. Among
them, blast loading, an intensive high load happening in a very short time, is one of
the most challenging situations that the laminated composite plate may undergo during
its operation. Hence, analyzing the dynamic response of the laminated composite plate
under the influence of blast loading is a necessary topic that can contribute important
insights to researchers, and has attracted a number of research works in the field of nu-
merical methods during the last decade. Some typical works can be listed as follows.
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Khdeir and Reddy [1] used the method of the orthogonality of principal modes and
the state variables technique to investigate the dynamic response of symmetric cross-ply
laminated composite plates by solving the equation of a higher-order shear deformation
plate theory (HSDT). Librescu and Nosier [2] dealt with a theoretical analysis of the dy-
namic response of shear deformable symmetrically laminated rectangular composite flat
panels exposing to boom and explosive blast loadings. In this study, the time history of
the sonic boom was described as an N-shaped pulse, whose negative phase duration
was included as a variable in the analysis. The governing equation system formulated
by HSDT was solved by using the integral-transform technique. Lam and Chun [3] con-
sidered the dynamic response of laminated angle-ply plate with the clamped boundary
conditions subjected to explosive blast loading. The plate was modeled by classical plate
theory (CPT) and the dynamic analysis was carried out by the method of normal mode
superposition based on Rayleigh-Ritz method. Meimaris and Day [4] studied the dy-
namic response of laminated anisotropic plate which was modeled by the twenty nodes,
isoparametric, parabolic, solid element. Satish Kumar and Mukhooadhyay [5] analyzed
the transient response of laminated stiffened plates under step and air-blast loads. The
formulation was based on the first order shear deformation theory (FSDT). Hause and
Librescu [6] presented an analytical study of the dynamic response in bending of flat
sandwich panels characterized by laminated face sheet and weak core. In this study,
the adopted solution methodology was based on the extended Galerkin method cou-
pling with the Laplace Transform to get closed-form solutions of the problem. Librescu
et al. [7] analyzed the dynamic response of geometrically non-linear sandwich flat pan-
els subjected to initial geometric imperfection and explosive blast loading produced by
underwater and in-air explosions.

In general, the previous works mostly employed the HSDT theory or the analytical
formulations to achieve good results. The approach using high-order formulas is com-
putationally expensive, while the analytical approach is hard to extend to problems of
arbitrary geometries or complicated boundary conditions. Hence, conducting new nu-
merical methods that can deliver accurate results by means of simple implementations is
an obvious demand. This paper aims to fill this gap by introducing a new method that
combines advantages from many recently proposed methods derived from triangular fi-
nite elements.

In an advanced extent of numerical methods, Liu and Nguyen [8] have success-
fully developed robust and efficient series of methods termed the smoothed finite ele-
ment methods (S-FEMs) that outperform the traditional finite elements in term of accu-
racy and efficiency. The S-FEMs consist of two key mechanisms: (1) they usually em-
ploy the three-node triangular elements for easy mesh generation on arbitrary geome-
tries; (2) they integrate the strain smoothing technique in computing the local stiffness
based on smoothing domains to soften the overly-stiffness of the ordinary triangular el-
ements. Different variants of S-FEMs are distinguished based on the manners of creating
the smoothing domains. Among members of S-FEMs, the cell-based smoothed finite el-
ement (CS-FEM) has been developed widely for structural analysis due to possessing
many beneficial properties in analyzing static and dynamic response of 2D plate prob-
lems [9]. Recently, the CS-FEM was combined with the discrete shear gap method using
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triangular element (DSG3) [10] to give a so-called the cell-based smoothed discrete shear
gap method (CS-FEM-DSG3) [11] which can help eliminate the shear locking phenomena
and improve efficiently the accuracy and stability of the original DSG3 in analyzing plate
and shell problems [11–16].

In this paper, the CS-FEM-DSG3 element is extended to analyze the behavior of
laminated composite plate subjected to blast loading. A time function of blast loading
may take a rectangular, triangular, exponential, or sinusoidal shape. Some numerical ex-
amples are performed to illustrate the accuracy and reliability of the proposed method. The
numerical results will be compared with the previous published methods.

The paper consists of 5 sections, in which section 2 briefly introduces the mathe-
matical formulation and section 3 presents the CS-FEM-DSG3. Section 4 illustrates the
numerical results. Some discussion and conclusion are given in the last section.

2. MATHEMATICAL FORMULATION OF LAMINATED COMPOSITE PLATE AND
THE BLAST LOADING

Let us consider a rectangular composite plate in the Cartesian coordinated 0xyz in
which the x− y plane coincides with the middle plane Ω of the plate as shown in Fig. 1.

Fig. 1. Laminated composite plate

The plate consists of N orthotropic cross-ply or angle-ply layers with a total thick-
ness t. The displacement field at any point on the middle plane is given by

u =
{

u0, v0, w0, βx, βy
}T , (1)

where u0 and v0 are the membrane displacements along the x and y-axis, respectively; w0
is the transverse displacements along the z-axis; βx and βy are, respectively, the rotations
of the transverse normal of the middle plane about the y and x-axis.

According to FSDT theory [17, 18], the Galerkin weak form of the composite plate
subjected to blast loading without damping system is given by

∫
Ω

{
δ (εεεm)

T δ (κκκ)T δ (γγγ)T
}Dm Dmb 0

Dmb Db 0
0 0 Ds

εεεm
κκκ
γγγ

dΩ +
∫

Ω
δ (u)T müdΩ =

∫
Ω
δ (u)T bdΩ,

(2)
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where εεεm, κκκ and γγγ are the membrane, bending and shear strains of the plate, given by

εεεm =
{

u0,x v0,y u0,y + v0,x
}T ,κκκ=

{
βx,x βy,y βx,y + βy,x

}T , γγγ=
{

w0,x + βx w0,y + βy
}T .
(3)

In Eq. (2), Dm, Dmb, Db and Ds are the material matrices of the composite plate,
defined by

(Dm, Dmb, Db) =
N

∑
k=1

zk+1∫
zk

(
Q̄ij
)

k (1, z, z2)dz, i, j = 1, 2, 6,

(Ds) =
N

∑
k=1

zk+1∫
zk

κ
(
Q̄ij
)

k dz, i, j = 4, 5,

(4)

where κ = 5/6 is shear coefficient, Q̄ij are the transformed material constants of the
k-th lamina [19], m is the mass matrix containing the mass density of the material ρ,
expressed by

m =
N

∑
k=1

ρ(k)

zk+1∫
zk


1 0 0 z 0
0 1 0 0 z
0 0 1 0 0
z 0 0 z2 0
0 z 0 0 z2

 dz, (5)

b = {0, 0, q, 0, 0}T is the distributed load vector, where q is the sinusoidal distributed
load, defined by

q = Q sin
(πx

a

)
sin
(πy

b

)
, (6)

in which, Q is the blast loading, defined by [1]

Q = q0F (t) , (7)

where q0 is the peak blast pressure and F(t) is the time-dependent dynamic loading,
given by

F (t) =

{
sin
(
πt/tp

)
if 0 ≤ t ≤ tp,

0 if t ≥ tp, sine loading{
1 if 0 ≤ t ≤ tp,
0 if t ≥ tp, step loading{
1− t/tp if 0 ≤ t ≤ tp,
0 if t ≥ tp, triangular loading

e−ψt, exponential loading

(8)

in which, tp is the positive phrase duration and ψ is the waveform parameter.
Note that, the usage of the FSDT in the present research is due to the simplicity in

the formulation of the CS-DSG3 integrated with the FSDT and the existence of available
reference numerical results in Ref. [1] which also use the FSDT.
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3. BRIEF ON CS-FEM-DSG3 FORMULATION

In the CS-FEM-DSG3 [11], the domain discretization is the same as that of the stan-
dard FEM using Nn nodes and Ne triangular elements. However in the formulation of the
CS-FEM-DSG3, each triangular element Ωe is further divided into three sub-triangles ∆1,
∆2 and ∆3 by connecting the central point O of the element to three field nodes as shown
in Fig. 2.

DSG3, each triangular element e is further divided into three sub-triangles 1 , 2 and 3 by

connecting the central point O of the element to three field nodes as shown in Fig. 2.

Fig. 2. Three sub-triangles ( 1 , 2 and 3 ) created from the triangle 1-2-3 in the CS-FEM-

DSG3 by connecting the central point O with three field nodes 1, 2 and 3.

Then in each sub-triangle Δi , i = 1, 2, 3, the strain fields are calculated by using the

discrete shear gap method (DSG3) [10]. Finally, the strain fields of the element Ωe are obtained 

by applying the cell-based strain smoothing operation in the CS-FEM [8]. Details of the

formulation CS-FEM-DSG3 can be found in [11-13, 15, 16]. 

After the above mentioned process, the strain fields are re-approximated by

, (9)

in which,  
T

, , , ,e i i i xi yiu v w β βd , 1,2,3i  is the displacement field of element Ωe ; and

are, respectively, the smoothed membrane, bending and shear strain gradient matrices, 

defined by

, (10)

where Ae is the area of element Ωe ;
j

A


and j

i


B are respectively the area and the strain gradient

matrix of sub-triangle 
j

 , in which, i = m, b, s represents the membrane, bending and shear 

components.

By substituting formula (9) into the weak form (2), the equilibrium equation for the plate

subjected to blast loading without damping system is presented as

, (11)

where M and K are the global mass matrix and stiffness matrix, respectively, defined by

T

1
d

e

e

N

e 
  M N mN , (12)

1
3

2

1

2
3

O

Fig. 2. Three sub-triangles (∆1, ∆2 and ∆3) created from the triangle 1-2-3 in the CS-FEM-DSG3
by connecting the central point O with three field nodes 1, 2 and 3

Then in each sub-triangle ∆i, i= 1, 2, 3, the strain fields are calculated by using
the discrete shear gap method (DSG3) [10]. Finally, the strain fields of the element Ωe
are obtained by applying the cell-based strain smoothing operation in the CS-FEM [8].
Details of the formulation CS-FEM-DSG3 can be found in [11–13, 15, 16].

After the above mentioned process, the strain fields are re-approximated by

εεεm = B̃mde, κκκ = B̃bde, γγγ = B̃sde, (9)

in which, de =
{

ui, vi, wi, βxi, βyi
}T , i = 1, 2, 3 is the displacement field of element Ωe;

B̃m, B̃b and B̃s are, respectively, the smoothed membrane, bending and shear strain gra-
dient matrices, defined by

B̃i =
3

∑
j=1

A∆j B
∆j
i

Ae
, (10)

where Ae is the area of element Ωe; A∆j and B
∆j
i are respectively the area and strain

gradient matrices of sub-triangle ∆j, in which, i = m, b, s represents the membrane,
bending and shear components.

By substituting formula (9) into the weak form (2), the equilibrium equation for the
plate subjected to blast loading without damping system is presented as

Md̈t + Kdt = Ft, (11)
where M and K are the global mass matrix and stiffness matrix, respectively, defined by

M = ∑Ne

e=1

∫
Ωe

NTmNdΩ, (12)
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K = ∑Ne

e=1

∫
Ωe

{
B̃T

m B̃T
b B̃T

s
}  Dm Dmb 0

Dmb Db 0
0 0 Ds


B̃m
B̃b
B̃s

dΩ. (13)

The displacement d and the acceleration d̈ in Eq. (11) are obtained using Newmark
method [20], in which, the displacement and the acceleration at the initial condition are
expressed as

dt=0 = ḋt=0 = 0. (14)
At time step t + 1, the acceleration is calculated based on the equation equilib-

rium as (
M + Kβ∆t2) d̈t+1 = Ft+1 −K

(
dt + ḋt∆t + d̈t (1/2− β)∆t2

)
. (15)

Then, the velocity and displacement at time step t + 1 are updated via

ḋt+1 = ḋt + d̈t (1− λ)∆t + d̈t+1λ∆t, (16)

dt+1 = dt + ḋt∆t + d̈t (1/2− β)∆t2 + d̈t+1β∆t2, (17)

Since the value of ω, natural frequency of the composite plate, is not considered
in this paper, the average acceleration method (with λ = 1/2 and β = 1/4 as shown in
Ref. [21]) which can ensure the stability condition is chosen in the paper.

Also note that the cell-based gradient smoothing technique is only applied for im-
proving the stiffness matrix of the CS-FEM-DSG3, without being applied to the other
matrix or vector (such as mass matrix or load vector). The computation of mass matrix
and load vector is quite similar to the traditional way of the standard FEM.

4. NUMERICAL RESULTS

In this section, the dynamic response of a simply supported square laminated com-
posite plate subjected to blast loading is investigated in 0.008 seconds with increment of
0.000016 seconds. The model of the blast loading is performed by repeating accurately
the model of the blast loading in Ref. [1] to make sure that the comparison between results
is consistent. The plate is composed of three cross-ply (0◦/90◦/0◦) layers with identical
material parameters such as: Young’s modulus E1 = 25× 106 psi, E2 = 106 psi; shear’s
modulus G12 = G13 = 0.5× 106 psi, G23 = 0.2× 106 psi; Poisson ratio v12 = 0.25; and
mass density ρ = 0.05791 lb/in3. The thickness of layers are assumed to be the same and
the total thickness of the laminate is h = 6 in. The size of the plate is a = 30 in. The plate
is subjected to sinusoidally distributed pressure with the peak value q0 = 104 psi. The
constant coefficients in Eq. (8) are chosen with tp = 0.006 s and γ = 330 s−1.

Fig. 3 shows the central deflection as a function of time corresponding to different
pulse loadings by the CS-FEM-DSG3, DSG3 (meshing 12×12×2 triangular elements) and
previous published results. It is seen that the results by the CS-FEM-DSG3 agree well
with those from Khdeir and Reddy [1] using analytical solution based on the FSDT theory,
and outperform those by the DSG3. This is because the cell-based gradient smoothing
technique of the CS-FEM-DSG3 helps soften the over-stiffness of the DSG3 as shown in
Ref. [11], and hence make the results by the CS-FEM-DSG3 more accurate than those by
the DSG3.
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Fig. 3. Variation of the center deflection as a function of time for various pulses loading: a) sine; 

b) step; c) exponential; d) triangle. 
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Fig. 3. Variation of the center deflection as a function of time for various pulses loading: a) sine; 

b) step; c) exponential; d) triangle. 

Fig. 3 shows the central deflection as a function of time corresponding to different pulse 

loadings by the CS-FEM-DSG3, DSG3 (meshing 12122 triangular elements) and previous 

published results. It is seen that the results by the CS-FEM-DSG3 agree well with those from 

Khdeir and Reddy [1] using analytical solution based on the FSDT theory, and outperform those 

by the DSG3. This is because the cell-based gradient smoothing technique of the CS-FEM-DSG3 

helps soften the over-stiffness of the DSG3 as shown in Ref [11], and hence make the results by 

the CS-FEM-DSG3 more accurate than those by the DSG3. 

  

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
-1

-0.5

0

0.5

1

Time (sec)

C
en

tr
al

 d
ef

le
ct

io
n

 (
in

)

Khdeir and Reddy FSDT

CS-FEM-DSG3

DSG3

Exponential

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
-0.4

-0.2

0

0.2

0.4

0.6

Time (sec)

C
en

tr
al

 d
ef

le
ct

io
n

 (
in

)

Khdeir and Reddy FSDT

CS-FEM-DSG3

DSG3

Sine 

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008

-1

-0.5

0

0.5

1

Time (sec)

C
en

tr
al

 d
ef

le
ct

io
n

 (
in

)

.

C
en

tr
al

 d
ef

le
ct

io
n

 (
in

)

Time (sec)

Khdeir and Reddy FSDT

CS-FEM-DSG3

DSG3

Step

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008

-1

-0.5

0

0.5

1

Time (sec)

C
en

tr
al

 d
ef

le
ct

io
n

 (
in

)

Khdeir and Reddy FSDT

CS-FEM-DSG3

DSG3

triangular

.

C
en

tr
al

 d
ef

le
ct

io
n

 (
in

)

.

C
en

tr
al

 d
ef

le
ct

io
n

 (
in

)

.

C
en

tr
al

 d
ef

le
ct

io
n

 (
in

)

Time (sec)

Time (sec)
Time (sec)

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
-1

-0.5

0

0.5

1

Time (sec)

C
en

tr
al

 d
ef

le
ct

io
n

 (
in

)

Khdeir and Reddy FSDT

CS-FEM-DSG3

DSG3

Exponential

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
-0.4

-0.2

0

0.2

0.4

0.6

Time (sec)

C
en

tr
al

 d
ef

le
ct

io
n

 (
in

)

Khdeir and Reddy FSDT

CS-FEM-DSG3

DSG3

Sine 

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008

-1

-0.5

0

0.5

1

Time (sec)

C
en

tr
al

 d
ef

le
ct

io
n

 (
in

)

.

C
en

tr
al

 d
ef

le
ct

io
n

 (
in

)

Time (sec)

Khdeir and Reddy FSDT

CS-FEM-DSG3

DSG3

Step

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008

-1

-0.5

0

0.5

1

Time (sec)

C
en

tr
al

 d
ef

le
ct

io
n 

(i
n)

Khdeir and Reddy FSDT

CS-FEM-DSG3

DSG3

triangular

.

C
en

tr
al

 d
ef

le
ct

io
n

 (
in

)

.

C
en

tr
al

 d
ef

le
ct

io
n

 (
in

)

.

C
en

tr
al

 d
ef

le
ct

io
n

 (
in

)

Time (sec)

Time (sec)
Time (sec)

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
-1

-0.5

0

0.5

1

Time (sec)

C
en

tr
al

 d
ef

le
ct

io
n

 (
in

)

Khdeir and Reddy FSDT

CS-FEM-DSG3

DSG3

Exponential

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
-0.4

-0.2

0

0.2

0.4

0.6

Time (sec)

C
en

tr
al

 d
ef

le
ct

io
n

 (
in

)

Khdeir and Reddy FSDT

CS-FEM-DSG3

DSG3

Sine 

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008

-1

-0.5

0

0.5

1

Time (sec)

C
en

tr
al

 d
ef

le
ct

io
n

 (
in

)

.

C
en

tr
al

 d
ef

le
ct

io
n

 (
in

)

Time (sec)

Khdeir and Reddy FSDT

CS-FEM-DSG3

DSG3

Step

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008

-1

-0.5

0

0.5

1

Time (sec)

C
en

tr
al

 d
ef

le
ct

io
n

 (
in

)

Khdeir and Reddy FSDT

CS-FEM-DSG3

DSG3

triangular

.

C
en

tr
al

 d
ef

le
ct

io
n

 (
in

)

.

C
en

tr
al

 d
ef

le
ct

io
n

 (
in

)

.

C
en

tr
al

 d
ef

le
ct

io
n

 (
in

)

Time (sec)

Time (sec)
Time (sec)

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
-1

-0.5

0

0.5

1

Time (sec)

C
en

tr
al

 d
ef

le
ct

io
n

 (
in

)

Khdeir and Reddy FSDT

CS-FEM-DSG3

DSG3

Exponential

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
-0.4

-0.2

0

0.2

0.4

0.6

Time (sec)

C
en

tr
al

 d
ef

le
ct

io
n

 (
in

)

Khdeir and Reddy FSDT

CS-FEM-DSG3

DSG3

Sine 

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008

-1

-0.5

0

0.5

1

Time (sec)

C
en

tr
al

 d
ef

le
ct

io
n

 (
in

)

.

C
en

tr
al

 d
ef

le
ct

io
n

 (
in

)

Time (sec)

Khdeir and Reddy FSDT

CS-FEM-DSG3

DSG3

Step

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008

-1

-0.5

0

0.5

1

Time (sec)

C
en

tr
al

 d
ef

le
ct

io
n

 (
in

)

Khdeir and Reddy FSDT

CS-FEM-DSG3

DSG3

triangular

.

C
en

tr
al

 d
ef

le
ct

io
n

 (
in

)

.

C
en

tr
al

 d
ef

le
ct

io
n

 (
in

)

.

C
en

tr
al

 d
ef

le
ct

io
n

 (
in

)

Time (sec)

Time (sec)
Time (sec)

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
-36

-18

0

18

36

Khdeir and Reddy FSDT

CS-FEM-DSG3

Step

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
-32

-16

0

16

32

Khdeir and Reddy FSDT

CS-FEM-DSG3

triangular

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
-20

-10

0

10

20

Khdeir and Reddy FSDT

CS-FEM-DSG3

Sine 

Exponential

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
-30

-15

0

15

30

Khdeir and Reddy FSDT

CS-FEM-DSG3

Time (sec) Time (sec)

Time (sec) Time (sec)

x

x


x


x


x


0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
-36

-18

0

18

36

Khdeir and Reddy FSDT

CS-FEM-DSG3

Step

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
-32

-16

0

16

32

Khdeir and Reddy FSDT

CS-FEM-DSG3

triangular

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
-20

-10

0

10

20

Khdeir and Reddy FSDT

CS-FEM-DSG3

Sine 

Exponential

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
-30

-15

0

15

30

Khdeir and Reddy FSDT

CS-FEM-DSG3

Time (sec) Time (sec)

Time (sec) Time (sec)

x

x


x


x


x


(b)

 

a) 

 

b) 

 

c) 

 

d) 

Fig. 3. Variation of the center deflection as a function of time for various pulses loading: a) sine; 

b) step; c) exponential; d) triangle. 

Fig. 3 shows the central deflection as a function of time corresponding to different pulse 

loadings by the CS-FEM-DSG3, DSG3 (meshing 12122 triangular elements) and previous 

published results. It is seen that the results by the CS-FEM-DSG3 agree well with those from 

Khdeir and Reddy [1] using analytical solution based on the FSDT theory, and outperform those 

by the DSG3. This is because the cell-based gradient smoothing technique of the CS-FEM-DSG3 

helps soften the over-stiffness of the DSG3 as shown in Ref [11], and hence make the results by 

the CS-FEM-DSG3 more accurate than those by the DSG3. 
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Fig. 3. Variation of the center deflection as a function of time for various pulses loading: a) sine; 

b) step; c) exponential; d) triangle. 

Fig. 3 shows the central deflection as a function of time corresponding to different pulse 

loadings by the CS-FEM-DSG3, DSG3 (meshing 12122 triangular elements) and previous 

published results. It is seen that the results by the CS-FEM-DSG3 agree well with those from 

Khdeir and Reddy [1] using analytical solution based on the FSDT theory, and outperform those 

by the DSG3. This is because the cell-based gradient smoothing technique of the CS-FEM-DSG3 

helps soften the over-stiffness of the DSG3 as shown in Ref [11], and hence make the results by 

the CS-FEM-DSG3 more accurate than those by the DSG3. 
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Fig. 3. Variation of the center deflection as a function of time for various pulses loading:

a) sine; b) step; c) exponential; d) triangle
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Fig. 3. Variation of the center deflection as a function of time for various pulses loading: a) sine; 

b) step; c) exponential; d) triangle. 

Fig. 3 shows the central deflection as a function of time corresponding to different pulse 

loadings by the CS-FEM-DSG3, DSG3 (meshing 12122 triangular elements) and previous 

published results. It is seen that the results by the CS-FEM-DSG3 agree well with those from 

Khdeir and Reddy [1] using analytical solution based on the FSDT theory, and outperform those 

by the DSG3. This is because the cell-based gradient smoothing technique of the CS-FEM-DSG3 

helps soften the over-stiffness of the DSG3 as shown in Ref [11], and hence make the results by 

the CS-FEM-DSG3 more accurate than those by the DSG3. 
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Fig. 3. Variation of the center deflection as a function of time for various pulses loading: a) sine; 

b) step; c) exponential; d) triangle. 

Fig. 3 shows the central deflection as a function of time corresponding to different pulse 

loadings by the CS-FEM-DSG3, DSG3 (meshing 12122 triangular elements) and previous 

published results. It is seen that the results by the CS-FEM-DSG3 agree well with those from 

Khdeir and Reddy [1] using analytical solution based on the FSDT theory, and outperform those 

by the DSG3. This is because the cell-based gradient smoothing technique of the CS-FEM-DSG3 

helps soften the over-stiffness of the DSG3 as shown in Ref [11], and hence make the results by 

the CS-FEM-DSG3 more accurate than those by the DSG3. 
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Fig. 4. Variation of the normal stress σ̄x = σx(a/2, a/2, h/2)/q0 as a function of time for various

pulse loadings: a) sine; b) step; c) exponential; d) triangle
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Similarly, Fig. 4 presents the normal stress as a function of time for the various
pulse loadings, obtained by the CS-FEM-DSG3 and by Khdeir and Reddy [1]. The two
results match perfectly. This hence illustrates again the accuracy and robustness of the
present method.
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Fig. 5. Central deflection and normal stress of the plate by the CS-FEM-DSG3 (as a function of
time for exponential pulse loading) subjected to various number of layers and fiber orientations;

(a) Central deflection (in) and b) Normal stress σ̄x = σx(a/2, a/2, h/2)/q0

Fig. 5 illustrates the central deflection and normal stress of the plate by the CS-
FEM-DSG3 (as a function of time for exponential pulse loading) subjected to various
numbers of layers and fiber orientations. It can be seen that the plate stiffness is directly
proportional to the number of layers, in which the cross-ply contributes less stiffness
than the angle-ply. The example demonstrates the dependence of the plate stiffness to
the number of layers and fiber orientations, and hence an optimization problem for deter-
mining the optimal number of layers and fiber orientations should be applied to optimize
the stiffness of the composite laminated plate.

5. CONCLUSION

In this paper, the cell-based smoothed discrete shear gap method (CS-FEM-DSG3)
is extended to investigate the dynamic response of laminated composite plate under the
effect of blast loading modeled by some trigonometric time functions. Numerical results
demonstrate that the proposed method can achieve accurate results by using only a rel-
ative coarse mesh. Moreover, numerical examples also demonstrate the direct effect of
the number of layers and the fiber orientation to the stiffness of plate, so an optimization
algorithm should be applied to determine the optimal layer number and fiber orienta-
tions in the composite laminated problem. In addition, the new results of the numerical
example which are used to demonstrate the effect of the layer’s number and the fiber
orientation to the dynamic response of the plate under the effect of blast loading can
be served as reliable benchmark examples for later studies. The present CS-FEM-DSG3
is promising to extend to the problems with more complicated geometry domains and
boundary conditions without existing available analytical solutions.
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