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ARTICLE INFO ABSTRACT

Since the outbreak of a large-scale Ulva prolifera bloom in the Yellow Sea during the Qingdao Olympic Sailing
Competition in summer 2008, Ulva blooms have been a marine hazard every summer. Accurate and timely
information on Ulva areal coverage and biomass is of critical importance for governmental responses, decision
making, and field studies. Previous studies have shown that satellite remote sensing is the most effective method
for this purpose, yet Ulva areal coverage has been estimated in different ways with significantly different results.
The objective of this paper is to determine the lower and upper bounds (T, and T,) of algae-containing pixels in
Floating Algae Index images with an objective method that accurately estimates the Ulva areal coverage in
individual images, and then converts coverage to biomass using a previously established conversion equation.
First, a seawater background image, FAly,, is constructed to determine T,, which varies for different algae
patches. Then, T, is determined from water tank and in situ measurements as well as radiative transfer simu-
lations to account for different sensor configurations, solar/viewing geometry, and atmospheric conditions. Such
determined T, for MODIS 250-m resolution data is validated using concurrent and collocated 2-m resolution
WorldView-2 data. Finally, Ulva areal coverage derived from MODIS data using this method are compared with
those from the high-resolution data (OLI/Landsat, WFV/GaoFen-1), with a mean relative difference of 9.6%.
Furthermore, an analysis of 17 same-day MODIS/Terra and MODIS/Aqua image pairs shows that large viewing
angles, atmospheric turbidity, and sunglint can lead to an underestimation of Ulva coverage of up to 45% under
extreme conditions.
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1. Introduction

Since the outbreak of a large-scale green tide in the Yellow Sea (YS)
during the Qingdao Olympic Sailing Competition in summer 2008,
green tides have been a marine hazard every summer in China (China
SOA, 2016). The dominated species of the green tides in the YS was
identified as Ulva prolifera based on morphology observations and
molecular analysis conducted on samples from coastal waters off
Qingdao and from the YS (Zhang et al., 2008; Wang et al., 2008;
Leliaert et al., 2009; Wang et al., 2015). It is generally accepted that
Ulva blooms originate from the Subei Shoal, as evidenced by satellite
remote sensing (Hu and He, 2008; Liu et al., 2009), numerical model
simulations (Lee et al., 2011), or in situ experiments (Liu et al., 2010;
Huo et al., 2013). Although it has been proposed that local aquaculture
ponds are possible bloom origins (Pang et al., 2010; F. Liu et al., 2013),
there is a general consensus that Porphyra yezoensis aquaculture in the

Subei Shoal is most likely the ‘seed’ source of the Ulva blooms (Liu
et al., 2009; Liu et al., 2010; Hu et al., 2010c; D. Liu et al., 2013; Hu
et al., 2014; Liu et al., 2015; Wang et al., 2015; Zhang et al., 2017). Ulva
could grow with P. yezoensis on aquaculture rafts and then be discarded
by farmers when P. yezoensis is harvested and rafts are cleaned in April.
The disposed fragments of Ulva may drift to offshore waters and grow
rapidly, forming large-scale blooms in the YS (Liu et al., 2016).
Satellite remote sensing is one of the most effective tools for Ulva
bloom monitoring. Since 2008, MODIS data covering the region twice a
day have been widely used for bloom monitoring with many algae in-
dices, including the Normalized Difference Vegetation Index (NDVI)
(Hu and He, 2008; Cui et al., 2012), Normalized Difference Algae Index
(NDAI) (Shi and Wang, 2009), Floating Algae Index (FAI) (Hu, 2009;
Hu et al., 2010c; He et al., 2011; Xu et al., 2014a; Hu et al., 2017),
Scaled Algae Index (SAI) (Keesing et al., 2011; Garcia et al., 2013) and
Virtual-Baseline Floating macroAlgae Height (VB-FAH) (Xing and Hu,
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Table 1
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Statistics of Ulva areal coverage in the YS on 30 May 2008 using cloud-free MODIS data, based on published literature. The symbol ‘-’ indicates that T; is not used in
the study because each algae-containing pixel is assumed to have complete (i.e., 100%) algae coverage.

Coverage (km?) Index Sub-pixel coverage Thresholds Literature

To T,
1200 NDVI No Fixed Liu et al. (2009)
2240 NDAI No Fixed - Shi and Wang (2009)
3475 SAI(NDVI) No SAL, - Keesing et al. (2011)
1200 NDVI No Fixed - Xing et al. (2015)
1500 FAI Yes 0 0.02 Xu et al. (2014a)
234 FAIL Yes 0.0025 0.176 Qi et al. (2016)
378-417 SAI (NDVI) Yes SAlgy, SALax Garcia et al. (2013)

2016). However, the reported Ulva areal coverage data are significantly
different among the published studies; for example, there are large
discrepancies (p-value = 0.03 of t-test statistic) in these coverage esti-
mates for the bloom event of 30 May 2008 (Table 1) when the estimate
from Garcia et al.'s is used as the expected value. These discrepancies
can represent a difference of up to 15 times, which may be due to a
number of factors, including differences in (1) the indices used, (2) the
treatment of algae-containing pixels (i.e., whether to consider sub-pixel
coverage), (3) and the thresholds used in the unmixing model if sub-
pixel coverage is considered. Obviously, because most algae-containing
pixels in MODIS imagery are partially covered by algae (Hu et al.,
2017) due to the relatively large pixel size (> 250 m), a reliable model
to unmix the sub-pixel coverage is required to reduce uncertainties in
the areal coverage estimates and in subsequent biomass estimates. The
question then becomes what index to use and how to select the
thresholds when unmixing pixels.

Among the various indexes used to detect and quantify Ulva blooms,
FAI is based on the linear subtraction of a spectral baseline to quantify
the vegetation red-edge reflectance (i.e., elevated reflectance in near
infrared) and is thus relatively insensitive to changes in sun/sensor
viewing geometry and atmospheric conditions (Hu, 2009). More im-
portantly, the linear subtraction design of FAI makes it possible to es-
timate sub-pixel coverage using a linear unmixing model, thereby sui-
table to accurately quantify the areal coverage of blooms (Hu et al.,
2010c). Recently, Ulva biomass was remotely estimated using MODIS
measurements, where a model was used to convert FAI to biomass (Hu
et al., 2017). Moreover, FAI has been widely used to map other mac-
roalgae blooms (e.g., Sargassum blooms in the West Atlantic) in open-
ocean waters (Wang and Hu, 2016; Hu et al., 2016a; Hu et al., 2016b)
and cyanobacteria blooms in Lake Taihu of China (Hu et al., 2010b;
Duan et al., 2015; Liang et al., 2017) and the West Florida Shelf (Hu
et al., 2010a).

Thus, FAI may be a good choice for the linear unmixing of mixed
pixels. However, the difficulty still remains on how to determine the
lower and upper bounds of thresholds, Ty and T, respectively, to re-
present 0% and 100% algae coverage within a pixel. Using statistics of
430 MODIS images of cyanobacteria blooms in Lake Taihu, Hu et al.
(2010b) determined T, to be 0.004 (dimensionless), and this value was
then applied to time series MODIS data to estimate Ulva areal coverage
(Hu et al., 2010c; Xu et al., 2014a). A fixed Ty is easy to implement in
image processing, yet Ty can vary with seawater optical properties (e.g.,
turbidity) and atmospheric conditions (e.g., haze or sunglint) (Keesing
et al., 2011; Garcia et al., 2013). On the other hand, the North China
Sea Marine Forecasting Center of State Ocean Administration
(NCSMFC/SOA) of China utilized MODIS NDVI in operational Ulva
bloom monitoring with a Ty threshold between [ —1.5,0] selected by an
experienced human analyst (Zhong et al., 2013; Ding et al., 2015).
Garcia et al. (2013) developed the SAI method by subtracting the
median value in a moving kernel window to scale the NDVI image to
the local seawater background, where clear seawater areas close to the
algae patches were manually selected to statistically derive Ty. Qi et al.

(2016) varied T, in each MODIS image until the delineated algae slicks
agreed with visual inspection. Because of the sensitivity of T, to the
background ocean turbidity and because of the extremely high turbidity
in the shallow Subei Shoal, the pixels over Subei Shoal were masked in
Qi et al. (2016). Similarly, in Wang and Hu (2016), although large-scale
variations in seawater background FAI were addressed through the use
of 4th-order surface fitting, the method could not be applied to sudden
changes in seawater background FAI such as those from Subei Shoal or
very turbid coastal waters. These methods to determine T, are all
subject to some degree of uncertainties when the seawater background
FAI change rapidly, and are relatively difficult to implement for op-
erational use. Likewise, the selection of T; using a maximum SAI value
from individual images (Garcia et al., 2013) is subject to uncertainties
because, during early stage of Ulva blooms, there may be no pixels
completely covered by Ulva, and in later bloom stages, the maximum
SAI used to represent T; could be an overestimate. In this case, the near-
infrared reflectance still increases with increasing biomass density but
at a lower rate after a certain threshold (Hu et al., 2017), leading to
FAI > T;. The use of variable T; values across images may also make
the derived Ulva areal coverage inconsistent among images.

Clearly, once FAI is selected as the index to detect and quantify Ulva
for the reasons mentioned above, the key technical challenge is the
determination of Ty and T,.The objective of this study is to develop an
objective method to determine these two values, with the ultimate goal
of accurately estimating Ulva areal coverage and biomass from satellite
measurements. Specifically, a seawater background image, FAl,, is
reconstructed to accurately determine T,, where most perturbation
factors (variable turbidity, aerosols, geometry, and sun glint) are ac-
counted for via the use of a corrected FAI image (cFAI), which is de-
rived as the difference between the original FAI image and the seawater
background image. The FAl, image not only minimizes impacts of
observing conditions but also makes it possible to implement this
method for operational monitoring without manual intervention.
Furthermore, based on water tank and in situ experiments (Hu et al.,
2017), T, for different sensors under different geometries and aerosols
is determined and validated with very high spatial resolution World-
View-2 data (2.0 m). The new method is then used to estimate Ulva
areal coverage from MODIS, and compared with concurrent high spatial
resolution OLI/Landsat (30 m) and WFV/GaoFen-1(16 m) estimates.
Finally, the impacts of satellite sensor viewing angles, aerosols, and
sunglint on the derived Ulva areal coverage data are discussed using 17
pairs of MODIS/Terra (MODIST) and MODIS/Aqua (MODISA) images
acquired in the same day.

2. Satellite data
2.1. MODIS data
MODIST and MODISA Level-0 data over the YS between May and

August in each year were obtained from the NASA Godard Space Flight
Center (https://oceancolor.gsfc.nasa.gov), and then processed to
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Fig. 1. Study area of the YS, bounded by 119°-124°E and 33°-37°N. The background image is the MODIS/Terra RGB image acquired on 31 May 2008. The Subei

Shoal shows an extensive sediment plume.

generate Rayleigh-corrected reflectance (R,., dimensionless) data using
the SeaDAS software package (Version 7.4). MODIS R,. data at 469,
555, 645, 859, and 1240 nm and the sensor viewing zenith angle (VZA,
degrees) were resampled at 250-m resolution and mapped to a UTM
projection (Zone = 51) for the YS area (33°-37°N, 119°-124°E, Fig. 1).
MODIS true-color Red-Green-Blue images (R:645nm, G:555nm and
B:469nm) and false-color RGB images (R:645nm, G:859nm and
B:469 nm) were generated for visualization. For each pixel, the MODIS
FAI was derived as (Hu, 2009):

FAI = Reenig — Rienir

ANIR — ARED
R/ ik = Rre.rep + (Rre,swik — Ree,rep) ——————

@

ASWIR - ARED

where the subscripts represent MODIS wavelengths as Agrgp = 645 nm,
Anr = 859 nm, and Agsyr = 1240 nm. For other sensors, these wave-
lengths can be adjusted accordingly.

2.2. OLI/Landsat-8 data

Landsat-8 was launched on 11 February 2013 carrying the OLI
sensor, which measures the upwelling radiance at a nominal resolution
of 30 m with 8 bands in the visible, NIR and SWIR spectral regions. OLI
Level 1 data between May and August covering the study area were
obtained from the USGS (https://earthexplorer.usgs.gov/). These
radiometrically calibrated total radiance data were mapped to a UTM
projection (Storey et al., 2014). OLI offers higher signal-to-noise ratios
(SNR) than its predecessors TM and ETM+ (Vanhellemont and
Ruddick, 2014). The total radiance was used to generate R,. data using
the 6S radiative transfer software (Vermote et al., 1997), and this data
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was then used to derive the OLI FAI images using Eq. (1) with OLIL
Bands 4 (655nm), 5 (865nm) and 6 (1610 nm).

2.3. WFV/GaoFen-1 data

GaoFen-1(GF-1) Level-1A data between May and August were ac-
quired from the Chinese Center for Resources Satellite Data and
Application (CRESDA) (http://www.cresda.com/CN/index.shtml). The
GF-1 satellite was launched in April 2013 and equipped with four Wide
Field of View (WFV) multi-spectral CCD (three in visible and one in
NIR) with VZAs ranging from 0° to 24° for two close-nadir cameras and
24° to 40° for two off-nadir cameras (Feng et al., 2016). The spatial
resolution of WFV/GF-1 is approximately 16 m at nadir, and the swath
width is 800 km (Xu et al., 2014b). These resolution and coverage are
appropriate to validate concurrent MODIS observations. Similar to OLI
processing, the Level-1A data were calibrated to total radiance with the
calibration data acquired from CRESDA, and then processed to generate
R,. data using the 6S radiative transfer simulation software (Vermote
et al.,, 1997) and mapped to a UTM projection (Zone = 51) using the
ENVI software. Because WFV is not equipped with a SWIR band, FAI
could not be derived. Therefore, the Difference Vegetation Index (DVI)
(Tucker, 1979) was estimated as

DVI = RyeniR — Ry rED 2)

2.4. WorldView-2 data

A WorldView-2 (WV-2) sub-scene (5km X 5km, centered at
36.650 N, 122.741°E) containing many algae patches in the YS was
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acquired on 23 June 2012 from DigitalGlobe. WV-2 has eight bands in
the visible and NIR with a spatial resolution of ~2.0 m. The image was
mapped to the same UTM projection (Zone = 51). DN values of the WV-
2 data were processed to total radiance with the corresponding meta-
data file (Updike and Comp, 2010) and then processed to R,. and DVI
(660 nm and 830 nm) using the same methods as described above for
WFV/GF-1 data.

3. Method to determine Ulva areal coverage and biomass

For a certain region, Ulva areal coverage and biomass can be ex-
pressed as:

M:x

S = OLispixel
1

0o

1

T=S 3

where S is the Ulva areal coverage in km?; Spixel is the pixel size (for
MODIS Spicer = 0.0625 km?); q; is Ulva areal density (from 0.0 to 1.0) in
pixel i; n is the number of algae-containing pixels, T is the total biomass
in kg or metric tons, and oy (kg m~2) is a calibration constant de-
termined from water tank and in situ experiments.

An algae-containing pixel in the satellite image can be considered to
be composed of algae and seawater, with surface coverage values of a
and 1 — a, respectively. Then, we have:

ch,pixel = ach,a[gae + (1 - a)ch,sw (4)
Because FAI is linear in the R,. space, we have:
FAlLyixer = aFAlygee + (1 — a)FAI, (5)

where FAlyq. is the FAI value of pure Ulva (T,), and FAlI, is the FAI
value of local seawater (Ty).
Thus, a can be derived as:
FAlLyyq — FAIy, CFAIpixel
o= =
FAlyjgee — FAL,,  CFAIjgqe

(6)

where cFAI indicates the corrected FAI value after scaling to (i.e.,
subtracting) FAI,,. The following sections will describe in detail how to
reconstruct the FAI,, seawater background image.

3.1. Reconstruction of the seawater background image (FAl,,)

FAI removes most effects of atmospheric perturbation, but the FAI
magnitude is still influenced by suspended sediments in turbid waters,
atmospheric turbidity, and sunglint. For example, in the Subei Shoal, an
abandoned Yellow River subaqueous delta (Fig. 1), the suspended
particulate matter (SPM) concentration can reach 300 mg/L in April
(Shen et al., 2014). Such high SPM concentrations elevate R,. in the red
band, leading to lower FAI values (purple area in Fig. 2a) (Hu et al.,
2010b). On the other hand, MODIS images over the YS are frequently
“contaminated” by atmospheric turbidity (e.g., high aerosol loading or
haze) and sunglint. The disproportionately elevated R,. in the red, NIR
and SWIR bands lead to lower FAI values with increasing atmospheric
turbidity and higher FAI values with increasing sunglint. Such varia-
bility in FAI/NDVI values of seawater within a MODIS image has been
illustrated clearly in the bimodal characteristic from the histogram
analysis of two seawater areas w/ and w/o sunglint (Garcia et al.,
2013). When extensive turbid waters (purple area in Fig. 2a) are taken
into account, the histogram of FAI values of seawater will demonstrate
a multimodal distribution (Fig. 3), making it more difficult to apply a
global T, to distinguish Ulva from seawater background in the image.
Therefore, deriving an accurate T, image (where T, may vary across the
image) instead of a global T, to serve as the background (FAl,,) is the
ideal way to address these problems. The entire process of re-
constructing a seawater FAI, background image is summarized in the
flowchart in Fig. 4. Specifically, after deriving corrected FAI gradient
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image (cGpap from the MODIS FAI gradient image (Gga;) and MODIS
Ric,645 gradient image (Greas), the threshold T is applied to the cGgar
image to classify pixels as algae-free seawater pixels (<T.g) and can-
didate pixels (> T.g). The latter may include algae-containing pixels
and neighboring seawater pixels. Then, a variable-window method is
applied to each candidate pixel to further classify whether the candi-
date pixel is a seawater or algae-containing pixel. The following sub-
sections will describe the details of the corrected FAI gradient image,
threshold T.g, and the variable-window method.

3.1.1. Corrected FAI gradient image (cGrap)

The first step is to construct a corrected FAI gradient image (cGgap)-
FAI values of algae-containing pixels vary in space due to patchiness,
while FAI values of algae-free seawater pixels are more homogeneous.
The pixel gradient magnitude is defined as:

[T 3 (v —v)V

V,vl-=\j;2(y‘x_y’) i

=1\ T )
where Vy; indicates the gradient magnitude of y in the ith pixel; x; ;
denotes the distance between the ith pixel and its adjacent 8 pixels. The
FAI gradient image is computed using Eq. (7) and given in Fig. 2b. As
expected, high gradients occur around the boundaries of the algae slicks
and within the algae slicks due to patchiness and the coarse resolution
of MODIS (~250 m). This result suggests that the FAI gradient could be
a better indicator than the FAI magnitude to differentiate algae slicks/
patches from algae-free seawater. Indeed, FAI gradients have been
utilized to statistically derive T, across entire MODIS scenes (Hu et al.,
2010c; He et al., 2011; Zhang et al., 2014).

Most algae-free seawater pixels have small FAI gradients, except for
the mud banks of the Subei Shoal or near the front between high SPM
and lower SPM waters (Fig. 2b). These false positives need to be
minimized. Because variation in the FAI of sediment-rich waters is
mainly caused by variation in R, 45 (Fig. 2¢), the latter may serve as a
reference to correct the former:

(8

where, Gga; and Ggress denote gradients of FAI and R, e4s, respectively.
Fig. 2d shows the corrected FAI gradient image cGga;. Clearly, the high
FAI gradients around the boundary of sediment patches are largely
reduced, leading to a relatively homogeneous seawater background in
the cGgpr image, suggesting that a threshold of T.g may be derived to
delineate seawaters pixels and algae-containing pixels in the cGga;
image.

¢Grar = Grar — Greas

3.1.2. Determination of the threshold T g

All cloud-free MODIS images acquired between May and August
were visually examined by linking the FAI image with the corre-
sponding RGB image using the ENVI software to exclude images con-
taining algae slicks. For each algae-free image, the corresponding cGray
image was derived using Eqs. (7)-(8). The histogram and cumulative
histogram of all seawater pixels in each cGga; image were calculated,
and the value corresponding to 0.99 in the cumulative histogram was
selected as the T.g for each image. The value 0.99 was chosen to ex-
clude bright pixels due to small islands, fixed platforms, or ships.

3.1.3. Variable-window method

After applying the threshold T.g to corrected FAI image, pixels were
classified as algae-free seawater pixels (=T.g) and candidate pixels
(> T.g), which may include algae-containing pixels and neighboring
seawater pixels. To further classify the candidate pixels to seawater or
algae-containing pixels, a variable-window method was implemented
by varying window size to contain at least a certain number of seawater
pixels to represent the local seawater background. The initial window
size of this study was set to 11 X 11, but the size was increased if the
number of seawater pixels within the window was < 100. For each
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Uiva pralifera

Fig. 2. (a) MODIS FAI image on 31 May 2008, with the corresponding RGB image shown in Fig. 1. Region A is a sunglint-free area, Region B is contaminated by
sunglint (median R,.,1240 = 0.085), and Region C is located in the sediment plume area. (b) FAI gradient image Ggar. (¢) Ryc 645 gradient image Ggress. (d) Corrected
FAI gradient image cGga; = Grai.Greas. (€) Seawater background image, FAl,. (f) Corrected FAI image cFAI = FAI-FAI,,.

candidate pixel, the mean (FALyy mean) and standard deviation FAI value was < FALj, mean + 2% FAI,, q; Otherwise, the pixel was
(FAIw sta) of seawater pixels within the kernel window were computed. classified as an algae-containing pixel. To construct the seawater
The candidate pixel was classified as an algae-free seawater pixel if its background image FAl,, the FAI values of the classified algae-

198
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Fig. 3. Normalized histogram of FAI in Regions A, B, and C of Fig. 2a.

containing pixels were replaced by their corresponding FAly, mean Va-
lues. The FAlL,, image corresponding to the above example is shown in
Fig. 2e.

3.2. Determination of FAIugqe

The FAI of pure algae (FAlg,e, i.€., a = 1.0 in Egs. (4)-(6)) was
taken as the upper bound to calculate a in the linear unmixing model of
Egs. (4)-(6). Both water tank and field experiments indicated that FAI
linearly increased with algae biomass density (kg/m?) for FAI < 0.2,
but FAI appeared to plateau when algae biomass density exceeded 0.2

MODIS R,
image

v

Ry 645 gradient
image, Gress

v
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due to the vertical aggregation of algae (Hu et al., 2017). Thus, the
inflection point (FAI = 0.2) in the FAI-biomass density curve can be
regarded as FAl,g... However, when applied to satellite images, at-
mospheric effects and sensor band settings need to be taken into ac-
count. In this study, radiative transfer simulations were used to estimate
the perturbation of atmospheric FAI,gqe (Hu, 2009):

R =R, + 1y tRalgae 9

where R, is the atmospheric reflectance due to aerosols and aerosol-
Rayleigh interactions. R, is the pure-algae reflectance measured in
the field with an FAI value of 0.2, t, is the atmospheric diffuse trans-
mittance between the sun and sea surface, and t is the atmospheric
transmittance from the Ulva to satellite sensor. Note that the value of t
is actually between beam transmittance t, and diffuse transmittance tg
depending on the algae distribution and bloom size. Generally, t is
closer to t, for small patches but closer to t4 for larger patches. Both &,
and tq were used in this study to simulate FAI,gae.

The typical sun zenith angle (SZA) of the YS in the summer
(SZA = 18.4") was used in the simulations. Two sensor viewing zenith
angles were considered, with one (VZA = 4") for near-nadir viewing
and the other (VZA = 57) for near side-side viewing. Two aerosol types
(coastal aerosol with 50% humidity, C50, and maritime aerosol with
90% humidity, M90) and ten aerosol optical thicknesses at 859 nm
varying from 0.03 to 0.4 (representing clear and turbid atmosphere)
were considered in the simulations. For each scenario, R, ty and tq were
derived from the MODIS look-up tables of the SeaDAS software
package, while t, was computed from the aerosol optical thickness.
After R,. was simulated using Eq. (9), FAL,g,. Was calculated using Eq.
(1) with the relative spectral response (RSR) function of MODIS. For
application to other satellite sensors, the FAI g, values for VIIRS/NPP,
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Fig. 5. Distributions of T g from 53 cloud-free and algae-free MODIS images.
The blue, red and green colored areas represent MODIS images with clear at-
mosphere, turbid atmosphere, or sunglint contamination. The median Ry 1240
values are also plotted (black curve) (y-axis to the right). The x-axis refers to the
image number. (For interpretation of the references to color in this figure le-
gend, the reader is referred to the web version of this article.)

OLCI/Sentinel-3, OLI/Landsat-8 and DVIjg,. as an alternative index for
satellite sensors in the absence of a SWIR band (e.g., WFV/GF-1 and
WV-2) were computed using their specific RSR functions.

4. Results
4.1. Fixed threshold T.g

Fig. 5 shows the histogram distribution of T.; derived from 53
cloud-free and algae-free MODIS images between May and August from
2002 to 2016. The corresponding median R, 1240 Values are also pre-
sented to indicate the turbidity of the atmosphere or the sunglint se-
verity for each MODIS image. For clear-sky days, T. varies from
0.00015 to 0.0004, and Ry 1240 is usually < 0.02. For turbid atmo-
sphere or sun glint days, T.g varies from 0.00015 to 0.0005 and from
0.00025 to 0.00035, respectively, while R, 1240 is an average of 0.04
and 0.06 (up to 0.1), respectively. Under these three significantly dif-
ferent conditions, no clear pattern of T.s can be found in Fig. 5.
Therefore, the mean value of T.g (0.00027) derived from 53 MODIS
images was used as the fixed threshold to extract seawater pixels from
the corrected FAI gradient image cGpa;. A sensitivity test (Fig. 11)
shows that the final estimation of algae coverage from individual
MODIS images is insensitive to small changes in T.g when this threshold
is changed from 0.0002 to 0.0005.

4.2. FAlygqe and DVIggg for different satellite sensors, with validation from
wv-2

The simulated FAI,jgqe and DVl for each sensor under different
observing conditions (two viewing angles and three aerosol optical

Table 2
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thicknesses) are listed in Table 2. The numbers inside the parentheses
are for simulations with atmospheric beam transmittance t,, while the
numbers outside the parentheses are for simulations with atmospheric
diffuse transmittance t4. For brevity, the simulation results for the two
aerosol types are averaged. In addition to very clear (tq, gso = 0.03) and
very turbid (z,, gso = 0.4) atmospheric conditions, Table 2 also presents
the results corresponding to the typical aerosol loadings (t,, gs9 = 0.16)
of the YS.

In general, FAl g, and DVIgg,. change slightly with VZA and
aerosol optical thickness when atmospheric diffuse transmittance is
used, reaching 15% for the worst case scenario (VZA = 57" and Tq,
gso = 0.4). However, if atmospheric beam transmittance is used, the
changes can be half for the worst case scenario.

Because of the coarse resolution of MODIS data (~250m), 99.5%
algae-containing pixels have a < 1.0 and are thus difficult to use to
validate the simulated MODIS FAl,gs¢. Therefore, high-resolution WV-2
satellite data (2.0 m) were used to validate the simulated WV-2 DVIg5c.
Fig. 6a shows the RGB image of WV-2, in which a number of algae
patches can be clearly visualized. Among them, six large patches out-
lined by white boxes were extracted to show DVI distributions. The
edge of each algae patch was excluded because the edge pixels may be
mixed with algae and water (Fig. 6a inset). Other pixels within the
patches were assumed to have a value of a = 1.0. Fig. 6b shows the
histogram and cumulative frequency distribution (CFD) of these algae
pixels. The DVI of pure-algae pixels appears to have a normal dis-
tribution, varying from 0.16 to 0.31.When the CFD is 0.01 (99% pixels),
the corresponding DVI value is 0.175 between the simulated DVIygac
values for WV-2 (0.167-0.192) for a nadir observation under the typical
aerosol load of the YS. Such a close agreement confirms the simulated
FAljgqe in this study.

4.3. Comparison of Ulva coverage derived from MODIS with high spatial
resolution satellite OLI and WFV data

Generally, the derived Ulva areal coverages from MODIS data need
to be validated with field measurements. However, it is nearly im-
possible to carry out such field experiments to concurrently measure the
Ulva coverage corresponding to each 250-m MODIS pixel. Here, the
Ulva areal coverages derived from MODIS are compared with two
concurrent OLI/Landsat-8 scenes (30 m resolution) and ten WFV/GF-1
scenes (16 m resolution) as alternative ways of validation.

The overpassing times of OLI and WFV were both approximately
10:30 AM, close to the MODIST overpassing time. The method to esti-
mate the Ulva areal coverage with OLI and WFV was the same as that
used with MODIS (Section 3), but T.g was statistically determined from
the local seawater pixels in each image instead of using a fixed
threshold. The FAl,g.. Or DVIyg,e in typical aerosol loading at nadir
viewing (bold font in Table 2) for the three sensors were used. The Ulva
bloom areal coverage in the rectangular area derived from MODIST,
MODISA and concurrent OLI/Landsat WFV/GF-1 are listed in Table 3.
The numbers in the parentheses represent the relative percentage dif-
ference (RPD) values. The median VZA and R, 1240 Values over the
study regions are also listed in Table 3.

FAl,jgae and DVI, g, determined from simulations for each satellite sensor under different scenarios. The numbers inside the parentheses are for simulations with
atmospheric beam transmittance t,, while the numbers outside the parentheses are for simulations with atmospheric diffuse transmittance tg.

Sensor Index A (nm) VZA = 4 VZA = 57

Tq 850 = 0.03 Tq, 850 = 0.16 Tq, 850 = 0.4 Tq 850 = 0.03 Tq 850 = 0.16 Ta, 850 = 0.4
MODIS FAI 645,859,1240 0.198 (0.192) 0.194 (0.167) 0.185 (0.127) 0.199 (0.185) 0.190 (0.146) 0.172 (0.089)
VIIRS FAI 640,865,1610 0.191 (0.185) 0.187 (0.162) 0.179 (0.123) 0.193 (0.180) 0.184 (0.143) 0.167 (0.086)
OLCI FAI 665,865,1020 0.162 (0.123) 0.158 (0.107) 0.151 (0.081) 0.162 (0.096) 0.154 (0.075) 0.140 (0.045)
OLI FAI 665,865,1610 0.199 (0.193) 0.195 (0.169) 0.186 (0.128) 0.200 (0.187) 0.191 (0.147) 0.173 (0.090)
WFV/GF-1 WV-2 DVI 660,830 0.197 (0.192) 0.192 (0.167) 0.181 (0.125) 0.198 (0.186) 0.187 (0.145) 0.166 (0.085)
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Fig. 6. (a) WorldView-2 RGB sub-image acquired on 23 June 2012 over the YS centered at 36.650 N, 122.741 E. The six large algae patches outlined in the white
boxes are selected to derive the DVI distributions. The pixels at the edge of each patch may be mixed with seawater and are therefore excluded in subsequent
calculation. (b) Histogram and cumulative frequency distribution (CFD) of DVI in the polygon area of six large patches in the WV-2 image. When CFD = 0.01, the
corresponding DVI = 0.175, indicating that 99% of the pixels in the polygon areas have DVI values > 0.175.

Generally, the Ulva coverage derived from MODIS agrees well with
those derived from higher-resolution data. The mean RPD is 9.6%, and
the maximum RPD is 21%. Underestimation usually occurs at high VZA
values, which can be attributed to the following reasons. First, FAl jgqc
and DVI,g,. both decease with increasing VZA, varying from 2% to
13% depending on whether diffuse or beam atmospheric transmittance
is considered (Table 2). Therefore, the use of FAI,jgee and DVIyg,e at
nadir view underestimates the Ulva areal coverage for pixels with large
VZAs (see Eq. (6)). Second, the MODIS pixel size at high VZA (e.g., 60°)
is 3—4 times larger than at nadir (Wolfe et al., 1998); thus, small algae
patches are possibly missed. Finally, serious “bowtie” effects occur at
MODIS image edges due to the overlap of consecutive scan lines,
leading to degraded data quality (Tan et al., 2006).

In Table 3, four MODIS scenes are contaminated by sunglint
(marked * after Ry 1240 in Table 3) with median Ry, 1240 values varying
from 0.060 to 0.164; these values are much higher than the average
Ric,1240 of ~0.02 in cloud-free and glint-free days. The Ulva areal cov-
erage derived from sunglint-contaminated MODIS images agrees well
with that derived from the concurrent glint-free WFV/GF-1 images

Table 3

(RPD ~9.2%), suggesting that the method developed in this study is
tolerant to sunglint contamination.

4.4. Ulva areal coverage and biomass between 2008 and 2016 in the YS

In such estimates, the fixed T, = 0.00027 was used for all MODIS
data to reconstruct the seawater background image (FAI,), and FAI,gae
values corresponding to typical aerosol loadings (t4 gso = 0.16) for
atmospheric diffuse and beam transmittances, as shown in Table 2,
were selected and interpolated according to the actual VZA over the
Ulva patches. The means and standard deviations of the estimated Ulva
areal coverage are given in Table 4, where bold numbers represent the
maximums for each year. The Ulva areal coverage on 30 May of 2008 is
220 km?, significantly lower (1.1-16 times) than values in earlier re-
ports (Table 1). Qi et al. (2016) estimated the maximum coverage in
daily observation between 2007 and 2015 by using manually adjusted
To values. The results reported for 2008, 2014, and 2015 agree well
with those from this study. Their unpublished result for 30 May 2008,
234km? (Table 1), is also consistent with this study. However, the

Ulva areal coverage estimated from MODIS/Terra (MODIST), MODIS/Aqua (MODISA), concurrent high-resolution OLI/Landsat and WFV/GF-1. The numbers in the
parentheses are the relative percent difference (RPD) values from the high-resolution estimate. For reference, the VZA, median R, 1240 of MODIS, and threshold T.g

used for high-resolution data are also listed.

Date Region Ulva coverage (km?) Teg VZA Ric,1240
OLI MODIST MODISA MODIST MODISA MODIST MODIA

2016-06-25 35.357°-35.935°N, 120.561°-121.437°E 225 201 (10.6) 247 (9.6) 0.0004 62 12 0.022 0.026

35.215°-36.612°N, 121.425°-122.170°E 262 227 (13.4) 298 (13.4) 0.0004 64 19 0.021 0.020
2016-06-25 34.525°-35.450°N, 120.378°-121.453°E 267 213 (12.3) 259 (2.9) 0.0004 63 11 0.017 0.020
Date Region WFV MODIST MODISA WFV MODIST MODISA MODIST MODIA
2013-06-13 34.735°-35.043°N, 120.487°-120.987°E 86 86 (0.7) 85 (1.0) 0.0004 45 48 0.019 0.018
2014-06-18 35.426°-35.652°N, 120.015°-120.588°E 14 13 (6.2) 15 (9.6) 0.0004 58 29 0.017 0.013
2014-06-18 34.518°-35.242°N, 120.483°-121.385°E 192 215 (12.0) 214 (11.6) 0.0004 56 32 0.017 0.015
2015-05-24 34.141°-34.486°N, 121.042°-121.555°E 71 62 (12.4) - 0.0004 55 - 0.010 -
2015-06-06 35.003°-35.668°N, 120.865°-122.156°E 136 133 (2.0) - 0.0004 14 - 0.096" -
2015-06-27 36.539°-36.793°N, 121.686°-122.291°E 42 50 (19.1) 46 (9.9) 0.0004 42 24 0.014 0.043
2015-06-27 34.879°-35.342°N, 120.648°-121.091°E 35 39 (10.9) - 0.0008 40 - 0.016 -
2015-07-04 35.619°-36.339°N, 120.927°-122.155°E 250 293 (17.0) 301 (20.5) 0.0003 49 18 0.014 0.164"
2015-07-08 36.328°-36.669°N, 121.285°-121.774°E 72 71 (2.1) 74 (2.9) 0.0004 11 51 0.137° 0.015
2016-06-01 34.490°-35.138°N, 121.074°-121.464°E 85 95 (11.7) 78 (8.5) 0.0004 1 59 0.060% 0.031

MODIS data are covered by cloud.
2 MODIS data are contaminated by sunglint.
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Table 4
Ulva areal coverage estimated from cloud-free MODIS data between 2008 and 2016. Numbers in bold font represent the daily maximum in that year.
Year Ulva areal coverage (km?)
2008 May 20 May 30 May 31 June 25 June 29
26 + 2 220 * 31 257 + 35 455 + 60 228 * 27
2009 June 22 June 24 July 1 July 2 July 15
134 £ 9 230 * 17 203 + 17 281 + 20 196 + 23
2010 June 5 June 7 June 21 June 28 July 6 July 11
12 £ 1 14 £ 1 92 + 12 49 + 6 152 + 20 32 + 2
2011 May 28 June 1 June 13 June 19 July 11
5%0 26 + 2 121 * 8 165 = 20 22 + 3
2012 May 26 May 28 June 12 July 06
47 = 6 57 =7 86 + 10 36 + 4
2013 June 2 June 13 June 20 June 29 July 24
130 £ 9 381 + 49 637 = 75 430 = 55 17 + 2
2014 May 23 May 26 May 28 June 18 July 3 July 11
87 + 12 168 + 20 124 = 9 533 + 61 397 + 52 342 = 44
2015 May 20 May 25 June 5 June 12 June 21 July 1 July 4
94 + 10 375 + 49 597 + 69 875 + 119 1153 + 156 725 + 48 716 + 90
2016 May 17 May 25 June 1 June 16 June 25 July 21
38 + 2 254 * 16 398 + 28 1252 + 138 1350 + 90 22 + 2
method developed here can be implemented for operational monitoring mid-May in the Subei Shoal and moved northward following winds and
without manual intervention. currents. By mid-June, the bloom peaked and approached Qingdao, and
An example of an extensive Ulva bloom and its evolution in 2015 is then dissipated in early July and disappeared between the end of July
shown in Fig. 7. Ulva coverage started to increase in approximately and early August. Some new Ulva slicks appeared in the Subei Shoal at

2015-05-20 2015-05-25
94110 km? 375149 ki

2015-06-12 2015-06-21
875+ 119 kng® 1153+ 156

2015-08-04
5+0.3 km?

0.05 010  0.15
Ulva areal coverage fraction («)

0.20

0.00

Fig. 7. Ulva coverage fraction (a) and evolution for the 2015 bloom event, derived from MODIS data. Estimates of total Ulva areal coverage are annotated on each
image. a = 0.10 means 10% of the pixel is covered by Ulva.
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Fig. 8. (a). Daily Ulva areal coverage in the YS derived from near cloud-free and sunglint-free MODIS data between 2008 and 2016 using both diffuse and direct
atmospheric transmittance. The error bars represent standard deviations. The maximum daily coverage are listed in parentheses for each year. (b) same as (a) but for

Ulva total biomass.

the end of July but quickly declined. The Ulva areal coverage on 21
June 2015 reached a maximum of 1153 km?.
The daily change rate of Ulva areal coverage is defined as:

Stn = St * (1 + d)? (10)

where S is the Ulva areal coverage at day 0, Sy, is the coverage at day
n, and d is the daily change rate. During the early bloom stage between
20 May and 25 May, Ulva rapidly aggregated with an increasing rate up
to 34%day . Then, the increasing rate gradually decreased and sta-
bilized to ~5-7% day ! between 25 May and 21 June. In an in situ
enclosure experiment, Zhang et al. (2013) also found that Ulva rapidly
grew in the early accelerated phase (up to 58%day ') and then re-
mained relatively stable at a lower growth rate.

The Ulva coverage time series derived from MODIS is shown in
Fig. 8a. Because both Ulva areal coverage and biomass increase linearly
with FAI (Hu et al., 2017), Ulva total biomass can be derived from Ulva
areal coverage, as shown in Fig. 8b. Although the time series is not
continuous in time due to frequent cloud cover, the seasonal patterns
and inter-annual changes in the Ulva areal coverage and total biomass
can still be clearly visualized. In 2016, the maximum daily coverage
reached 1350 km?. Between 2010 and 2012, the maximum daily cov-
erage was < 165km?. Several studies have attempted to explain the
causes of inter-annual bloom variability. Lee et al. (2011) attributed the
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massive Ulva bloom in 2008 to upwelling in the bloom transport
pathway; however, Keesing et al. (2011) found no change in water
temperature and wind patterns for the bloom years of 2008 and 2009.
More recently, Qi et al. (2016) examined potential factors that could
affect the bloom size, including seaweed aquaculture area, water pol-
lution, sea surface temperature (SST), photosynthetically active radia-
tion (PAR), precipitation, and wind anomalies over the YS between
2007 and 2015. However, no conclusion could be drawn to explain the
reasons underlying the high inter-annual bloom variability.

5. Discussion
5.1. Which index should be used?

As shown in Table 1, most publications on Ulva remote sensing have
used NDVI to detect Ulva and quantify Ulva coverage. Although simple
to implement and apply, NDVI is sensitive to atmospheric conditions
(e.g., variable aerosols, sunglint, and thin clouds) and sun/sensor
viewing geometry (Hu, 2009). This may not be a problem for the image
visualization or image segmentation of a small region. However, for
large regions or different days, different image stretch settings may be
required for visualization. Most importantly, the nonlinear design
makes it difficult to unmix a pixel. Fig. 9a shows the scatter plot
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Fig. 9. (a) Scatter plot of FAL, NDVI, and DVI versus Ulva biomass density for all algae-containing pixels on 31 May 2008 (Fig. 2a). The dashed black line indicates the
linear unmixing model used for NDVI when estimating Ulva areal coverage. (b) Scatter plot of the calculated Ulva coverage fraction versus Ulva biomass density.

between the various indexes (FAI, NDVI, and DVI) and Ulva biomass
density for all algae-containing pixels on 31 May 2008, for which the
Ulva biomass density of each algae-containing pixel was calculated
using a remote Ulva biomass model (Hu et al., 2017). The figure clearly
shows that NDVI is nonlinear to Ulva biomass density, which is nearly
saturated at 1.6kg/m? In contrast, both FAI and DVI show a linear
relationship with biomass density. This suggests that Ulva coverage
calculated from NDVI using a linear unmixing model can be over-
estimated significantly (Fig. 9b), while FAI and DVI do not suffer from
this problem. In the absence of a SWIR band, DVI may be a good al-
ternative to FAI, otherwise, FAI should be used because as long as
aerosol reflectance is spectrally linear, FAI is completely immune to
aerosol changes. The requirement of DVI on aerosol reflectance is more
conservative because there are only two bands used to account for
aerosol perturbations.

5.2. Resolution versus areal coverage

Compared with high-resolution (1-2m) sensors, coarse-resolution
sensors may either underestimate or overestimate Ulva coverage for
two contrasting reasons. The first reason is easy to understand: high-
resolution sensors can capture more small algae patches than coarse-
resolution sensors, leading to underestimates by the latter (Hu et al.,
2015; Hu et al., 2016a). Hu et al. (2015) simulated and analyzed the
spectral and spatial requirements for the detection of floating macro-
algae by satellite sensors. The results show that for SNRs of 200:1, the
minimum spatial coverage of the macroalgae that can be detected is
approximately 1-2% of a pixel, suggesting that small Ulva patches
(< 1-2% of the MODIS pixel size) will be missed in MODIS 250 m re-
solution data.

On the other hand, the second explanation for why coarse-resolu-
tion sensors may overestimate Ulva coverage even after pixel unmixing
is counterintuitive. This overestimation can be the result of the aver-
aging effect that occurs when Ulva aggregate to form small yet very
thick patches, with FAI values reaching > 0.2 (Hu et al., 2010c; Hu
et al., 2017). These high values of Ulva indexes (e.g., FAI, NDVI and
DVI) from small, thick patches within a pixel are unmixed using a T;
threshold lower than 0.2, leading to an overestimation after unmixing.
Indeed, such an overestimation by coarse-resolution sensors has been
reported earlier (Cui et al., 2012; Zhang et al., 2014; Xu et al., 2016).

The two contrasting processes can be illustrated in the simulation
study below. In the simulation, high-resolution WV-2 (2m) data were
used to simulate medium-resolution (30 m, OLI) and coarse-resolution
(250 m, MODIS) data. Fig. 10 shows the DVI images of the original 2m
WV-2 data and simulated 30m and 250m data. Many of the small
patches in the 2m data cannot be found in the 30 m and 250 m data,
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illustrating the first process. On the other hand, the high-DVI patches
(DVI > T;) in the WV-2 image are smeared in the lower-resolution
images, illustrating the second process. Using DVI,gae = 0.192
(Table 2) and DVI,, = —0.015 (derived from WV-2 seawater pixels),
the Ulva area coverages estimated from Eq. (3) are 0.407, 0.400, and
0.457 km? for the 2, 30, and 250 m data, respectively. The 12.3% in-
crease in the 250 m data compared to the original 2 m resolution data
indicates that process 2 overwhelms process 1. This is because there are
54,860 pixels with DVI > 0.192 in the original 2-m resolution data,
and all these pixels are averaged with neighboring pixels with lower
DVI values (e.g., seawater pixels) when simulating the coarse-resolution
data.

However, this single case should not be generalized. During early
stages of Ulva blooms, the bloom patches may be very small and thus
may be underestimated by coarse-resolution sensors. During peak
blooms, the patches may be much larger, leading to overestimates in
the bloom coverage for the reasons outlined above.

5.3. Viewing angle, atmospheric conditions, and Ulva areal coverage

Both the VZA and atmospheric conditions may impact the estimated
Ulva areal coverage. Seventeen cloud-free MODIST and MODISA same-
day image pairs (~2h apart) were used to understand such impacts,
where the two thresholds were used as FAlyge = 0.194 and
T.g = 0.00027. Table 5 lists the estimated Ulva coverage and relative
percent difference (RPD) between MODIST and MODISA, as well as
their corresponding VZA, R 1240, and atmospheric conditions. The 17
image pairs were partitioned into four Groups. In Group 1, MODIST and
MODISA had a clear atmosphere but different VZA values. In Group 2,
MODIST and MODISA had contrasting atmospheres (clear or turbid)
and VZA values. In Group-3, MODIST and MODISA had similar turbid
atmosphere or glint conditions. In Group 4, MODIST and MODISA had
either a sun glint or turbid atmosphere. Table 5 suggests that (1) for
similar VZA and atmospheric conditions, the Ulva areal coverages de-
rived from MODIST and MODISA agree very well (e.g., < 3.5% RPD for
the first three MODIS pairs in Group 1); (2) under similar atmospheric
conditions, a high VZA tends to underestimate the Ulva areal coverage
(e.g., 27.7% underestimates for the 2 June 2013 case in Group 1); (3)
under turbid atmosphere and sun glint conditions, Ulva areal coverage
tends to be underestimated (up to 45%). Clearly, to derive accurate
coverage (and therefore biomass) information, the uncertainties caused
by these factors should be considered.

5.4. Uncertainties in the estimation of Ulva areal coverage

Because of the linear mixing of Ulva and seawater in affecting the
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Fig. 10. Comparison between DVI image of high-resolution (2m) WV-2 data, simulated medium-resolution (30 m) data and coarse-resolution (250 m) data. The
image size of simulated OLI and MODIS are enlarged to the same size with WV-2 (2250 % 2250).

reflectance (therefore FAI), uncertainties in the estimation of Ulva
coverage mainly comes from the selection of the lower- and upper-
bound thresholds. In this study, instead of using a global threshold Tq
for the lower bound, a reconstructed seawater background image
(FAI,,) was used to minimize the impact of variable atmospheric and
oceanic properties on the threshold, and the upper bound (100% cov-
erage within a pixel) was carefully determined from field experiments
and simulated for various sensor and atmosphere settings. However,
these uncertainties cannot be eliminated for the following reasons.
The seawater background appears to have some spatial features

Table 5

associated with Ulva algae patches as shown in Fig. 2e. The reason is
that those seawater pixels are contaminated by the surrounding Ulva
pixels (adjacent effects) resulting in slightly higher FAI values than
seawater pixels further away from the algae pixels. This phenomenon
usually occurs in extensive Ulva patches where most seawater pixels in
the variable-window are from algae-adjacent pixels. Increasing the in-
itial window size and using a larger number of seawater pixels to cal-
culate histograms could somehow reduce this effect, yet a larger
number of seawater pixels may not well represent the local background.
A sensitivity test using a much larger window size showed that

Ulva areal coverage derived from 17 MODIST and MODISA image pairs and their relative percent difference (RPD), VZA, R;. 1240, and atmospheric conditions for each

image are also given.

Groups Date Sensor Coverage (km?) and RPD (%) VZA (°) Ric,1240 Atmos. Cond.
Group-1 2010-06-21 MODIST 80 -1.9 47 0.008 Clear
MODISA 78 45 0.009 Clear
2013-06-29 MODIST 362 -3.3 45 0.012 Clear
MODISA 375 48 0.013 Clear
2013-06-20 MODIST 552 -3.1 34 0.013 Clear
MODISA 535 53 0.013 Clear
2015-05-25 MODIST 360 —6.6 29 0.006 Clear
MODISA 336 57 0.009 Clear
2013-06-02 MODIST 121 —-27.7 16 0.019 Clear
MODISA 87 63 0.015 Clear
2016-06-25 MODIST 1051 -16.5 63 0.02 Clear
MODISA 1260 16 0.02 Clear
Group-2 2009-07-15 MODIST 104 —40.1 59 0.016 Turbid Atmos.
MODISA 173 29 0.011 Clear
2014-05-26 MODIST 92 —-37.4 60 0.022 Turbid Atmos.
MODISA 148 22 0.016 Clear
Group-3 2014-06-18 MODIST 414 -12.3 56 0.025 Turbid Atmos.
MODISA 472 33 0.016 Turbid Atmos.
2008-05-31 MODIST 219 -1.2 35 0.049 Sunglint
MODISA 222 40 0.036 Sunglint
2014-05-27 MODIST 80 -30.3 3 0.056 Turbid Atmos.
MODISA 56 59 0.047 Turbid Atmos.
Group-4 2008-05-20 MODIST 14 —44.3 54 0.041 Turbid Atmos.
MODISA 25 12 0.102 Sunglint
2009-07-01 MODIST 106 —43.6 60 0.025 Turbid Atmos.
MODISA 188 7 0.047 Sunglint
2014-05-28 MODIST 82 —28.9 59 0.018 Turbid Atmos.
MODISA 116 3 0.046 Sunglint
2015-07-01 MODIST 677 —-4.5 4 0.056 Sunglint
MODISA 647 58 0.028 Turbid Atmos.
2016-06-01 MODIST 370 -10.8 4 0.073 Sunglint
MODISA 330 58 0.030 Turbid Atmos.
2016-06-17 MODIST 797 -10.4 6 0.085 Sunglint
MODISA 714 58 0.025 Turbid Atmos.
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Fig. 11. Sensitivity of the Ulva areal coverage estimates from individual MODIS
images to the selection of the threshold Tg.

increased algae coverage by ~4%, indicating that the algae coverage in
this study might be slightly underestimated.

The threshold T.g was derived from 53 cloud-free and algae-free
MODIS images between May and August from 2002 to 2016, which
varied from 0.0002 to 0.0005. The sensitivity of the final estimated Ulva
areal coverage to changes in T.g is shown in Fig. 11, where the esti-
mation was made for the maximum daily images in 2008-2016. It is
clear that for the entire range of T.g, the estimated algae coverage only
changed by a few percent (e.g., 1.5% for the 2016 image).

The upper-bound threshold, corresponding to 100% algae coverage
within a pixel (i.e., FAI,jgae), Was determined from water tank and in
situ experiments, and propagated to top of atmosphere to include ty-
pical aerosol effects. Sensitivity analysis showed that using a fixed
FAl,jgae for typical conditions may result in ~6.5-12% uncertainties
under variable aerosol conditions (Hu et al., 2017). Considering all
these factors together, the overall uncertainties in the Ulva coverage
estimates are estimated to be ~20% or less.

Another uncertainty source may come from the bidirectional re-
flectance of Ulva (BRDF effect), which is unfortunately difficult to
quantify as its measurement is simply not available. Considering the
consistency between the water tank experiment and in situ experiment
when their viewing angle changed from ~0° (i.e., vertical view) to ~45°
(side view), the uncertainties in the satellite-based estimates due to the
BRDF effects may be small for view angles < 45°. This is actually
confirmed by the comparison between same-day MODIST and MODISA
measurements (Table 5) and by the agreement between simulated
DVI,jgae With observed DVIyg.e from the high-resolution WV-2 mea-
surement with a 20° viewing angle.

FAl,jg.e may change between Ulva growing and decaying stages as
they may contain different concentrations of chlorophyll, which may
change the color appearance (therefor FAI) of macroalgae (Vahtmée
et al., 2018; Thorhaug et al., 2007) or land vegetation (Boyer et al.,
1988; Carter and Spiering, 2002). Future studies need to quantify such
changes from both field and satellite measurements. Likewise, the im-
pacts of Ulva at depth (as opposed to floating on the surface) due to
either hydrodynamics (Lii and Qiao, 2008) or Ulva decay need to be
quantified.

Finally, like any other studies to estimate macroalgae coverage,
there is no in situ validation due to reasons outlined earlier (Wang and
Hu, 2016; Hu et al., 2017). Briefly, this is because that it is nearly
impossible to sample the entire water area corresponding to one or
more satellite pixels at the same time. However, because high-resolu-
tion (~2.0 m) WV-2 measurements can capture many of the small Ulva
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patches with full pixel coverage, WV-2 data used in this study essen-
tially serve as ground truth to validate the coarse-resolution MODIS
estimates.

6. Conclusions

Since 2008, several methods have been developed to identify Ulva
blooms and quantify their areal coverage in the YS, with results often
demonstrating > 10-fold differences due to different choices in distin-
guishing algae-containing pixels from algae-free pixels and/or in un-
mixing coarse-resolution pixels. The novelty of this study is that, an
objective method is developed to address this technical challenge, in
which a corrected gradient image (cGgpp) is used to identify algae-
containing pixels, and a seawater background image is reconstructed to
provide local threshold values (Ty) to represent 0% algae coverage.
While the upper bound for 100% Ulva coverage is carefully determined
from field experiments with sensor and atmosphere settings, the cGrar
approach largely reduces the impacts of suspended sediments, atmo-
spheric turbidity, and sunglint on the final coverage estimates.
Consequently, an objective method is developed to eliminate the need
for manual intervention to account for those variable conditions,
leading to accurate estimations of Ulva areal coverage and biomass (as
validated by high-resolution imagery). However, extreme observing
conditions such as large viewing angles or high atmospheric turbidity
may still lead to relatively high uncertainties, which should be con-
sidered when estimating bloom size or studying bloom trends.
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