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Abstract

The strong matching preclusion number of a graph is the minimum number of ver-
tices and edges whose deletion results in a graph that has neither perfect matchings
nor almost-perfect matchings. Park and Ihm introduced the problem of strong match-
ing preclusion under the condition that no isolated vertex is created as a result of
faults. In this paper, we find the conditional strong matching preclusion number for
the n-dimensional alternating group graph AGn.

1 Introduction

Given a graph G = (V,E), a set M of pairwise nonadjacent edges is called matching. A
perfect matching M in G is a matching such that every vertex in G is incident to exactly
one edge in M . An almost-perfect matching in G is a set of edges such that every vertex in
G, except one, is incident with exactly one edge in M , and the exceptional vertex is incident
to none. If G has a perfect matching, then G has an even number of vertices; if G has an
almost-perfect matching, then G has an odd number of vertices. We say that the graph G
is matchable if it has either a perfect matching or an almost-perfect matching. Otherwise,
it is called unmatchable.

A matching preclusion set of G is a set of edges whose deletion results in an unmatchable
graph [3]. The matching preclusion number of G, denoted by mp(G), is the minimum size of
all possible matching preclusion sets of G. Any such optimal set is called an optimal matching
preclusion set. If G is unmatchable, then mp(G) = 0. Brigham et al. [3] introduced the
concept of matching preclusion as a measure of robustness in the event of edge failure in
interconnection networks, as well as a theoretical connection to conditional connectivity.

A trivial case of matching preclusion occurs when all edges in G incident to a single
vertex are deleted when G has even number of vertices, or when all edges in G incident to
two particular vertices are deleted when G has an odd number of vertices. This case models
a situation where link failures are concentrated at only a very few nodes of a communication
network. When such case is unlikely to happen, Cheng et al. [10] introduced a useful notion
called conditional matching preclusion which removes from consideration the case when the
matching preclusion set produces a graph with an isolated vertex after the edge deletion.
The conditional matching preclusion number, denoted mp1(G), is the minimum size of all
conditional matching preclusion sets of G.

Park and Ihm [7] introduced the concept of strong matching preclusion where the match-
ing preclusion set can contain vertices in additional to edges. This concept corresponds to
the type of failure in a communication network which occurs through nodes and commu-
nication lines. The strong matching preclusion set of G is a set of vertices and/or edges
whose deletion leads to an unmatchable graph. The strong matching preclusion number is
the minimum size of strong matching preclusion sets in G. For the same reason Cheng et al.
introduced the conditional matching preclusion, Park and Ihm [8] introduced the concept
of conditional strong matching preclusion and discussed its fundamental properties for some
classes of graphs and interconnection networks.

A popular class of interconnection networks is the class of alternating group graphs [5].
In this paper we find the conditional strong matching preclusion number of the alternating
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group graph AGn, which is the minimum size of all conditional strong matching preclusion
sets of AGn.

2 Preliminaries

A trivial case of matching preclusion occurs when all edges in G incident to a single vertex
are deleted when G has an even number of vertices, or when all edges in G incident to two
particular vertices are deleted when G has an odd number of vertices. In this paper, our
graphs will always have an even number of vertices. We call an optimal solution of the trivial
case of matching preclusion a trivial optimal matching preclusion set. Let F be an optimal
strong matching preclusion set of a graph G = (V,E), and let F = F V ∪ FE where F V

consists of vertices in F and FE consists of edges in F . We may assume that no element
in FE is incident to an element of F V since F is optimal. In fact, if f ∈ FE is incident to
u ∈ F V , then G− F = G− (F − {f}). If F is an optimal strong matching preclusion set of
G and G − F has an isolated vertex, then F is a basic optimal strong matching preclusion
set. Based on this definition, it is possible to have a basic optimal matching preclusion set F
with G−F odd and without almost-perfect matchings. We can further restrict this class by
requiring that, in addition, G− F must be even. Then F is called optimal strong matching
preclusion set.

The following proposition considers the relationship between basic strong matching preclu-
sion sets and trivial strong matching preclusion sets.

Proposition 2.1. [4] Let G be a r-regular even graph with r ≥ 2. Suppose that smp(G) = r.
Then every basic optimal strong matching preclusion set is trivial.

Let F ⊆ V (G) ∪ E(G), F is a conditional strong matching preclusion set of G if G − F
has neither a perfect matching nor an almost-perfect matching and no isolated vertices. The
minimum cardinality of all such sets is denoted by smp1(G), and called the conditional strong
matching preclusion number of G. In this paper, we assume G has no isolated vertices. If G
is unmatchable, then smp1(G) = 0. The following propositions follow directly from the fact
that a matching preclusion set is a special case of a strong matching preclusion set consisting
of edges only.

Proposition 2.2. [4] Let G be a graph with an even number of vertices. Then smp(G) ≤
mp(G) ≤ δ(G), where δ(G) is the minimum degree of G.

Proposition 2.3. [8] For every graph G for which all the four numbers, mp(G), mp1(G),
smp(G), and smp1(G) are well defined, smp(G) ≤ smp1(G) ≤ mp1(G) and smp(G) ≤
mp(G) ≤ mp1(G).

Under the condition of no isolated vertices allowed after the deletion of edges and/or
vertices, an easy way to build a conditional strong matching preclusion set in G is to try
a fault set F that leaves after deletion a path (u, z, v) made of the three vertices u, z and
v, where degG−F (u) = degG−F (v) = 1. If G − F is even, then the resulting graph becomes
unmatchable. Therefore we can build a candidate conditional strong matching preclusion set
as follows. Let NG(·) represents the set of neighboring vertices in G. Given a path (u, z, v)
in a graph G = (V,E), build a fault set, denoted Fuzv, in such a way that
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1. Fuzv contains every vertex w ∈ (NG(u) ∩NG(v))− {z},

2. Fuzv contains the edge uv if uv ∈ E(G),

3. for every vertex w ∈ NG(u)−NG(v), Fuzv contains exactly one of w and uw,

4. for every vertex w ∈ NG(v)−NG(u), Fuzv contains exactly one of w and vw.

The next fundamental proposition provides sufficient conditions to make Fuzv a condi-
tional strong matching preclusion set.

Proposition 2.4. [8] For an arbitrary path (u, z, v) in a graph G, Fuzv is a conditional
strong matching preclusion set of G if

1. there is no isolated vertex in G− Fuzv, and

2. G− Fuzv has an even number of vertices.

The conditional strong matching preclusion set described in Proposition 2.4 is called
trivial as it is one of the simplest ways of building a conditional strong matching preclusion
set. The following proposition provides an upper bound for smp1(G).

Proposition 2.5. [8] If there exists a trivial conditional strong matching preclusion set Fuzv

for some path (u, z, v) in a graph G, then smp1(G) ≤ degG(u)+degG(v)−2−gG(u, v), where
gG(u, v) is |N(u) ∩N(v)| if (u, v) ∈ E(G) or |N(u) ∩N(v)| − 1 otherwise.

The alternating group graph was introduced by Jwo et al. [5] as an interconnection
network topology for computing systems. Let An be the alternating group, that is, An is
the set of even permutations of the set {1, 2, . . . , n}. By [1], the size of An is n!

2
and the set

Ω = {(1 2 i) | 3 ≤ i ≤ n} ∪ {(1 i 2) | 3 ≤ i ≤ n} is a generator set for An. Define the
alternating group graph AGn = (Vn, En) of dimension n as follows: Vn = An, the set of all
even permutations, and En = {(p, q) | p, q ∈ An, q = p · h, for h ∈ Ω}, where “ · ” is the
usual binary associative operator defined by u · v(x) = u(v(x)). AGn is a Cayley graph of
the alternating group [6].

AGn can be recursively built by using n copies of AGn−1. Let Hi denote the induced
subgraph of AGn corresponding to the permutations p ∈ An such that the last symbol of p
is i. Note that instead of last position, we can consider Hi according to the jth position for
any 3 ≤ j ≤ n. We refer to this as a decomposition along the jth position. The following
proposition is an easy and known result of the recursive structure of AGn:

Proposition 2.6. Let AGn be the alternating group graph of dimension n ≥ 4.

(I) |Vn| = n!
2

and |En| = (n−2)n!
2

.

(II) AGn is (2n− 4)-regular.

(III) AGn consists of n vertex-disjoint subgraphs, H1, H2, . . . , Hn, each isomorphic to AGn−1.

(IV) Hi has (n− 1)!/2 vertices, and it is (2n− 6)-regular for all i.
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(V) There are exactly (n− 2)! independent edges between Hi and Hj for all i 6= j. An edge
between different Hi’s will be called a cross edge.

(VI) Each vertex in Hi has exactly two neighbors outside Hi (which are called its outside
neighbors); these two outside neighbors are in different Hk’s, and there is an edge
between them. Thus every vertex forms a triangle with its two outside neighbors.

(VII) For every different i, j, and k, there are exactly (n − 3)! vertices in Hi that have an
outside neighbor in Hj and an outside neighbor in Hk.

Proposition 2.7. [12] Let u, v ∈ Vn. Then |N(u) ∩N(v)| ≤ 2.

Using the results from Proposition 2.5 and Proposition 2.7, we can establish an upper
bound for the size of the conditional strong matching preclusion set of AGn.

Proposition 2.8. For n ≥ 4, smp1(AGn) ≤ 4n− 11.

Lemma 2.1. Suppose that a graph G has an almost-perfect matching that misses a vertex
v that is not isolated, then there exists another almost-perfect matching in G that misses a
vertex other than v.

Proof. Let M be an almost-perfect matching in G that misses the vertex v ∈ V (G). Since v
is not isolated, then v is adjacent to some vertex u ∈ V (G). The matching M saturates u,
so let the edge wu ∈ M . Let M ′ = (M − {wu}) ∪ {uv}, M ′ is an almost-perfect matching
in G that misses the vertex w.

Lemma 2.2. Let F ⊆ Vn for n ≥ 5, such that |F | = 4n − 12. If F ⊆ V (Hi) for some
i ∈ {1, . . . , n}, then we can choose the decomposition via a different position so that at most
4n− 15 of the vertices in F belong to Hj for some j ∈ {1, . . . , n}.

Proof. Without loss of generality we can assume that F ⊆ V (Hn), then all the 4n − 12
vertices end with n. We can look at these vertices as a (4n − 12) × n array, where each
row represents the corresponding permutation of each vertex. The nth column contains the
number n only. If the (n − 1)st column contains at most (4n − 15) numbers of the same
number i for some i ∈ {1, . . . , n−1}, then we can decompose along this position. Otherwise,
this column contains at least 4n − 14 i’s for some i ∈ {1, 2, . . . , n − 1}. For notational
convenience, we can assume that i = n − 1, so the entries of the (n − 1)st column must be
the number (n − 1) except for at most 2 rows. Repeating the same process, and assuming
that we do not find the desired position to decompose along, then when we reach the 3rd
column we will have at most 2(n− 3) rows different from

� � 3 4 5 . . . (n− 1) n

so we get at least (4n− 12)− 2(n− 3) = 2n− 6 rows of the form

� � 3 4 5 . . . (n− 1) n

where the first two positions must be 1 and 2. For n ≥ 5, the number of such vertices is
at least 4, which is not possible. Then we should be able to find a column that contains no
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more than 4n− 15 numbers of the same number i, and therefore decomposing along the ith
position guarantees that at most 4n− 15 vertices are in the new Hi.

Lemma 2.3. Let F ⊆ Vn∪En for n ≥ 5, such that |F | = 4n−12. If F ⊆ V (Hi)∪E(Hi) for
some i ∈ {1, . . . , n}, then we can choose the decomposition via a different position so that at
most 4n− 15 of the elements in F belong to Hj for some j ∈ {1, . . . , n}.

Proof. Let F = F V ∪ FE be a subset of Hi for some i ∈ {1, 2, . . . , n}, where F V is
the set of vertices in F and FE is the set of edges in F . Let F V = {u1, u2, . . . , up}
and FE = {x1y1, x2y2, . . . , xqyq}. We have p + q = 4n − 12. Consider the set L =
{u1, u2, . . . , up, x1, x2, . . . , xq} in V (H1). By Proposition 2.2, We can decompose via a differ-
ent position so that at most 4n − 15 elements of L belong to Hj for some j ∈ {1, . . . , n}.
Note that if some xi ∈ L is outside Hj and if yi ∈ V (Hj) then the faulty edge xiyi will be
a cross edge and it is not a fault in Hj. Therefore we can conclude that at most 4n− 15 of
the elements in F belong to Hj.

Theorem 2.4. [4] Let n ≥ 4. Then smp(AGn) = 2n − 4. Moreover every optimal strong
matching preclusion set of AGn is trivial.

3 The Main Result

Theorem 3.1. Let n ≥ 4. Then smp1(AGn) = 4n− 11.

Proof. Let F ⊆ Vn ∪ En be a set of faults in AGn such that AGn − F has no isolated
vertices. F = F V ∪ FE, where F V = Vn ∩ F and FE = En ∩ F . We want to show that if
|F | ≤ 4n− 12, then AGn − F has a perfect or an almost-perfect matching. Suppose n = 4.
If |F | ≤ 4 then, by Theorem 2.4, AG4 − F has a perfect matching or an almost-perfect
matching and every matching preclusion set of size 4 is the set of vertices and/or edges that
isolates a vertex. Note that when n = 4, 2n − 4 = 4n − 12 = 4, so if we delete 4 faults
without leaving an isolated vertex in AGn − F , the graph AGn − F must contain a perfect
or an almost-perfect matching. Then smp1(AG4) ≥ 5. By Proposition 2.8, smp1(AG4) ≤ 5,
then we have smp1(AG4) = 5. Hence, the claim is true for n = 4.

We proceed by induction on n. Suppose that smp1(AGn−1) = 4(n− 1)− 11 = 4n− 15,
we want to show that smp1(AGn) = 4n − 11. Let Fi = F V

i ∪ FE
i be the set of faults in Hi

for i = 1, . . . , n. We consider several cases depending on the faults’ distribution in the Hi’s.

Case 1. |Fi| ≤ 2n − 7 for all i ∈ {1, . . . , n}. For i, j ∈ {1, . . . , n} such that i 6= j, there are
(n− 2)!− (4n− 12) possible cross edges between Hi−Fi and Hj −Fj. So when n ≥ 6,
there are at least 12 possible cross edges. Since Hi is (2n−6)-regular and |Fi| ≤ 2n−7,
then Hi − Fi contains no isolated vertices, then by Theorem 2.4 (or by the induction
hypothesis) there exists a perfect matching or an almost-perfect matching in every
Hi − Fi for i = 1, . . . , n. For notational convenience, assume that |F V

1 |, . . . , |F V
k |

are odd for some k ∈ {1, . . . , n}, and |F V
k+1|, . . . , |F V

n | are even. By the induction
hypothesis, there exist almost-perfect matchings Mi in Hi − Fi for i = 1, . . . , k and
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perfect matchings Mj in Hj − Fj for j = k + 1, . . . , n. As mentioned above, there are
at least 12 cross edges between any Hi − Fi and Hj − Fj for i 6= j. We want to choose
a cross edge e = uv in AGn − F between Hi − Fi and Hj − Fj where u ∈ V (Hi − Fi)
and v ∈ V (Hj − Fj) so that Hi − (Fi ∪ {u}) and Hj − (Fj ∪ {v}) have no isolated
vertices. In every Hi − Fi, there could be at most one such vertex u whose deletion
produces an isolated vertex in Hi − (Fi ∪ {u}), then there could be at most two cross
edges that cannot be chosen. As a result, we can always find a cross edge e = xixj
between Hi−Fi and Hj −Fj such that Hi− (Fi ∪ {xi}) and Hj − (Fj ∪ {xj}) have no
isolated vertices. We consider two possibilities depending on the parity of k.

k is even. For i = 1, . . . , k− 1, pick cross edges x1x2, x3x4, . . . , xk−1xk ∈ E(AGn−F )
as described above, where xi ∈ V (Hi − Fi). Thus Hi − (Fi ∪ {xi}) contains an even
number of vertices and has no isolated vertices. Since |Fi ∪ {xi}| ≤ 2n − 6, then by
Theorem 2.4 there exist perfect matchings M ′

i in Hi − (Fi ∪ {xi}) for i = 1, . . . , k.
Therefore

⋃k
i=1M

′
i ∪ {x1x2, x3x4, . . . , xk−1xk} ∪

⋃n
j=k+1Mj is a perfect matching in

AGn − F .

k is odd. We use the same argument and notation as above. The set
⋃k−1

i=1 M
′
i ∪

{x1x2, x3x4, . . . , xk−2xk−1} ∪
⋃n

j=kMj is an almost-perfect matching in AGn − F . See
Figure 1.

H
1 H

2
H

k-2
H

k-1
H

k

H
k+1 H

k+2 H
n-1 H

n

x1

x2

xk-2

xk-1

Figure 1: Case 1: |Fi| ≤ 2n− 7 for i ∈ {1, . . . , n}

Suppose n = 5. If there is an edge between every pair of Hi − Fi and Hj − Fj in
AGn − F , then we are done. But such a violation can only occur for one pair say
H1 − F1 and H2 − F2. Thus the graph induced by V (H1) ∪ V (H2) has at least six
faults. So there are only two faults not yet discovered. Now, the above construction
works unless k = 2. (If k ≥ 3, we can avoid pairing H1 − F1 and H2 − F2). Since
there are only two faults not yet discovered and n = 5. We may assume that |F3| = 0
and none of the cross edges between H1 − F1 and H3 − F3, and between H2 − F2 and
H3−F3 are faulty edges. Now choose x1x3 and x2x

′
3 appropriately. Now H3−{x3, x′3}

has a perfect matching, and we can continue with the usual construction.

Case 2. |F1| = 2n− 6 and |Fi| ≤ 2n− 7 for all i 6= 1.

Case 2.1. H1−F1 has no isolated vertices. By the induction hypothesis, there exists a perfect
matching or an almost-perfect matching M1 in H1−F1, and by Theorem 2.4, every
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Hi − Fi contains a perfect or an almost-perfect matching Mi for i 6= 1. Then this
case is similar to Case 1.

Case 2.2. H1 − F1 has an isolated vertex u ∈ V (H1 − F1).

Case 2.2.1. F1 is not a matching preclusion set in H1. By Proposition 2.1, |F V
1 | is odd.

Then H1−F1 has an almost-perfect matching M1 missing the vertex u. Since
AGn−F has no isolated vertices, then the vertex u must be adjacent to some
outside neighbor u′ in AGn − F . Without loss of generality, assume that
u′ ∈ V (H2 − F2). Let F ′2 = F2 ∪ {u′}, we consider two cases depending on
whether the resulting subgraph induced by H2−F ′2 has an isolated vertex or
not.

Case 2.2.1.1. H2−F ′2 has no isolated vertices. Since |F ′2| ≤ 2n−6, then by the induction
hypothesis, H2−F ′2 has a perfect or an almost-perfect matching M2. We
consider two cases depending on whether M2 is a perfect or an almost-
perfect matching.
M2 is a perfect matching. By the induction hypothesis, we can find perfect
or almost-perfect matchings Mi in Hi−Fi for i ≥ 3. Since |Fi| ≤ 2n−7 for
i ≥ 3, then we can proceed as in Case 1 and combine those matchings to
get a perfect or an almost-perfect matching M ′ in the subgraph induced
by (AGn−F )−(V (H1)∪V (H2)). Then M ′∪M1∪M2∪{uu′} is a perfect
or an almost-perfect matching in AGn − F .
M2 is an almost-perfect matching. If |F ′2| ≤ 2n− 7, then we can proceed
as in Case 1 to find a perfect or an almost-perfect matching M ′ in the
subgraph induced by (AGn − F ) − (V (H1) ∪ {u′}), and the set M ′ ∪
M1 ∪ {uu′} is a perfect or an almost-perfect matching in AGn − F . If
|F ′2| = 2n− 6, then let x ∈ V (H2−F ′2) be the unsaturated vertex by M2.
Under this assumption, there is only one fault left outside the subgraph
induced by V (H1) ∪ V (H2). Since x is not isolated in H2 − F ′2, then by
Proposition 2.1 there exists another almost-perfect matching in H2 − F ′2
missing a vertex different from x. So without loss of generality we can
assume that x has two outside neighbors in AGn − F or else we consider
the other almost-perfect matching. Let x′ be the outside neighbor of
x, such that x′ ∈ V (Hj − F ) for some j 6= 1, 2. Let F ′j = Fj ∪ {x′},
then by the induction hypothesis there exists a perfect or an almost-
perfect matching Mj in Hj − F ′j , and Mi in Hi − Fi for all i 6= 1, 2, j.
Since |F ′j| and |Fi| are less than or equal to 2n − 7, then we can use the
construction of Case 1 to find a perfect or an almost-perfect matching
M ′ in the subgraph induced by (AGn−F )− (V (H1)∪ V (H2)∪ {u′, x′}).
Then the set M ′ ∪M1 ∪M2 ∪ {uu′, xx′} is a perfect or an almost-perfect
matching in AGn − F .

Case 2.2.1.2. H2 − F ′2 has an isolated vertex. Then we can choose the second outside
neighbor of u, u′′, which belongs to V (Hk) for some k 6= 1, 2. If u′′ ∈
V (Hk−Fk) and uu′′ ∈ E(AGn−F ), then Hk−(Fk∪{u′}) has no isolated
vertices, and then we can proceed as in the previous case. Assume the
worst case scenario when u′′ is a faulty vertex or uu′′ is a faulty edge. We
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have |F ′2| = 2n − 6 and u′ is adjacent to a vertex z ∈ V (H2 − F2) and
all faults in H2 are adjacent and/or incident to z as well. The vertex z
has two outside neighbors in AGn−F , let z′ ∈ V (Hk−Fk) be an outside
neighbor of z for some k 6= 1, 2. We consider the parity of |F V

2 |.
|F V

2 | is even. Then there exists a perfect matching M2 in H2 − F2, and
in this case the edge u′z must belong to M2. As in Case 1, we can find
a perfect or an almost-perfect matching M ′ in the subgraph induced by
(AGn−F )−(V (H1)∪V (H2)∪{z′}). Then M1∪(M2−{u′z})∪{uu′, zz′}∪
M ′ is a perfect or an almost-perfect matching in AGn−F . See Figure 2.

H
1 H

2
H

n

u

u'

z

H
k

z'

Figure 2: Case 2.2.1: |F V
2 | is even

|F V
2 | is odd. Then choose an appropriate vertex x ∈ V (H2 − F2) such

that x has an outside neighbor x′ ∈ V (Hp − Fp) for some p 6= 1, 2 with
xx′ ∈ E(AGn − F ) and H2 − (F ∪ {x}) has no isolated vertices. Let
F ′′2 = F2 ∪ {x}, then |F ′′V2 | is even of size 2n − 6 and has no isolated
vertices, then by Theorem 2.4 H2−F ′′2 has a perfect matching M ′

2. By the
induction hypothesis, there exists a perfect or an almost-perfect matching
Mi in Hi − (Fi ∪ {x′, z′}) for i ≥ 3. Since all the faults except one are
in the subgraph induced by V (H1) ∪ V (H2), then |Fi ∪ {x′, z′}| ≤ 2n− 7
for i ≥ 3, then we can use the construction of Case 1 to combine the
Mi’s and get a perfect or an almost-perfect matching M ′′ in the subgraph
induced by (AGn−F )−(V (H1)∪V (H2)∪{x′, z′}). Therefore M1∪(M ′

2−
{u′z})∪{uu′, zz′, xx′}∪M ′′ is a perfect or an almost-perfect matching in
AGn − F . See Figure 3.

H
1 H

2
H
p

u

u'

z

H
k

z'
x

H
n

x'

Figure 3: Case 2.2.1: |F V
2 | is odd

Case 2.2.2. F1 is a matching preclusion set in H1. Then F1 is a basic strong matching
preclusion set. Since smp(H1) = 2n− 6, and H1 is even and regular, then by
Proposition 2.1 every basic optimal strong matching preclusion set is trivial,
therefore |F V

1 | is even.
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Case 2.2.2.1. Assume that F V
1 6= ∅. It is easy to find a vertex w in F1 such that

H1− (F1−{w}) has no isolated vertices. The vertex w must be adjacent
to u in H1 − (F1 − {w}). Since u is isolated in H1 and because AGn − F
contains no isolated vertices, then u must have an outside neighbor u′ in
AGn − F . Without loss of generality, assume that u′ ∈ V (H2 − F2). Let
v ∈ V (H1 − F1) such that H1 − (F1 ∪ {v}) has no isolated vertices and
v has an outside neighbor v′ ∈ V (Hp − Fp), with vv′ ∈ E(AGn − F ), for
some p 6= 1, 2. Let F ′1 = (F1−{w})∪{v}, then |F ′1| = 2n−6 and contains
an even number of vertices. Moreover, H1 − F ′1 has no isolated vertices,
then by Theorem 2.4 we can find a perfect matching M1 in H1−F ′1. This
matching must contain the edge uw.
Assume that H2 − (F2 ∪ {u′}) has no isolated vertices. Then by the
induction hypothesis there exists a perfect or an almost-perfect matching
Mi in Hi − (Fi ∪ {u′, v′}) for i ≥ 2. As in Case 1, we can combine
those matchings to get a perfect or an almost-perfect matching M ′ in
the subgraph induced by (AGn − F ) − (V (H1) ∪ {u′, v′}). Then the set
(M1−{uw})∪ {uu′, vv′} ∪M ′ is a perfect or an almost-perfect matching
in AGn − F .
Assume that H2− (F2∪{u′}) has an isolated vertex z. Under this case we
can choose the other outside neighbor of u, u′′ ∈ V (Hk), for some k 6= 1, 2.
If u′′ is a faulty vertex or uu′′ is a faulty edge, then we can guarantee that
the vertex z has two outside neighbors in AGn − F . Let z′ be an outside
neighbor of z such that z′ ∈ V (Hk−Fk) with zz′ ∈ E(AGn−F ) for some
k 6= 1, 2.

– If |F V
2 | is even, then there exists a perfect matching M2 in H2−F2, and

in this case the edge u′z belongs to M2. As in Case 1, we can find a
perfect or an almost-perfect matching M ′ in the subgraph induced by
(AGn − F ) − (V (H1) ∪ V (H2) ∪ {z′, v′}). Then M1 ∪ (M2 − {u′z}) ∪
{uu′, zz′, vv′}∪M ′ is a perfect or an almost-perfect matching in AGn−
F . See Figure 4.

H
1 H

2
H
p

u

u'

z

H
k

z'

H
n

v'
w

v

M'

Figure 4: Case 2.2.2.1: |F V
2 | is even

– If |F V
2 | is odd, then choose a vertex x ∈ V (H2−F2) such that x has an

outside neighbor x′ ∈ V (Hq−Fq) for some q 6= 1, 2 and H2− (F2∪{x})
has no isolated vertices. Let F ′′2 = F2 ∪ {x}, then |F ′′V2 | is even and of
size 2n−6 and has no isolated vertices, then by Theorem 2.4H2−F ′′2 has
a perfect matching M ′

2. As in Case 1, we can find a perfect or an almost-
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perfect matching M ′′ in the subgraph induced by (AGn−F )−(V (H1)∪
V (H2)∪{x′, z′, v′}) . Then M1∪ (M ′

2−{u′z})∪{uu′, vv′, zz′, xx′}∪M ′′

is a perfect or an almost-perfect matching in AGn − F . See Figure 5.

H
1 H

2
H
p

u

u'

z

H
k

z'

H
n

v'
w

v

M''

x
x'

Figure 5: Case 2.2.2.1: |F V
2 | is odd

Case 2.2.2.2. Assume that F V
1 = ∅. Then all the faults inside H1 are edges. Then the

vertex u is incident to (2n − 6) faulty edges in H1. Deleting the vertex
u from H1 includes the deletion of all those (2n − 6) edges. Choose a
vertex v ∈ V (H1−{u}) such that H1−{u, v} has no isolated vertices and
v has two outside neighbors in AGn − F . By Theorem 2.4, there exists
a perfect matching M1 in H1 − {u, v}. Then M1 is a perfect matching
in H1 − (F1 ∪ {u, v}). The construction of the perfect or almost-perfect
matching in AGn − F follows the same way as in Case 2.2.2.1.

Case 3. |F1| = 2n− 6 and |F2| = 2n− 6. Note that all the faults are in the subgraph induced
by V (H1) ∪ V (H2).

Case 3.1. Assume that H1 − F1 and H2 − F2 have no isolated vertices. By the induction
hypothesis, there exist perfect or almost-perfect matchings M1 and M2 in H1−F1

and H2 − F2 respectively. If M1 and/or M2 are almost-perfect matchings, then
at most two vertices will be missed by M1 ∪ M2. Let x ∈ V (H1 − F1) and
y ∈ V (H2 − F2) be these vertices and let x′ ∈ V (Hp − Fp) and y′ ∈ V (Hq − Fq),
where p, q 6= 1, 2, be their corresponding outside neighbors. Since |Fi| = 0 for
i ≥ 3, then |Fi∪{x′, y′}| ≤ 2 for i ≥ 3, then we can use the construction of Case 1
to find a perfect or an almost-perfect matching M ′ in the subgraph induced by
(AGn − F )− (V (H1)∪ V (H2)∪ {x′, y′}). Therefore M1 ∪M2 ∪M ′ ∪ {xx′, yy′} is
a perfect or an almost-perfect matching in AGn − F .

Case 3.2. Assume that H1−F1 has an isolated vertex u, and H2−F2 has no isolated vertices.
The vertex u must be adjacent to a vertex u′ ∈ V (Hk−Fk) for some k 6= 1, 2 such
that uu′ ∈ E(AGn − F ). Since |F1| = 2n− 6 and H1 − F1 has an isolated vertex,
then we will consider two cases depending on whether F1 is a strong matching
preclusion set in H1 or not.

Case 3.2.1. Assume that F1 is not a matching preclusion set. By Proposition 2.1, |F V
1 | is

odd. Then H1 − F1 has an almost-perfect matching M1 missing the vertex
u. By the induction hypothesis, H2 − F2 has a perfect or an almost-perfect
matching M2 and Hi−(Fi∪{u′}) has a perfect or an almost-perfect matching
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Mi for i ≥ 3. Using the same idea of Case 1, we can find a perfect or
an almost-perfect matching M ′ in the subgraph induced by (AGn − F ) −
(V (H1) ∪ V (H2) ∪ {u′}).
If M2 is a perfect matching, then M1 ∪M2 ∪M ′ ∪ {uu′} is a perfect or an
almost-perfect matching in AGn − F .
If M2 is an almost-perfect matching, then M2 misses a vertex x ∈ V (H2−F )
which has an outside neighbor x′ in the subgraph induced by (AGn − F ) −
(V (H1)∪V (H2)∪{u′}). Note that we are assuming that x′ 6= u′, since if x′ =
u′, then by Proposition 2.1 we can find another almost-perfect matching in
H2−F which misses a vertex other than x and this vertex can not be adjacent
to u′. By the induction hypothesis, Hi − (Fi ∪ {u′, x′}) has a perfect or an
almost-perfect matching M ′

i for i ≥ 3. Using the same idea of Case 1, we can
find a perfect or an almost-perfect matching M ′′ in the subgraph induced by
(AGn−F )−(V (H1)∪V (H2)∪{u′, x′}). Thus the set M1∪M2∪{uu′, xx′}∪M ′′

is a perfect or an almost-perfect matching in AGn − F .

Case 3.2.2. Assume that F1 is a matching preclusion set. Then by Proposition 2.1, |F V
1 |

is even.

Case 3.2.2.1. Assume F V
1 6= ∅. Let w be a faulty vertex in H1 and chose x ∈ V (H1−F1)

such that H1 − (F1 ∪ {x}) has no isolated vertices. Since all the faults
are in the subgraph induced by V (H1)∪ V (H2), then the vertex x has at
least one outside neighbor x′ ∈ V (Hk − Fk) with xx′ ∈ E(AGn − F ) for
some k 6= 1, 2. Let F ′1 = (F1 ∪ {x})− {w}, the subgraph H1 − F ′1 has no
isolated vertices and |F ′1| = 2n−6 and |F ′V1 | is even, then by Theorem 2.4
there exists a perfect matching M1 in H1−F ′1. This matching M1 includes
the edge uw. By the induction hypothesis, H2 − F has a perfect or an
almost-perfect matching M2.
Assume that M2 is a perfect matching in H2 − F2. By the induction
hypothesis, Hi−(Fi∪{u′, x′}) has a perfect or an almost-perfect matching
Mi for i ≥ 3, and since |Fi ∪ {u′, x′}| ≤ 2n − 7, then we proceed as in
Case 1 to find a perfect or an almost-perfect matching M ′ in the subgraph
induced by (AGn−F )− (V (H1)∪ V (H2)∪{u′, x′}). Thus the set (M1−
{wv}) ∪ {uu′, xx′} ∪ M ′ is a perfect or an almost-perfect matching in
AGn − F .
Assume that M2 is an almost-perfect matching, then M2 misses a vertex
y ∈ V (H2−F2) which has an outside neighbor y′ in the subgraph induced
by (AGn−F )− (V (H1)∪V (H2)∪{u′, x′}). Again, we are assuming that
y′ 6= u′, since if y′ = u′, then by Proposition 2.1 we can find another
almost-perfect matching in H2−F2 which will miss a vertex other than y
and this vertex can not be adjacent to u′. In addition, the choice of x is
not unique in H1−F1. By the induction hypothesis, Hi−(Fi∪{u′, x′, y′})
has a perfect or an almost-perfect matching M ′

i for i ≥ 3. Using the same
idea of Case 1, we can find a perfect or an almost-perfect matching M ′′ in
the subgraph induced by (AGn−F )−(V (H1)∪V (H2)∪{u′, x′, y′}). Thus
the set M1 ∪M2 ∪ {uu′, xx′, yy′} ∪M ′′ is a perfect or an almost-perfect
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matching in AGn − F .

Case 3.2.2.2. Assume F V
1 = ∅. Then u is incident to (2n − 6) faulty edges. Let e be

a faulty edge in H1 and u,w ∈ V (H1 − F1) be its endpoints. The vertex
w must have an outside neighbor w′ ∈ V (Hp − Fp) for some p 6= 1, 2.
Note that it is possible to have p = k. By the induction hypothesis,
Hi − (Fi ∪ {u′, w′}) has a perfect or an almost-perfect matching Mi for
i ≥ 3 and H2 − F2 has a perfect or an almost-perfect matching M2. We
can now proceed as in the case above to find a perfect or an almost-perfect
matching in AGn − F .

Case 3.3. Assume that H1−F1 has an isolated vertex u, and H2−F2 has an isolated vertex
v. Then u must be incident to a cross edge that has its other endpoint in some
Hk − Fk where k 6= 1, 2, and v is incident to a cross edge that has its other
endpoint in some Hj − Fj where j 6= 1, 2. Let uu′ and vv′ be those edges, so
u′ ∈ V (Hk −Fk) and v′ ∈ V (Hj −Fj). It is possible to have k = j and u′ = v′. If
u′ = v′, then by Proposition 2.6, uv ∈ E(AGn−F ), and we can include this edge
in the matching to saturate u and v.

Case 3.3.1. If F1 and F2 are not matching preclusion sets in H1 and H2 respectively. Then
this case is similar to Case 3.2.1.

Case 3.3.2. If F1 is a matching preclusion set in H1 but F2 is not a matching preclusion
set in H2. Then this case is similar to Case 3.2.2.

Case 3.3.3. If F1 and F2 are matching preclusion sets in H1 and H2 respectively. Then F1

and F2 are basic strong matching preclusion sets in H1 and H2 respectively.
By Proposition 2.1, F1 and F2 are trivial, so |F V

1 | and |F V
2 | are even. As in

Case 3.2.2, we can always find a matching M1 in H1−F1 missing the vertices
u, x ∈ V (H1 − F1), and a matching M2 in H2 − F2 missing the vertices
v, y ∈ V (H2 − F2). Since the choice of the vertices x and y is not unique, we
can choose those vertices so that their outside neighbors do not lie in the same
Hi. Let u′, x′, v′, y′ be the outside neighbors of u, x, v, y respectively, such that
x′ and y′ are in different Hi’s. By the induction hypothesis, there exists a
perfect or an almost-perfect matching Mi in every Hi−(Fi∪{u′, x′, v′, y′}) for
i ≥ 3, and since |Fi∪{u′, x′, v′, y′}| ≤ 2n−7 for i ≥ 3, then we can proceed as
in Case 1 and combine those matchings to get a perfect or an almost-perfect
matching M ′ in the subgraph induced by (AGn − F ) − (V (H1) ∪ V (H2) ∪
{u′, x′, v′, y′}). Therefore, M1 ∪M2 ∪M ′ ∪ {uu′, xx′, vv′, yy′} is a perfect or
an almost-perfect matching in AGn − F .

Case 4. 2n − 5 ≤ |F1| ≤ 4n − 16 for n ≥ 6. When n = 5, the compound inequality is not
valid. So we must consider the cases when n = 5 and |F1| = 5 or |F1| = 6. The case
when n = 5 and |F1| = 5 will be covered in Case 5. If n = 5 and |F1| = 6 then,
by Lemma 2.3, we can choose another decomposition via a different position so that
|F1| ≤ 5.

Case 4.1. H1 − F1 has no isolated vertices. By the induction hypothesis, H1 − F1 contains
a perfect or an almost-perfect matching M1. We consider two cases depending on
whether M1 is a perfect or an almost-perfect matching.
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M1 is a perfect matching. Since every Hi − Fi contains no isolated vertices, then
we can proceed as in Case 1 to find a perfect or an almost-perfect matching M ′ in
the subgraph induced by (AGn−F )− V (H1). Then the set M1 ∪M ′ is a perfect
or an almost-perfect matching in AGn − F .

M1 is an almost-perfect matching. Let u ∈ V (H1−F1) be the unsaturated vertex
by M1. If u has an outside neighbor u′ in some Hk − Fk where Hk − (Fk ∪ {u′})
contains no isolated vertices, then we can also proceed as in Case 1 by finding
a perfect or an almost-perfect matching M ′ in the subgraph induced by (AGn −
F )−(V (H1)∪{u′}), so M1∪M ′∪{uu′} is a perfect or an almost-perfect matching
in AGn − F . Assume that u has no such outside neighbor. Since H1 − F1 has no
isolated vertices, then u is adjacent to some vertex v in H1−F1 and v is saturated
by M1. Let vw ∈ M1. The vertices u and w can have at most two common
neighbors, so there are at least 4n − 14 − |F1| vertices in H1 − F1 adjacent to
either u or w. Let F1 = F − F1; we know that |F1| + |F1| = 4n − 12, so there
are at least 4n− 14− (4n− 12− |F1|) = |F1|+ 2 vertices in H1 − F1 adjacent to

either u or w. Then we can guarantee that u or w are adjacent to at least
⌊ |F1|+2

2

⌋
vertices xk incident to edges ek = xkyk ∈ M1 for k = 1, . . . ,

⌊ |F1|+2
2

⌋
. We want

to choose a vertex yk such that yk is not adjacent/incident to a fault outside H1.
Since each yk has two outside neighbors, then we have at least |F1| + 1 choices
for yk; at most |F1| can be at fault and no two outside neighbors can be in the
same Hi. So we can find y′k ∈ Hk − F , where yky

′
k ∈ E(AGn − F ), and satisfying

the property Hk − (F ∪ {y′k}) has no isolated vertices. Thus we can use a similar
construction to Case 1 to find a perfect or an almost-perfect matching M ′ in the
subgraph induced by (AGn−F )− (V (H1)∪V (H2)∪{y′k}). If wxk ∈ E(H1−F1),
then M ′

1 = M1∪{wxk, uv}−{vw, xkyk} is an almost-perfect matching in H1−F1

missing yk, then the set M ′
1∪M ′∪{yky′k} is a perfect or an almost-perfect matching

in AGn − F . If uxk ∈ E(H1 − F ), then M ′
1 = M1 ∪ {uxk} − {xkyk} is an almost-

perfect matching in H1 − F missing yk. Therefore, the set M ′
1 ∪M ′ ∪ {yky′k} is a

perfect or an almost-perfect matching in AGn − F .

Case 4.2. H1−F1 has an isolated vertex u ∈ V (H1−F1). Let NH1(u) be the set of neighbors
of u in H1.

Case 4.2.1. NH1(u) ∩ F V
1 6= ∅. Let w ∈ NH1(u) ∩ F V

1 . We consider the parity of |F V
1 |.

Assume |F V
1 | is odd. Let F ′1 = F1 − {w}, so |F ′1| ≤ 4n − 17 and H1 − F ′1 has no

isolated vertices, then by the induction hypothesis there exists a perfect matching
M1 in H1 − F ′1. M1 contains the edge uw. The vertex u must have an outside
neighbor u′ in AGn − F , or else u becomes an isolated vertex in AGn − F . By
the induction hypothesis, there exists a perfect or an almost-perfect matching
Mi in Hi − (Fi ∪ {u′}) for i ≥ 2. Using the same idea as in Case 1, we can
find a perfect or an almost-perfect matching M ′ in the subgraph induced by
(AGn − F )− (V (H1)∪ {u′}), then the set (M1 − {uw})∪ {uu′} ∪M ′ is a perfect
or an almost-perfect matching in AGn − F .

Assume |F V
1 | is even. Let F ′1 = F1 − {w}, so |F ′1| ≤ 4n − 17 and H1 − F ′1 has

no isolated vertices. There exists a vertex x ∈ V (H1 − F ′1) such that x has an
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outside neighbor x′ ∈ V (Hk − Fk) with xx′ ∈ E(AGn − F ) for some k 6= 1 and
H1− (F ′1∪{x}) has no isolated vertices. By the induction hypothesis, there exists
a perfect matching M1 in H1 − (F ′1 ∪ {x}) that contains the edge uw, and there
exists a perfect or an almost-perfect matching Mi in Hi− (Fi ∪{u′, x′}) for i ≥ 2.
Using the same idea as in Case 1, we can find a perfect or an almost-perfect
matching M ′ in the subgraph induced by (AGn − F ) − (V (H1) ∪ {u′, x′}), then
the set (M1 − {uw})∪ {uu′, xx′} ∪M ′ is a perfect or an almost-perfect matching
in AGn − F .

Case 4.2.2. NH1(u) ∩ F V
1 = ∅. Then u is incident to (2n − 6) faulty edges in H1. Let f be

one of those edges. We consider the parity of |F V
1 |.

Assume |F V
1 | is odd. Let F ′1 = F1− f , where f has endpoints u and v in H1−F1.

Consider the set F ′′1 = F ′1 ∪ {u}. F ′′1 has an even number of vertices, of size less
than or equal to 4n − 16 and H1 − F ′′1 has no isolated vertices. Then by the
induction hypothesis, there exists a perfect matching M1 in H1−F ′′1 . The vertex
u must have an outside neighbor u′ ∈ V (Hk − Fk) for some k 6= 1 such that
uu′ ∈ E(AGn − F ). By the induction hypothesis, there exists a perfect or an
almost-perfect matching Mi in Hi − (Fi ∪ {u′}) for i ≥ 2. We can assume that
|Fk ∪ {u′}| ≤ 2n− 7, since if not then |Fk| = 2n− 7 and all the faults will be in
the subgraph induced by V (H1)∪V (Hk), so u can have another outside neighbor
in Hl − Fl for some l 6= 1, k. Then |Fi ∪ {u′}| ≤ 2n − 7 for i ≥ 2 and hence we
can apply the same idea as in Case 1 to construct a perfect or an almost-perfect
matching M ′ in the subgraph induced by (AGn−F )− (V (H1)∪ {u′}). Then the
set M1 ∪ {uu′} ∪M ′ is a perfect or an almost-perfect matching in AGn − F .

Assume |F V
1 | is even. Let F ′1 = F1−f . We can choose the edge f = uw such that

w has an outside neighbor w′ ∈ V (Hj−Fj) for some j 6= 1 with ww′ ∈ E(AGn−F ).
The vertex u must have an outside neighbor u′ ∈ V (Hk − Fk) for some k 6= 1
such that uu′ ∈ E(AGn − F ). Note that there are (2n− 6) possible choices for f
and there are at most (2n − 7) faults outside H1 − F1, so we can always choose
w such that w has two outside neighbors in AGn − F . Then we can assume that
u′ and w′ are in different Hi, so we can claim that |Fi ∪ {w′, u′}| ≤ 2n − 7. By
the induction hypothesis, there exists a perfect or an almost-perfect matching
Mi in Hi − (Fi ∪ {w′, u′}) for i ≥ 2. Using the same idea as in Case 1, we
can find a perfect or an almost-perfect matching M ′ in the subgraph induced by
(AGn−F )− (V (H1)∪ {u′, w′}). Therefore, the set (M1− uw)∪ {uu′, ww′} ∪M ′

is a perfect or an almost-perfect matching in AGn − F .

Case 5. |F1| = 4n − 15. Note that H1 − F1 can have at most one isolated vertex. We will
assume that H1 − F1 has an isolated vertex u ∈ V (H1 − F1). The case when H1 − F1

has no isolated vertices will be treated the same. Under this condition, there are three
faults left outside H1. Since AGn − F has no isolated vertices then there exists an
outside neighbor u′ ∈ V (Hp − Fp) for some p 6= 1 with uu′ ∈ E(AGn − F ).

Case 5.1. NH1(u) ∩ F V
1 = ∅. Then u is incident to (2n − 6) edges. Let f = uv be a faulty

edge in H1 such that v has two outside neighbors in AGn−F . Let v′ ∈ V (Hk−F ),
for some k 6= 1, p, be an outside neighbor of v. Since |F1 − f | = 4n − 16 and
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H1 − (F1 − f) has no isolated vertices, then by the induction hypothesis there
exists a perfect or an almost-perfect matching M1 in H1 − (F1 − f).

Assume that f /∈ M1. Then M1 is a perfect or an almost-perfect matching in
H1−F1. By the induction hypothesis, there exists a perfect or an almost-perfect
matching Mi in Hi − Fi. We can combine these matchings to get a perfect or an
almost-perfect matching M in (AGn − F ).

Assume that f ∈ M1. There are three faults outside H1, we can claim that
|Fi∪{u′}| ≤ 3 for every i ≥ 2, because if not then u′ is in the same Hi along with
the other faults and this guarantees the existence of another outside neighbor
of u in AGn − F . Moreover, v has two outside neighbors in AGn − F so we
can claim that |Fi ∪ {u′, v′}| ≤ 2n − 7 for i ≥ 2. Now as in Case 1 we can
find a perfect or an almost-perfect matching M ′ in the subgraph induced by
(AGn−F )− (V (H1)∪{u′, v′}). Therefore M1 ∪M ′ ∪{uu′, vv′} is a perfect or an
almost-perfect matching in AGn − F .

Case 5.2. NH1(u)∩F V
1 6= ∅. Let w ∈ NH1(u)∩F V

1 . By the induction hypothesis, there exists
a perfect or an almost-perfect matching M1 in H1− (F1−{w}). We consider the
parity of |F V

1 |.
|F V

1 | is odd. Then M1 is a perfect matching containing the edge uw. As in
the previous case, we can claim that |Fi ∪ {u′}| ≤ 3 for every i ≥ 2, so by the
induction hypothesis there exists a perfect or an almost-perfect matching Mi in
Hi− (Fi ∪ {u′}) for i ≥ 2. We combine all the Mi’s to get a perfect or an almost-
perfect matching M ′ in the subgraph induced by (AGn − F ) − (V (H1) ∪ {u′}).
Therefore (M1 − {uw}) ∪M ′ ∪ {uu′} is a perfect or an almost-perfect matching
in AGn − F .

|F V
1 | is even. Then M1 is an almost-perfect matching in H1 − (F1 − {w}). Let

M ′
1 = M ∩ E(H1 − F ). M ′

1 is a matching in H1 − F that misses two vertices,
one of them is u and some other vertex x. Note that M ′

1 is an almost-perfect
matching in the subgraph induced by H1 − (F1 ∪ {u}), so we claim that x has
outside neighbor(s) in AGn−F , because if not then by Proposition 2.1 we can find
another almost-perfect matching in H1 − (F1 ∪ {u}) missing a vertex other than
x. Let x′ be the outside neighbor of x in AGn−F . As in the previous case we can
claim that |Fi ∪ {x′, u′}| ≤ 2n − 7 for i ≥ 2. By the induction hypothesis there
exists a perfect or an almost-perfect matching Mi in Hi− (Fi ∪{x′, u′}) for i ≥ 2.
We combine all the Mi’s to get a perfect or an almost-perfect matching M ′ in the
subgraph induced by (AGn−F )−(V (H1)∪{x′, u′}). Therefore M ′

1∪M ′∪{uu′, xx′}
is a perfect or an almost-perfect matching in AGn − F .

4 Conclusion

In this paper, we have studied the strong matching preclusion problem of the alternating
group graph under the condition that no isolated vertex is created as a result of faulty edges
and/or vertices. We proved that the conditional strong matching preclusion number of AGn
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is 4n − 11. Classifying all types of optimal conditional strong matching preclusion sets of
AGn is left as a future research.
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