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Abstract
Lucaogou tight oil reservoir, located in the Junggar Basin, Northwest of China, is one of the
typical tight oil reservoirs. Complex lithology leads to a wide pore size distribution (PSD),
ranging from several nanometers to hundreds of micrometers. To better understand PSD and
fractal features of Lucaogou tight oil reservoir, the experiment methods including scanning
electron microscope (SEM), rate-controlled mercury injection (RMI) and pressure-controlled
mercury injection (PMI) were performed on the six samples with different lithology. The results
indicate that four types of pores exist in Lucaogou tight oil reservoir, including dissolution
pores, clay dominated pores, microfractures and inter-granular pores. A combination of PMI
and RMI was proposed to calculate the overall PSD of tight oil reservoirs, the overall pore
radius of Lucaogou tight oil reservoir ranges from 3.6 nm to 500µm. The fractal analysis was
carried out based on the PMI data. Fractal dimension (Fd) values varied between 2.843 and
2.913 with a mean value of 2.88. Fd increases with a decrease of quartz content and an increase
of clay mineral content. Samples from tight oil reservoirs with smaller average pore radius
have stronger complexity of pore structure. Fractal dimension shows negative correlations with
porosity and permeability. In addition, fractal characteristics of different tight reservoirs were
compared and analyzed.

Keywords : Tight Oil Reservoir; Pressure-Controlled Mercury Intrusion; Rate-Controlled
Mercury Intrusion; Pore Size Distributions; Fractal Dimension.

1. INTRODUCTION

The concept of tight oil is originally applied
to express oil-bearing tight rocks in the 1940s.1

After that, different research organizations rede-
fined “tight oil” from different views, such as
“Oil produced by horizontal drilling technology
from shale or other low permeability reservoirs” by
Energy Information Administration (EIA) of U.S.,2

and “the oil discovered in low permeability reser-
voirs” by the Natural Resources Canada (NRC).3

Because of the successful exploration and exploita-
tion of tight oil in North America, most of the
researchers focused on marine tight oil reservoirs,
while the study of lacustrine tight oil plays is still
in a relatively poor stage. The research on tight
oil in China just begun in the last decade, many
tight oil formations were previously considered to
be source rock, such as the Lucaogou formation
in Junggar Basin,4,5 Longmaxi formation in the
Sichuan Basin,6–8 and Yanchang formation in Ordos
Basin.9,10 Affected by the commercial development
of tight oil in North America, Lucaogou tight oil
reservoir were discovered recently and already act
as one of the most important tight oil reservoirs in
China.11

Microscale pores play a very critical role in con-
trolling the storage capacity and percolation mech-
anism of oil and gas in the tight reservoirs.12–14 Pore

size distribution (PSD) is one of most important
parts of pore properties, which can influence the
interaction of fluid and rock.15,16 However, it is dif-
ficult to characterize the pore structure because of
the wide PSD from nanoscale to micron scale in
tight oil reservoirs. In recent years, many advanced
methods have been employed to investigate pore
characteristics of rocks, such as Scanning electron
microscopy (SEM),17–19 pressure-controlled mer-
cury injection (PMI),20 nuclear magnetic resonance
(NMR),21 Low-temperature N2 adsorption (LTNA)
and Low-temperature CO2 adsorption (LTCA),22

X-ray computed tomography (CT)23,24 and so on.
However, it is noteworthy that all these methods
have shown advantages and disadvantages in char-
acterizing pore structure of unconventional reser-
voirs because of their working mechanisms. SEM
(including FE-SEM) is an intuitionistic method but
cannot obtain accurate quantitative information.25

Traditional mercury injection porosimetry (MIP),
obtaining pores information based on the pressure
fluctuation, may calculate inaccurately the number
of large pores because of the pore blocking effect.26

LTNA and LTCA can distinguish the widely devel-
oped small pores, but underestimate the larger
pores due to capillary condensation.20 CT fails to
identify the pores with a radius smaller than 50 nm.
The pore size distribution from nuclear magnetic
resonance (NMR) measurements needs to calibrate
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with MIP data, which results in some errors. There-
fore, an integration of variety of methods should be
applied to characterize the wide PSD in tight oil
reservoirs. Rate-controlled mercury injection (RMI)
was proposed by Yuan and Swanson (1989).27 Pore
and throat information can be obtained from mer-
cury injection curves based on the pressure fluc-
tuation, but the small pores (radius <1.2µm) will
be missed due to the injection pressure limitation
(∼6.2 MPa).28,29 In contrast, PMI can provide small
pore throat information.

Since fractal theory was used to study the physi-
cal properties and surface characteristics of porous
materials,30 more and more researchers applied
fractal theory to study the roughness and com-
plexity of pores in coal and shale because of its
strong ability to describe the irregular or frag-
mented shape.22,31,32 In addition, MIP method is
commonly used to calculate the Fds.29

In this paper, the overall PSD of Lucaogou tight
oil reservoir was obtained using the combination
of PMI and RMI. Fd was calculated and discussed
based on MIP data.

2. SAMPLES AND
EXPERIMENTAL METHODS

2.1. Samples

Lucaogou tight oil reservoir is a typical tight oil
reservoir, which is located in the southeast region
of Junggar Basin.11 As a typical intracontinental
superimposed basin, Junggar Basin is in the oil
and gas accumulation belt of the piedmont thrust
zone.33 Lucaogou Formation is widespread in the
entire sag and has a thickness of 300 m. The struc-
ture in the sag center is gentle and characterized by
the immediate vicinity and near-source reservoir-
forming of the source-reservoir, where the tight
reservoir is concentrated.34 Lucaogou formation was
divided into two sections: P2L1 and P2L2, the two
sections are predominantly composed of tuffaceous
siltstone, limy/dolomitic siltstone, silty dolomite,
mudstone, etc.11

2.2. Experimental Methods

2.2.1. Porosity and permeability
analysis

The cores were obtained from Lucaogou Formation
in the Junggar Basin. The core plugs that were
drilled parallel to bedding, need to be removed the

residual oil and be dried at 105◦C for 36 h in a vac-
uum environment before carrying out the planned
experiments. Porosity and permeability test respec-
tively were performed on ULTRA PORO300 Poros-
ity Tester and ULTRA PERM400 Permeability
Tester, following the standard GB/T 29172-2012 of
China.35 Finally, SEM, PMI and RMI experiments
were performed on the three parts from the core
plugs.

2.2.2. Scanning electron microscopy

The pore morphology of samples can be obtained
by SEM, which was performed on a Hitachi S4800
scanning electron microscope with a lowest pixel
resolution of 1.2 nm and accelerating voltage of
30 kV, following the standard SY/T 5162-2014 of
China.36 Reducing the surface roughness of sam-
ples is needed before the observation, then a Ganta-
691 Precision Ion Polishing System was used to fur-
ther argon-ion mill. The thickness of all the samples
should be less than 100 mm.

2.2.3. Pressure-controlled mercury
injection

PMI experiment was carried out on a PoreMaster-
9500 mercury porosimeter following the standard
SY/T 5346-2012 of China.37 The smallest pore size
that this device can measure is about 3.6 nm when
the intrusion pressure reaches 200 MPa. A series
of characterization parameters were then obtained
during the process of slowly increase and decrease
of injection pressure, including the maximum,
minimum, and average pore-throat radius, Sm, Sr,
and Pt and so on. Intrusion and extrusion curves
were obtained in PMI experiments.

2.2.4. Rate-controlled mercury
injection

RMI is used to quantify the volume and quanti-
ties of pore and throat according to the fluctuation
of pressure.27,38 ASPE-730 Rate-controlled mercury
porosimeter was employed in the research following
the standard SY/T 5346-2012 of China.37 In this
experiment, mercury is injected into the samples at
an extremely low constant rate (5× 10−5mL/min),
and the maximum intrusion pressure is 6.2 MPa.
Therefore, mercury can only be pressed into the
large pores (>0.12 µm). The injection volume and
pressure are measured precisely in the process of
injection of mercury.39 By means of the experiment,
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three mercury curves and a variety of characteriza-
tion parameters, including pore throat radius ratio,
throat radius and pore radius were obtained.

3. RESULTS

3.1. Petrophysical Characteristics
and Mineralogical
Characteristics

The porosity and permeability data indicated
samples from Lucaogou tight oil reservoir gener-
ally exhibited poor physical properties (Table 1).
Helium porosity of the six samples ranges from
1.54% to 13.23% with a mean value of 8.82%. The
permeability ranges from 0.002 mD to 2.76 mD with
a mean value of 0.53 mD (Table 1). The mineral
compositions of samples are shown in Table 2. The
quartz, feldspar, and dolomite are the main min-
erals in these samples. The quartz contents range
from 15% to 30.4%. The plagioclase contents range
from 2.6% to 35%. A small amount of pyrite and
siderite exists in some samples.

3.2. Pore Types

A total of four types of pores were identified
in Lucaogou by SEM observations, which are
microfractures, clay dominated pores, dissolution
pores and residual inter-particle pores. The long
dimensions of these pores are usually more than
15 µm. The quartz, calcite and feldspar grains were
dissolved by fluid to form dissolution pores. Most of
the dissolution pores are feldspar dissolution pores
(Figs. 1d–1f). Pore morphology of the dissolution
pores is determined by the degree of dissolution.
In general, the connectivity of the dissolution pores
is poor. It is very common that pores within clay
aggregates exist in Lucaogou tight oil reservoir, and
this type of pores are usually called clay domi-
nated pores. Typical clay minerals found in the sam-
ples are chlorite (Figs. 1i and 1k), illite-smectite
and chlorite-smectite mixed-layer (Figs. 1g and 1h).
The size of these types of pores is especially small,
mainly ranged from 300 nm to 800 nm. The forma-
tion of microfractures is mainly due to the rupture
of brittle detrital grains, which are nano-scaled in
width and micron-scaled in length.

3.3. Mercury Injection Porosimetry
Curves

The PMI curves are shown in Fig. 2 and the key
parameters from these curves are shown in Table 1.

All mercury curves have obvious horizontal stages
after mercury intrusion, while the length of the
horizontal stages is distinctly different. The length
of the horizontal stages for the siltstone samples
including tuffaceous siltstone, dolomitic siltstone
and limy siltstone is larger, and their Pt is usu-
ally lower than 2 MPa, where Pt is the threshold
pressure, referring to the minimum pressure driv-
ing mercury into samples.40 This indicates that
the samples with smaller Pt have better pore-
throat sorting. The threshold pressure ranged from
0.09 MPa to 5.96 MPa, with an average value of 1.77
MPa. Maximum mercury intrusion saturation (Sm)
of samples ranged from 74.1% to 98.32%, with an
average value of 93.23%, the lower Pt resulted in
the larger maximum mercury intrusion saturation
(Sm). After the injection pressure reached the maxi-
mum pressure (200 MPa), mercury was gradually
withdrawing from the samples with the decrease
of pressure. The residual mercury saturation (Sr)
ranged from 56.6% to 72.5%, with a mean value
of 64.06%, the samples (Pt < 2MPa) also have
the larger residual mercury saturation (Sr). There
was much mercury trapped in the narrow space of
samples which showed the great difference between
pores and throats.

The RMI curves of the six samples were divided
into two types. Based on the difference in lithol-
ogy, two typical curves of limy siltstone and silty
dolomite are displayed in Fig. 3 and microscopic
parameters from RMI are listed in Table 1. The
threshold pressure (Pd) of Sample 3 was 0.83 MPa.
The trend of the throat injection curve was con-
sistent with the total injection curve in the ini-
tial stages of mercury injection. The throat mer-
cury injection saturation gradually increased with
the pressure increased, while an inflection point
existed on the pore curve, after which the pore
injection curve becomes steep. The Sf was 31.24%,
which was larger than Sb (22.36%). On the con-
trary, the Pd of Sample 4 was 0.14 MPa, which is
smaller than that of Sample 3. The trend of the
pore injection curve was consistent with total injec-
tion curve in the initial stages of mercury injection.
With the pressure increased, pore injection volume
of mercury increased slow, and throat injection vol-
ume of mercury increased rapidly when the pres-
sure was larger than 3MPa. The Sf was 20.9%,
which is smaller than Sb (30.23%). The total mer-
cury saturation increased with the increase of per-
meability.
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Fig. 1 Pore types in Lucaogou formation. (a)–(c) Residual interparticle pores; (d)–(f) Dissolution pores with irregular
geometry; (g) Clay dominated pores of chlorite–smectite layer; (h) Clay dominated pores of mixed illite–smectite layer; (i)
Clay dominated pores of chlorite crystal; (j)–(l) Microfractures. Q = quartz; I/S = Illite–smectite mixed layer; C/S = chlorite–
smectite mixed layer; Ch = chlorite; CDP = clay dominated pores; DP = dissolution pore; RIP = residual intergranular pore;
MF = microfractures.

3.4. Fractal Features of Pore System

The fractal theory was proposed firstly at 1975 by
Mandelbrot.30 Fractal dimension can well charac-
terize the fragmented or irregular shape of porous
complex media.41–44 We calculated the Fds of
Lucaogou tight oil reservoir using PMI results
according to the geometric principle of fractals. The
specific calculation process is as follows.

The fractal equation can be expressed as the fol-
lowing equation45:

N(> r) =
∫ rm

r
P (r)dr = αrD, (1)

where r represents the radius of pores, N(> r) is the
number of pores and throats (radius > r), rm is the
maximum of the pore radius, α is a proportionality
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Fig. 2 Intrusion and extrusion curves of PMI.

constant, P (r) is the distribution density function
of pore radius, D represents fractal dimension.

The following equation can be obtained from the
deduction of Eq. (1) with respect to r:

P (r) =
dN(> r)

dr
= α′r−D−1, (2)

where α′ is a proportionality constant, which is
equal to −D × α. V (< r) (The cumulative volume
of the pores and throats) can be calculated by com-
bining Eqs. (2) and (3).

V (< r) =
∫ r

rs

P (r)αr3dr = α′′(r3−D − r3−D
s ), (3)

where rs is the minimum of the pore throat radius,
α is a constant, α′′ is a proportionality constant,
which is equal to α′ × α/(3 − D).

The total pore volume can be expressed as
Eq. (4).

V = α′′(r3−D
m − r3−D

s ). (4)

The cumulative volume fraction of pore throats
(radius < r) could be calculated by combining
Eqs. (3) and (4).

s =
V (< r)

V
=

r3−D − r3−D
s

r3−D
m − r3−D

s

. (5)

Equation (5) can be simplified as the following
equation considering rm is much larger than rs:

s =
(

r

rm

)3−D

. (6)

We could obtain the fractal dimension of pore
throat radius distribution considering wetting angle
is not influenced by the pore radius.

s =
(

Pc

Pmin

)D−3

. (7)

The fractal dimension is obtained by taking a loga-
rithm on Eq. (7):

log(1 − SHg) = (D − 3)log Pc − (D − 3)log Ps.

(8)

Scatter plots can be made using log(1 − SHg)
and log(Pc) as ordinate and abscissa, the slope K
can be obtained by fitting a straight line with the
scatter points (Fig. 4) and the fractal dimension
D = K + 3. Figure 4 shows three segments of the
trend, the third being accurate because PMI has
an advantage in obtaining tiny pores information.
The larger the fractal dimension, the more com-
plex the pore structure. All R2 of the samples are
larger than 0.9 (Table 1), which indicates that the
pore structure of Lucaogou tight oil reservoir can

Fig. 3 The total, pore and throat intrusion curves from RMI.
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Fig. 4 Fractal dimension curve of Sample 1.

be well characterized using the fractal theory effec-
tively. The fractal dimensions vary between 2.843
and 2.913 with a mean value of 2.88 (Table 1), indi-
cating pore structure of Lucaogou tight oil reservoir
have high irregularity.

4. DISCUSSION

4.1. PSD Calculated from PMI and
RMI

The PSD of samples can be calculated from the
intrusion curves of PMI.10 As shown in Fig. 5, the
pores throat size of the six samples mainly var-
ied between 3.6 nm and 40 µm. The six PSD curves
show strong fluctuations when the radius is smaller
than 1µm, and there are almost no pores with a
radius larger than 1µm. Only the PSD curve of
Sample 1 shows a tiny peak when the pore radius is
larger than 10 µm. Pore size distribution curves of
different lithologies have different peaks. The peaks

of Sample 5 and Sample 6 ranged from 10 nm to
50 nm. The peaks of Sample 4 are located in about
0.1 µm, and that of Samples 1, 2 and 3 mainly var-
ied between 0.2 µm and 0.8 µm. (Fig. 5).

We noted that the PSD from PMI was differ-
ent from SEM results. Many large pores (radius >
1µm), which mainly correspond to dissolution
pores and residual intergranular pores, exist in the
selected samples through SEM observation, this
error of PMI is mainly due to the pore blocking
effect. When the mercury was forced into the large
pores connected by the small throat (such as ink-
bottle pores), the required injection pressure was
very large, which lead to a very small pore radius
calculated from the Washburn equation.40 There-
fore, PMI is not sufficient to characterize the PSD
of tight oil reservoirs because of neglecting the large
pores, although it seems to have advantages in char-
acterizing nanoscale pores.

Significantly different from PMI, RMI can only
measure larger pores because of the limitation of
low injection pressure; in addition, pore, throat and
pore-throat ratio information can be obtained syn-
chronously from RMI curves (Fig. 6). The six sam-
ples had a similar pore radius distribution, indi-
cating that lithology does not affect the pore size
distribution a lot. The pore radius mainly ranged
between 60 µm and 400 µm (Fig. 6a); the value of
peak was located in about 125 µm. The pore size of
Sample 1 (Tuffaceous siltstone) was the largest, and
that of Sample 6 (mudstone) was smallest (Fig. 6a).
There is a significant difference in the distribution
of the throat size of samples of different lithology;
this may indicate that lithology could be a potential
factor that controlled the distribution of the throat

Fig. 5 PSD curves calculated from PMI.
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(a) (b)

(c) (d)

Fig. 6 Pore radius, throat radius and pore-throat ratio from RMI of the six samples: (a) Pore radius distribution; (b)
Throat radius distribution; (c) Pore-throat ratio distribution; (d) Pore size distribution.

size. The throat distribution ranged from 0.1 µm to
12 µm. The peak value of samples of 1, 2, 3 and 4
was concentrated in between 2µm and 6 µm, and
that of two other samples was around 1µm. The
throat size distribution of Sample 3 (Limy siltstone)
was widest while that of Sample 6 was most nar-
row. The pore-throat ratio ranged from 30 to 600,
the wide distribution range and the large value
of pore-throat ratio were due to significant pore
and throat size difference. The large pore throat
difference (large pore spaces and small throat size)
causes the extremely low permeability of tight oil
reservoirs.

PSD from RMI result was shown in Fig. 6d.
All the PSD curves of different lithology samples
contained two peaks, one left semi-peak, and one
right peak. The left semi-peak had a similar trend
but no wave peak value, the right peak value was
distributed between 60 µm and 400 µm, which was
in line with the results of the SEM. The average
final injection mercury saturation is only about 50%
(Table 1), which indicated that RMI was unable to
characterize tiny pores ( radius <0.12µm).

4.2. Recommended Method to
Calculate the Overall PSD

Although there are some small differences, the mer-
cury pressure curves obtained by PMI and RMI are
roughly the same (Fig. 7). According to the discus-
sion above, wide PSD in tight oil reservoirs made
it inadequate to characterize the overall PSD by
only one test method. PMI can obtain small pore
throat information but underestimate large pores.
RMI can characterize large pores but fails to iden-
tify tiny pores (radius <0.12µm). The two methods
are complementary in calculating the pore range
in tight oil reservoirs so that the combination of
the two methods could effectively obtain the over-
all pore size information.

The overall PSD of Lucaogou formation is char-
acterized by multiple peaks, and its pore radii range
from 3.6 nm to 400 µm (Fig. 8). All PSD curves of
samples are composed of two distinct peaks. The
right peak is mainly distributed in 80–300 µm with
a peak value of ∼110µm. The part corresponds to
the dissolution pores and the residual intergranular
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(a)

(b)

Fig. 7 Comparison of mercury pressure curves from PMI
and RMI conducted on Sample 3 and Sample 4.

pores, obtained from RMI. The left peak value was
mainly distributed in 3.6 nm–200 nm, which was
obtained from PMI. The fluctuation of the left peak
of PSD curve was extreme, which indicates that

there are great differences in the size distribution
characteristics of tiny pores (quantity, morphology,
etc.) of different samples. The left peak value of
Samples (1–4) was about 100 nm, larger than that
of the other two samples, demonstrating more tiny
pores (<100 nm) exist in dolomicrite and mudstone
samples. Pores are divided into macropores (>2 mm
in radius), mesopores (30 µm–2 mm), micropores
(0.5 µm–30 µm), and nanopores (<500 nm).46 The
two main pore size types in Lucaogou tight oil reser-
voir are nanopores and mesopores.

4.3. Analysis of Fractal
Characteristics

4.3.1. Relationship between mineral
composition and Fd

From the results of Fds in Table 1, fractal
dimensions (D) of different lithology samples are
significant different. Fractal dimension of tuffa-
ceous siltstone sample is the largest compared to
other lithology samples. Fractal dimension of sam-
ples (dolomitic siltstone, limy siltstone and silty
dolomite) is concentrated in about 2.893, indicat-
ing these lithology samples have similar complex-
ity of pore structure. Sample 6 (mudstone) has the
most complex pore structures with D of 2.9137.
To study the potential factors that affect the frac-
tal characteristics of the rocks, the relationship
between mineral composition and Fd is investigated
(Fig. 9). Fd increases with a decrease in quartz
content (Fig. 9a). This is because the more the
quartz content, the larger the probability of devel-
oping intergranular pores. The intergranular pores
have relatively small complexity. Fd increases with
and an increase in clay content (Fig. 9b). This is

Fig. 8 PSD obtained from the combination of RMI and PMI.
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(a) (b)

Fig. 9 Relationships between (a) quartz content, (b) clay content and fractal dimension.

(a) (b)

Fig. 10 Relationships between (a) Rp, (b) Rt and Fd.

due to the fact that abundant pores exist in the
clay minerals. The size of clay dominated pores
is tiny, and the pore morphology is complicated
and various (Fig. 1), which leads to complex pore
structure.

4.3.2. Relationship between pore
structure parameters and Fd

Figure 10 shows a good relationship between D
and Rp and Rf , with correlation coefficients of
0.6778 and 0.6303, respectively. Fd increases with
a decreasing of Rp and Rf . This discovery is con-
sistent with the previous results. This means that
tight oil reservoirs with smaller average pore radius
would have stronger complexity of pore structure.
It can be seen in Fig. 11, there is a negative corre-
lation between Fd and Sm with a correlation coef-
ficient of 0.305. Sm is gradually decreased with an
increase of Fd. Which indicates that stronger com-
plexity of pore structure leads to smaller effective
storage space and lower charging efficiency of oil
and gas. Through the above analysis, tight oil reser-
voirs with smaller average pore radius would have

Fig. 11 Relationships between Sm and Fd.

smaller effective storage space and lower hydrocar-
bon charging efficiency.

4.3.3. Relationship between
reservoir quality and Fd

The relationships between the porosity, permeabil-
ity and Fd are established to explore the influence
of fractal dimension on reservoir quality (Fig. 12).
According to Fig. 12a, fractal dimension showed a
negative correlation with the porosity with a R2 of
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(a) (b)

Fig. 12 Relationships between (a) porosity, (b) permeability and fractal dimension.

0.556, which indicates that in Lucaogou tight oil
reservoir, higher complexity of pore structure leads
to poor storage capacity. This finding is same to the
discussion results of Sec. 4.4.2. Besides, there was
no obvious relationship between D and permeabil-
ity (Fig. 12b), while it is worth noting that only one
data point (Sample 4) deviated from the whole rule
line. There is a good negative correlation between
D and permeability if the data point is removed,
this is interpreted as the higher complexity of pore
structure leading to poor flow capacity of Lucaogou
tight oil reservoir.

4.3.4. Comparison of fractal
characteristics of different
tight reservoirs

Fractal characteristics of Lucaogou tight oil reser-
voir have been compared to other four typical tight

reservoirs (Table 3). As is seen from the table, the
pore structure of these tight reservoirs is complex
with fractal dimension ranging from 2.49 to 2.88.
Fractal dimension of Lucaogou tight oil reservoir
is largest because of the complex lithology. Quan-
tou formation is an important tight reservoir in
Songliao Basin, China, with the fractal dimension of
2.78, which shows strong complexity of pore struc-
ture. The fractal characteristics and main control-
ling factors are similar to Lucaogou tight oil reser-
voir. Bakken formation is one of the largest tight
oil reservoirs located in the Williston Basin, USA.
Bakken formation acts also an important source of
oil and gas, with a high content of TOC (>10%).22

The fractal dimension is about 2.62, smaller than
that of Lucaogou and Quantou tight oil reservoirs,
which means pore structure of Lucaogou tight oil
reservoir is more complex than Bakken tight oil
reservoir. Chang 7 formation and Shihezi formation

Table 3 Fractal Characteristics of Different Tight Reservoirs.22,29,44,47

Country China

Basin Junggar Songliao Ordos

Formation Lucaogou Quantou Shihezi Chang7

Fractal Max Min Mean Max Min Mean Max Min Mean Max Min Mean
dimension 2.91 2.84 2.88 2.98 2.35 2.75 2.89 2.02 2.56 2.66 2.20 2.53

Country USA

Basin Williston
Formation Bakken

Upper Bakken Middle Bakken Lower Bakken

Fractal Max Min Mean Max Min Mean Max Min Mean
dimension 2.73 2.62 2.7 2.54 2.30 2.49 2.71 2.69 2.7
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are the typical tight reservoirs of Ordos Basin,
China.29,47 The fractal dimensions are 2.56 and 2.53
respectively, smaller than that of Lucaogou and
Quantou tight reservoirs.

With the maturation of organic matter, a large
number of organic pores are produced, and the com-
plexity of organic pores is poor compared to clay
dominated pores.32 It can be summed up that the
existence of organic matter leads to the poor com-
plexity of pore structure. Overall, tight reservoirs
have strong complex pore structure. Fractal the-
ory can be used to effectively characterize the pore
complexity of tight reservoirs. The tight reservoirs
have different fractal characteristics due to differ-
ent control factors. Clay content and brittle mineral
content are the main controlling factors of fractal
characteristics for tight stratums which only act as
reservoirs.

5. CONCLUSIONS

(1) The pores in Lucaogou formation are divided
into four types, microfractures, clay dominated
pores, dissolution pores and residual inter-
particle pores. The size of dissolution pores and
interparticle pores was larger, in comparison
with clay dominated pores.

(2) The overall PSD was calculated under the
method of combination of PMI and RMI. The
overall PSD of different lithologies is distinctly
different, which is polymodal and the pore radii
vary between 3.6 nm and 500 µm. The dolomi-
crite and mudstone samples have most tiny
pores (<100 nm).

(3) Fd values are distributed in between 2.843 and
2.913 with a mean value of 2.88, showing a
rather complex pore system. Clay content and
quartz content are two main factors controlling
pore system in which pore system controls the
reservoir quality of Lucaogou tight oil reservoir.

(4) Different tight reservoirs have different fractal
characteristics due to a variety of control fac-
tors. Clay content, brittle mineral content are
main controlling factors of fractal character-
istics for tight stratums which only act as a
reservoir.

ACKNOWLEDGMENT

This work was supported by National Basic
Research Program of China (No. 2015CB250901),
the China National Science and Technology Major

Project (Nos. 2016ZX05010-001, 2016ZX05014002-
008), and the Foundation of State Key Laboratory
of Petroleum Resources and Prospecting, China
University of Petroleum, Beijing (No. PRP/open-
1601).

ABBREVIATIONS

MIP = Mercury injection porosimetry
RMI = Rate-controlled mercury injection
PMI = Pressure-controlled mercury injection
PSD= Pore size distribution
FE-SEM= Field emission scanning electron

microscopy
SEM= Scanning electron microscopy
NMR= Nuclear magnetic resonance
LTNA= Low-temperature N2 adsorption
LTCA= Low-temperature CO2 adsorption
CT = X-ray computed tomography
EIA= Energy Information Administration
NRC = Natural Resources Canada
Fd = Fractal dimension
Sr = Residual mercury saturation
Sm = Maximum mercury saturation
Pt = Threshold pressure of PMI
P50 = medium saturation pressure
Rt = Average throat radius
Rp = Average pore radius
Pd = Threshold pressure of RMI
St = Throat body mercury intrusion saturation
Sf = Final mercury intrusion saturation
Sb = Pore body mercury intrusion saturation
R2 = Correlation coefficient.
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