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REVIEW ARTICLE OPEN

miRNAs reshape immunity and inflammatory responses in
bacterial infection
Xikun Zhou1, Xuefeng Li1 and Min Wu 1

Pathogenic bacteria cause various infections worldwide, especially in immunocompromised and other susceptible individuals, and
are also associated with high infant mortality rates in developing countries. MicroRNAs (miRNAs), small non-coding RNAs with
evolutionarily conserved sequences, are expressed in various tissues and cells that play key part in various physiological and
pathologic processes. Increasing evidence implies roles for miRNAs in bacterial infectious diseases by modulating inflammatory
responses, cell penetration, tissue remodeling, and innate and adaptive immunity. This review highlights some recent intriguing
findings, ranging from the correlation between aberrant expression of miRNAs with bacterial infection progression to their
profound impact on host immune responses. Harnessing of dysregulated miRNAs in bacterial infection may be an approach to
improving the diagnosis, prevention and therapy of infectious diseases.

Signal Transduction and Targeted Therapy  (2018) 3:14 https://doi.org/10.1038/s41392-018-0006-9

INTRODUCTION
Pathogenic bacteria hold a wide range of strategies to invade,
survive, and replicate in their hosts. These pathogens are the
major causes of many deadly diseases and widespread epidemics
in mammals, including humans. However, host immune systems
have also developed extremely complex adaptations to counter-
act bacterial infection1. Host–pathogen interactions are one of the
most complex themes involved in disease initiation, development
and progression. An intact immune system is critical for host
resistance to bacterial infections. There are many important
regulators involved in a range of pathological processes during
host defense against infection that modulate diverse biological
processes. Host immune cells, such as lymphocytes, innate
lymphoid cells, macrophages and neutrophils, are vital parts of
innate immunity systems that find, process and clear invading
microbes by phagocytosis, secreting cytokines and mounting
inflammatory responses. Pathogen-associated molecular patterns
(PAMPs) bind and talk with Toll-like receptors (TLRs), NOD-like
receptors (NLRs) and other pattern-recognition receptors (PRRs) to
activate a number of inflammatory signals and subsequently lead
to proinflammatory cytokine production or inflammatory cell
death. Each type of PAMP can be recognized by its specific
receptor(s)2,3. Subsequently, the adaptive immune response is
induced to promote and facilitate the removal of pathogenic
bacteria4. Once these intruders are cleared, negative immunor-
egulatory cytokines and Th2 cells play a dominant role in
balancing the extent of the immune response to avoid over-
reaction and tissue damage5. Recent studies provided some
insight into the critical participation of microRNAs (miRNAs) in
host immune defense against bacterial infection.
miRNAs are evolutionarily conserved small (~22 nucleotide)

non-coding RNAs first discovered two decades ago6. The
transcription of miRNAs is most commonly mediated by RNA
polymerase II; they are then processed by two nucleases, Drosha

and Dicer. After exporting to the cytoplasm, the functional mature
miRNA is incorporated into and preferentially stabilized by the
RNA-induced silencing complex (RISC). In most cases, the RISC
converts the miRNA to a 6–8 nucleotide-long complementary
region, named the ‘seed sequence’, on the 3′-Untranslated Region
(3′-UTR) of its target mRNA and mediates its function. The partial
or imperfect complementarity of a miRNA to a target mRNA may
result in translational repression, while full or perfect comple-
mentarity binding sites cause target degradation at the posttran-
scriptional levels7. Certain miRNAs can also bind the 5′
untranslated region (5′-UTR) and amino-acid coding sequence
(CDS) sites of their target mRNA, and several miRNAs may also
induce gene expression8–10. Moreover, one mRNA might be
modulated by numerous miRNAs, and a miRNA has the ability to
modulate the expression of a number of target mRNAs. miRNAs
have emerged as critical regulators in a great deal of biological
processes, such as cell proliferation, differentiation, autophagy,
metabolism and immune responses. The dysregulated expression
of miRNAs has also been correlated with various diseases,
including cancer, autoimmunity, and cardiovascular diseases,
among others 11.
In this review, we first summarize the dysregulated miRNAs

identified during different bacterial infections. Then, we describe
the host signal transduction pathways utilized by bacterial
effectors by which miRNA expression is dysregulated in mechan-
isms of modulation. Finally, we discuss the potential of miRNAs to
serve as diagnosis biomarkers and treatment targets, and discuss
the challenges facing miRNA studies.

MIRNAS AFFECTED BY BACTERIAL INFECTIONS
Bacterial pathogens are thought to have complex interactions
with relevant hosts, and the interactions between hosts and
pathogens are becoming a forefront research area of infectious
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diseases. Latest studies have highlighted that the expression of
miRNAs is profoundly impacted by a variety of bacterial
pathogens and that likewise miRNAs impose strong pressure to
the invading microorganisms.

Helicobacter pylori
H. pylori is particularly capable of colonization in human stomach
and is thus responsible for various gastric diseases, such as chronic
active gastritis, peptic ulcers, and gastric carcinoma world-
wide12,13. Several studies have reported that infection of gastric
epithelial cells with H. pylori could lead to altered expression of
miRNAs, including let-714–16, miR-30b17, miR-21018, miR-128919,
miR-152/miR-200b20, miR-15521–25, miR-16, and miR-146a24–26.
Histological analysis has shown higher miR-155 levels in gastric
mucosal tissue sections of patients infected with H. pylori.
Potential binding sites for nuclear factor-κB (NF-κB) as well as
activator protein-1 (AP-1) have been identified within the BIC/miR-
155 promoter, and both NF-κB and AP-1 are the necessity for the
induction of miR-155 upon H. pylori infection in gastric epithelial
cells24. The expression of miR-155 might also be influenced by
Foxp3 in H. pylori-infected T cells23. In addition to NF-κB signaling
in bone marrow-derived macrophages (BMDMs), TLR2/4- and
NOD1/2-independent upregulation of miR-155 was found to
depend on the H. pylori type IV secretion system (T4SS)21. Several
miR-155-targeted mRNAs, including tumor protein p53-inducible
nuclear protein 1 (TP53INP1), tetraspanin 14 (Tspan14), lipin 1
(Lpin1), phorbol-12-myristate-13-acetate-induced protein 1
(Pmaip1), protein kinase (cAMP-dependent, catalytic) inhibitor
alpha (PKIα), IκB kinase ε (IKK-ε), Sma- and Mad-related protein 2
(SMAD2), and Fas-associated death domain protein (FADD), have
been linked to proapoptotic and immune responses21,23,24,27. miR-
155 knockout mice failed to control H. pylori infection and had
reduced protection from infection after H. pylori-specific vaccina-
tion than their wild-type counterparts as a result of impaired
pathogen-specific T helper type 1 (Th1) and Th17 responses22.
A multi-epitope vaccine, CTB-UE, could relieve the H. pylori-
induced gastric inflammatory reaction by upregulating miR-155 to
inhibit Th17 responses28. These results implied that the increase in
miR-155 expression during H. pylori infection is involved in
negative regulation of inflammation by attenuating NF-κB
signaling, Th17/Th1 differentiation and cyclic adenosine mono-
phosphate (cAMP) activity23,24. Furthermore, there was a strong
link between miR-155 levels and immunohistochemical grades in
H. pylori-positive patients, and miR-155 expression was down-
regulated in intestinal metaplasia individuals29.
Another miRNA, miR-146a, has been shown to be increased

after H. pylori infection in gastric epithelial cells, as well as in
gastric mucosal tissues, in an NF-κB-dependent manner. Subse-
quently, miR-146a can diminish the expression of target genes,
e.g., TNF receptor-associated factor 6 (TRAF6) and IL1 receptor-
associated kinase 1 (IRAK1). In addition, miR-146a may inhibit the
expression of IL-8, growth-related oncogene (GRO)-α, and macro-
phage inflammatory protein (MIP)-3α, TNF-α, and IL1β by reducing
NF-κB activity30,31. Additional studies have found that the over-
expression of miR-146a results in significantly reduced Prosta-
glandin endoperoxide synthase 2 (PTGS2) production induced by
H. pylori infection26.
H. pylori infection is thought to have a link with the early stages

of gastric cancer pathogenesis via the induction of chronic
gastritis16. This is also a hallmark of H. pylori, making it different
from other bacteria. Cytotoxin-associated gene A (CagA), a key
virulence factor of H. pylori, harms the gastric mucosa and is
associated with an increased risk of atrophic gastritis, peptic ulcer
and gastric cancer13,16. Hayashi et al. found that CagA drives
epigenetic regulation to impede let-7 expression in H. pylori-
related carcinogenesis. CagA augmented c-myc, DNA methyl-
transferase 3B (DNMT3B) and Enhancer of Zeste homolog 2 (EZH2)
expression and reduced miR-26a and miR-101 levels, lowering let-

7 expression by altering histone and DNA methylation16. CagA can
also downregulate miR-370 levels, resulting in increased FoxM1, a
positive modulator for cell growth32. miR-320a and miR-4496
attenuate the possibility of CagA-induced cancer-initiation and
chemoresistance through influencing β-catenin and ATP-binding
cassette subfamily G member 233. miR-210 was downregulated in
the gastric epithelium in response to persistent H. pylori infection.
Inflammation-induced epigenetic silencing of miR-210 augmented
cell proliferation by activating two tumorigenesis-related proteins,
STMN1 (stathmin1) and DIMT1 (demethyladenosine transferase
1)18. Several other miRNAs, such as miR-20334, miR-20435, miR-
37536, and miR-27b37, were aberrantly expressed in H. pylori-
positive tissues and cells and affecting neoplastic transformation
and invasion. These studies suggest a role for miRNAs in
regulating pathogenesis in various H. pylori-infected cell types.

Salmonella
Salmonella is a Gram-negative intracellular pathogen belonging to
the family Enterobacteriaceae and can cause a number of diseases
in humans and animals, such as gastroenteritis and typhoid
fever38. Salmonella has three main serovars, typhi, typhimurium,
and enteritidis, and can exert diverse effects to establish an
intracellular niche for successful propagation39. A number of
studies have reported that the dysregulation of miRNAs critically
contributes to disease pathogenesis. Hoeke et al. showed that
focal adhesion and organization of the actin cytoskeleton is
regulated by miRNAs in an intestinal Salmonella typhimurium
infection model. S. typhimurium infection upregulated the
expression of miR-29a, which subsequently targeted Caveolin 2,
a focal adhesion factor that is associated with uptake of bacterial
pathogens, to modulate the activation state of the small Rho
GTPase CDC4240. miR-146 decreased the induction of six members
of the apolipoprotein gene family in S. typhimurium-infected
zebrafish embryos. This suggested that miR-146 may play a role in
regulating lipid metabolism during inflammation41. TLR4-sensing
of bacterial LPS downregulated the expression of let-7 family
miRNAs upon Salmonella infection. The downregulation of these
miRNAs promoted the expression of the key cytokines IL6 and
IL-1042. By a combination of high-throughput screening with a
library of miRNA mimics and RNA-seq, Maudet et al. proposed that
miRNAs are potential modulators in S. typhimurium infection and
that distinct miRNAs impair various infection stages. They further
found that downregulation of the miR-15 family upregulated
cyclin D1 expression upon Salmonella infection. G2/M arrest of
host cells dramatically increased Salmonella replication within
hosts43. Moreover, miR-155 regulated the function of both
lymphocytes and DCs, leading to an overall diminution of immune
responses. Vaccination of miR-155-deficient mice with an atte-
nuated vaccine against S. typhimurium failed to protect them
against virulent S. Typhimurium 44.
Macrophage colony-stimulating factor (M-CSF, CSF1) is a

cytokine for attracting macrophages to infection sites to defend
against different pathogenic infections. Virulent Salmonella
enteritidis modulates intestinal epithelial miR-128 levels, which
inhibits epithelia-secreted M-CSF and impedes the subsequent
recruitment of macrophage45. A combined study of differentially
expressed miRNAs with mRNAs predicted miRNA targets, reveal-
ing miRNA-mRNA profiles. This analysis found that miR-214 and
miR-331-3p could participate in host immunity against
S. typhimurium. Salmonella-challenged pigs showed downregu-
lated miR-214 expression and upregulated miR-331-3p expression
in whole blood. While levels of the candidate targets (SLC11A1
and PIGE-108A11.3) of miR-214 were enhanced following chal-
lenge, the potential target (VAV2) of miR-331-3p was reduced46.
Another binding site enrichment analysis of miRNAs responsible
for deregulated mRNAs in peripheral blood suggested that miR-
143 and miR-26 might be involved in the initiation and
progression of Salmonella infection in pigs47. In addition, miRNAs
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may also modulate the innate immunity involving miRNAs to S.
enteritidis infection in laying chicken ceca48. Thus, these deregu-
lated miRNAs may be functionally important for manipulating
Salmonella-induced inflammation.

Pseudomonas aeruginosa
Pseudomonas aeruginosa is an important opportunistic Gram-
negative bacterium that infects a broad range of individuals,
invading many different parts of the body, with corresponding
symptoms and signs49. Multidrug-resistant Pseudomonas can be
deadly for patients in intensive care units worldwide50. Up to date,
few miRNAs have been reported in modulating inflammatory
responses, and are likely TLR/NF-κB-responsive51. Our laboratory
recently reported that miR-302b can be activated by TLR2 and
TLR4 via ERK-p38-NF-κB pathways following P. aeruginosa infec-
tion. miR-302b, together with other members of the miR-302
family, is a crucial regulator of TLR-induced downstream NF-κB
signaling, macrophage and epithelial cell activation, and respira-
tory inflammation via directly targeting of IRAK1, a member of the
TLR/myeloid differentiation factor 88 (MyD88) complex that is
critical for NF-κB activation52. We further identified another
miRNA, miR-301b, can be induced via a TLR4/MyD88/NF-κB
pathway against P. aeruginosa infection. miR-301b positively
modulates the expression of the anti-inflammatory cytokines IL-
4 and TGF-β1 and negatively regulates the expression of the
proinflammatory cytokines MIP-1α and IL-17A. This function is
exerted by repressing c-Myb expression, and the antimicrobial
effect was potentiated by caffeine uptake. Moreover, repression of
miR-301b resulted in elevated levels of neutrophil infiltration 53.
There are several other negative feedback miRNAs, such as miR-

762 and miR-155, whose levels are enhanced upon P. aeruginosa
infection to downregulate levels of immune response genes51,54.
Using a P. aeruginosa-infected Caenorhabditis elegans model, Ren
et al. reported that the let-7 family (let-7-Fam) acted in innate
immune response pathways to timely induce strong immunity to
reduce pathogen-induced stress. The developmental timing
phenotypes of let-7-Fam miRNA mutants were modified by
growth in pathogenic processes. The let-7-Fam miRNA activity
was downmodulated during P. aeruginosa infection through the
p38 MAPK signals. Furthermore, let-7-Fam miRNAs-reduced
resistance to pathogens, also involving the p38 MAPK axis55. In
C. elegans, let-7 may influence innate immunity against P.
aeruginosa PA14 infection in both the intestine and the neurons56.
Muraleedharan et al. found that the miR-183/96/182 cluster
modulated the immune response in cornea to bacterial infection
via influencing the neuroimmune axis. Expression of miR-183/96/
182 in macrophages decreased, while reducing or blocking
miR-183/96/182 in macrophages and polymorphonuclear neutro-
phils (PMNs) increased their ability to phagocytize and kill
P. aeruginosa57.
One important feature of P. aeruginosa is its much higher

frequency of infections in patients with cystic fibrosis (CF) than
most other patient groups and healthy individuals58. miRNA
profiles for CF bronchial epithelial IB3-1 cells after P. aeruginosa
challenge demonstrated that miR-93, which is highly expressed in
basal conditions, reduced along with increased IL-8 levels after
infection. Specifically, in addition to increased IL-8 transcription
upon NF-κB activation, IL-8 protein levels were modulated via IL-8
mRNA crosstalk with miR-93 at posttranscriptional levels59. The
unfolded protein response (UPR) has been reported to play an
important role in innate immunity and inflammation, involving the
development, differentiation, and survival of immune cells60. P.
aeruginosa infection upregulated the levels of miR-233 via p38
MAPK circuits. miR-233 reportedly also has an impact on innate
immune response through activation of a UPR-associated protein,
sarco/endoplasmic reticulum Ca2+-ATPase (SERCA)61. Future

studies may elucidate whether miRNAs have therapeutic efficacies
in the treatment of CF.

Mycobacterium
Tuberculosis (TB) is a common infectious disease, with morbidity
and mortality rates exceeding tens of millions of people each year.
Both the intracellular bacteria Mycobacterium tuberculosis (Mtb)
and Mycobacterium bovis (M. bovis) can infect animals and humans
and are the most well-investigated mycobacteria62. Concerning
innate immune responses, Dorhoi et al. demonstrated that miR-
223 controlled tuberculosis susceptibility via impacting recruit-
ment of neutrophils through chemokine (C-C motif) ligand 3
(CCL3), chemoattractant chemokine (C-X-C motif) ligand 2
(CXCL2), and IL6 in myeloid cells. Deletion of miR-223 increased
susceptibility to lung infection of Mtb-resistant mice63. Mtb could
induce the expression of miR-99 in dendritic cells (DCs).
Importantly, Inhibiting miR-99b in DCs dramatically augmented
levels of proinflammatory cytokines including IL1β, IL-12, and IL6,
and decreased the bacterial burden64. Regarding adaptive
immune responses, infection of mice with Listeria monocytogenes
or vaccine strain M. bovis bacillus Calmette-Guerin (BCG) largely
reduced expression levels of miR-29 in CD8+ T cells, CD4+ T cells,
and natural killer cells. miR-29 ihibited IFN-γ production via
targeting of IFN-γ mRNA. Thus, miR-29 transgenic mice exhibited
stronger Th1 responses and higher resistance to BCG or Mtb
infection 65.
Hedgehog (HH) signaling is an important factor for cell fate

decisions in various disease conditions. M. bovis BCG-specific
TLR2 signaling influences the states of Sonic HH (SHH) signaling in
macrophages through TNF-α secretion. Intriguingly, SHH signaling
serves as a negative regulator to counteract TLR2 responses in
mycobacterial invasion. SHH signaling drives miR-31 and miR-150
expression, which modulates TLR2 levels involving MyD88, a
canonical adapter for TLR signaling 66.
As an important miRNA for immune reactions, miR-155 is

also increased in macrophages after Mtb and M. bovis BCG
infection. Enhancing miR-155 expression augments autophagic
influx in macrophages, thereby facilitating mycobacterial
phagosome maturation and ROS production and decreasing the
survival rate of intracellular mycobacteria67,68. Mice with
miR-155-deficiency died much earlier and showed drastically
increased colony forming units (CFUs) in their lungs than wild-
type mice after Mtb infection69. However, miR-155 could also
facilitate the survival of Mtb in macrophages by directly
attenuating the expression of BTB and CNC homology 1 (Bach1),
a transcriptional repressor of haemoxygenase-1 (HO-1), and SH2-
containing inositol 5′-phosphatase 1 (SHIP1), which is important
for Mtb survival70. Rothchild et al. dissected the in vitro and in vivo
function of miR-155 in impacting both innate and adaptive
immunity systems. miR-155 helped improving survival of Mtb-
infected macrophages but providing a niche supporting bacteria
colonization. However, the miRNA also extended the survival and
augmented the function of Mtb-specific T cells to upregulate
adaptive immunity. Although miR-155 may render early defense,
miR-155-deficient mice may succumb in the late stages of
infection 71.
The dynamic expression and function of miRNAs and their

isoforms in infection are an important focus in the field of host-
Mtb interactions. Siddle et al. performed a genome-wide miRNA
transcriptional analysis of human DCs exposed to mycobacteria
and other bacteria with different virulence. They revealed some
critical elements of miRNA variants in immune reaction against
bacterial infection, particularly identifying miR-132/212 family as a
vital responder to mycobacteria. Another insight is that infection
might differentially impact the expression of each member of the
same polycistronic family 72.
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M1 and M2 macrophages are functionally polarized subsets of
macrophages in various conditions including bacterial infection.
Kruppel-like factor 4 (KLF4) is a key molecule for regulating this
polarization73. During Mtb infection, downregulation of miR-26a
upregulated KLF4, which in turn prevented trafficking of Mtb to
lysosomes74. Additionally, infection of macrophages with Mtb and
M. bovis BCG led to higher expression of miR-125a75, miR-13276,
miR-26a76, miR-146a77,78, and miR-2179, which functioned as
negative regulators, whereas miR-20680 as a positive regulator,
decreased the expression of miR-let-7f81 in host defense. A nuclear
body protein, Sp110 that has been linked to TB resistance, could
modulate expression levels of miRNA in macrophages, hence
modifying host immune response (miR-146a, miR-155, miR-27b
and miR-29a) and apoptosis (miR-125a) in response to infection
with Mtb82. Therefore, miRNAs may be emerging mediators of
macrophage inflammatory responses to bacterial pathogens.

Listeria monocytogenes
Listeria monocytogenes is an intracellular bacterium that causes
serious illness in immunocompromised individuals and pregnant
women83. L. monocytogenes can evade miRNA-mediated host
defense in various cells. miR-146b, miR-16, let-7a1, miR-145, and
miR-155 were significantly dysregulated following Listeria infec-
tion in epithelial cells84. Schnitger et al. demonstrated that L.
monocytogenes promoted significant changes in miRNA expres-
sion in macrophages. miR-146a, miR-155, miR-125a-3p/5p, and
miR-149 were among the most altered miRNAs. miR-125a-3p/5p
were found to be involved in the TLR2 axis, while transactivation
of miR-155 upon infection was influenced by NF-κB p6583. Lind
et al. further showed that CD8+ T cells with miR-155 deficiency
exhibited unresponsiveness to the AKT signaling after T-cell
receptor (TCR) cross-linking responses to L. monocytogenes
infection. This suggested that miR-155 is necessary for agitating
a proper CD8+ T-cell response85. Strikingly, miR-29 inhibited
immune responses of natural killer cells, CD4+ T cells and CD8+

T cells to L. monocytogenes infection by targeting IFN-γ65. In
contrast, in macrophages, miR-21 limited the uptake of listeria
monocytogenes to control infection by impairing the intracellular
niche.
The intestinal tract is thought to be the main reservoir of

microbes in humans, but much remains to be determined about
the role of the intestinal microbiota in modulating miRNA
expression. Archambaud et al. showed that intestinal microbiota
could alter the gut miR-143, miR-148a, miR-200b, miR-200c, and
miR-378 responses after oral Listeria infection. Moreover, the
expression levels of protein-coding target genes were inversely
correlated with those of the above-mentioned miRNAs86. Thus,
miRNAs may mediate the proinflammatory responses of host
immune responses to L. monocytogenes infection.

Staphylococcus aureus
Staphylococcus aureus, a Gram-positive round-shaped bacterium,
causes common skin infections, and occasionally causes pneu-
monia, endocarditis, and osteomyelitis, in humans87. S. aureus
produces a spectrum of virulence factors and modifies the protein
levels of TGF-β, which may limit the inflammation and tissue injury
during infection88. TGF-β induces expression of miR-29b to
promote murine alveolar macrophage dysfunction, and miR-29b
compromises bacterial killing in macrophages through prosta-
glandin E2 (PGE2) signaling89. A network of miRNA-gene-pathway
interactions could be induced in bovine mammary gland cells in
response to invading S. aureus. The increase in bta-miR-223 and
bta-miR-21-3p was found in the teat quarters following high dose
S. aureus infection. Further analysis suggested critical roles of
these two miRNAs in defending hosts against bacterial infection,
probably through inhibiting CXCL14 and KIT proto-oncogene
receptor tyrosine kinase (KIT)90. Skin wound healing after S. aureus
infection might be impaired in miR-142-deficient mice compared

to that in wild-type mice. These alterations may be associated with
cytoskeletal function, and the levels of the small GTPases were
thus drastically enhanced in miR-142-deficient neutrophils91.
Bacterial pneumonia after influenza infection is dubbed with high
mortality and morbidity92,93. In contrast to the results from other
murine infection models44,85, mice with miR-155 deficiency were
resistant to infection, with significantly reduced bacterial CFUs and
no differences in viral load, along with augmented IL-23 and IL-17
compared to WT mice after sequentially challenged by virus and
bacteria, respectively. A miR-155 antagomir application signifi-
cantly reduced bacterial loads versus control antagomir treatment
after sequentially infected by viruses and bacteria92. These studies
indicated that the regulation of miR-155 may be modified under
different infection conditions.

Other bacterial pathogens
In addition to the above-mentioned infection models, miRNAs
have been reported to be involved in host immune responses
against the other bacterial pathogens. Despite NF-κB activation
being the necessity of miR-155 induction, much remains to be
elucidated about the underlying mechanisms of miR-155 induc-
tion by various stimuli or pathogens. Cremer et al. showed that de
novo synthesis of c-Jun and c-Fos upon NF-κB activation is needed
for inducing miR-155 by Francisella novicida, Burkholderia cenoce-
pacia, and Mycobacterium smegmatis stimuli in monocytes94. miR-
155 is also critical for effective clearance of primary and secondary
Streptococcus pneumoniae colonization via IL-17A and IFN-γ CD4+

T-cell responses95. Interestingly, miR-155 may not participate in
the cytokine production induced following Francisella tularensis
phagocytosis. Instead, this miRNA may be important for inhibiting
endotoxin-stimulated TNF-α secretion96. In P. gingivalis-infected
BMMs, mmu-miR-155-5p could markedly decrease the production
of TNF-α97. Thus, these data demonstrate that miR-155 may act as
a global negative regulator of inflammation during bacterial
infection.
miR-15a and miR-16 have been reported to play an important

role in bacterial infection-associated sepsis. Deletion of miR-15a/
16 in myeloid cells significantly decreased E. coli-associated
mortality in several mouse models of sepsis. Consistently, miR-
15a/16 overexpression using miRNA mimics decreased both
phagocytosis and production of mitochondrial reactive oxygen
species. In addition, deficiency of miR-15a/16 boosted secretion of
cytokine/chemokine of bone marrow-derived macrophages
(BMDMs) at the initial phase of infections98. This is different from
miR-15a/16, presumably a restriction factors for Salmonella
infection via control of the G1/S phase transition43.
In Neisseria gonorrhoeae infection models, TLR4 instead of TLR3

is required for inducing miR-718 expression in macrophages. miR-
718 can impact PI3K/AKT axis through direct downregulation of
phosphatase and tensin homolog (PTEN), while increasing AKT
phosphorylation and cytokine production. Decrease in miR-718
levels correlated to bacterial burdens during N. gonorrhoeae
infection and thus altering the infection dynamics of N. gonor-
rhoeae in vitro99. Additionally, miR-214 could be significantly
upregulated by Vibrio harveyi and LPS stimulation. Upregulating
miR-214 subsequently inhibited the production of inflammatory
cytokines by targeting MyD88 to avoid excessive inflammation100.
However, Chlamydia muridarum infection in mouse genital tracts
drastically reduced miR-214, while repressing the expression of
intracellular adhesion molecule 1 (ICAM1). The alteration of ICAM1
by miR-214 in mice correlated with a reduction of neutrophil
infiltration in genital tissues101. Filopodia are thin actin-rich cell
protrusions, and forming host-cell filopodia is critical for
phagocytosis and bacterial internalization. miR-29b-2-5p, by
inhibiting its direct target UNC5C, rapidly increased filopodia in
hosts upon Shigella flexneri infection102. These studies highlight
the complicated transcriptional and posttranscriptional response
mechanisms of host cells to bacterial infection.

The role of miRNAs in bacterial infection
Zhou et al.

4

Signal Transduction and Targeted Therapy  (2018) 3:14 



SIGNIFICANCE OF ALTERED MIRNAS IN BACTERIAL INFECTION
Host response to pathogens needs fine regulation of various
cellular signals including immune signaling103. Given the abnor-
mal miRNA expression in bacterial infection, it has been
hypothesized that these dysregulated miRNAs could affect multi-
ple cell physiological functions and pathological processes,
depending on their target genes.

TLRs/NF-κB signaling
TLRs were the first identified and the most well-investigated
PRRs. TLRs sit at the center of innate immunity against almost any
pathogens through their PAMP recognition3. After recognizing
the PAMPs of pathogens, TLRs can transduce downstream
signaling through either MyD88 or TRIF. These TLR-mediated
responses may induce secretion of inflammatory cytokines and
miRNA expression (Fig. 1). TLR-4 signaling is necessary for
enhancing miR-32-5p following Mtb infection. miR-32-5p signifi-
cantly extended the survival of intracellular mycobacteria104.
miR-124 was upregulated in the peripheral leukocytes of patients
with pulmonary tuberculosis in both M. bovis- and BCG-infected
macrophages in vitro and in vivo. Mechanistically, miR-124 can
regulate TLR signaling pathways in macrophages in response to
BCG infection105. Many subsets of TLRs and related signals,
including TLR6, MyD88, TRAF6, and TNF-α, can be directly
impacted by miR-124105,106. miR-3178 mitigated inflammatory

response and gastric carcinogenesis that are facilitated by a
H. pylori new toxin, Tip-α, via targeting TRAF3107. miR-223 may
down-modulate NF-κB activation by inhibiting p65 phosphoryla-
tion and nuclear translocation108. miR-329 plays a major part in
promoting trophoblast apoptosis induced by S. pneumoniae
peptidoglycan (PDG) and inhibiting IL6 mRNA expression
involving the NF-κB subunit p65109. miR-210 targets another
subunit of NF-κΒ, p50, to inhibit LPS-induced expression of
proinflammatory cytokines110. TLR4-activated NF-κB rapidly
increases the expression of miR-9 to provide feedback to NF-κB-
dependent responses by fine tuning the expression of the
NF-κB subunit p50111. IKKα mRNA was targeted by miR-15a,
miR-16, and miR-223, which then substantially decreased NF-κB
p52 production112. miR-146a could also directly target TRAF6 after
transcription and ameliorate the activation of NF-κB and p38
MAPK circuits during BCG challenge. miR-146a increase may block
inducible nitric oxide (NO) synthase (iNOS) expression and NO
generation, thereby enhancing mycobacterial survival in macro-
phages78. In E. coli, Mycobacterium and Helicobacter infection
models, miR-146a downregulated the expression of the target
genes IRAK1 and TRAF6, thus downregulating LPS levels and
bacteria-induced production of cytokines and chemokines,
endocytosis and lysosome trafficking30,31,113–115. Furthermore,
enforced expression of miR-146a generates a tolerance to
lipoprotein-, and leading to a significantly decreased expression

Fig. 1 Representative miRNAs in the regulation of TLR signaling. TLRs recognize different bacterial components and induce NF-κB signaling or
activate other transcription factors through adapter molecules and downstream signaling molecules. Various inflammatory factors are
transcribed that are initiated by different transcription factors. The transcription of miRNAs is most commonly mediated by RNA polymerase II,
under the control of transcription factors, and transcripts are then processed by two nucleases, Drosha and Dicer. Then, the mature miRNAs
will be incorporated into the RISC and guide the RISC to their target mRNA(s) in cytoplasm. Both early- and late-phase-activated TLRs induce
different types and expression levels of inflammatory factors and miRNAs. TF, transcription factor
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of in IRAK-1 and phosphorylated IκBα in S. typhimurium-infected or
control THP-1 cells 116.
The involvement of miR-155 in TLR/NF-κB signaling has also

been reported. miR-155 downregulated IKK-ε, and increased miR-
155 levels downregulated the production of IL-8 and GRO-α in
gastric epithelial cells after H. pylori infection24. SHIP1 is found to
be a main target of miR-155, and knocking down endogenous
SHIP1 led to AKT activation in response to LPS117. In addition, miR-
142-3p may have a role in inhibiting proinflammatory mediators
NF-κB p50, TNF-α, and IL6 in BCG-challenged macrophages,
possibly via targeting IRAK-1118. Finally, the TLR adapter MyD88
may also serve as a target of miRNAs. miR-150 targets MyD88, thus
leading to suppression of TLR responses in macrophages66. miR-
214 inhibited the production of inflammatory cytokines by
targeting MyD88 to avoid excessive inflammation in Vibrio
harveyi-infected and LPS-treated fish 100.
Several miRNAs can directly target TLRs to modulate immuno-

logic processes. Importantly, Let-7b is partially complementary to
the TLR4 mRNA 3′-UTR and therefore influence TLR4 levels at the
posttranscriptional levels in gastric epithelium. Overexpression of

let-7b reduced TLR4 and subsequently mitigated H. pylori-induced
activation of NF-κB, MyD88, NF-κB1/p50, and RelA/p6515. In
macrophages, AKT1 regulates LPS-induced let-7e expression, and
let-7e regulates endotoxin sensitivity and tolerance by interacting
with the 3’-UTR of TLR4119. miR-124 could also play a negative
regulatory role for inflammatory responses in macrophages upon
mycobacterial infection by directly targeting TLR6105,106. In a
Porphyromonas gingivalis infection model, miR-105 had comple-
mentarity for TLR-2 mRNA and inhibited TLR-2 protein translation
in human gingival keratinocytes120. TLR2 could also be targeted by
miR-23a-5p to modulate survival of mycobacteria and activation of
autophagy pathways 121.
In addition to the well-investigated miRNAs targeting positive

signaling cascade molecules, miRNAs could also target negative
regulators during bacterial infection. For example, Mtb-triggered
let-7f could target A20, which can inhibit NF-κB 81.

Autophagy
Autophagy is a vital measure of eukaryotic cells that maintains
cellular homeostasis to recycle nutrients and degrade damaged or

Fig. 2 Representative miRNAs in the regulation of autophagy. Autophagy is an important immune response used to eliminate bacterial
pathogens. In turn, bacterial pathogens have also developed the ability to subvert host autophagy by interfering with autophagy signaling.
Deregulation of miRNAs can occur as the result of interplay between bacterial factors and autophagy components. miRNAs that target
autophagy-related proteins function as a specialized immunologic effector and effectively regulate host innate immune responses for the
elimination of pathogenic bacteria
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aged cytoplasmic constituents, which also impacts the survival of
bacterial pathogens103. It has become increasingly recognized that
abnormal autophagy may contribute to defense against bacterial
infection (Fig. 2). BCL2-interacting coiled-coil protein (BECN1) and
autophagy-related protein 12 (ATG12) are two important proteins
that guide other autophagy proteins to the pre-autophagosomal
membrane and subsequently facilitating phagophore elongation
and autophagosomes maturation17. Two groups have reported
that H. pylori infection increases miR-30b/d and that compromised
autophagy by miR-30b/d promotes bacterial replication by
targeting BECN1 and ATG1217,122. DNA damage-regulated autop-
hagy modulator 2 (DRAM2) is shown to interact with BECN1 as a
coordinator of autophagy activation. miR-144-5p inhibited anti-
microbial responses against Mtb in human monocytes and
macrophages by targeting DRAM2 123.
These data demonstrated that mycobacterial challenge may

augment miR-155 levels, and miR-155 increase induces autophagy
through targeting Ras homolog enriched in brain (Rheb), a
negative autophagy modulator. miR-155 activates autophagy and
facilitating phagosome maturation after mycobacterial internaliza-
tion into macrophages, thus killing intracellular mycobacteria67.
However, another group reported no difference in formation of
autophagosomes in WT control and miR-155−/− macrophages
after virulent Mtb infection by assessing LC3I to LC3II conversion.
Their results suggest that inhibiting SHIP1 via miR-155 improves
viability in macrophages and reduces bacterial burdens71. In
contrast, miR-125a could target UV radiation resistance-associated
gene (UVRAG) to inhibit autophagy activation and antimicrobial
responses to Mtb75. Mtb utilized miR-33 to downregulate
autophagy and reshape lipid metabolism in hosts to enhance
intracellular survival and persistence by influencing critical
autophagy components, such as ATG5, ATG12, and UVRAG124.
Mtb infection could also lead to inhibition of miR-17 and
concomitant increase of its targets, myeloid cell leukemia
sequence 1 (Mcl-1) and signal transducer and activator of
transcription 3 (STAT3), a transcriptional activator of Mcl-1. miR-

17 overexpression reduced phosphorylation of protein kinase C
delta (PKCδ) and attenuated autophagy during Mtb infection125.
Furthermore, BCG-challenged macrophages exhibited higher
levels of miR-144-3p, which targets ATG4a and inhibits antimicro-
bial defense126. Collectively, these findings suggest that dysregu-
lated miRNAs may be the result of a complex interplay between
bacterial factors and autophagy components (Fig. 2).

Apoptosis
Apoptosis is considered as programmed cell death that may play a
part in host defense against pathogens. Apoptosis is typically
identified with cell shrinkage, DNA fragmentation, mitochondrial
permeability, membrane blebbing, and particularly activated
caspases (caspase 3)127. Intracellular pathogens may modulate
host apoptosis signaling to facilitate their proliferation and evade
host defenses. Indeed, numerous miRNAs have been reported to
regulate apoptosis-related genes during bacterial infection (Fig. 3).
Three highly regulated genes (Lpin1, Pmaip1, and Tspan14)
associated with apoptosis/DNA damage have been validated as
the targets of miR-155 in H. pylori-infected BMMs. miR-155−/−

BMMs succumbed to apoptosis upon cisplatin treatment versus
wild-type counterparts. Furthermore, H. pylori-infected miR-155−/−

BMMs showed poly (ADP ribose) polymerase (PARP)/procaspase-3
cleavage levels similar to controls21. BCG challenge-augmented
miR-155 was dependent on TLR2-associated signals. miR-155 also
impacts PKA signaling axis by targeting PKI-α, which is a negative
modulator of PKA. Notably, miR-155-driven PKA circuit enhanced
apoptotic effector activities, thus leading to apoptosis in BCG-
infected macrophages128. Huang et al. reported that miR-155
inhibited apoptosis of monocytes by targeting Forkhead Box O3
(FOXO3) using an Mtb infection model. Interestingly, miR-233 has
similar functions with miR-155 by targeting the same gene129,130.
miR-582-5p highly expressed in monocytes was found to be

increased in patients with active TB. THP-1 cells transfected with
miR-582-5p mimics were much less apoptotic than the cells
transfected with a negative control, suggesting miR-582-5p being

Fig. 3 Representative miRNAs in the regulation of apoptosis. Apoptosis has been observed as a response to infection by a wide range of
bacterial pathogens. Bacteria can activate several proapoptotic proteins and miRNAs to induce apoptosis. Deregulated miRNAs in infection by
bacterial pathogens are involved in networks that control innate immunity and apoptosis pathways of their host cells
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an inhibitor of apoptosis, which may be through inhibition of
FOXO1 expression. Via this mechanism, miR-582-5p should impact
immune responses to Mtb infection131. MPT64, a secreted protein
by Mtb also impeded apoptosis of RAW264.7 macrophages via a
NF-κB/miR-21/BCL-2 mechanism. NF-κB was assumed to be the
chief transcription factor for miR-21-mediated gene regulation.
miR-21 then facilitates BCL-2 expression to block apoptosis132.
These results suggest that miRNAs may participate in control of
bacteria-mediated apoptosis.

Crosstalk between miRNAs and signaling pathways
As mentioned above, one miRNA may target many mRNAs, and a
single mRNA may also be regulated by several or many miRNAs.
The target mRNAs of one miRNA usually involve different
signaling pathways, and one miRNA can be induced by different
PAMPs. It has been speculated that there is a common signaling
crosstalk mechanism for mounting protective immune responses
against infection. For instance, it has been reported that TLR
signaling links the autophagy pathway to phagocytosis and
apoptosis in macrophages133,134. It appears that TLR2 and MyD88
are critical to the biogenesis of miR-125a during Mtb infection.
miR-125a inhibited the induction of autophagy in macrophages
by suppressing UVRAG protein expression, which is essential for
the coordination of autophagic maturation and endocytic
trafficking75. Wu et al. showed that SP110 nuclear body protein
downregulated miR-125a in macrophages, but upregulated Bcl2-
modifying factor (Bmf), an apoptosis-inducing protein. miR-125a
interacts with the Bmf 3′-UTR to inhibit Bmf expression, which
suppressed Mtb-induced macrophage apoptosis82. As we can see
from the above description, miRNA roles in bacterial infection are
mainly involved in host immune responses against pathogens,
which are different from those in several other diseases, such as
cancers. Indeed, the same miRNA may play a different role in
different models through the same target(s). miR-146a could
negatively regulate NF-κB activation by inhibiting the expression
of IRAK1 and TRAF6, significantly inhibiting breast tumor
growth135. It can also modulate innate immune responses via
targeting IRAK1 and TRAF6 in bacterial infection models115. This
functional diversity of miR-146a may be caused by crosstalk
between different signaling pathways. Therefore, better under-
standing of the crosstalk mechanisms underlying the deregulation
of miRNAs during bacterial infection is crucial for improving our
understanding of immune signaling.

MIRNAS AS BIOMARKERS FOR BACTERIAL INFECTION
Diagnosis of infection is important for the control of the spread of
bacterial invasion and for effective treatment of infection136. It is
demonstrated that miRNAs are stable in patients’ serum. miRNAs
are hard to degrade by RNases, and hence can be used as
invaluable biomarkers to detect bacterial infection at earlier
stages. Studies showed that 97 miRNAs expressed in a unique
manner in pulmonary TB patient sera versus healthy individuals
(90 increase while 7 decrease). Among these changed products,
miR-361-5p, miR-889 and miR-576-3p stood out to differentiate TB
patients from normal subjects or different pathogenic infec-
tions136. In another study, a larger size of subjects (326 serum
samples) were enrolled to search for biomarkers for TB infection in
the lung. The authors identified six different miRNA products (miR-
101, miR-22, miR-29c, miR-320b miR-378, and miR-483-5p) in the
serum as specific biomarkers to diagnose TB lung infection versus
normal subjects. A reasonable sensitivity (~95.0%) and specificity
(~91.8%) was achieved by combining the 6 miRNAs versus using
single miRNA 137.
Nevertheless, studying miR-29a expression in human TB cases is

still controversial. Fu et al. employed specific miRCURY LNA
microarrays to compare the levels of circulating miRNAs between
patients with active pulmonary TB and their healthy counterparts.

The analysis of the ROC curve showed that upregulated miR-29a
may distinguish TB patients from healthy controls138. In contrast,
another group reported decreased expression of miR-26a, miR-
29a, and miR-142-3p in whole blood in children with tuberculosis
compared to healthy children with latent Mtb infection (LTBI)139.
However, Awuah et al. concluded that although median miR-29a
expression was slightly higher in TB patients, there was no
significant difference compared with LTBI patients140. These
plausible results might be due to choices of patients and starting
material for miRNA quantification.
The miRNA expression profile may have several differences

between children and adults. The diagnostic value of miRNA-31 in
peripheral blood mononuclear cells (PBMCs) of sixty-five children
with pulmonary tuberculosis has been reported. Studies have
shown that miRNA-31 in pediatric TB patients exhibited less
expression compared to that in normal controls. Importantly,
serum miRNA-31 levels correlated inversely with production of IL6,
TNF-α, NF-κB, and IFN-γ 141.
Multidrug-resistant (MDR) Mtb could result in extended,

complicated disease, leading to increased treatment costs or
treatment failure. A comparative miRNA analysis was conducted
and indicated 142 miRNAs expressed in a different manner
between an MDR Mtb strain and a sensitive Mtb strain, (48
increased while 94 decreased). Importantly, only six miRNAs were
similarly expressed between the MDR and sensitive Mtb strains,
whereas 108 miRNAs were only observed in the MDR Mtb
strain142. Profiling miRNAs was carried out in plasma samples from
cavitary pulmonary tuberculosis (CP-TB) patients, non-cavitary
pulmonary tuberculosis (NCP-TB) patients and normal individuals,
which revealed candidate biomarkers (miR-769-5p, miR-320a and
miR-22-3p) for diagnosis of TB. Additionally, miR-320a may be
useful for diagnosing drug-resistant TB143. miR-155 levels were
lower in patients with MDR TB than healthy subjects. Also, this
miRNA was increased in treated patients versus naive patients.
miR-16 levels were the lowest in serum of MDR TB patients
compared to TB-naive, TB-treated and healthy control groups144.
Thus, analyzing miRNA expression patterns in MDR and drug-
sensitive Mtb may reveal novel mechanisms of drug resistance in
TB research.
Several other serum miRNAs are also differentially regulated

upon bacterial infection as biomarkers. Serum miR-133a was the
highest expressed in mice of a cecal pole ligation and puncture
sepsis model, and establishing the strong correlations between
miR-133a and disease severity, classical markers of inflammation
and bacterial infection, and organ failure of patients with sepsis145.
miR-155 and miR-197 may possess superior values in distinguish-
ing patients with pneumonia and TB from controls146. miR-144
levels in sputum and serum were shown to be increased in TB
patients, but markedly decreased following anti-Mtb treatment147.
miR-155 and miR-155* preferentially expressed in PBMCs of
tuberculosis patients showing Mtb-specific antigen, indicating
their diagnostic potential for specific Mtb antigens148. Moreover,
miR-155 was increased in both early (week 2) and late (week 11)
M. bovis-infected cattle, whereas upregulation was only detected
in late stages of BCG-vaccinated cattle. This suggested that miR-
155 may be used as a prognostic marker for distinguishing
vaccinated from controls149. miR-183 was increased in serum
samples from TB patients versus healthy subjects. Interestingly,
miR-183 expression was positively correlated with macrophage
function, as shown by their augmented phagocytosis and
enzymatic activity in the group with high serum miR-183 150.
Further studies have also profiled miRNA expression in other

clinical samples. Let-7c expression decreased in samples ranging
from non-atrophic gastritis to atrophic-metaplastic gastritis, intra-
epithelial neoplasia, and invasive GC. It increased again signifi-
cantly following H. pylori eradication14. After the identification of
miRNAs and their target genes in normal gastroduodenal biopsy,
H. pylori-infected gastroduodenal biopsy and H. pylori-infected
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gastroduodenal ulcer biopsy samples, Cheng et al. found that
increase in miR-155 and miR-146b could decrease H. pylori-
induced IL6 expression in gastroduodenal ulcer. This relationship
between miR-155 and miR-146b and IL6 might reduce the
clearance of H. pylori and contribute to ulcer development and
maintenance151. Exosomes, as a rich source of miRNAs, can
protect miRNAs from degradation, and have the potential to be a
very promising biomarker. Sun et al. detected miRNA levels in
bovine milk exosomes derived from lactating Holstein cows
infected by S. aureus. They reported that bta-miR-142-5p and bta-
miR-223 expressed differently as exosomal miRNAs, and may be
potential biomarkers for the early diagnosis of bacterial infection,
particularly for mammary glands 152.
Single-nucleotide polymorphisms (SNPs) in the processing sites

of miRNAs may affect miRNA expression and function, which are
involved in the pathogenesis of infectious diseases153,154. How-
ever, different ethnic groups may have distinct attributes for this
type of genetic epidemiological research. For instance, the miR-
499 rs3746444 T > C rather than miR-146a rs2910164 C > G likely
led to increased infection incidence in the lung in Uygur Chinese.
Kazak Chinese exhibited a marked different SNP frequency
compared to Uygur (miR-146a C > G, but not miR-499 T > C).
These same SNPs may also be related to Mtb in Tibetan people.
Despite discrepant reports, the analysis of mRNA SNPs may be not
a good measure for evaluating Mtb sensitivity in Southern Han
Chinese 155,156.
miRNAs may serve as a valuable diagnostic marker that may be

useful only for specific bacterial infections. Accumulating evidence
suggests that almost all the miRNA biomarkers evaluated to date
have been for the diagnosis of pulmonary tuberculosis and H.
pylori-associated gastritis, which may reflect differences in the field
difference due to intense interest in these bacteria. Pulmonary
tuberculosis, H. pylori-associated gastritis and other specific
bacterial diseases with clear induction factors would be more
suitable for early diagnosis via miRNA expression profiling.
However, the accuracy of detecting miRNA levels among different
samples remains quite challenging. A study of whole-blood
miRNA features for the effective early diagnosis of pulmonary
tuberculosis revealed that evaluating certain specialized miRNAs
in combination could be accomplished with reasonable sensitiv-
ities and specificities 157.

MIRNAS AS THERAPEUTIC TARGETS FOR BACTERIAL
INFECTION
The revelation that miRNAs function as an important regulator in
bacterial infection suggests their great application potential as
novel therapeutic targets. Indeed, many miRNAs have been
developed and investigated in clinical trials for several types of
diseases. The first miRNA-based drugs, MRX34, entered a phase 1
trial in patients with primary liver cancer or metastatic cancer in
2013158. Miravirsen, a 15-nucleotide locked nucleic acid-modified
antisense oligonucleotide that can sequester and thus inhibit miR-
122, could induce significant virologic responses after subcuta-
neous injections in patients with chronic HCV infection159. Though
there are no bacterial infection-related miRNA-based drugs
evaluated in clinical research to date, miRNAs still represent a
promising approach for future therapies or as immune modulators
against invading pathogens. Several miRNAs with excellent
immune regulation efficiency, such as miR-33124, miR-15544, miR-
2965, miR-146a115, and miR-302b52, may have great developmen-
tal potential for further clinical studies.
The application of miRNA-based therapeutics still faces many

hurdles before it can be translated into clinical practice for
bacterial infections. The spatio-temporal expression of miRNAs
and their targets at different stages during infection must first be
precisely identified. If the miRNAs that can target numerous genes
can be specifically designed, this could represent a significant

advantage of miRNA-targeted approaches. As the multicenter
phase I clinical study of MRX34 was terminated due to five
immune-related serious adverse events last year, the efficacy and
safety of miRNA-based drugs need to be carefully assessed160. The
tissue/target specificity delivery and stability of miRNA-based
drugs is another current limiting factor for satisfactory therapeutic
effects. In addition to well-investigated virus and non-virus
delivery systems, recent reports indicate that exosomes may be
an emerging high-efficiency delivery approach 161,162.

CONCLUSION AND PERSPECTIVES
miRNA research has provided a unique angle for studying the
mechanisms underlying how the innate immune system senses
and responds to microbial pathogens. Over the past decade, the
role of miRNAs in bacterial pathogen infection has greatly
enhanced our understanding of cellular physiology and immunol-
ogy. In particular, miR-155 and miR-146 are the two most well-
understood miRNAs, with well-characterized roles in immunity
and inflammation regulation during bacterial infection.
However, due to the complexity of bacterial infections, one

miRNA may regulate several different targets in different stages
during bacterial infection. The precise mechanism underling the
regulatory function of miRNAs must be explored. Future studies
are needed to further clarify how miRNAs with diverse targets may
affect overall host responses during infection. In certain instances,
the continuous development of pathological processes is accom-
panied by changes in the miRNA expression profile. It is necessary
to distinguish that are the most important regulators and which
intervention strategy is the most effective.
Bacterial pathogens have developed a variety of virulence

factors to facilitate bacterial colonization in their hosts, invade
deeper tissues and evade host defenses163,164. Currently, research-
ers have only identified bacterial infections that can cause
changes in the expression of a variety of miRNA. Many miRNAs
could be induced during infection with different types of bacteria.
It has been noted that several aberrant miRNAs during bacterial
infection are also dysregulated in other diseases. For example,
levels of miR-155 are altered upon infection with P. aeruginosa,
Mtb and H. pylori, and miR-155 plays a role in host immune
responses23,54,71. Many reports have shown that miR-155 is
involved in several other diseases, such as rheumatoid arthritis165,
breast cancer166, atherosclerosis167, Crohn’s disease168, and others.
The specificity of miRNA expression induced by certain bacteria or
their virulence factors requires more investigation. This would be
of the utmost importance for the application of unique miRNAs for
diagnosis and treatment.
Furthermore, mutations within miRNAs may also alter their

target selection, thereby preventing them from inhibiting
tuberculosis-related genes, thus increasing host susceptibility to
disease. Amila et al. investigated the genetic association of
pulmonary tuberculosis with six human miRNA genes that have
been predicted to interact with tuberculosis genes. However, this
study did not show differences in the sequences compared with
healthy individuals without antecedents of tuberculosis169.
Despite the negative results in this study, larger samples are
needed for clarification in future studies, especially in bacterial
pathogen-susceptible or resistant populations. Even in the
absence of clinical symptoms, several host-adapted bacterial
pathogens (e.g., Mtb, S. typhimurium and H. pylori) are capable of
maintaining infections in mammalian hosts even in the presence
of inflammation, specific antimicrobial mechanisms and a robust
adaptive immune response, which may be due to persistent
infections170,171. However, the role of miRNAs in the fundamental
genetics of bacterial persistence in the presence of immuno-
surveillance has only recently begun to be clarified.
The relationship between miRNAs and bacterial pathogens and

the underlying mechanisms urgently require broader

The role of miRNAs in bacterial infection
Zhou et al.

9

Signal Transduction and Targeted Therapy  (2018) 3:14 



investigation. Hence, the elucidation of the function of miRNAs on
host–pathogen interactions may lead to the discovery of novel
and effective preventive measures and the development of
rational therapeutic strategies.
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