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Abstract. Due to instrument sensitivities and algorithm de-
tection limits, level 2 (L2) Cloud-Aerosol Lidar with Orthog-
onal Polarization (CALIOP) 532 nm aerosol extinction pro-
file retrievals are often populated with retrieval fill values
(RFVs), which indicate the absence of detectable levels of
aerosol within the profile. In this study, using 4 years (2007–
2008 and 2010–2011) of CALIOP version 3 L2 aerosol
data, the occurrence frequency of daytime CALIOP pro-
files containing all RFVs (all-RFV profiles) is studied. In
the CALIOP data products, the aerosol optical thickness
(AOT) of any all-RFV profile is reported as being zero,
which may introduce a bias in CALIOP-based AOT clima-
tologies. For this study, we derive revised estimates of AOT
for all-RFV profiles using collocated Moderate Resolution
Imaging Spectroradiometer (MODIS) Dark Target (DT) and,
where available, AErosol RObotic NEtwork (AERONET)
data. Globally, all-RFV profiles comprise roughly 71 % of
all daytime CALIOP L2 aerosol profiles (i.e., including com-
pletely attenuated profiles), accounting for nearly half (45 %)
of all daytime cloud-free L2 aerosol profiles. The mean col-
located MODIS DT (AERONET) 550 nm AOT is found to
be near 0.06 (0.08) for CALIOP all-RFV profiles. We further
estimate a global mean aerosol extinction profile, a so-called
“noise floor”, for CALIOP all-RFV profiles. The global mean
CALIOP AOT is then recomputed by replacing RFV values
with the derived noise-floor values for both all-RFV and non-
all-RFV profiles. This process yields an improvement in the
agreement of CALIOP and MODIS over-ocean AOT.

1 Introduction and motivation

Cloud-Aerosol Lidar with Orthogonal Polarization
(CALIOP) measurements provide critical information
on aerosol vertical distribution for studies involving aerosol
modeling (e.g., Campbell et al., 2010; Sekiyama et al., 2010;
Yu et al., 2010; Zhang et al., 2011, 2014), air quality (e.g.,
Martin, 2008; Prados et al., 2010; Toth et al., 2014), aerosol
climatic effects (e.g., Huang et al., 2007; Chand et al., 2009;
Tesche et al., 2014; Thorsen and Fu, 2015; Alfaro-Contreras
et al., 2016), and aerosol climatologies (Pappalardo et al.,
2010; Wandinger et al., 2011; Amiridis et al., 2015; Toth
et al., 2016). In addition, the column-integrated aerosol
optical thickness (AOT) derived from level 2 (L2) CALIOP
532 nm observations is also widely used in comparing
and combining with passive-based L2 aerosol retrievals
for a comprehensive understanding of regional and global
aerosol optical properties (e.g., Redemann et al., 2012). Two
such passive-based systems are Aqua Moderate Resolution
Imaging Spectroradiometer (MODIS), due to its proximity
to CALIOP in the A-Train satellite constellation (Levy et
al., 2013), and AErosol RObotic NEtwork (AERONET) sun
photometers, which is the primary means for validation of
satellite AOT retrievals (Holben et al., 1998).

It is well-documented that a discrepancy exists between
CALIOP-derived AOTs and those from MODIS data (i.e.,
CALIOP retrievals lower than MODIS counterparts), albeit
when invoking varying quality-assurance (QA)/quality con-
trol (QC) procedures across different time frames and spatial
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domains (e.g., Kacenelenbogen et al., 2011; Kittaka et al.,
2011; Redemann et al., 2012; Kim et al., 2013; Ma et al.,
2013). These studies tend to attribute the AOT differences to
either uncertainties/cloud contamination in the MODIS re-
trieval or incorrect selection of the lidar ratio (extinction-
to-backscatter ratio; Campbell et al., 2013) when deriving
CALIOP aerosol extinction and subsequent AOT. In a sim-
ilar fashion, CALIOP AOTs have been evaluated against
AERONET-derived AOTs, with the disparities (CALIOP
lower) attributed to incorrect CALIOP lidar ratio assump-
tions, cloud contamination, and differences in instrument
viewing angles (Schuster et al., 2012; Omar et al., 2013).

While some studies cite the failure to detect tenuous
aerosol layers as a possible factor in the aforementioned
AOT discrepancy (Kacenelenbogen et al., 2011; Rogers et
al., 2014), the extent to which these layer detection failures
contribute to the AOT differences between multiple sensors
has not been fully quantified. For L2 CALIOP profiles, an ex-
tinction coefficient retrieval is performed only for those range
bins for which aerosol backscatter is detected above the al-
gorithm noise floor. Otherwise, the bins are assigned fill val-
ues (retrieval fill values or RFVs) within the corresponding
profile (i.e., −9999.00 s; Vaughan et al., 2009; Winker et al.,
2013). In fact, all L2 CALIOP extinction profiles contain a
nonzero percentage of RFVs. It is thus critical to recognize
that since lidar-derived AOTs reflect the integration of range-
resolved extinction retrievals in the absence of multi-spectral
instruments (i.e., Raman and high spectral resolution lidars,
HSRLs), there will always be range bins in which aerosol is
present below the detection thresholds of the instrument. In-
deed, even in relatively “clean” conditions, low extinction but
geometrically deep aerosol loadings can result in significant
AOT contributions (Reid et al., 2017).

For a fairly large subset of CALIOP daytime measure-
ments, no aerosol is detected anywhere within a column and
hence no aerosol extinction is retrieved. This results in an
aerosol extinction profile consisting entirely of RFVs (de-
fined as CALIOP all-RFV profiles in this study). Assigning
aerosol extinction coefficients to 0.0 km−1 to replace fill val-
ues during integration of the extinction coefficient profile re-
sults in a corresponding column AOT equal to zero. Note that
this scenario further includes those profiles reduced to fill
values in the process of applying QA procedures on a per-
bin basis (e.g., Campbell et al., 2012; Winker et al., 2013).
Thus, it is plausible that a column exhibiting significant AOT
may be underestimated in those cases in which the aerosol
backscatter is both highly diffuse and unusually deep and
thus consistently falls below the algorithm detection thresh-
old.

The RFV issue is essentially a layer detectability prob-
lem which has been previously investigated in regional vali-
dation studies. For example, Rogers et al. (2014) evaluated
the CALIOP layer and total-column AOT with the use of
collocated HSRL data. Minimum detection thresholds for
aerosol extinction were estimated as 0.012 km−1 at night

and 0.067 km−1 during the daytime (in a layer median con-
text). From a column-integrated perspective, CALIOP algo-
rithms were found to underestimate AOT by about 0.02 dur-
ing nighttime (attributed to tenuous aerosol layers in the free
troposphere). During the daytime, due to the influence of the
solar background signal, CALIOP algorithms were unable to
detect about half of weak (AOT < 0.1) aerosol profiles.

At first glance, the RFV issue may seem superfluous and
easily resolved in a subsequent study. In fact, the issue has
already caused some confusion within the literature. For
example, some studies (e.g., Redemann et al., 2012; Kim
et al., 2013; Winker et al., 2013) include all-RFV profiles
(i.e., AOT= 0) for analysis when evaluating climatologi-
cal AOT characteristics. Campbell et al. (2012, 2013) and
Toth et al. (2013, 2016), on the other hand, do not include
all-RFV profiles while generating climatological averages.
Clearly, the first approach introduces an artificial underes-
timation of mean AOT by including profiles in which AOT
was not retrieved. The latter, however, presumably leads to
an overestimation, since it is likely that all-RFV profiles re-
flect relatively low AOT cases (i.e., lower than any apparent
mean sample value) in which CALIOP layer detection ex-
hibits a lack of sensitivity to diffuse aerosol presence that
caused nothing to be reported within the column. As a re-
sult, Kim et al. (2013) and Winker et al. (2013) report global
mean CALIOP AOTs lower than those from Campbell et
al. (2012), not including the profiles. Other factors (e.g., dif-
ferent temporal domains and QA metrics invoked) also con-
tribute to the observed disparity in these global mean AOT
computations. This state of affairs indicates a clear need to
carefully quantify the occurrence frequency of all-RFV pro-
files on a global scale, and, if possible, derive representative
column-integrated AOT values for RFV profiles.

Further, and as introduced above, for non-all-RFV profiles
there remain range bins with RFVs in which low aerosol ex-
tinction is likely present (the sum of which, however, can
result in a relatively significant AOT). Though some QA
can filter obvious cases of attenuation-limited profiles (e.g.,
require aerosol presence within 250 m of the surface as in
Campbell et al., 2012, 2013), the only current remedy other-
wise is to accept RFV bins as equal to zero extinction, then
integrating to obtain a column AOT estimate. It is compelling
to investigate, in a manner similar to Rogers et al. (2014),
what this quantitative effect is for climatological analysis.

In this paper, using 4 years (2007–2008 and 2010–2011)
of daytime observations from CALIOP, Aqua MODIS, and
AERONET, we investigate the RFV issue with an emphasis
on the following questions:

1. What is the frequency of occurrence of all-RFV profiles
in the daytime cloud-free CALIOP data set?

2. By collocating MODIS and AERONET AOTs with
CALIOP cloud-free all-RFV profiles, what is the modal
AOT associated with this phenomenon and how ran-
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domly are the data distributed as a function of passively
derived AOT?

3. What is the quantitative underestimation in CALIOP
AOT due to RFVs in profiles in which extinction is re-
trieved?

4. How much of the discrepancy between MODIS and
CALIOP L2 over-ocean AOT retrievals can be ex-
plained by RFVs and all-RFV profiles?

We note that the primary CALIOP laser failed in
March 2009, forcing the Cloud-Aerosol Lidar and Infrared
Pathfinder Satellite Observations (CALIPSO) mission team
to switch to a secondary laser. Therefore, 2 years of CALIOP
aerosol data are analyzed prior to, and after, the switch to
investigate any discernible difference in RFV statistics be-
tween the two lidar profiles.

2 Data sets

2.1 CALIOP

Orbiting aboard the CALIPSO satellite within the A-Train
constellation (Stephens et al., 2002), CALIOP is a two-
wavelength (532 and 1064 nm) polarization-sensitive (at
532 nm) elastic backscatter lidar, observing the vertical dis-
tribution of aerosols and clouds in Earth’s atmosphere since
June 2006 (Winker et al., 2010). The 532 nm backscatter pro-
files measured by CALIOP are used to detect aerosol and
cloud features and then retrieve corresponding particle ex-
tinction and subsequent AOTs (i.e., column-integrated ex-
tinction; Young and Vaughan, 2009) within layer boundaries
determined by a multi-resolution layer detection scheme
(Vaughan et al., 2009) and the assumption of a lidar ra-
tio based upon aerosol or cloud type (Omar et al., 2005,
2009). For this study, 532 nm aerosol extinction coefficient
data from the version 3 (V3) CALIPSO L2 5 km Aerosol
Profile (L2_05kmAProf) product are utilized (Winker et al.,
2009; hereafter, all references to CALIOP data imply the
532 nm channel/product). These aerosol profiles are reported
in 5 km segments and feature a vertical resolution of 60 m
below an altitude of 20.2 km above mean sea level (a.m.s.l.).
Only CALIOP data collected during daytime conditions are
considered for this study, so that comparison with aerosol
observations from MODIS and AERONET can be accom-
plished.

Prior to analysis, advanced QA procedures are performed
on the L2_05kmAProf product. This QA scheme is simi-
lar to that employed in Campbell et al. (2012) and Winker
et al. (2013) and involves several parameters included
in the L2_05kmAProf product: Extinction_Coefficient_532
(≥ 0 and ≤ 1.25 km−1), Extinction_QC_532 (= 0, 1, 2,
16, or 18), CAD_Score (≥−100 and ≤−20), and Ex-
tinction_Coefficient_Uncertainty_532 (≤ 10 km−1). The In-
tegrated_Attenuated_Backscatter_532 (≤ 0.01 sr−1) param-

eter from the L2 5 km aerosol layer (L2_05kmALay) product
is also used as a QA metric. A detailed description of these
QA checks is also outlined in our most recent CALIOP-based
study (Toth et al., 2016). Extinction retrievals reported in the
CALIOP data products that do not pass the full suite of QA
tests are converted to RFVs. To limit the influence of clouds
on our analysis (i.e., in order to ensure that the RFV issue is
occurring due to layer detection sensitivity and not because
of attenuation effects caused by cloud presence), each aerosol
profile is cloud screened using the atmospheric volume de-
scription (AVD) parameter. We implement the strictest cloud
screening possible, as profiles are flagged “cloudy” if any of
the bins within the CALIOP column are classified as cloud.

2.2 Aqua MODIS

As an integral part of the payloads for NASA’s Terra
and Aqua satellites, MODIS is a 36-channel spectrora-
diometer with wavelengths ranging from 0.41 to 15 µm.
Seven of these channels (0.47–2.13 µm) are used to re-
trieve aerosol optical properties such as AOT (e.g., Levy et
al., 2013). MODIS L2 aerosol products are reported at a
spatial resolution of 10× 10 km2 at nadir, with a reported
over-ocean expected error of (−0.02–10 %), (+0.04+ 10 %)
(Levy et al., 2013). However, uncertainties for individ-
ual retrievals may be larger (Shi et al., 2011). Also, thin
cirrus contamination may exist in the MODIS aerosol
products (e.g., Toth et al., 2013). In this study, the Ef-
fective_Optical_Depth_Best_Ocean (550 nm) parameter in
the L2 Collection 6 (C6) Aqua MODIS aerosol product
(MYD04_L2; Levy et al., 2013) is utilized. Only those re-
trievals flagged as “good” and “very good” are considered
for analysis, as determined by the Quality_Assurance_Ocean
parameter within the MYD04_L2 files.

2.3 AERONET

Developed for the purpose of furthering aerosol research and
validating satellite retrievals, NASA’s AERONET program
is a federated worldwide system of ground-based sun pho-
tometers that collect measurements of aerosol optical and
radiative properties (Holben et al., 1998). With a reported
uncertainty of ±0.01–0.02 (although this estimate is low in
the presence of unscreened cirrus clouds; e.g., Chew et al.,
2011), AOTs are derived at several wavelengths ranging from
340 to 1640 nm. Due to the lack of retrievals at the CALIOP
wavelength, AOTs at 532 nm are computed from an interpo-
lation of those derived at the 500 and 675 nm channels using
an Ångström relationship (e.g., Shi et al., 2011; Toth et al.,
2013). The highest-quality V2.0 AERONET data (level 2.0)
are used in this study, as these are both cloud screened and
quality assured (Smirnov et al., 2000). Also, only observa-
tions from coastal/island AERONET sites are considered for
comparison with over-ocean CALIOP profiles, despite the
potential overestimation of CALIOP AOT in coastal regions
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502 T. D. Toth et al.: Minimum CALIPSO aerosol layer detection sensitivities

due to the CALIPSO aerosol-typing algorithms (e.g., Kanitz
et al., 2014).

3 Results and discussion

3.1 Demonstrating how CALIOP backscatter
distribution can render profiles of all RFVs

To demonstrate the nature of the RFV problem, Fig. 1 shows
an example of cloud-free all-RFV CALIOP profiles em-
bedded within curtain plots of total attenuated backscatter
(TAB; Fig. 1a) and a matching vertical feature mask (VFM;
Fig. 1b). Both plots were obtained from the CALIPSO Li-
dar Browse Images website (https://www-calipso.larc.nasa.
gov/products/lidar/browse_images/production/), and the data
were collected from CALIOP during the daytime on
2 July 2010 over the Arctic. The VFM shows that the range
bins within the white box are classified as either surface or
clear air features, and thus the corresponding L2 aerosol ex-
tinction coefficient profiles (not shown) are all-RFVs (i.e.,
the AOT= 0 scenario).

However, even under pristine conditions, aerosol particles
are still present in the atmosphere. For example, the baseline
maritime AOT is estimated to be 0.06± 0.01 (Kaufman et al.,
2005; Smirnov et al., 2011). Thus, aerosol particles are likely
present and yet undetected for the all-RFV cases shown in
Fig. 1. Similar issues can also exist for profiles for which
some aerosol is detected. This scenario is represented by the
white arrow in the TAB and VFM plots, and the associated
L2 aerosol extinction coefficient profile is depicted in Fig. 1c.
An aerosol layer is evident from about 1.5 to 2.5 km a.m.s.l.,
leaving the remainder of the column as RFVs.

To further demonstrate the RFV phenomenon in the
CALIOP data set, we next examine differences in TAB found
in profiles for which all-RFVs were reported and those for
which some extinction was retrieved. The CALIPSO Lidar
level 1.5 data product (L1.5) is specifically leveraged for this
task, as TAB for the all-RFVs class of data is not included
in L2 data sets. The L1.5 product is a merging of the L1
and L2 products, cloud cleared, screened for nonaerosol fea-
tures (e.g., surface, subsurface, totally attenuated, invalid),
and available at 20 km (horizontal) and 60 m (vertical) reso-
lutions (Vaughan et al., 2011). One month (February 2008) of
daytime L1.5 TAB profiles over all global oceans were collo-
cated with CALIOP AOTs derived from the L2_05kmAProf
product. The data were limited to only those L1.5 averages
that contain either four contiguous 5 km L2 all-RFV profiles
or, conversely, four contiguous profiles for which extinction
was retrieved in each. The selected TAB profiles were then
averaged to a 20 km resolution for each altitude range (i.e.,
to obtain over global ocean mean TAB profiles).

The results of this analysis are shown in Fig. 2. Profiles
of mean TAB over global oceans for February 2008 are
shown in Fig. 2a; blue lines show all-RFV profiles and red

lines show those for which some extinction was retrieved
(i.e., non-all-RFVs). For most of the troposphere, little dif-
ference is observed between the two profiles (i.e., “clear sky”
in the aggregate). However, the profiles begin to deviate be-
low 3 km a.m.s.l., as larger TAB are found for the extinction-
retrieved sample (peak TAB is ∼ 0.0031 km−1 sr−1) com-
pared to those profiles consisting of all-RFVs (peak TAB
value is ∼ 0.0017 km−1 sr−1). An additional analysis was
conducted (not shown) using data over the Pacific Ocean to
check for influences of geographic sampling (i.e., aerosol
distribution) on the mean TAB profiles. Both the all-RFV
and non-all-RFV mean TAB profiles increase at similar mag-
nitudes after implementing this restriction, thus resulting in
only a minor difference between the profiles.

Figure 2c shows a second pair of mean TAB profiles but
now restricted to only those L2 CALIOP profiles collocated
with MODIS AOTs between 0.03 and 0.07 (i.e., arbitrar-
ily selected for low aerosol-loading scenarios). The collo-
cation method applied here is the same as the one used by
Toth et al. (2013), in which the midpoint of a 10× 10 km2

(at nadir) over-ocean MODIS AOT pixel is required to be
within 8 km of the temporal midpoint of a 5 km L2 CALIOP
aerosol profile. Observations outside this range are not con-
sidered. Whereas below, the modal MODIS AOT for passive
retrievals collocated with all-RFV CALIOP profiles is about
0.05, this restriction (i.e., 0.03–0.07 MODIS AOTs) is meant
to investigate a more nuanced question. The presence of all-
RFV profiles is the result of several processes that can work
either independently or in tandem. The dominant cause is, as
described above, detection failure. RFVs also occur when the
cloud–aerosol discrimination algorithm mistakenly classifies
an aerosol layer as a cloud, and again when the extinction co-
efficients retrieved for a detected aerosol layer fail any of the
QA metrics (e.g., an out-of-range extinction QC flag). This
restriction is meant to limit the influence of layer misclassi-
fications and occasional QA failures, and in particular, rel-
atively high AOT cases in which unusually high TAB could
influence the mean profile. Including such samples would de-
grade the accuracy of the TAB noise-floor estimate that we
will use in subsequent analyses described in Sect. 3.5. Rela-
tively speaking, though, the profiles in Fig. 2c are fairly sim-
ilar to those of Fig. 2a. However, the relative deviation be-
tween the two samples now occurs below 2 km a.m.s.l., and
the peak value of TAB for non-all-RFVs lowers to around
0.0025 km−1 sr−1 (illustrating the effect of the MODIS AOT
restriction). Also, for context, we include corresponding pro-
files of attenuated scattering ratio (TAB/molecular attenuated
backscatter) for both analyses in Fig. 2b and d.

The initial point of this comparison is that the mean TAB
for all-RFV profiles is, as expected, lower than in those pro-
files for which extinction is retrieved above and within the
planetary boundary layer. Thus, the figures represent a simple
conceptual model of how profiles consisting of all-RFV cases
arise with respect to diffuse aerosol backscatter structure and
inherently lower signal-to-noise ratios (SNRs). While there
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Figure 1. For data collected during the daytime on 2 July 2010 over the Arctic, browse image curtain plots of CALIPSO (a) 532 nm total
attenuated backscatter (km−1 sr−1) and (b) corresponding vertical feature mask (VFM). The white box represents an example segment of
the granule for which range bins in the associated level 2 (L2) aerosol extinction coefficient profile are all retrieval fill values (RFVs), as the
VFM classified these bins as either surface (green) or clear-air (blue) features. The white arrow indicates a column in which some aerosol
has been detected (orange), and the resultant L2 aerosol extinction profile for this column is shown in (c).

are several possible strategies for mitigating this issue for
future global satellite lidar missions (discussed in the con-
cluding remarks), the goal for this initial part of the study is
to simply depict how the situation is manifested in the base
backscatter product measured by the sensor.

3.2 Frequency of occurrence for L2 CALIOP all-RFV
aerosol profiles

The next step of the analysis is to determine the frequency
of occurrence of all-RFV profiles in the daytime CALIOP
L2_05kmAProf archive. As these data will be collocated
with both MODIS and AERONET data for subsequent anal-
ysis, no nighttime data are considered here. Table 1 sum-
marizes the statistics of this analysis. For the 2010–2011
period, all-RFV profiles make up about 71 % (66 %) of all
daytime CALIOP L2_05kmAProf profiles globally (global
oceans-only). However, these statistics include those profiles
for which the CALIOP signal was totally attenuated (e.g., by
an opaque cloud layer), thus inhibiting aerosol detection near
the surface. For context, the 2010–2011 occurrence frequen-
cies of CALIOP that do not detect the surface are 39.9 %
(46.1 %) globally (global oceans-only). Roughly 30 % of the

full archive corresponds to cloud-free conditions (again, as
described in Sect. 2.1, “cloud-free” refers to the implementa-
tion of the strictest CALIOP cloud screening possible, where
no clouds are classified in the entire profile). Approximately
45 % of all cloud-free profiles, and 25 % of cloud-free over-
ocean profiles, are also all-RFV profiles (∼ 15 and 8 %, re-
spectively, in absolute terms). The over-ocean sample is con-
sidered below, given the relatively higher fidelity expected in
the collocated MODIS AOT data (e.g., Levy et al., 2013).

We note that due to the primary CALIOP laser failing
in 2009, Table 1 also includes results from a 2-year period
(2007–2008) before the laser switch to examine any differ-
ences in the statistics of the RFV issue between the two
lasers. The global frequency of occurrence of all-RFV pro-
files is consistent for both time periods (i.e., 70.4 % for 2007–
2008 and 71.1 % for 2010–2011), and thus the remainder
of this paper focuses on the 2010–2011 analysis alone. We
find no evidence to suggest that laser performance exhibits
any significant influence on the occurrence of per-range bin
RFVs and all-RFV profiles within the L2 archive.

The spatial distribution of daytime over-ocean cloud-free
all-RFV profiles is shown in Fig. 3. The percentage of cloud-
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Table 1. Statistical summary of the results for this study for the 2007–2008 and 2010–2011 periods, both globally and for global oceans only.
The values in parentheses represent the percentages of each category relative to the entire CALIOP aerosol profile archive for each respective
period.

Number of 5 km CALIOP profiles Globe Global oceans

2007–2008 2010–2011 2007–2008 2010–2011

Total 41 929 328 41 188 208 27 742 947 27 198 000
All-RFV 29 503 781 (70.4 %) 29 297 919 (71.1 %) 18 190 188 (65.6 %) 18 026 930 (66.3 %)
Cloud-free 13 317 918 (31.8 %) 13 190 530 (32.0 %) 8 006 719 (28.9 %) 7 812 682 (28.7 %)
Cloud-free and all-RFV 5 764 098 (13.7 %) 5 899 221 (14.3 %) 2 089 865 (7.5 %) 2 101 155 (7.7 %)
Cloud-free, all-RFV, and MODIS AOT≥ 0 791 570 (1.9 %) 814 514 (2.0 %) 781 983 (2.8 %) 803 546 (3.0 %)
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Figure 2. For February 2008, mean profiles of (a, c) level 1.5 total attenuated backscatter (TAB) and (b, d) attenuated scattering ratio
(TAB/molecular attenuated backscatter) over global oceans, corresponding to level 2 all-RFV (in blue) and non-all-RFV (AOT > 0; in red)
profiles. The left column is from an analysis of all cloud-free CALIOP points over global oceans and the right column represents only those
collocated with MODIS AOTs between 0.03 and 0.07.

free CALIOP all-RFV aerosol profiles relative to all cloud-
free CALIOP aerosol profiles is computed and presented on
a 2◦× 5◦ latitude–longitude grid (Fig. 3a). Here we again
restrict the analysis to cloud-free scenes to avoid ambigu-
ities in RFV occurrence that are introduced by the pres-
ence of clouds. Regions with the largest occurrence frequen-
cies of all-RFV profiles (> 75 %) include the high latitudes
of both the northern and southern hemispheres (NH and
SH, respectively). In fact, over snow surfaces, over 80 % of
CALIOP aerosol profiles are all-RFVs. Over permanent ice
(e.g., Greenland), ∼ 99 % are all-RFVs. In contrast, the trop-
ics exhibit the lowest all-RFV profile occurrence frequencies
(< 25 %). The CALIOP archive contains a significant frac-
tion of all-RFV profiles in polar regions, which is an impor-

tant result with many ramifications for NASA Earth Observ-
ing System science. It is likely that all-RFVs correlate with
both low aerosol-loading scenarios and high albedo surfaces
(e.g., snow and sea ice).

Figure 3 also includes the spatial distribution of
mean cloud-free CALIOP-derived AOT (2◦× 5◦ latitude–
longitude resolution) without (Fig. 3b) and with (Fig. 3c)
all-RFV profiles, demonstrating the quantitative impact of
adding all-RFV AOT= 0 profiles to the relative analysis. As
mentioned above, both approaches have been implemented
in past studies. Comparison of the plots reveals that includ-
ing the all-RFV profiles in the average naturally lowers the
mean AOT. To determine the areas for which mean AOTs are
most impacted by all-RFVs, the ratio of mean AOT without
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Figure 3. For 2010–2011, (a) the frequency of occurrence (%) of cloud-free CALIOP profiles at 2◦× 5◦ latitude–longitude grid spacing.
Also shown are the corresponding cloud-free mean CALIOP column AOTs (b) without and (c) with all-RFV profiles, and (d) the ratio of (b)
to (c).

and with all-RFV profiles (i.e., the ratio of Fig. 3b to c) is
shown in Fig. 3d. Little change in mean AOT is found for
most of the oceans, with the exception of the high latitudes
of each hemisphere. Overall, global ocean cloud-free mean
AOT values of∼ 0.09 and∼ 0.07 are found, without and with
all-RFV profiles, respectively. Such a decrease in mean AOT
is expected, as 27 % of CALIOP L2 over-ocean cloud-free
aerosol profiles are all-RFVs. Also, regions with the largest
all-RFV occurrence frequencies (i.e., high latitudes of both
the NH and SH) correspond to a greater lowering of mean
AOT, compared with those regions (i.e., the tropics) where
small all-RFV occurrence frequencies dominate.

3.3 Collocation of MODIS AOT for over-ocean
CALIOP all-RFV cases

By collocating MODIS over-ocean AOT retrievals with
CALIOP all-RFV profiles, we can estimate the distribution
of AOT when algorithm detection/retrieval performance has
been compromised. After collocation was performed (as de-
scribed in Sect. 3.1), the number of all cloud-free CALIOP
all-RFV profiles were binned by MODIS AOT in 0.01 incre-
ments (as depicted in Fig. 4), and separated into three latitude
bands: the NH midlatitudes (30 to 60◦ N; Fig. 4a), the trop-
ics (−30 to 30◦ N; Fig. 4b), and the SH midlatitudes (−60 to
−30◦ N; Fig. 4c) where coincident data densities are reason-

ably sufficient. For example, see Fig. 5a for numbers of valid
MODIS over-ocean AOT data points available for colloca-
tion at 2◦× 5◦ latitude–longitude, based on “good” or “very
good” over-ocean L2 MODIS AOT retrievals, relative to all
corresponding retrievals. For context, Fig. 5b shows the asso-
ciated spatial distribution of mean L2 MODIS AOT. We note
that this includes only those MODIS points collocated with
CALIOP, and thus the AOT distributions shown in Fig. 5b
are likely different from distributions derived using the full
MODIS data record (e.g., Levy et al., 2013). We also note,
for the reference of the reader, that histograms of C6 MODIS
AOT (not collocated with CALIOP) are provided in Levy et
al. (2013).

Modal values of MODIS AOT for all-RFV profiles are
found between 0.03 and 0.04, with the exception of the 30 to
60◦ N band for which the greatest number of all-RFV profiles
coincide with MODIS AOTs between 0.04 and 0.05. Thus,
the primary mode of CALIOP RFV profiles is 0.03–0.05
from the perspective of MODIS. Corresponding mean and
median MODIS AOTs for collocated CALIOP all-RFV pro-
files are presented in Table 2, with a mean value of 0.07 for
the tropics and NH midlatitudes and 0.05 for the SH midlati-
tudes band (global mean of 0.06). Median AOTs are similar,
though slightly lower, with a global median of 0.05, reflect-
ing the impact of the tail toward higher AOT in the sample
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Figure 4. For 2010–2011, histograms of all over-ocean cloud-free
CALIOP profiles (in green) and all-RFV profiles (in purple) as a
function of collocated Aqua MODIS AOT (0.01 bins), for (a) 30 to
60◦ N, (b) −30 to 30◦ N, and (c) −60 to −30◦ N.

distributions. We expect several modes of algorithm response
contributing to these distributions, which are borne out in the
CALIOP data: layer detection failures due to sensitivity lim-
its, random noise in the attenuated backscatter measurement,
and extinction retrieval failures.

While a similar distribution is exhibited for each region,
the number of total observations for the tropics is much
greater than that of the other two regions. Thus, the re-
sults of Fig. 4b are more robust, which is primarily due to
MODIS AOT data availability and collocation (Fig. 5a). To-
tal MODIS occurrence frequencies are greatest in the tropics
(generally > 50 %) and decrease poleward. The midlatitude
regions exhibit occurrence frequencies less than 25 %, with
near-zero frequencies observed in the high latitudes of the
NH and SH. We note that the low number of valid MODIS
AOT retrievals in the high northern and southern latitudes,
due at least partly to sea ice extent in these regions, presents a
limitation for our study. That is, the areas for which all-RFV
profiles occur most frequently (Fig. 3a) are the same areas
with the fewest numbers of valid MODIS AOT retrievals.
Note that in these regions, even for valid MODIS AOT re-

Figure 5. For 2010–2011, (a) frequency of occurrence (%) of valid
(“good” or “very good”) over-ocean level 2 (L2) MODIS AOT re-
trievals, relative to all over-ocean L2 MODIS AOT retrievals, for
every 2◦× 5◦ latitude–longitude grid box. Also shown is (b) the
corresponding spatial distribution of mean L2 MODIS AOT for the
same time period. This analysis includes only those MODIS points
collocated with CALIOP.

trievals, biases due to subpixel sea ice contamination may
still exist.

All-RFV profile occurrence frequencies are computed as a
function of MODIS AOT in order to quantify the amount of
CALIOP-derived AOT underestimation at a given MODIS-
based AOT. This underestimation (expressed as a percent-
age) was achieved by division of corresponding data counts
in Fig. 4 and is shown in line plots in Fig. 6. The same re-
gional sorting and MODIS AOT binning procedures from
Fig. 4 are applied. A similar distribution is found for all three
latitude bands, with the 0.01–0.02 MODIS AOT bin exhibit-
ing the largest underestimation percentage, which gradually
lowers toward higher MODIS AOT. CALIOP all-RFV under-
estimation near 50 % is found for the NH and SH midlatitude
regions (the red and black curves, respectively, of Fig. 6),
respectively), for MODIS AOTs between 0.01 to 0.02, and
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Table 2. Mean, median, and standard deviation of AOTs derived from Aqua MODIS (2010–2011) and AERONET (2007–2008; 2010–2011),
both independently collocated with CALIOP all-RFV profiles.

Region MODIS AERONET

Mean Median Standard Mean Median Standard
deviation deviation

90 to 60◦ S 0.05 0.04 0.10 – – –
60 to 30◦ S 0.05 0.04 0.11 0.04 0.04 0.01
30◦ S to 30◦ N 0.07 0.06 0.11 0.10 0.10 0.19
30 to 60◦ N 0.07 0.06 0.13 0.09 0.08 0.07
60 to 90◦ N 0.07 0.06 0.17 0.05 0.04 0.04
Globe 0.06 0.05 0.12 0.08 0.07 0.11

−60 to −30° 
−30 to 30° 
30 to 60°  

0.00 0.05 0.10 0.15 0.20 0.25 0.30
Aqua MODIS AOT bin

0

20

40

60

80

P
er

ce
nt

ag
e 

(%
)

Figure 6. 2010–2011 frequency of occurrence (%) of over-ocean
cloud-free CALIOP all-RFV profiles, relative to all cloud-free
CALIOP profiles, as a function of collocated Aqua MODIS AOT
(0.01 bins), for 30 to 60◦ N (in red), −30 to 30◦ N (in blue), and
−60 to −30◦ N (in black).

this value increases to about 70 % for the tropics (the blue
curve of Fig. 6). This implies that 70 % of all cloud-free
CALIOP aerosol profiles in this MODIS AOT range are un-
derestimated (i.e., CALIOP reports cloud-free all-RFV pro-
files 70 % of the time for MODIS AOTs between 0.01 and
0.02).

While the distribution for the tropics is considered most
robust, due to MODIS AOT availability in this region, it is
important to note that increasingly lower AOTs (i.e., below
∼ 0.03) are within the uncertainty range of MODIS AOT re-
trievals, and thus these results should be interpreted within
the context of this caveat. Also, the relatively low underesti-
mation percentages corresponding to MODIS AOTs less than
0.02 are believed to be an error, likely resulting from an arti-
fact in the MODIS AOT retrievals/products.

3.4 Collocation of CALIOP all-RFV profiles with
AERONET

AERONET data are considered the benchmark for satel-
lite AOT retrievals (Holben et al., 1998). Thus, similarly
to the over-ocean MODIS analysis above, CALIOP AOT
and all-RFV profiles are examined using collocated AOTs

Figure 7. Map of the 93 coastal/island AERONET sites with level
2.0 data for the 2007–2008 and 2010–2011 periods, used for collo-
cation with over-ocean CALIOP aerosol observations.

derived from measurements collected at coastal and is-
land AERONET sites. Ninety-three sites are used, the loca-
tions of which are depicted globally in Fig. 7. Similarly to
Sect. 3.3, CALIOP L2_05kmAProf data are spatially (within
0.4◦ latitude–longitude) and temporally (within 30 min) col-
located with level 2.0 AERONET data. Note that we include
all 4 years (2007–2008 and 2010–2011) for this analysis, as
there are far fewer AERONET data points available in con-
trast to MODIS (e.g., Omar et al., 2013).

Figure 8 summarizes the results of the CALIOP–
AERONET collocation. In a similar manner to Fig. 4, Fig. 8a
is a histogram of the number of cloud-free CALIOP aerosol
profiles (all-RFV profiles and all available) for each 0.01
AERONET AOT bin. The overall distribution observed here
is comparable to that from MODIS (Fig. 4), but noticeably
noisier due to the limited AERONET data sample size. How-
ever, peak counts of all-RFV profiles occur for AERONET
AOTs between 0.04 and 0.05, which is roughly consis-
tent with the MODIS comparisons. The corresponding mean
AERONET AOTs of collocated CALIOP all-RFV profiles
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Figure 8. For the 2007–2008 and 2010–2011 periods: (a) his-
tograms of all cloud-free CALIOP profiles (in green) and all-
RFV profiles (in purple), and (b) corresponding frequency of oc-
currence (%) of cloud-free CALIOP all-RFV profiles, relative to
all cloud-free CALIOP profiles, both as a function of collocated
coastal/island AERONET AOT (0.01 bins).

are generally higher than those found from MODIS, with val-
ues of 0.1 and 0.09 for the tropics and NH midlatitudes, re-
spectively (Table 2), and a global mean (median) value of
0.08 (0.07). We note that this analysis may be influenced
by residual cloud contamination of subvisible cirrus in the
AERONET data set (e.g., Chew et al., 2011; Huang et al.,
2012). We note that histograms of sun-photometer-derived
AOT from Maritime Aerosol Network (MAN) observations
(i.e., over-ocean component of AERONET; not collocated
with CALIOP data) are shown in Smirnov et al. (2011).

Figure 8b shows all-RFV profile occurrence frequencies
as a function of AERONET AOT, computed by dividing the
respective counts in Fig. 8a. Again, a noisier overall distri-
bution is found compared with the line plots of Fig. 6. As
expected, the 0.01–0.02 bin exhibits the largest underestima-
tion percentage. However, while this value is 70 % for the
MODIS analysis (the blue curve of Fig. 6), it increases to
100 % for AERONET, and we again conclude that an arti-
fact is likely present in the MODIS retrievals for very low
aerosol-loading cases. While the sample size is small, in the
4-year data set examined in this study, whenever AERONET
measured an AOT lower than 0.02, the collocated CALIOP
aerosol profiles contained only RFVs.

3.5 Reconciling CALIOP AOT underestimation

In this part of the study, we describe a proof-of-concept anal-
ysis that uses 1 month of data with the same spatiotempo-
ral domain and conditions introduced in Sect. 3.1 to esti-
mate the nominal underestimation of CALIOP AOT due to
RFVs in otherwise high-fidelity L2 retrievals (i.e., those for
which extinction is derived and the profile passes all QA/QC
tests). This is achieved by retrieving extinction profiles from
the mean global TAB profiles previously constructed from
all-RFV profiles (i.e., as presented in Fig. 2). Character-
izing these profiles, including those derived for all corre-
sponding/collocated MODIS AOT (Fig. 2a, with an average
MODIS AOT of 0.067) and MODIS AOT between 0.03 and
0.07 (Fig. 2c, with an average MODIS AOT of 0.045) to
suppress the influence of random algorithm failure events
at relatively high AOT, as TAB “noise floors”, we then re-
place RFV bins with corresponding extinction and calculate
column-integrated AOT. The premise here assumes that the
distribution of aerosol depicted in the TAB noise floors is
globally constant. This is highly uncertain, and we strongly
caution that the purpose is to provide an initial demonstration
of a practical way to correct RFVs in the CALIOP archive.

The aerosol extinction profiles for all-RFVs are derived in
two steps. First, using an assumed lidar ratio of 29 sr (stan-
dard deviation of 10 sr; derived from constrained lidar ratios
over ocean and represents background aerosols for the entire
atmospheric column; Kim et al., 2017), an unconstrained ex-
tinction solution is generated from 20 km to the top of the
surface-attached layer (3.5 km). In this step, the molecular
and aerosol attenuation in the measured backscatter is ac-
counted for at each range bin (from a top-down approach) by
taking into account the overlying molecular and aerosol load-
ing. The aerosol backscatter is then calculated by subtracting
the unattenuated molecular backscatter from the newly de-
rived aerosol-and-molecular-attenuation-corrected backscat-
ter, from which the aerosol extinction is derived by multi-
plication of the lidar ratio. The top of the surface-attached
layer is determined by inspection of the ratio between the
measured backscatter and the modeled molecular attenuated
backscatter, as provided in the CALIPSO L1.5 product. In-
tegrating this extinction profile provides an estimate of the
AOT overlying the surface-attached layer (AOTupper). The
derived AOTupper values are ∼ 0.015 and ∼ 0.01 for the to-
tal all-RFV sample and AOT-limited sample, respectively.
These values are not surprising, as they are in agreement
with AERONET measurements obtained at the Mauna Loa
site (elevation of ∼ 3.5 km a.m.s.l.; Alfaro-Contreras et al.,
2016).

Next, a constrained extinction solution and optimized es-
timate of the lidar ratio are generated from 3.5 km to the
surface using the AOT of this layer (i.e., column AOT –
AOTupper). This step is similar to the abovementioned ap-
proach, except now an iterative process is implemented to
derive a lidar ratio for the layer. Resulting surface-attached
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layer lidar ratios are 43 and 30 sr for the first and second case,
respectively, with the latter value comparing reasonably well
with the coastal marine lidar ratio of ∼ 28 sr derived from
AERONET analyses (Sayer et al., 2012). However, the lidar
ratio solved for the all-RFV sample case is higher than that
typical of marine aerosols (i.e.,∼ 26 sr; Dawson et al., 2015),
which may be a result of uncertainties in both MODIS and
CALIOP data sets. For example, the uncertainty of the lower
end of MODIS AOT retrievals is on the order of −0.02–0.04
(Levy et al., 2013). These lidar ratios are also likely to have
high biases due to biases in the daytime CALIOP V3 cal-
ibration scheme: the V3 daytime calibration coefficients are
typically 10 % to as much as 30 % higher than their V4 coun-
terparts, depending on location and season (Getzewich et al.,
2016). Additionally, some all-RFV profiles may include non-
marine aerosols, which would further contribute to the high
biases in the retrieved lidar ratios.

Despite these caveats, the resultant all-RFV extinction
profiles are shown in Fig. 9, with values peaking near the
surface and decreasing exponentially with height. These are
thus considered the corresponding/approximated CALIOP
extinction-based noise floors. Next, for those cloud-free,
over-ocean, L2_05kmAProf CALIOP profiles from the same
month (February 2008), RFV bins for profiles for which
some measure of extinction has been observed and passed
QA/QC were replaced with the corresponding extinction
noise-floor values solved for the two TAB samples. Profiles
were then reintegrated to yield RFV-corrected AOTs.

The results of this exercise are summarized in Table 3. The
first result, representing the inclusion of all-RFV profiles as
is within bulk global samples (i.e., adding cases of AOT= 0
to a given sample) shows a difference of 0.033 between collo-
cated CALIOP and MODIS AOT. The noise-floor correction
applied to both all-RFV profiles and those for which some
extinction was solved yields AOT differences (i.e., MODIS-
CALIOP) of −0.009 and 0.006 depending on the correction
sample, which is an improvement (∼ 20 % in absolute value)
in the agreement of CALIOP and MODIS AOTs. If profiles
with nominal extinction are not corrected and all-RFV pro-
files are ignored, a mean AOT difference of 0.025 is found
with MODIS. Applying the noise-floor corrections for this
scenario results in AOT differences of−0.013 and 0.001 or a
∼ 10–20 % improvement (in absolute value) in the disparity
in mean AOT between the two sensors. Lastly, we empha-
size to the reader that this section describes only an initial
attempt to resolve the RFV issue and can likely be improved
in future studies. For example, the noise-floor extinction pro-
file is derived using data from global oceans, while a regional
dependency is possible. Also, longer spatial and temporal av-
erages of CALIOP data would likely increase the SNRs and
reduce the frequency of occurrence of the RFV issue.

All CALIOP points
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Figure 9. For February 2008 over cloud-free global oceans: the all-
RFV aerosol extinction coefficient profiles derived from the inver-
sion algorithm. The black curve represents all cloud-free CALIOP
profiles over global oceans, while the green curve is from an analy-
sis restricted to only those CALIOP points collocated with MODIS
AOTs between 0.03 and 0.07.

3.6 Case study: nighttime CALIOP all-RFV profile
occurrence frequencies

The analyses in this paper use daytime CALIOP data to al-
low for comparison with passively sensed aerosol observa-
tions from MODIS and AERONET. However, for context, in
this section we conduct a case study for a 2-month (January
and February 2008) period to investigate the occurrence fre-
quencies of CALIOP all-RFV profiles during nighttime con-
ditions. The same CALIOP products and QA procedures as
described earlier are used here, and Table 4 summarizes the
results of this analysis. During nighttime, about half of all
global CALIOP aerosol profiles for this period are all-RFVs,
but this statistic decreases to about 22 % when restricted to
cloud-free conditions. This percentage lowers even further
for over-ocean profiles. Depending on the analysis, abso-
lute decreases between daytime and nighttime all-RFV oc-
currence frequencies range from ∼ 8 to ∼ 25 %. These find-
ings are expected, as the lack of solar background signal dur-
ing nighttime allows for an increased SNR and improves the
ability of the CALIOP algorithms to detect aerosol layers.

3.7 Anticipating version 4 CALIOP aerosol products

Version 4 (V4) CALIOP L2 aerosol products were publicly
released in November 2016. A case study was thus per-
formed to assess changes in RFV impacts using these new
products, again considering cloud-free over-global-ocean ob-
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Table 3. For February 2008 over cloud-free global oceans: the mean and standard deviation of collocated CALIOP and MODIS AOTs for
various scenarios related to the treatment of non-all-RFV and all-RFV CALIOP aerosol profiles. For those scenarios that involve correction,
[1] refers to analyses including all cloud-free CALIOP profiles over global oceans, while [2] refers to analyses restricted to CALIOP points
collocated with MODIS AOTs between 0.03 and 0.07. The corresponding aerosol extinction profiles used for RFV correction are shown in
Fig. 9. Key results are highlighted with an asterisk.

Scenario CALIOP AOT MODIS AOT 1AOT
(MODIS-CALIOP)

Corrected All-RFVs All-RFVs All-RFVs Correction Mean Standard Mean Standard
non-all-RFVs? set to zero? ignored? corrected? subset deviation deviation

X 0.084 0.113 0.117 0.133 0.033
X X [1] 0.126 0.107 0.117 0.133 −0.009*
X X [2] 0.111 0.109 0.117 0.133 0.006*

X 0.098 0.116 0.123 0.123 0.025
X X [1] 0.136 0.112 0.123 0.123 −0.013
X X [2] 0.122 0.114 0.123 0.123 0.001

Table 4. All-RFV CALIOP occurrence frequencies for 2 months
(January and February 2008) from various analyses using daytime
and nighttime data, as well as their corresponding absolute differ-
ences.

Analysis All points Cloud-free

Daytime Globe 70.7 % 46.7 %
Global oceans 63.4 % 21.8 %

Nighttime Globe 53.5 % 22.0 %
Global oceans 52.2 % 14.0 %

Nighttime – daytime Globe −17.2 % −24.7 %
Global oceans −11.2 % −7.8 %

servations during daytime conditions. Whereas the broader
point of the paper is a conceptualization of the lower-
threshold sensitivity of CALIOP to aerosol presence and the
global distribution and impact on overall archive availabil-
ity, this analysis is included for general consistency. Specif-
ically, V4 data feature improved calibrations of level 1 (L1)
backscatter, as well as improved cloud-aerosol discrimina-
tion and surface detection that may increase the detection
sensitivity of diffuse aerosol layers that are reflected in L2
aerosol extinction retrievals. This may then result in a possi-
ble decrease in the occurrence of all-RFV profiles overall.

A 2-month V4 (January and February 2008) analysis us-
ing QA aerosol profile data (L2_05kmAPro-Standard-V4-
10) reveals a 4 % relative decrease (1 % absolute decrease) in
global all-RFV profile occurrence frequencies between V3
and V4. Without QA screening (Sect. 2.1), a 15 % relative
decrease (2 % absolute decrease) is found in the occurrence
frequency of all-RFV profiles between versions. A supple-
mental analysis was also conducted through the use of the
CALIOP aerosol layer product (L2_05kmALay-Standard-
V4-10) with alternative cloud screening (i.e., cloud optical
depth= 0 instead of the AVD parameter), the results of which
are consistent with those from the L2_05kmAPro-Standard-

V4-10 test. Though this is an initial look at this important
new data set, it appears that improvements in instrument cal-
ibration have some positive influence on retrieval sensitivity,
though the broader impact of all-RFV profiles as a limiting
factor on the breadth of the CALIOP archive, particularly at
the poles, mostly remains.

4 Conclusions

Since June 2006, the NASA Cloud-Aerosol Lidar with Or-
thogonal Polarization (CALIOP) instrument has provided a
unique global space-borne view of aerosol vertical distribu-
tion in Earth’s atmosphere. As indicated by this study, a sig-
nificant portion of level 2 (L2) CALIOP 532 nm aerosol pro-
files consist of retrieval fill values (RFVs) throughout the en-
tire range-resolved column (i.e., all-RFVs), overwhelmingly
the result of instrument sensitivity and algorithm layer de-
tection limits. The relevant impact of the all-RFV profile
is a subsequent column-integrated aerosol optical thickness
(AOT) equal to zero.

Using 4 years (2007–2008 and 2010–2011) of daytime
CALIOP version 3 L2 aerosol products, the frequency of
occurrence of all-RFV profiles within the CALIOP archive
is quantified. L2 retrieval underestimation and lower de-
tectability limits of CALIOP-derived AOT are assessed us-
ing collocated L2 aerosol retrievals from over-ocean Aqua
Moderate Resolution Imaging Spectroradiometer (MODIS)
and coastal/island AErosol RObotic NEtwork (AERONET)
measurements. The results are partitioned into three lati-
tude bands: Northern Hemisphere midlatitudes (30 to 60◦ N),
tropics (−30 to 30◦ N), and Southern Hemisphere midlati-
tudes (−60 to −30◦ N). The primary findings of this study
are as follows:

1. Analysis of CALIOP level 1.5 attenuated backscatter
data reveals that all-RFV profiles are primarily the result
of diffuse aerosol layers with inherently lower signal-to-
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noise ratios (SNRs) that are below CALIOP layer detec-
tion limits.

2. All-RFV profiles make up 71 % (66 %) of all daytime
CALIOP L2 aerosol profiles globally (global oceans-
only), although this includes completely attenuated
columns. For cloud-free CALIOP L2 aerosol profiles,
45 % (27 %) globally (global oceans-only) are all-RFV
profiles. The largest relative all-RFV profile occurrence
frequencies (> 75 %) are found in the high latitudes of
both hemispheres and are smallest (< 25 %) in the trop-
ics. The results of this study indicate that there is a sig-
nificant daytime observational gap in CALIOP aerosol
products near the poles, which is a critically important
finding for community awareness.

3. The primary mode of CALIOP all-RFV profiles corre-
sponds to MODIS AOTs of 0.03–0.05, which is largely
consistent with an AERONET-based analysis. Also, we
found that a small fraction of AERONET data have
AOTs lower than 0.02, of which all collocated CALIOP
L2 profiles are all-RFVs. This finding is consistent with
the lowest detectable CALIOP aerosol optical depth
range of 0.02–0.04, as hypothesized by Kacenelenbo-
gen et al. (2011). Note that this conclusion hints that
CALIOP may not detect very thin aerosol layers (i.e.,
AOTs < 0.05), which account for ∼ 10–20 % of the
AOT spectrum and are of climatological importance
(e.g., Smirnov et al., 2011; Levy et al., 2013). Also,
these CALIOP-undetected thin aerosol layers are im-
portant for various applications, ranging from data as-
similation to aerosol indirect effects.

4. As a preliminary study, aerosol extinction coefficient
values for two distinct CALIOP all-RFV profile sam-
ples are derived using an inversion algorithm applied
to corresponding attenuated backscatter data, and a col-
lection of RFV-corrected mean CALIOP AOTs are es-
timated for a 1-month case study. The mean over-ocean
CALIOP AOTs increase 10–20 % (in absolute value) af-
ter correction, with a closer match to collocated Aqua
MODIS mean over-ocean AOT.

5. A small decrease in all-RFV profile occurrence is found
from version 4 CALIOP data, which are undergoing
widespread release at the time of writing. Still, the
larger-scale impact of all-RFV profiles remains.

This research demonstrates that all-RFV profiles exert a
significant influence on the L2 CALIOP AOT archive, as
these data compose nearly half of global cloud-free CALIOP
aerosol points. Disagreements exist in the literature on how
to handle all-RFV profiles when generating level 3 AOT
statistics. Some studies have set the integrated AOTs of all-
RFV profiles to zero, for instance, and included them. How-
ever, analyses with passive-based sensors presented in this
study reveal these AOTs are most certainly nonzero (global

mean values of 0.06 for MODIS and 0.08 for AERONET).
These findings are not surprising, as this is the baseline AOT
range expected under clean maritime conditions (Kaufman et
al., 2001, 2005).

This research also shows that CALIOP RFVs caused by
lower backscatter threshold sensitivities to highly diffuse
aerosols contribute significantly to the discrepancy between
CALIOP AOT and those derived from passive sensors like
MODIS. Previous studies have mostly attributed this off-
set to the selection of the CALIOP lidar ratio (extinction-
to-backscatter ratio) or errors in passive aerosol retrievals.
Multi-spectral lidar measurements can begin to close the gap,
but will experience SNR issues of their own.

By characterizing lower detection limits of CALIOP-
derived extinction and AOT, the potential exists for innova-
tions in instrumentation design and algorithm development
of future lidar missions, such as those affiliated with the
NASA Aerosol-Cloud-Ecosystem (ACE) mission or the sig-
nal processing effort of Marais et al. (2016). Specifically,
increasing the intensity of the lidar signal or implementing
larger spatial averaging schemes may help to lower the oc-
currence frequency of all-RFV profiles and relative RFV oc-
currence per range bin in L2 products. Questions, however,
arise in terms of developing data sets with sufficient spatial
and temporal resolution versus requirements for optimal data
densities, and which is more significant for a given project.
Regardless of the potential solution, science teams of current
and future lidar systems should carefully consider the exis-
tence of RFVs in project data sets.
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