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1Electronics and Communication Engineering Department, National Institute of Technology Goa,
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Abstract

This work presents a new method for detection of tar-
get non-apneic arousals by applying a recurrent neural
network architecture on the various specified polysomno-
graphic (PSG) signals. The proposed two stage architec-
ture uses sequences of instantaneous frequencies and spec-
tral entropies of the chosen PSG signals as feature vectors.
At the first stage, these feature vectors are used to train sev-
eral long-short term memory (LSTM) models. The LSTM
networks can learn long-term relationships between time
steps of time-frequency based sequences obtained out of
physiological signals. As a second stage, some quadratic
discriminant (QD) layers are modelled and appended to
the trained LSTMs in groups. Subsequently, the outputs
of all the QD layers are averaged for making final predic-
tion. The models are trained using features obtained from
one minute windows of the signals. However, the decision
making on test signals involves inputs of one minute win-
dows with half minute overlapping. When evaluated with
2018 PhysioNet/CinC Challenge dataset, the experimental
outcomes demonstrate overall AUROC and AUPRC scores
of 0.85±0.10 and 0.50±0.15 respectively for the training
data. The generated test results indicate the AUROC and
AUPRC scores of 0.624 and 0.10 respectively on a random
subset of the test data.

Keywords: PSG, LSTM, Sleep arousal, sleep apnea

1. Introduction

Proper scoring of sleep stages can provide useful clinical
information for diagnosis of patients with sleep disorders
[1]. Traditionally, such diagnostic procedures are carried
out in sleep laboratory settings, where in polysomnogra-
phy (PSG) of the sleeping subject is carefully inspected
by clinical experts to identify potential sleep disorders re-
sulting from sleep arousal. Here, “arousal” signifies the
change in state of sleep cycle which is mainly character-

ized by abrupt changes in the pattern of brain wave activ-
ity measured by electroencephalography (EEG) which rep-
resents a shift from deep sleep also termed as Rapid Eye
Movement (REM) sleep to light sleep (non-REM) sleep, or
from light sleep to wakefulness. Thus, sleep arousals are
the disturbances which affects the quality of sleep and lead
to a medical condition termed as “sleep disorder”. One of
the most well-studied sleep disorders is Obstructive Sleep
Apnea Hypopnea Syndrome (or simply,apnea).

Apneas are characterized by a complete collapse of the
airways, leading to awakening, and consequent distur-
bances of sleep [2, 3]. Apart from apneic arousals, there
are other sources of sleep arousals resulting from periodic
limb movements, teeth grinding, chin movements, partial
airway obstructions, or even snoring. So, one of the recent
challenges in sleep stage scoring and classification is to ac-
curately detect and identify these other sources of arousal
(non-apneic) during sleep by monitoring a variety of phys-
iological signals, collected during PSG sleep studies. PSG
is the “golden standard” method for assessing sleep dis-
orders in which manual recording of the subject is con-
ducted overnight in a clinical environment [4]. The subject
has to sleep while wearing multiple electrodes including
that of EEG, electromyography (EMG), electrooculogra-
phy (EOG), nasal probes, etc. PSG is a manual method
which is prone to errors when compared from one expert to
another. Moreover, visual inspection is a time-consuming
process for a whole night recording. Hence, PSG is labor-
intensive and also a costly technique that cannot be applied
easily as a screening tool in its original form. [4, 5]. The
challenge is to have uniform and standard automated pro-
cess that can act as a benchmark for primary and expert
level diagnosis agreeing completely with PSG ground truth
with less deviation in results. For this several computer
aided systems using signal processing techniques along
with machine learning algorithms are developed to obtain
useful information from physiological signals [6–8]. Such
methods usually involves 4 steps that include preprocess-
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ing, feature extraction, feature selection and classification.
This work aims to develop robust signal processing and

machine learning based technique for primary and expert
level diagnosis of sleep disorders by detecting arousals
during different sleep stages from various physiological
signals collected via PSG sleep studies as ground truth.
The proposed method employs a two-stage architecture
comprising several LSTMs and QD layers at the first and
second stages respectively. The LSTM models of the first
stage are fed with instantaneous frequency and spectral en-
tropy based feature vectors. All the models are trained
under optimal settings. The overall architecture has been
trained and validated for classifying the regions of PSG
signals into target arousals and non-arousal using the Phy-
sioNet Challenge 2018 dataset.

2. Methods

2.1. Time-frequency based feature extrac-
tion

Dimensionally reduced feature space with increased in-
telligibility can improve the time and space complexity of
the algorithm for diagnostic decision making and can lead
to improved classification performance.In literature, the
time-frequency based image analysis of spectrograms us-
ing convolutional neural networks (CNNs) has been found
useful for extracting diagnostic features in many applica-
tions [9,10]. On the similar reasoning , LSTM can be used
instead of CNNs by translating 2-D images into one di-
mensional signals. In practice, this can be achieved by ex-
tracting time-frequency moments from the spectrograms.
This study explores two such moments in the time-domain
namely instantaneous frequency and spectral entropy for
detecting sleep arousals.

The instantaneous frequency is the time-dependent fre-
quency of a signal which is estimated as the first moment
of the power spectrogram by computing short-time Fourier
transforms.For a 60 seconds segment of a given PSG sig-
nal sampled at 200Hz, a feature vector of 258 length is
obtained by computing spectrograms over 258 time win-
dows . The time outputs for the instantaneous frequency
values correspond to the center of the time windows.

The spectral entropy measures the spikes or flatness
present in the spectrum for a given signal. A signal with
a spiky spectrum exhibits low spectral entropy. A signal
with a flat spectrum, like white noise, exhibits high spec-
tral entropy. The procedure to estimate spectral entropy
is similar to that of instantaneous frequency and uses 258
time windows for a 60 seconds segment of the signal under
study. Figures 1 and 2 illustrate the differences in the in-
stantaneous frequency and spectral entropy for windowed
arousal and non-arousal regions of the typical EMG and

EEG signals respectively.

2.2. Classification

The LSTM is preferred for handling raw or transformed
time-series. Basically, neurons in LSTM keep the con-
text of memory within their pipeline that allows capturing
temporal information present in input sequences. LSTM
networks were introduced by Sepp Hochreiter and Jrgen
Schmidhuber [11]. The proposed method employs a two
stage architecture as depicted in Figure 3. At the first stage,
the time-frequency based feature vectors as described in
Section 2 are used to train several LSTM models with op-
timal configurations. At the second stage, some quadratic
discriminant (QD) layers are trained from the outputs of
trained LSTMs in groups. The trained QD layers are used
as the second classification stage. Eventually,the outputs
of all the QD layers are averaged for making final predic-
tion with improved machine learning performance.

3. Results and Discussion

The proposed work has been evaluated using 2018
PhysioNet/CinC Challenge dataset.The specified train-
ing and testing set contains 994 and 989 sets of sig-
nals respectively [12].The dataset has a variety of phys-
iological signals recorded from subjects as they slept
through the night including: EEG, EMG, EOG, ECG,
abdominal(ABD),chest(thorax),airflow and oxygen satura-
tion (SaO2). Excluding SaO2, all signals were sampled to
200Hz and were measured in microvolts.

In this work, for preparing the first stage LSTM based
models of the proposed two stage architecture, instanta-
neous frequency and spectral entropy based features of the
all the signals except SaO2 are extracted. Each PSG signal
contributes two feature vectors, therefore with a total of
12 PSG signals the LSTM network architecture has been
specified with the input sequence size as 24. A bidirec-
tional LSTM layer with an output size of 50 is specified.
The two classes (non-apneic arousal and non-arousal) are
specified by including a fully connected layer of size 2,
followed by a softmax layer and a classification layer. It
is noteworthy that the used feature vectors are found to
have average values that differ significantly in magnitude.
This can lead to slow learning and convergence of LSTM
[13]. In view of these, the input feature vectors are stan-
dardized before feeding to bidirectional LSTM. Standard-
ization, or z-scoring, is a popular way to improve net-
work performance during training and has been used in this
work. Furthermore, the LSTM models are trained with er-
ror back-propagation using Adaptive Momentum with an
initial learning rate of 0.01. The optimizer and categorical
cross-entropy is set as the loss function. 90 % of train-
ing data were used to train algorithm and the rest of 10 %
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Figure 1. (a) and (d) show the arousal and non-arousal segments of an EMG signal.(b) and (e) are the plots of respective
instantaneous frequencies, and (c) and (f) are the plots of spectral entropies.
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Figure 2. (a) and (d) show the arousal and non-arousal segments of an EEG signal.(b) and (e) are the plots of respective
instantaneous frequencies, and (c) and (f) are the plots of spectral entropies.

were kept as a validation sub-set. While preparing the sec-
ond stage of the proposed architecture, one QD layers is
trained from the outputs of 10 trained LSTMs in groups.
In all, 9 such QD layers are formed for second stage clas-
sification. Eventually,the outputs of all the QD layers are
averaged for making final prediction with improved classi-
fication performance.

We have observed a great improvement in the training
accuracy, which is greater than 90% with overall AUROC
and AUPRC scores of 0.85±0.10 and 0.50±0.15 respec-
tively. The generated test results on hidden test data in-
dicate the AUROC and AUPRC scores of 0.624 and 0.10
respectively on a random subset of the data. Average run-
ning time (test set) was found to be 0.306% of quota when
ran on PhysioNet challenge machine.

4. Conclusion

In this work, we have explored the strength and appli-
cability of instantaneous frequency and spectral entropy
based features when used with LSTM classifier for detec-
tion of target non-apneic arousals. Our method has shown
sparking performance on a large and diverse dataset with
high variant records. With some advancements, this work
has clinical potential to be realized into an automatic real-
time system for detection of sleep disorders. The future
scope of the work includes (a) application of some trans-
forms (say, Tunable-Q wavelet transform) to obtain rele-
vant sub-bands that may carry more clear underlying phys-
iological information on arousals for more meaningful fea-
ture extraction. (b) tuning the involved LSTM models for
optimal operations and (c) inclusion of more feature vec-
tors for passing more information into the system.
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Figure 3. The proposed architecture for classification.
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