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Abstract
We report a combined experimental and theoretical study of the growth of sub-monolayer amounts of silicon (Si) on molybdenum

disulfide (MoS2). At room temperature and low deposition rates we have found compelling evidence that the deposited Si atoms

intercalate between the MoS2 layers. Our evidence relies on several experimental observations: (1) Upon the deposition of Si on

pristine MoS2 the morphology of the surface transforms from a smooth surface to a hill-and-valley surface. The lattice constant of

the hill-and-valley structure amounts to 3.16 Å, which is exactly the lattice constant of pristine MoS2. (2) The transitions from hills

to valleys are not abrupt, as one would expect for epitaxial islands growing on-top of a substrate, but very gradual. (3) I(V) scan-

ning tunneling spectroscopy spectra recorded at the hills and valleys reveal no noteworthy differences. (4) Spatial maps of dI/dz

reveal that the surface exhibits a uniform work function and a lattice constant of 3.16 Å. (5) X-ray photo-electron spectroscopy

measurements reveal that sputtering of the MoS2/Si substrate does not lead to a decrease, but an increase of the relative Si signal.

Based on these experimental observations we have to conclude that deposited Si atoms do not reside on the MoS2 surface, but

rather intercalate between the MoS2 layers. Our conclusion that Si intercalates upon the deposition on MoS2 is at variance with the

interpretation by Chiappe et al. (Adv. Mater. 2014, 26, 2096–2101) that silicon forms a highly strained epitaxial layer on MoS2.

Finally, density functional theory calculations indicate that silicene clusters encapsulated by MoS2 are stable.
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Introduction
Since the discovery of graphene [1-4] interest has extended to

the search for other 2D materials with properties similar to

graphene. One appealing candidate is silicene, a graphene-like

2D allotrope of silicon. The first calculations of graphite-like

allotropes of silicon and germanium were performed by Takeda

and Shiraishi in 1994 [5]. These authors pointed out that two-

dimensional silicon and germanium are not planar but buckled,

i.e., the two sub-lattices of the honeycomb lattice are displaced

with respect to each other in a direction normal to the two-

dimensional sheet. In addition, the calculations of Takeda and

http://www.beilstein-journals.org/bjnano/about/openAccess.htm
mailto:h.j.w.zandvliet@utwente.nl
https://doi.org/10.3762%2Fbjnano.8.196
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Shiraishi [5] also revealed that silicene and germanene are

semi-metals, like graphene. In 2007, Guzmán-Verri and Lew

Yan Voon [6] performed tight-binding calculations of two-

dimensional silicon. They pointed out that the graphite-like

silicon sheet has linearly dispersing energy bands near the K

points of the Brillouin zone, very comparable to graphene.

Inspired by this analogy they put forward the name silicene for

the two-dimensional silicon. Interestingly, the linear dispersing

energy bands at the K points, the so-called Dirac cones, are

robust against the buckling of the silicene lattice [5,7]. In 2009,

Cahangirov et al. [7] found that germanene also exhibits simi-

lar properties as graphene and silicene.

Similar to graphene, the electrons near the Fermi level in free-

standing silicene are predicted to behave as massless Dirac

fermions [6]. The broken sub-lattice symmetry of silicene

allows for the opening of a band gap in this material [8-12].

This band gap makes silicene a very appealing candidate for

field-effect-based devices. Another attractive property of

silicene is its spin–orbit coupling, which is substantially larger

than the spin–orbit coupling in graphene [13,14].

Silicene does not occur in nature and therefore it has to be syn-

thesized. Several studies have reported on the growth of a 2D

silicon layer on Ag(111) [15-17]. Unfortunately, due to the

strong coupling between Si ad-layer and Ag substrate, the inter-

esting Dirac properties of silicene are destroyed [18]. Although

a linear dispersion relation has been observed [17], it is argued

by others that this band is related to the Ag substrate rather than

to silicene [19] or to combined effects of silicene and the

Ag(111) substrate [20,21]. Growth of silicon was also demon-

strated on graphite, a van der Waals material, with the idea to

suppress the interaction with the substrate and as such to

preserve the Dirac properties [22]. Unfortunately, graphite is

metallic, which could also affect the electronic bands of silicene

in the vicinity of the Fermi level. Van der Waals materials with

a band gap do not suffer from this limitation. Molybdenum

disulfide (MoS2) is a member of the transition metal dichalco-

genide (TMD) family that belongs to the class of van der Waals

materials. Bulk MoS2 has a band gap of 1.29 eV, which in-

creases to 1.90 eV for a monolayer of MoS2 [23]. This means

that MoS2 has no states near the Fermi level and therefore

hybridization with the energy bands of silicene near the Fermi

level cannot occur. Recently, germanene, a 2D allotrope of

germanium [24-28], has already been successfully grown on

MoS2 [29]. Chiappe et al. [30] deposited Si on MoS2 and found

that Si forms an epitaxially strained layer on top of MoS2 with a

lattice constant identical to the MoS2 lattice constant, i.e.,

3.16 Å. A study confirming the two-dimensionality of deposited

Si on MoS2 has recently been carried out using variable-angle

X-ray photoelectron spectroscopy (XPS) [31]. It should be

pointed out here that this study showed that the S 2p3/2 peak in

MoS2 is at around 167.6 eV, which is considerably higher than

the pure core-level line of pure S. This high value might be an

indication of contamination with O [32] or Ni [33].

Here we revisit the growth of Si on MoS2. Our scanning tunnel-

ing microscopy (STM) observations are very similar to those re-

ported by Chiappe et al. [30]. However, we arrive at the conclu-

sion that Si intercalates between the MoS2 layers. In order to

verify our conclusion we have performed additional spectros-

copic measurements. These additional spectroscopic measure-

ments unambiguously reveal that sub-monolayer amounts of Si

deposited on MoS2 at room temperature do not reside on top of

MoS2, but intercalate between the MoS2 layers.

Experimental
The scanning tunneling microscopy and spectroscopy measure-

ments were performed with an Omicron STM-1 room-tempera-

ture scanning tunneling microscope in ultra-high vacuum

(UHV). The UHV system is composed of three separate cham-

bers: a load-lock chamber for a quick entry of new samples and

STM tips, a preparation chamber with facilities for sample

heating, ion bombardment and evaporation of silicon and an

STM chamber. The base pressures in the STM chamber and

the preparation chamber are below 3 × 10−11 mbar and

5 × 10−11 mbar, respectively. The MoS2 samples are purchased

from HQ graphene. Prior to inserting the samples into the lock-

load system they were cleaned by mechanical exfoliation.

Silicon was deposited on the MoS2 samples using a custom-

built Si evaporator, which consists of a small piece of a Si wafer

that can be heated resistively. The distance between substrate

and evaporator is about 10 cm. The silicon was deposited at a

rather low deposition rate of 0.8 nm·h−1. The silicon evaporator

was calibrated by depositing a sub-monolayer amount of Si on a

Ge(001) substrate. The Ge(001) surface was cleaned by

applying several cycles of Ar ion sputtering and annealing.

After deposition and mild annealing at a temperature of

450–500 K, the Ge(001) substrate was inserted into the STM

and subsequently the areal coverage of the epitaxial Si islands

was determined. I(V) curves are recorded at constant height at

450 ms per curve. Spatial maps of dI/dz are measured using a

lock-in amplifier. A small high frequency (ca. 1.9 kHz) sinu-

soidal signal is added to the z-piezo and the tunnel current is fed

into the lock-in amplifier. The output signal of the lock-in

amplifier, which is proportional to dI/dz, is measured simulta-

neously with the topography.

MoS2 samples used for the X-ray photoelectron spectroscopy

(XPS) experiments were purchased from nanoScience Instru-

ments. The MoS2 samples were exfoliated before Si deposition.

In a separate UHV chamber, Si was deposited on the MoS2
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Figure 1: (a) STM image of pristine MoS2 taken prior to the deposition of Si. The arrow indicates an intrinsic defect, which is often found on MoS2.
(b) High-resolution STM image of pristine MoS2. (c) Fast Fourier-transform of pristine MoS2 showing the hexagonal symmetry. (d) STM image taken
after the deposition of 0.2 monolayers of Si. The arrows indicate a hill (bright) and a valley (dark). (e) High-resolution STM image taken after the depo-
sition of 0.2 monolayers of Si. (f) Line scans taken along the lines indicated in panel (e). The sample bias is 1.2V and the tunnelling current is 0.5 nA.

sample via resistive heating of a small piece of a silicon wafer

and then the MoS2 sample was quickly transferred to the XPS

chamber. During this transfer the sample was exposed to

ambient conditions. The deposited amount of Si was

0.5 monolayers. The base pressure of both chambers is below

4 × 10−10 mbar. Both MoS2 and Si/MoS2 samples were

measured with a monochromatic Al Kα (1486.6 eV) X-ray

source with a pass energy of 89.5 eV and 35.75 eV for survey

and high-resolution scans, respectively. During the XPS mea-

surements, the pressure was kept at or below 1 × 10−9 mbar.

The angle between the X-ray source, which is aligned along the

surface normal, and spectrometer is 54.7°. All XPS core-level

spectra were analyzed using Augerscan software, which is

equipped with its own curve-fitting program. The core-level

peaks are fitted using a Gaussian–Lorentzian (GL) function to

include the instrumental response function along with the core-

level line shape. The secondary-electron background was

subtracted using a Shirley function [34]. The energy differ-

ences between the 3d and 2p spin–orbit couples were set to

3.13 eV and 1.18 eV, respectively. The ratios of the areas of the

doublet peaks were also fixed. During sputtering the pressure is

increased to 3 × 10−8 mbar by leaking in Ar gas while the pres-

sure around the filament in the differentially pumped argon gas

chamber increased to 1 × 10−4 mbar. The sample was sputtered

with a beam of Ar ions with 1 kV energy. The emission current

used was 25 mA, which resulted in an ion current of 0.33 μA.

The shape of the beam is circular with a diameter of approxi-

mately 2 mm.

First-principles calculations are based on the projector-

augmented wave (PAW) method [35,36] within DFT as imple-

mented in the Vienna ab initio simulation package (VASP) [37].

The exchange–correlation interactions are treated using the

generalized gradient approximation (GGA) within the

Perdew–Burke–Ernzerhof (PBE) formulation [38]. The plane

waves are expanded with an energy cut of 400 eV. Since the

semi-local functionals, such as GGA, fail to describe weakly

interacting systems, we also take into account the van der Waals

interaction [39,40]. Brillouin-zone integrations for structure re-

laxations are approximated by using the special k-point

sampling of the Monkhorst–Pack scheme with a Γ-centered

3 × 3 × 1 grid [41]. In order to minimize the periodic interac-

tions along the z-direction (the direction perpendicular to the

plane of the hetero-trilayer) the vacuum space between the

layers has a width of at least 15 Å.

Results and Discussion
In Figure 1, STM images of pristine MoS2 and MoS2 after the

deposition of ca. 0.2 monolayers of Si at room temperature are

shown. The pristine MoS2 surface appears very smooth. Usually

only the top sulfur layer is resolved, resulting in a lattice with

hexagonal symmetry and a lattice constant of 3.16 Å (see
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Figure 3: (a) STM image of a MoS2 surface after the deposition of 0.2 monolayers of Si. (b) Spatial map of dI/dz. In both images the atomic structure
is resolved. (c) Line- scan taken along the dotted line depicted in panel (a). Sample bias is 1.2 V and tunnel current is 0.5 nA.

Figure 1b,c). The pristine MoS2 contains some intrinsic defects,

which are visible as dark depressions as indicated by the arrow

in Figure 1a. These defects are most probably caused by vacan-

cies or interstitials and have been found to exhibit a metal-like

behavior [42,43]. Upon the deposition of 0.2 monolayers of Si,

the surface morphology converts to a hill-and-valley structure

as shown in Figure 1d. The arrows indicate a bright hill and a

dark valley. Upon further deposition of silicon, the surface

becomes rougher and more difficult to scan as shown in Figure

S1 in Supporting Information File 1. When even more silicon is

deposited, silicon clusters on top of MoS2 become visible. A

close-up image of the transition of a hill to a valley is repre-

sented in Figure 1e. The line profiles indicated in the figure cor-

respond to the cross sections shown in Figure 1f. The typical

height variation of a transition is found to be of several

angstroms. We found a similar height variation using density

functional theory (DFT) calculations of the intercalation of a

single silicon layer in between two MoS2 layers. These calcula-

tions are discussed after the presentation of the experimental

results. It is immediately obvious from Figure 1f that the transi-

tion from a hill to a valley is very gradual. Interestingly, the

lattice constant of the hill-and-valley structure is identical to the

lattice constant of pristine MoS2, i.e. 3.16 Å. Both observations

are similar to the observations reported by Chiappe et al. [30]

who deposited 0.8 monolayers of silicon on MoS2 (obtained

from SPI) at 200 °C. Based on these observations Chiappe et al.

[30] concluded that Si grows epitaxially on MoS2 with a lattice

constant that is identical to MoS2. This implies that the Si layer

is highly strained, indicative of a rather strong interaction be-

tween MoS2 and Si. This seems unlikely, bearing in mind that

MoS2 is a van der Waals material. We tentatively put forward

another interpretation, namely that Si intercalates between the

MoS2 layers. The gradual transition from a hill to a valley as

well as the observation of the MoS2 lattice constant after Si

deposition nicely fits into this picture.

In order to verify our interpretation we have performed addi-

tional scanning tunneling spectroscopy (STS) measurements.

I(V) scanning tunneling spectra were recorded at the hills and

valleys as indicated by the arrows in Figure 1d. Average spec-

troscopy curves of a hill and of a valley, which in total are

comprised of 3500 spectra, are displayed in Figure 2. The I(V)

spectra are almost identical to each other. The small difference

between both curves might be a residual effect of Si residing

underneath the MoS2 layer. If the top layer were a silicon

cluster the I(V) spectra would differ significantly as is shown in

Figure S2 in Supporting Information File 1.

Figure 2: STS recorded at the hills (black curve) and at the valleys
(red curve). Set points sample bias 1.2 V and tunnel current 0.5 nA.

In order to remove the large-scale height variation from the to-

pography scan, we simultaneously recorded a spatial map of

dI/dz (Figure 3). The dI/dz signal only depends on the effective

work function, also referred to as the apparent barrier height,

and not on any large-scale height variations [44,45]. It should
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Figure 4: Core-level spectra of (a) Mo and (b) S before depositing Si. The spectra are fitted with two GL function peaks. In (a), 1 and 2 represent the
Mo 3d5/2 and 3d3/2 peaks, respectively. In (b), 1 and 2 represent the S 2p3/2 and 2p1/2 peaks, respectively. In both figures, the resultant fitted spectra
are represented by an orange line.

be pointed out here that spatial maps of dI/dz often exhibit a

resolution that is similar to normal topographic STM images

without, of course, the large-scale height variations [44].

The results shown in Figure 3 make clear two points. First,

since height information is not present in a dI/dz map we have

to conclude that the surface is smooth and continuous. Second,

dI/dz provides information on the apparent barrier height, which

is a material property. No contrast is visible and therefore we

have to conclude that we are dealing with the same material,

i.e., MoS2. Both these points provide compelling evidence that

the deposited Si intercalates between the MoS2 layers. For a

comparable system, namely Si on WSe2, we recently arrived at

a similar conclusion [45].

XPS measurements have been performed to obtain insight of

the chemical composition of the top layers. Before depositing

Si, XPS measurements were carried out on pristine MoS2 in

order to find the exact positions of the Mo 3d5/2 and S 2p3/2

core-level peaks. (Figure 4a and Figure 4b, respectively). The

Mo 3d5/2 and S 2p3/2 peaks were measured at 230.25 eV and

163.09 eV, respectively. The location of these peaks is in good

agreement with [46,47].

The core-level spectra of Si, Mo and S after the deposition of

0.5 monolayers of Si on MoS2 are shown in Figure 5a,

Figure 5b and Figure 5c, respectively. A higher coverage than

in the case of STM is used in order to yield a stronger signal in

the XPS measurements. STM topography images with a higher

coverage can be found in Figure S1 in Supporting Information

File 1. The XPS data show two peaks associated with Si. The

smaller peak, located at 98.13 eV, can be attributed to pristine

Si. The other peak, measured at 103 eV, can be attributed to

oxidized silicon [48]. The oxidation of Si occurs during the

transfer of the sample from the growth chamber to the XPS

chamber. During this transfer the sample was exposed to

ambient conditions. A more detailed analysis reveals that only

5% of the Si is pristine, whereas the rest is oxidized. Upon sput-

tering of the MoS2/Si sample with an Ar ion beam with 1 kV

energy, we observe that the relative Si signal increases while

the relative S signal decreases as can be seen in Figure S3 in

Supporting Information File 1. This observation indicates that

Si has intercalated between the MoS2 layers. In addition, we

also conclude that the intercalated Si can be oxidized.

It is well known that numerous elements have a strong tenden-

cy to intercalate between MoS2 layers [49,50]. As for the inter-

calation mechanism of silicon in between MoS2 layers, we can

only speculate. A plethora of studies on the intercalation of dif-

ferent chemical species in TMDs have been reported from ele-

ments as small as lithium [51], sodium [52-54] and carbon [55]

to elements as large as cesium [56,57] and gold [58]. Other

studies report on the intercalation of silicon and other elements

under graphene layers synthesized on metal substrates [59-61].

The driving force for intercalation is charge transfer between

the intercalated atoms and the layered material [62,63] or

thermodynamic stabilization [61,62]. The mechanism of inter-

calation was found to occur through cracks and wrinkles in the

layers [60] and via edges [51]. Because the diffusion barrier of

adsorbed silicon atoms on top of MoS2 is assumed to be very

low and the experiments are performed at room temperature, it

is expected that silicon adatoms can easily diffuse over the sur-

face to reach these cracks, wrinkles and step edges.
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Figure 5: Core-level spectra of (a) Si, (b) Mo and (c) S after depositing Si. The peak-fitting procedure is the same as in Figure 4. In panel (a) a small
peak at around 98.1 eV was needed to fit the tail of the peak at the lower-energy side. Orange lines represent the resultant fitted spectra.

In order to study the effect of the oxidation of intercalated

silicon in more detail we measured the exact positions of the

Mo 3d5/2 and S 2p3/2 peaks. Both peaks shift to a lower binding

energy by about 0.45 eV. This shift cannot be interpreted as a

simple chemical shift due to a chemical reaction of the involved

elements, i.e., Mo/S/Si and O [64]. In addition, after the deposi-

tion of Si no significant changes in the FWHM of the peaks of

Mo (0.97 before, 1.13 after) as well as of S (1.09 before, 1.21

after) were observed, indicating that no chemical reaction be-

tween MoS2 and silicon oxide has occurred. It is very likely that

the observed shift is attributed to a change in the position of the

Fermi level.

It has been shown that the deposition of MoS2 on a SiO2 sub-

strate with interface impurities leads to a charge transfer from

the MoS2 surface to the defect states and, thus, to the formation

of surface dipoles [65]. These dipoles shift the Fermi level of

MoS2 closer to the valence band maximum (p-type). The shift

of the Fermi level also leads to a shift in the binding energy of

the Mo and S peaks to lower binding energies.

Next, we will discuss the results of our density functional

theory calculations regarding the intercalated Si. To be

consistent with experimental results we have fixed the lattice

constant of MoS2 to 3.16 Å. We first calculated the structural

and electronic properties of hetero-trilayers composed of a

silicene layer intercalated between two MoS2 monolayers

(MoS2–silicene–MoS2). Due to the large lattice mismatch, we

have considered a commensurable supercell, in which we have
Figure 6: Top and side views of silicene intercalated in bilayer MoS2.

placed a 5 × 5 silicene cell and a 6 × 6 MoS2 cell on top of each

other. For this configuration the lattice mismatch of the

MoS2–silicene–MoS2 trilayer becomes less than 1%. Figure 6

shows the optimized structure of the MoS2–silicene–MoS2

hetero-trilayer. The calculated interlayer distance in a pristine
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Figure 7: Initial (left) and equilibrium (right) structure of (a) a free standing and (b) an intercalated silicon cluster (Si37).

MoS2 bilayer is found to be 3.00 Å. Insertion of a silicene

monolayer enlarges the interlayer separation between MoS2

layers from 3 Å to 6.52 Å, corresponding to an increase of the

interlayer separation of 3.52 Å.

In order to study the possible formation of silicene between the

MoS2 monolayers, we consider a buckled 2D silicon cluster

(Si37) consisting of six-membered silicon rings. We used a

7 × 7 super-cell structure for the MoS2 bilayer. Initial and equi-

librium geometries for both a free-standing as well as the inter-

calated silicon cluster inserted between the MoS2 layers are

shown in Figure 7. We found that a free-standing 2D buckled

silicon cluster is, in contrast to an infinite silicene layer, not

even metastable in vacuum and spontaneously transforms into a

strongly buckled 3D assembly as seen in Figure 7a. The interca-

lated silicon cluster in Figure 7b also undergoes a remarkable

structural reconstruction. The optimized structure of a silicon

cluster encapsulated between two MoS2 layers is totally differ-

ent from the free-standing optimized silicon cluster in vacuum.

This is noticeable in that the shape of the hexagons is not

uniform as is the case for silicene. Especially at the edges, due

to the presence of the Si dangling bonds, the hexagons are seri-

ously distorted. However, intercalation between MoS2 layers

preserves the 2D buckled structure of the silicon cluster during

the structure relaxation. Thus, we suggest that the intercalation

of silicon atoms between MoS2 layers may promote the forma-

tion of silicene, which interacts only weakly with the environ-

ment via van der Waals forces. We found that both top and

bottom MoS2 layers develop bumps due to the interaction with

the silicon cluster. The average interlayer MoS2 distance varies

within the range of 5.5–6.2 Å, which corresponds to an increase

in interlayer separation of 2.5-3.2 Å. This agrees well with the

measured height variation.

Conclusion
In this work we revisited the growth of Si on MoS2. STM to-

pography data reveals that Si does not grow on top of the MoS2

substrate, but rather intercalates in between the MoS2 layers. It
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is known that layered materials such as MoS2 have a tendency

to host intercalants. In this work we provide additional evi-

dence for silicon intercalation by using STS and XPS. Since

silicon intercalates it is interesting to scrutinize if there are pos-

sibilities to grow a 2D layer in between two layers of MoS2.

Our density functional theory calculations show that 2D silicon

clusters intercalated between MoS2 layers are stable.

Supporting Information
Supporting Information File 1
Additional experimental data.

[http://www.beilstein-journals.org/bjnano/content/

supplementary/2190-4286-8-196-S1.pdf]
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