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ABSTRACT

Moving loads have great effect on dynamic stresses in structures and cause them
to vibrate extensively, especially at high velocities. A peculiar feature of moving loads is
that they are variable in both space and time. This is why the dynamic analysis of bridges
under moving forces has attracted researchers worldwide. When a moving load is
traveling on a bridge, different factors play an important role in the vibration of the
bridge. Road surface profile, vehicle dynamics, weight and speed of the moving vehicle
and the geometry of the bridge all play an important roles in the analysis. The main
objective of this research work is to study the collective effect of all these factors over the
impact factor.

Road surface roughness is generated by using a Power Spectral Density function
which represents different classes of roads. A 12 Degree Of Freedom model of an HS20-
44 truck is modeled and an interactive function of this model with the road surface
roughness is developed to find an increased load which is applied on the bridge decks to
find the dynamic response. The bridge deck is analyzed by using analytical and numerical
methods. An orthotropic plate theory is used to solve the bridge deck analytically and the
finite element analysis method is used to solve the bridge numerically. The increased load
calculated from the interaction function of road surface roughness and vehicle model is
simulated as a train of moving loads by using Dirac-delta function in the orthotropic plate

theory. The same train of moving loads is simulated in finite element analysis by using



arrival time and time function data for the nodal points along the moving path of the truck
load.

Dynamic response is calculated in terms of the vertical deflection at the center of
the bridge deck and compared with the static deflection where the load is considered to
be steady. For the bridge deck under investigation, the impact factor given by AASHTO
underestimates the dynamic effect under the moving loads. This might be because of the
inability of the impact factor formula given by AASHTO, which is a function of span
length of the bridge deck, to take into account the effect of road surface roughness,
vehicle dynamics, vehicle weight, and vehicle speeds. Its is suggested that it is necessary
to do the detailed dynamic analysis of bridges by considering road surface roughess,

vehicle dynamics, vehicle weight, and vehicle speed.

Xiii



CHAPTER |
INTRODUCTION
I-a: General Description

Vibration of bridges due to moving vehicles is important for two reasons. First,
the stresses are increased above those due to static-load case, which is normally
accounted by the “impact factor” in design. The second reason is that excessive vibration
may have the psychological effect of impairing public confidence in the structure. The
impact factor is provided in the “Standard Specifications for Highway Bridges” by

AASHTO [1] as,

. 50
| +125

Where,
1= Impact Factor (maximum 30 percent)

L= Length in feet of the portion of the span that is loaded to
produce the maximum stress in the member

If we see this impact factor, it is a function of only the span length of the bridge,
where in reality impact factor is affected by many other variables. Moving loads have
great effect on dynamic stresses in structures and cause them to vibrate extensively,
especially at high velocities. Peculiar feature of moving loads is that they are variable in
both the space and time. As the moving load travels on bridge with high velocities, it
imparts vibrations to the bridge which in turn increases stresses in the members above

their values under static loading. When a moving load travels on a multilane bridge,



different factors play important role in deciding the dynamic impact. First of all, the
vehicles have their own dynamic system with suspension and damping, and when these
vehicles move on bridge decks with different road surface profiles, they impart more load
than the static load values on bridge decks. Bridge characteristics such as its natural
frequencies and damping also play a very important role in deciding the dynamic impact.
Other important factors in analysis are weight and speed of the vehicle, and location of
the vehicle on a bridge deck. It is therefore necessary to do the detailed dynamic analysis

ofbridges under moving loads to predict increase in the stresses.

I-b: Objectives

The behavior of highway bridges under moving loads is a subject of investigation
with many researchers from early 1950s. Some of the researchers have studied a role of
road surface roughness on the increased load and some have studied a bridge deck
behavior under a constant load or a train of loads moving across the bridge deck with
different speeds. C. J. Dodds and J. D. Robson [3] have studied the road surface
roughness and the free vibrations of rectangular orthotropic plates with parallel edges
simply supported are studied by Jayaraman G. et. al. [6]. Very few researchers have
studied the forced vibrations of the orthotropic plates under moving loads. Bridge decks
can be considered as orthotropic plates on which moving loads can be simulated by using
Dirac-delta function. The main objective of this research work is to combine the effects
of the road surface roughness, vehicle dynamics to get the increased load on the bridge
deck and simulate this increased load on the orthotropic plates by using Dirac-delta

function and do the forced vibrations analysis of orthotropic plates under the increased



load at different speeds and compare the results with the finite element analysis of the
same bridge.

The general objective of this research is to

L Generate different road surface roughness profiles.
2: Develop a 12 DOF model ofan AASHTO HS20-44 truck.
3: Study the effect of AASHTO HS20-44 truck on a bridge deck by considering it as

an orthotropic plate with two opposite edges simply supported and the other two

edges free, and simulate moving loads by using a Dirac-Delta function to

investigate the dynamic effect.

4: Model the same bridge deck in a finite element analysis program and simulate
moving loads on it to study the dynamic effect.

5 Compare results from the analysis of an orthotropic plate and the finite element
analysis.

The first objective is achieved in Chapter 111 where different road surface
roughness profiles are generated by using a power spectral density function. Two
different classes of road surface profiles are considered for the study. A 12 DOF model of
an HS20-44 truck is developed in Chapter IV. The interaction of this truck with a road
surface profile is derived to find the increased load effect of the truck which will give us
the effect of different road surface profiles and vehicle dynamics. The truck, which has
the increased load effect from the truck dynamics and road surface roughness calculated
in Chapter 1V, is used as a moving load vehicle on the bridge decks to investigate its
dynamic effect. In Chapter V, a simply supported bridge deck is modeled as an

orthotropic plate with two opposite edges simply supported and two edges free. The



natural frequencies of this plate depend upon the flexural and torsional rigidities of the
plate. Orthotropic plates are divided into two categories depending on their natural
frequencies and rigidities, and different frequency equations for different categories of
the plates are derived and moving loads are simulated on the plate to get an equation of
motion. Equation of motion is then solved by using fourth order Runge-Kutta method to
get the analytical results. The same bridge deck is then modeled in great details by using
the finite element analysis package ‘NISA’ [2] in Chapter VI. Moving loads are

simulated in NISA [2] by the use of arrival time and time function data.



CHAPTER Il
LITERATURE REVIEW

C. J. Dodds and J. D. Robson [3] studied the road surface roughness and showed
that the typical road surface may be considered as realization of homogeneous and
isotropic Gaussian random process and proposed a new road classification method based
on power spectral density function. J. G. S. da Silva [4] presented an analysis
methodology to evaluate the dynamic effect on highway bridge decks due to vehicles
crossing on the rough surface defined by a probabilistic model. He obtained the results
mainly for heavy vehicles moving over rough reinforced concrete highway bridge deck
made of a straight box section girder. It was verified in all the cases studied in this
investigation, for usual vehicle velocities, that the dynamic effect on highway bridge
decks due to the interaction of the vehicle suspension flexibility with a smooth pavement
surface can be as high as 90%. T. L. Wang et. al. [5] studied dynamic response of
highway trucks due to road surface roughness and used the road classification method
proposed by C. J. Dodds and J. D. Robson [3] and generated different types of road
surface profiles. They developed vehicle models for H20-44 and HS20-44 trucks with
seven or twelve degrees of freedom respectively and obtained impact factors for the
suspension and tire forces for vehicle model running on different classes of roads at

various speeds.



Free vibrations of rectangular orthotropic plates with parallel edges simply
supported are studied by Jayaraman G. et. al. [6], They studied the influence of the
material orthotrophy, foundation modulus and aspect ratio on the natural frequencies.
They also studied the influence of different boundary condition on the natural
frequencies. According to Jayaraman G. et. al. [6] the influence of the ratio of the flexural
rigidities in x and y directions on the natural frequencies is more for the plates with two
opposite edges simply supported and two edges free; where as the influence of the ratio
of torsional rigidity and flexural rigidity on the natural frequencies is more for the plates
with two opposite edges simply supported and two edges clamped. X. Q. Zhu and S. S.
Law [7] investigated the dynamic behavior of continuous multi-lane bridge deck from the
moving vehicles. They modeled the bridge as a multi-span continuous orthotropic
rectangular plate with line rigid intermediate supports and investigated the dynamic
behavior of the bridge deck under single and several vehicles moving in different lanes
using the orthotropic plate theory and modal superposition technique. They found that the
vehicle position has an important effect on the impact factor. They also found that the
impact factors associated with the multiple vehicles are smaller than those are for single
vehicle.

Fryba L. [8] analytically solved the dynamic responses of uniform flat plate under
amoving load and used a Dirac delta function to simulate a moving load on the plate. D.
P. Thambiratnam et. al. [9] performed the experimental analysis of a reinforced concrete
bridge under vehicular loads to record the strains at different locations. They investigated

the dependence of the dynamic amplification of the strain on bridge deck location and



vehicle speed, and recorded the dynamic amplification up to 1.5, which was higher than
values predicted by bridge design codes.

As we can see, in the previous studies no one has studied all the affecting factors
together. The purpose of this project is to investigate the effect of road surface roughness,
vehicle dynamics, bridge characteristic, weight and speed of the vehicle on the vertical

deflection at different locations on the bridge decks.



CHAPTER IlI
ROAD SURFACE ROUGHNESS
Il-a: Power Spectral Density Function
Out of many factors affecting the impact factor of bridges, road surface roughness
is the primary factor. Due to the irregularities of the road surface, moving vehicle jumps
up and down, and in the process changes the static load values of the vehicle because of
the suspension and damping system of the vehicle. According to the classification of
roads based on road spectra presented by MIRA [10], there are three different classes of
roads and every class have two, three or four road conditions as very good, good,
average, and poor. In the previous studies, C. J. Dodds and J. D. Robson [3] have
developed the Power Spectral Density (PSD) functions to describe the road surface

roughness as,

( A\-W
S(j)=A
V™o J
(3.1)
(,vwe
S(P=A 1
V™o J

Where, S(*) =PSD(w2/cycle!m)

0 = Wave number (cycle/m)
A = Roughness coefficient (m3/cycle)
S0 = Discontinuity frequency = (I/2n\cycle! m)



wl, w2 =Roughness exponent.
Table 1 shows the roughness coefficient A as well as exponents wl and w2 as a
function of road class.
Table 1: Spectrum constants according to classification of roads, MIRA [10].
A Range

Road class wi w2
(x10“6m3/ cycle)

Very Good 2-8
Motorways 1.945 1.360
Good 8-12
Very Good 2-8
Principal Good 8-32
2.050 1.440
Roads Average 32-128
Poor 128-512
Average 32-128
Minor Roads Poor 128-512 2.280 1.428
Very Poor 512-2048

In order to simplify the description of road surface roughness, both wl and
w2 are assumed to have a value of 2.
The PSD function then becomes
(,Y
s{4>)=A (3.2)
Power Spectral Density is a method of scaling the amplitude axis in certain

spectra, which consists of random rather than deterministic signals. A random signal has



energy spread out over a frequency band; it is not meaningful to calculate RMS value at
any specific frequency. It only makes sense to consider its amplitude in a fixed frequency
band. PSD is defined in terms of amplitude squared per frequency, and is thus
proportional to the power delivered by the signal in one hertz band.

MATLAB 6.5.1 is used to generate a sequence of random numbers having
Gaussian probability distribution with zero mean and approximate “white noise”
properties. White noise is a signal with a flat frequency spectrum in linear space. In other
words, the signal has equal power in any linear band at any center frequency having
given a bandwidth. The white noise is then passed through a first order recursive filter to
shape the spectrum to the form given in Equation (3.2).

Generation ofSequence ofRandom Numbers Using MATLAB

Digital Signal Processing (DSP Blockset) has a Random Source, which generates
different types of sequence of random numbers depending upon the selection of the
source type. The Gaussian (normal) distribution with Zero mean and a specified value of

Variance, which depends upon the Roughness coefficient (A) of Equation (3.2), is

selected for the different types of Random Sources. By assigning this zero mean and the
variance to the source data, a random signal is produced. The power spectral density
function of this random signal is a flat line. This random signal is the input signal for the
first order digital filter in MATLAB.
First Order Recursive Filter in MATLAB

The digital filter block in MATLAB independently filters each channel of the

input signal with a specified digital Infinite Impulse Response (HR) filter. Since the

10



output of each input depends upon the previous inputs and outputs, these filters are called
as recursive filters.

Equation of the HR filter in MATLAB is given as

6(1) *x{n) +b(2) *x(n - 1)+... + b(nb)*x(n - nb)

ym=0aly* 3 2)y*y(n-1)-..ana + y>s(« - na) (3.3)

If we consider only the immediately previous output sample, the recursive filter
given in Equation (3.3) becomes “first order” which means, na = 1 which gives
na + 1= 2. To modify this filter given in Equation (3.3) to the first order filter where the
input at the sample point is added to the only previous output sample. This is achieved by
assigning

a(i)=i,
a(2) = -1,

6(1) =1,

b(2) =b{3)... =b(nb)=0.

Hence the Equation (3.3) becomes
y{n) =[x(n)+y(n-1)] (3:4)
Where,

x{n) = Input at the n'h sample distance

y(n) = Output at the n'h sample distance
Equation (3.4) is identical with the first order digital filter given by Otnes and Enochson
[11].

When a random signal with white noise properties is passed through this first
order digital filter, the power spectral density of the output function gets modified and is

related with the power spectral density of the input function through a transfer function.



The power spectral density of the output function should match with the power spectral
density function given in Equation (3.2). The variance required to generate the random
signal in MATLAB is calculated by comparing this transfer function with the power
spectral density function given in Equation (3.2).

The transfer function of the first order recursive filter is

1
(3.5)
1- exp(-«2?r/I1™)
Where,
X =Sample length / total number of samples.
By using the approximation
exp(x) = 1+ x
1
*\ —
»(")= 1 (1 + (—nlnXcj)))
ie 1
n M= 2r2X<)
The absolute value of the squared of the transfer function is
2 fi\2
VHw =f 1.~ 2 - (3.6)
vanx@, | >3 2

The output PSD of this filter, in response to a continuous white noise input spectrum, NO

sW=|wMAto
Where, Sx(@=NO0 = input PSD

By substituting Equation (3.6), the above Equation becomes



By comparing Equation (3.2) and (3.7), we get

Which gives, NO=A/12 (3.8)
The PSD of white noise response given by Otnes and Enochson [11] is
SX{<I>)=(J22A (3.9)

Where,

cr2 is the variance

By comparing Equations (3.8) and (3.9), we get

AA2 = §£22A

e a’- %A (3.10)
Where,

A = Roughness coefficient from Table 1

A = Sample length / total number of samples.

Equation (3.10) gives us the relationship between the roughness coefficient for

different classes of roads and the variance used to generate a random signal in MATLAB.



II-b: Generation of Road Surface Roughness

The following procedure was used for a numerical generation of surface

roughness,
L Generate random numbers, which have approximate white noise properties
with zero mean and variance a 2 (from Equation 3.10) by using Random
Source of DSP Blockset using MATLAB.
2. Pass this random numbers through the first order recursive filter (HR filter of

DSP Blockset using MATLAB). The output function is the road surface
roughness.

In this investigation the sampling time depends upon the length of the road and
the number of samples in that length. For example, let’s consider the length of the road as
256 m and number of samples as 2048 (211), which gives us sampling time (A ) as 0.125.

If we consider a very good road surface, range ofroughness coefficient according
to Table 1is A =2to8e- 6. Let’s consider A =5e- 6 for the simplicity.

From Equation (3.10) we get the required variance of the input random source as,

o2 S.-06*<M23
2 2

Byusing Mean =Zero,Var =a 2= 3.125e-07,and sampling time =A =0A25 forthe

random source in MATLAB, we can generate random spectrum as shown in Figure 1
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Figure 1. Spectrum of random numbers.

As we have considered the random source generator from MATLAB to have
Gaussian probability distribution with approximate white noise properties, the power
spectral density function of this random signal should be flat. Figure 2 shows the
comparison of the power spectral densities of the random signal and that from the

Equation (3.8).
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Power spectral density (m2cycle/m)

Figure 2: Comparison of Power Spectral Density of a random spectrum with the
approximate Power Spectral Density.
From Figure 2, we can see that the general behavior of the PSD of the random
signal is comparable with that from Equation (3.8).
When we pass this random spectrum through the first order recursive digital filter
as given in Equation (3.4), output of this filter gives us the desired road surface profile as

shown in Figure 3.



Figure 3: Output from the first order digital filter.

Figure 3 shows an example of a road surface profile generated by passing a
random signal through a first order digital filter. Since we have used roughness
coefficient of a very good road surface, this output signal represents a general road
surface profile of a very good road surface with numbers of data points showing on X
axis and a vertical distance between a tip ofthe road surface at that point from an
imagined zero surface level in meters. We can see from the plot, the variation of the road
surface is from + 85 mm to - 13 mm.

The power spectral density of the output spectrum is calculated in MATLAB and

compared with that given by C. J. Dodds and J. D. Robson [3],
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Figure 4: Comparison of PSD of the output spectrum with the PSD
from C. J. Dodds et. al.

From Figure 4 we can see that, PSD calculated from the output spectrum is
comparable with the PSD function proposed by C. J. Dodds and J. D. Robson [3], Figures
5 and 6 show typical road surface profile generated by using MATLAB for a very good
road surface and a good road surface. Figures 7 and 8 show the comparison ofthe Power
Spectral Density of a very good road surface and a good road surface with the

approximate Power Spectral Density respectively.
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Figure 3.5: Typical road surface profile of a very good road

Figure 3.6: Typical road surface profile of a good road
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Figure 3.7: Comparison of Power Spectral Density of a very good road surface with the
approximate Power Spectral Density given by C. J. Dodds and J. D. Robson [3]
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Figure 3.8: Comparison of Power Spectral Density of a good road surface with the
approximate Power Spectral Density given by C. J. Dodds and J. D. Robson [3]
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CHAPTER IV
VEHICLE DYNAMICS
IV-a: 12 DOF Model of an AASHTO HS20-44 Truck

A nonlinear vehicle model with twelve degrees of freedom is developed
according to the AASHTO HS20-44 truck [1],

Figures 9 and 10 illustrate the side and front views ofthe AASHTO HS20-44 [1]
vehicle model. This model consists of five rigid masses as tractor, semi-trailer, steer
wheel/axle set, tractor wheel/axle set, and trailer wheel/axle set. Tractor and semi-trailer

are assigned three degrees of freedom (y,6,and t) individually. Two degrees of
freedom (y and <5 are assigned for each wheel/axle set. The tractor and semi-trailer are

interconnected at the pivot point. Truck data used for this investigation is given in

Appendix- A.
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Figure 9: Side view of HS20-44 vehicle model.
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The total potential energy, V = Vi ofthe system is computed from the spring
stiffness and relative displacements, whereas the dissipation energy, D =" Dit, ofthe

system is obtained from the damping forces. Total kinetic energy, T =~ 7], ofthe

system is calculated using the mass, mass moment of inertia, and translational as well as
rotational velocities, of the system components.
The equations of motion of the system are derived, using Lagrange’s formulation,

as follows:
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dfdr) 8D 8T 8V

- H 1 = One, .
dt(dgi) 8qt dgi dg, (4.1)

Where gt and qt are the generalized displacements and velocities, and Qnci is a
generalized force.
Following are the degrees of freedom and masses of each rigid body:

yn,mn= Tractor vertical displacement and mass

€m, I i = Tractor roll displacement and mass moment of inertia about X axis
6ti, 7Z = Tractor pitch displacement and mass moment of inertia about Z axis
yn .m 2= Trailer vertical displacement and mass

4a ,Ixa~ Trailer roll displacement and mass moment of inertia about X axis
6tl1J za=Trailer pitch displacement and mass moment of inertia about Z axis

y a\’ma\= Steer axle vertical displacement and mass

4ai, | xd = Steer axle roll displacement and mass moment of inertia about X axis
y & 'ma = Tractor axle vertical displacement and mass

622, 1xa2= Tractor axle roll displacement and mass moment of inertia about X axis
yai'mas = Trailer axle vertical displacement and mass

A3,/ ;3= Trailer axle roll displacement and mass moment of inertia about X axis

Relative displacements at spring locations:
Suspension springs:

.
u ~&")+,A ~hije,
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/ \
u i 5>
Usy2= yn-ya-yy,2 j — T 4)(+fi-+«)+hOn-lifOn
j

( \
L
Usy3:\y«~ y02+j|5y QJ+1/22 VN A . W AR H (42)
f L
Uy = vyl ~ +jy,2 2 Wil 7al ,
RAVARE AR ) 5 &
Usp = y,2-ya’3-Pyn tog
*7
h

Tire springs:

(4.3)

Wbrl___ 6 —Vertical displacement of road
surface, considered +ve if upwards.
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The total kinetic energy, T ='~Tj of the system is

T o +2 + 272+ 2m'2N'2+ 2/ 22 272N+ 2 + 25q
+4 WT2+| Kith +2 ma® B+| /Xn33 (4.4)
The total potential energy, V =" Vi ofthe system is
1 1 1 1 1 1
y=~2"U +\ KK i +fK K i+\K,yK <+ \KsysUU +\K,yeUU
1 1 1 1 1 1
+-K,Ul+- KAUIL +- 7" 33 +- KJJIt+- KAU | +- (4.5)

The dissipation energy, D =”Z). ofthe system is

D ~ ~ DsyfilJy\ + ~ Dsy2U Jy2 + ~ DsylU U + ~ D sy4dU sy4 + ~ DsySUU + * D sy6”sy6

*+3 D D@UJ\ +5 D oyl Mtyll + 2D W tbl 1 iQf\ovM ly4 +-D tl;u Jyl +_Dtysx~ue (4-6)

By substituting the relative displacements in the terms of 12 DOF from Equations

(4.2) and (4.3), the equation of motion for vertical displacement of the tractor yn can be

derived as
dT
drdT? @)
=mnyn .
dtyfynj
dT
f =0 (4.8)
yn
— = ¢ K, U,+KA"V, +K, UV, -1 KJJ,, -I (4.9)

In
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= i - _k-Dii* 4.10
!)yrt\ D,rfi,, +Dl,,uv, +B , X « L.l kﬂD” . (4.10)

And the generalized force in the vertical direction of the tractor is
CM = (4.11)

By substituting Equations (4.7-4.11) into Equation (4.1), we get the equation of motion

for yn as
v, + +K,,U,, + K,y,Utr,+ 7r,,4t/,,4- fK tsUai - fK Iriu »
h *7
H A +V ,,+ +A«W, 4- fD vfieS- fD ,, fi,rt=m,g (4.12)

On the similar lines as in Equations (4.7-4.12), equations of motions are derived
for the rest of the 11 DOFs and are summarized below
Equations of motion:

For Vertical Displacement of the Tractor, yn:

+ (Fsyi + Fsy2 + Fsyi + Fsyd)~ + Fsy6)+ (Fdsyl + Fdsy2 + Fdsyl + Fdsyd)

Ay Fdys +Fdsys) = mMNS (4-13)

For Pitch Displacement of the Tractor, 6n:

iJn +/,fc. +M )-/4M +0 +/s(% )(M +FJ

+M{FGh Foyl) [F + Fayh)+ B FROE)=N (4-14)
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For Roll Displacement of the Tractor, <n:

iJa +{JiX F* - fJ A d2Xf*-F *V "yCIF» ~Fd =0

(4.15)

For Vertical Displacement of the Trailer, yI2:

- fV ](p.,,+f,,2)+{1-/\fv,+ fvM £ +F]

-fVVw +'e)+ fV V « + +F")=m,lg (4.16)

For Pitch Displacement of the Trailer, 9n :

AT (! FFLD)+AY I K 54V

VT )+I/v¥ 15’ foHn )k o) =0 (4,i7)

For Roll Displacement of the Trailer, (n :

1,dn + {V I\Fs F.)+[SA )K > ~F*»)=0 (418)
For Vertical Displacement of the Steer axle, ya]:

Mairai ~ (~ 1+ F92)+ 1yi + Ffe)~ [FAN+FB2) + [Fay, + Fayz) = malg (4.19)

For Roll Displacement of the Steer axle, fa™

I

LA -[32 [0 jt fy 'K -rw)-fyi(Fe - it fy VW -fw)=o
(4.20)

For Vertical Displacement of the Steer axle, ya2:

maiyaz ~ (Fsy3+ F§d)+ [f" + Flyd)— + Fasyd)+ (Ff3B + FayA) = maZy (4.21)
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For Roll Displacement of the Steer axle, $a2:

i -{Ay.,>-F +{®)(F,

For Vertical Displacement of the Steer axle, ya3:

madal - (FsyS+ Fsyb)+ (~5 + F<6)“ (FdsyS + Fdsy6)+ (Fdtys5 + Fdry,) = ™ alg

For Roll Displacement of the Steer axle, fa2:

Al a [
Where,i
F%,-Iz K%‘U 9 iFyi - Suspension spring force.
Foyi  F SjiF 9 - Damping force in the suspension.
F# = KtiU# - Tire spring force.
Fdyi = F tyiUt - Damping force in the tire.
i =1to 6, and

F i=The friction force at the ith suspension.

(4.22)

(4-23)

- deﬁ)zo

(4.24)

From the equations of motion for all the 12 degrees of freedoms from Equations

(4.13-4.24), we get the second order differential equation as
IM{<T}+[CI{?}+[/:1{.}={F}
Where,

[M] = Global mass matrix.
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[C] = Global damping matrix.
[Ai] = Global stiffness matrix.

{F} = Global force matrix,

and,

yil Yl
On On
<n <
y,2 Yy,2
0,2 0,2
fin and q = $2
y.i yai
43 kx
ya yaz
Qdl k 2
ya® ya3
J>ai |H H

Second order differential equation (4.25) can be converted in to a first order differential
equation to simplify the solution.
The general form of second order differential equation is

mx +cx +kx - f (4.26)

Equation (4.26) can be written as

Where, m (mass), ¢ (damping coefficient), and k (stiffness coefficient) are constants.
Let’s assume that,
x\ = x

and,

31



ie. Xl =x =x2 (4.27)
and
f c k *
X2 =X = - X ==men X =F - cx2-kx\ (4.28)
m m m

We can write equations (4.27) and (4.28) in matrix form as,

i _"o, 1"x\ ‘o'
o= O F (4.29)
i2 —k — x2 1

Which we can write as,

X =AX +BF (4.30)
Where,
140
x| x\ "0 1 0]
X = , X = , A= ,and B =
x2 x2 |~ =

IV'-b: Suspension and Tire Forces of an AASHTO HS20-44 Truck
Equation (4.30) is a first order differential equation, which is easy to solve in
MATLAB. On the similar lines equation of motion (4.25) is modified to a first order
differential equation and used in MATLAB to get the solutions of q and q.
q gives us the displacements of the suspension and tire springs because of the road
surface roughness. From these displacement solutions, the suspension force and tire
forces are calculated as,

Fyr = KU

syi~ syi* T I:yi.

=W * (4.31)
Two road surface conditions are considered in this study, a very good road surface

and a good road surface. Figures 5 and 6 show the typical road surface roughness profiles
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for these two road conditions on a motorway. Suspension force and tire force histories for
steer, tractor and trailer axles are shown in Figures A.l to A.32 in Appendix-A on very
good and good road surface.

The maximum suspension and tire forces on two different road surface conditions
for an HS20-44 truck load with different speeds are summarized in Tables 2 to 5. From
the Tables 2 and 3, for a HS20-44 truck traveling on a very good road surface, we can see
that the impact suspension force is in the range of 23.47% to 44.71% of the static load for
the steer axle and is reaching as much as 73.31% for the tractor axle, where as the
maximum impact for the trailer axle is 51.52%.

The impact for tire force is lesser than that for the suspension force. For the steer
axle the impact is in the range of 21.85% to 44.21%, the maximum impact for the tractor
axle is 51.20% where as the maximum impact for trailer is 32.21% of the static load.
From the Tables 4 and 5, we can see that the impact values when an HS20-44 truck is
traveling on a good road surface have increased noticeably those from the very good
surface. The difference is much more in the steer axle than in the tractor and trailer axle.

Table 2: Comparison of suspension forces at different speeds for HS20-44 truck on a very
good road surface.

Speed Static Fsyl Static Fsy3 Static Fsy5
mph) (Kips (ki) PP ipg) ks P ing (kipe)
15 2.9119 3.6661 2590 14.1780 23.0926 62.88 14.5579 20.7822 42.76
20 2.9119 3.5953 23.47 14.1780 22.0802 55.74 145579 20.1924 38.70
25 2.9119 3.7536 28.91 14.1780 21.7757 53.59 14.5579 20.7265 42.37
30 2.9119 3.7752 29.65 14.1780 24.5719 73.31 145579 22.0580 51.52
35 2.9119 3.8733 33.02 14.1780 23.0898 62.86 14.5579 20.4900 40.75
40 2.9119 3.8631 32.67 14.1780 21.5002 51.64 14.5579 21.3827 46.88
45 2.9119 4.2139 4471 14.1780 22.8514 61.18 14.5579 20.9179 43.69
50 2.9119 4.1695 43.19 14.1780 23.4254 65.22 145579 20.4730 40.63

%Impact

Note: Fsy2, Fsy4, and Fsy6 are same as Fsyl, Fsy3, and Fsy5 respectively.
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Table 3: Comparison of tire forces at different speeds for HS20-44 truck on a very good
road surface.

Speed

(mPh)
15

20
25
30
35
40
45
50

gn

3.99
3.99
3.99
3.99
3.99
3.99
3.99
3.99

Ftyl
(Kips)
4.902
4.862
5.437
5.011
5.252
5.378
5.378
5.754

%Impact

22.86
21.85
36.27
25.59
31.63
34.79
34.79
44.21

Static
(Kips)
15.97
15.97
15.97
15.97
15.97
15.97
15.97
15.97

Fty3
(Kips)
23.968
23.886
23.423
23.906
22.646
22.773
23.54
24.146

%Impact

50.08
49.57
46.67
49.69
41.80
42.60
47.40
51.20

Static
(Kips)
15.99
15.99
15.99
15.99
15.99
15.99
15.99
15.99

FtyS
(Kips)
20.37

20.892
20.006
20.042
20.202
20.546
21.141
20.944

Note: Fty2, Fty4, and Fty6 are same as Ftyl, Fty3, and Fty5 respectively.

%Impact

27.39
30.66
25.12
25.34
26.34
28.49
32.21
30.98

Table 4: Comparison of suspension forces at different speeds for HS20-44 truck on a
good road surface.

Speed
(Mph)
15
20
25
30
35
40
45
50

Static
(Kips)
2.9119
2.9119
2.9119
2.9119
2.9119
2.9119
2.9119
2.9119

Fsyl

(Kips)
4.0169
4.0372
4.5662
4.3887
5.1816
5.0380
4.7742
5.5843

% Impact

37.95
38.64
56.81
50.72
77.95
73.01
63.95
91.78

Static
(Kips)
14.1780
14.1780
14.1780
14.1780
14.1780
14.1780
14.1780
14.1780

Fsy3
(Kips)
23.8001
22,7842
23.2621
23.5911
23.6442
24.8217
23.3828
25.8017

% Impact

67.87
60.70
64.07
66.39
66.77
75.07
64.92
81.98

Static
(Kips)
14.5579
14.5579
14.5579
14.5579
14.5579
14.5579
14.5579
14.5579

Fsy5
(Kips)
21.0453
21.8522
20.8640
20.8222
21.5286
22.2057
22.4409
23.1105

Note: Fsy2, Fsy4, and Fsy6 are same as Fsyl, Fsy3, and Fsy5 respectively.

% Impact

44.56
50.11
43.32
43.03
47.88
52.53
54.15
58.75

Table 5: Comparison oftire forces at different speeds for F1S20-44 truck on a good road

surface.

Speed
(Mph)
15
20
25
30
35
40
45
50

Static
(Kips)
3.99
3.99
3.99
3.99
3.99
3.99
3.99
3.99

Ftyl
(Kips)
5.916
5.549

6.3

5.8442
7.1357
6.3201
6.5478
7.2386

% Impact

48.27
39.07
57.89
46.47
78.84
58.40
64.11
81.42

Static
(Kips)
15.97
15.97
15.97
15.97
15.97
15.97
15.97
15.97

Fty3
(Kips)
26.675
24.855
24.308
23.9643
26.7785
25.3836
25.0641
25.4537

% Impact

67.03
55.64
52.21
50.06
67.68
58.95
56.94
59.38

Static
(Kips)
15.99
15.99
15.99
15.99
15.99
15.99
15.99
15.99

Fty5
(Kips)
20.37

20.892
20.006
20.042
20.202
20.546
21.141
20.944

Note: Fty2, Fty4, and Fty6 are same as Ftyl, Fty3, and Fty5 respectively.
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21.59
2154
22.67
21.50
23.01
23.49
24.45
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CHAPTER V
ANALYSIS OF AN ORTHOTROPIC PLATE UNDER MOVING LOADS
V-a: Generation of Equation of Motion

A bridge deck can be modeled as an orthotropic rectangular plate with two
opposite edges simply supported and other two edges as free. An orthogonal orthotropic
plate is defined as a plate which has different elastic properties in two mutually
perpendicular directions x and y. Since the plate thickness is constant and the plate
material is continuous, the different elastic properties in the two principal directions are

due to different moduli of elasticity, Ex * Ey and different Poisson’s ratios vxy + vyx of

the material.
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The strain energy of an orthotropic plate is well known and is given by Timoshenko [12]

as
-,ab (& w\2 f R
ow \d2w d 2w 2w
D. +[d,v,, +D, v, %-_—* — D. d +4Dy, ow dxdy
00 fix2 rxy)dx2 dy2 V 3 dxdy
(5.1)
Where,
Eyh3 G"h2
and D,, = " —
12(1-v v ) Y121 ~v v ) v 12

Ex = Modulus of elasticity in X direction.

E

Modulus of elasticity in Y direction.

Poisson’s ratio associated with a strain in the Y direction for a load in the X
direction.

v,f = Poisson’s ratio associated with a strain in the X direction for a load in the Y

direction.

G =Shear modulus of the plate.

The kinetic energy of the plate is given as

ab
T 11w(x,y,tf phdxdy (5.2)
2 00
Where,

p = Mass density of material of the plate.

h = Thickness of the plate.
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The work done due to damping in the plate is given as

ab

We =-"w {x,y,t)cbM{x,y,t)dxdy 9
00

Where,

cb =Damping coefficient of the plate.

The external work done by the force P{(t) can be written as

W =JJZ Pi - X, (D))S(y - vy, ())w(x, y,t)dxdy (5.4
00A
Where,

P,(t), (/ =12,...,Np) = Moving loads.
X,(t),y,(t) = Coordinates of the position of moving load P,(t).

S(x-x,(t)), S{y- v, (1)) = Dirac Delta function.

The displacement function of the plate can be written as a summation of the normal mode

function in the X and Y coordinates as,

AXx,y,t)= \r(n.]lwmAx Ay)d nm{t) (5.5)

Where,

Amnx”?
(icy) = Yrm(y)sin\ ----- . =Normal modes of the plate.
a )

qnm(O: Corresponding generalized coordinates.
By using the Lagrange’s equation,

drdTA d_ dU dwc _ dw

dt dg dg dg dq (56)
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By substituting Equation (5.5) into Equations (5.1), (5.2), (5.3), (5.4) and by

differentiating with respect to g and q we get

dU ab (

_ D.
dgq = 11 dx2 x2 dy2 dy2

Equation (5.2) becomes

2 ab

T =—Jjw2m(x,y)q2m{t)phdxdy
00

--0
dq

ab
— = \Wmn {x,y)gm(t)phdxdy

00
ot a:‘AW {x,y]ijm(t)phdxd
- — = mn {x,y]ijrm X
dt aQ) yi p y

00

Equation (5.3) becomes

ab

= - \OIOW'n(* yhnnmw b Whm(X> (t)dxdy

=~W W™ yAbAmn {*, yVimn (t)dxdy
00
Equation (5.4) becomes

W = %\Jﬁin(W (x ~x, (0)5(y - Y, (OKQ(«?nmn {t]djcdy

abN.

™ =117 e - (OK o

38
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\t)dxdy

(5.7)

(5.8)

(5.9)

(5.10)

(5.11)



By substituting Equations (5.7), (5.8), (5.9), (5.10), (5.11) into Equation (5.6), we get

ab
J\w 2m,(x, y)gmm(t)phdxdy
00
+
ab (32,, \ 2 deﬂdem ‘OZW'\ y/QZW X
JID- A +(d . e+ dywdj " +47) o ,(t)dxdy
00 Vo (d -y, YUY gk dy?2 +Dy,, k y V y
+
ab ab Np
VKT y)oonyto pimifiddy=1  PL X[ PO
(5.12)

This can be written as
Mq+Cqg+Kg=P (5.13)
This is the equation of motion, where

ab
M = S!w2m (X, y)phcbcdy

00

ab
C = | I W m{x,y)chdxdy

00

uu

d2 52 d d
K D. (d.v, +D,v,) +D. ow,, +4D. aw, dxdy
- & dx1 ' dx2 dy dy2 dxdy

nggzﬂpi -xa( My -Pi(0 K {x,y)dxdy

This equation of motion is then solved for the generalized coordinate qmm by using a

fourth order Runge-Kutta method.
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Normal modes of the plate wnm(x,y) =Ymn(y)sin mnX required in the Equation (5.5) are
a

obtained from the Eigen-value analysis of the orthotropic plate.

The governing differential equation of an orthotropic plate for free vibrations can
be obtained from Equation (5.6). Since there is no moving load acting on the plate, there
is no external work done and for the simplicity of the problem it has been considered that
there is no work done due to damping in the plate. So we just have two terms left in the
Equation (5.6), which are the strain energy and the kinetic energy.

Which gives us the differential equation as

ddw / \ ddw d4w d4w , d2w
+ph”"-=0 (5.14)
Dx dx4 W+ yWxy'dx2dy2 +Dy dy4 + DYy -~ddy?2 dt2

By using the Betti’s law of reciprocity, as per the design manual for orthotropic steel

plate deck bridges [13], we get

Dx
- :V)Lwe ge%, vayx = Dy\y/Xy

uy vy*

By substituting,
H =Dxvyx+2Dx
Equation (5.14) becomes,

£>dW+2H d4w +D d4W+pHd2W:

0 5.15
dx4 dxzdy? v v dt2 (-15)

V-b: Eigen-value Analysis of an Orthotropic Plate

The governing differential equation of an orthotropic plate is

daw (x,y,t) | o, ddw(x.y.1) ddw (x,y,t) +I0h_da/v(x,y,t) ]
dx4 dxay2 +Dy  dy4 dt2

D 0 (5.16)
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The displacement function w(x,y,t) can be expressed as the product of two functions,
one involving only the space coordinates x and y and the other involving the variable
time.

w(x,y,t) =wm(x,y)*qmt) (5.17)
Where, gmm(t) is assumed to have the solution in terms of e*

By substituting (5.17) into (5.16), we get

d.dMxoO + 2HD _pha,,w(x y)=0

(5.18)
ax4 dx2dy2 ay4

This is a homogeneous partial differential equation involving the mode shape expression

w(X,y) , the plate properties, and the circular frequency of oscillations co.
To make this equation dimensionless, let us introduce the dimensionless space
variables £ = x/a,rj =y/b ,where a and b are the plate dimensions and ()=b/a.

Equation (5.18) becomes

a<f drdrj dr)
e

adw (M) | 2H dAv{Xv) 4Dxadw(*7) 4phcoaA

ME,ri) =
af74 Dy dAdrj2 9 Dy ana A M) =0
By substituting
X2 Which is a plate eigenvalue.
2i A
712 H daw(Xa) - 4DxdA{™Q) _poaoexa =0 (5.19)

9 Dy dfdr,2 9 Dy df4
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Levy-type solutionfor thefree vibration analysis ofrectangular plates:
Let us consider a plate with simple support along edges £ =0, and £=1

We can express the solution to Equation (5.19) in the form
k

Ym{ri)smm~* (5.20)
me

By substituting (5.20) into Equation (5.19), we get

d 2Ym(rj 4D
-2 f— {me)* mry) +f A {mnfYn{p)~ {p) sinmm%=0
dp4 Dy drj D
(5.21)
Gives us,
5.22
dp ap (5.22)
Where,

C = jnjif and C, =~ JL{mn)4
v (inj Dy{ )

Equation (5.22) is an ordinary fourth-order homogeneous differential equation with

constant coefficients. Assuming the solution of this equation in the form,

7 =CeM

p=x{f[cxx*"cXc2+"Y2

ie.

p=zxt(c,zy[cfrcITFf (5.23)
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Roots of the solution gives us two different categories depending if C2-C 2+/14is

positive or negative.
Category I:
This category represents the solution when the quantity in the inner square root sign has

real roots.
If C2- C2< A4
This category leads us to two other subcategories
Category 1(a):
In this category the quantity in the outer square root sign has real roots.
If G, >JC,2 c2+as
The corresponding solution is given by Gorman D. J. [14] as
Ymin) = Amc°shPr! + BmsinhPJ1 + Cmsinh ynmrj + Dmcosh ym7 (5.24)
Category 1(b):
In this category the quantity in the outer square root has imaginary roots.
If C, <Vc2-C2+A4
The corresponding solution is given by Gorman D. J. [14] as
YmW) = Amc°shPnri + BmsinhPnti + Cmsin ymJj + Dmcosym\ (5.25)

where,

(5.26)

r.= ~cl-lci-c,+ xi or = -¢cd F -c,
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whichever is real
The quantities AmBm Cmand Dm are constants to be determined by means of boundary

conditions.

If we locate the £ axis along the center of the plate, we can divide the possible
mode shapes into two types, symmetric or anti-symmetric modes.

a ™Free

Figure 12: Plate with new axis system.
Symmetric modes:
Restricting to only symmetric modes, we can delete the anti-symmetric terms

from Equations (5.24) and (5.25).

for C, >7C2- C2+A4

YmO0?) = AmcoshPnti + Dmcoshynr/ (5.27)

for C, <NC2-C 2+A4

Ym(T) =  coshfimli+Dmcosynr/ (5.28)

By using the boundary conditions given by Jayaraman G. et. al. [6] at the free edges at

tj = +—, where bending moment and shear force is zero.
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(5.29a)

dr? o de? =
+v>* .2 SSVY("yt]) (529b)
dr)3 drjde?
Where,
v =2 h -V_
\ DyJ

For C, >VC2-C 2+/14
By substituting (5.27) into (5.20), we get the solution as
w(£,/7) = (AmcoshPmg + DmcoshyniT))s\nmK”

g \
'(Ij'r/,T'? =C iA sinh”mt + Dnymsinhynr))s[nmn%

8 W 2 V) =[A*PI cosh Pnri + Dny thcosh ymTi)smmn”

9w =(APisinh Prmt Dnr Isinh roa)sin ™

vV /E \
— dé_ = (rnx)(Amcosh Pm) + Dmcoshy j )cos mn%

— W 2, T]) = C2M)2(*racosh PnV + Dmcosh ynm\-sin mag)
= (m/? { AnPrmsinhpnr) + Dmymsinhy j) \ - sinmnE?

A .
gdrj\d’gz )

Equation (5.29) becomes
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4 A>2cosH~; Igm + n "2cosﬁ Il )sin

+wf-(m7i)2 A coshiPm+Dmcoshi‘—ym;A(-sin m~)=0
z

I\ Pl-vA (»*)2]cosh)-Pm+Dm[yB v j I(m#)2] cosh-Lym= 0

(5.30)

and

N

3 1 , 1
AnmBmsmh- pmt Dnymsinh- ym smmnE,

1 \
+v 4 {ma) ArersinhZ/?m+ Drrymsinh;— (-sinw/r£) =0
v y

AmMPmM\PIl -v > 2(m~r)2]sinh A m+Dnym[ygh-vV 2(rn™)2]sinh”~m=0 (5.31)
Equations (5.30) and (5.31) can be written as,

\_PI-VA  (™x)2]cosh”pm [y2-v j20mnf]cosh| y

s

P

- (5.32)
Pm\_PI~w2(mn)2]sinh® pm ym[y&- v>2(mn)2] sinh " LA .

To satisfy Equation (5.32), determinant of the first term has to be equal to zero.

[Pm- vA 2(m;r)2]cosh”y?m -vA2(mn)2lcoshym

Pm[Pi-VvW2("A 2]sinh®Pm ym[yfkh- V> 2{nut)2] sinhi v,

Which gives us the Eigen-value equation as
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roirl -v 02(md?] . [# ] - {mn)2] sinh—yntoshtn

ARV M) T e e )2 s M mco sy (=0 (5.33)

By substituting @mand yminterms of A in Equation (5.33) and solving for different

values ofm, givesus differenteigenvalues 1.

By setting Drre Lin Equation (5.30), we get Amis

[Ym~ Vo™ 2{w ") 2] cosh — Ym
A =1

\Pl-vj1l Jtosh \ Pm

By substituting Drand Armn Equation (5.27) and then into Equation (5.20), we get

mode shape ofthe plate as

\jm ~ Wy2im7r)2] COSh~ ym .
W{NTD = ¢ YJL- coshy?mt sin nrE, (5.34)

\ PI~\&a2(rm)2 cosh !

For A< 21-C2+M
By substituting (5.28) into (5.20), we getthe solution as

w(, 1) = (Amosh pnmi+Dncosy”sinmn”

— (;rj-'ll = {ARM\PM-DmYm A7AYML7171%
G = (AmPI coshPmn - Dnri cosrnij)sinm”

8 = [AnPi sinhy?,,77 + Dnri sinynT])smm”
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vV /E \

— aéw = (mx){Amcosh J3 + Dmcos y nr/)cos mx%
9 = (™x) 2(Amcosh y2ml) + Dmcos y nr]X~sin mn£)
9dr/d<' = (m7r)2{Am3msinh/3nr]-Dmymsm y~* X -sm m x*)

Equation (5.29) becomes

, 1 1
KPm c°shé/?m~DrrymcosAym) sin mx%

+Vxyd) (mx) \Amcosh~|'- p m+Dmcos-; ym (-sinmx%) =0

Am[P I~ v j 20mx)2] cosh)-pm~Dm[y&+Vv j 2(w;r)2] cos"ym=0 (5.35)
and

1 1
A A sinh-lp m+Drrymsin-I )sinmx%

+v<t>(mx) VAn]'Smsinh Zi/?m- Dmymsinli/ m) (-sinm”) =0

AmPm[pl -v > 2(w™M)2]sinhi/?M+Dnmym[yth+v>2(m~")2]sin*/m=0 (5.36)
Equations (5.35) and (5.36) can be written as

[Pi- ( mn)2]cosh\Pm ~[ri+ v jl(mx)2]cos|ym
(5.37)

Pm[Pi - v>2(mx)2] sinh” 2, ym[y2+v>2(m;r)2] sin~ym Dm. O
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To satisfy Equation (5.37), determinant of the first term has to be equal to zero.

1
\fil~ vyt 2(m7r)2] cosh Pm  -[rl+Viyfi™ *)2]0052—y
=0

1
Pm[ Pl ~w2{mn)2] sinh» pm rn{ri+v</>2Am2l sm~rm
Which gives us the Eigen-value equation as
rm[/1 +v>2(mzr)2] .[* - vM)2{mn'fl]sincosh”m

+Am [M-wW2("IM)2]-[M+ v A 2(wM)2]sinh|/?mc o s m=0 (5.38)

By substituting Pmand ym in terms of X in Equation (5.38) and solving for different

values of m, gives us different eigenvalues X.

By setting Dm= 1 in Equation (5.35), we get Amas

[Mm + \kyE2(m7r)2] G5 Ym
A_ =

\ Pm~ vxyR2(w/r)2] cosh ~ fim
By substituting Dmand Amin Equation (5.28) and then into Equation (5.20), we get
mode shape of the plate as
[r&h+ vJ2(m7r)2~\cos~ym

-cosh pnri- sin mnE, (5.39)
\_%vxy"z (rm)Z cosh ” Pn

w(£,ri) = cosynri +

Antisymmetric modes:

Restricting to only anti-symmetric modes, we can delete the symmetric terms
from Equations (5.24) and (5.25).

For C, >yjc2-C2+X4
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Ym(Jl) = Bmsinhp mt + Cmsinh yny
For C, <yjcf - C2+;l4
A ft) = sinhPm+ Cmsiny ji

For C, >NC2- C2+"4
By substituting (5.40) into (5.20), we get the solution as

ME,rj) = {BmsinhPm] + Cmsinh yn¥ )sin mn$

oWy ,?7) = iBnmPmcoshp nt] + Cnymcoshymj)s\nmK”

5 sinh/xY + Cny tsinhynv])smmn%
84

d ~ _377) = (BnPi coshPnli+ Cnyl coshynr])s\nmn”

or]
aw (M) = sinh/mY + Cmsinhynrj)cosm7™
9 =(mx)2{Bmsinh Pn1] + Crasinh r n¥ X -sin mng)
9O'I]d$ =Mt 2(BrrPmcosh Pmr] + Cnymcosh ynr]\- sinm )

Equation (5.29) becomes

f 1 1
~BnPmsinh—?m+ Cnyl sinh— |sin««f

2(mn)if Bmsinh -lp m+Cmsinh - yrrf\(-sinw’\) =0
\% z z Yy
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Bm\ Pl - V.J 2{mnf]sinh™ pm+ Cm[yfh- v j 2{mnf]sinh]-ym=0 (5.42)
and
B o1~ =~ i .
Bumc°sh~Z~Pm+ Crrymcosh-zy mJ sinm 7%

f
1
+v () {mn) Bnpmcosh-fi m+Cmymcosh-1y m (-sinm/z£) =0
\Y, 4 AN

BmP \p | -v > 2(rn*)2]cosh™/?m+Cnmym[réh- v>2(w;r)2Jcosh*ym-0 (5.43)
Equations (5.42) and (5.43) can be written as

[Pm ~\VkyE2(mn)2] sinh  Pm [yt-v ™ 2(m7r)2]sinh”~ym 1X1 ‘o'

Cy, 0 (5.44)

Pm\ _Pl~vww2{mnf]cosh pm ym[yd- v {mn)2] cosh~y,
To satisfy Equation (5.44), determinant of the first term has to be equal to zero

\Pl~v j1 )2]sinh”"Pm [rl-v "™ 2{mn)2]sinh~ym
=0
Pm\_PI-v<t2(mjt)2] cosh*Pm rm[rl~ vf- {mn)2] cosh” yn

Which gives us the Eigen-value equation as

rmirl ~vwW2{mnf].[p2- v 2{mnf]cosh”™ ymsinh” pm

~PM[PI~v €{m nfrI\j&r-vxy2{mnf'\cosh” p msinh| ym=0 (5.45)

By substituting Pmand ym in terms of X in Equation (5.45) and solving for different

values of m, gives us different eigenvalues X.
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By setting Cm= 1 in Equation (5.42), we get Bm as

[ramvxdz(mat)2]sinh”~ym

By substituting Cmand Bmin Equation (5.40) and then into Equation (5.20), we get

mode shape of the plate as

\ Ym~ vwy€2(m7r)2] sinh 7 yn
K&*7) = sinh?V7- msinh/47 sin mnE, (5.46)

[ PI-\j \ mA)28 A\P n

For C, <VC2-C 2+ A4
By substituting (5.41) into (5.20), we get the solution as

w(Z,ti) = (Bmsinh P nilj + Cmsin ynt*)sin mnE,

& /C \
— on = {BmPmcoshPmrt+ Cmymcosynt*)sinrn”
: = [BnP 1 sinh/?n¥7~ Cnry Bssmyn¥])smmn$
07
9 | =[BnPI coshpn7]- ¢ y mcosyni7])s\nmn$
07

\
— dé_ = (mn){Bmsinh/fitZ7+ Cmsm ym7])cosmn%

A = (m7r)2(BmsinhPml] + Cmsin yni7 J\-sin mn*)

dijog =(w3;r)2coshP ™ +C”rn cosrn7X-sin W ")

Equation (5.29) becomes
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1 .1
B,,Ansin h?Pm- Cnymsi nl-y m sin mn%
y

+vJ)2{mn)2 Bmsinh~pm+Cmsin- ym (-sinmnp) =0

Bm\ Pl - v j 1{mn)2] sinh\p m-C m[y&+v¥{m n)2]sin\>ym=0

(5-47)
and
7 3 1 1 A
BmPmcosh-Pm ~ Cnymcos- ym sin mn£,
\Y 1 z )

( " } A

+v>2(mn)2 Bnpmcosh-/3m+Cnymcos-ym {-smmn%) =0

% z z )
ie.
BmPm\pm - v> 2(w;r) 2JcosIX/?m- CnymyBh+ v'>2{mn)2]costym=0 (5.48)

Equations (5.47) and (5.48) can be written as

[p B~V mn)2]sin h 5m -[yd+ vj2{mn)2]sm " ym X' 1~
(5.49)

Pm[PI-vW2{mn)2] cosh” pm -ym[y&+v>2{mn)2] cos® ym ¢M "=
To satisfy Equation (5.49), determinant of the first term has to be equal to zero.

[Pm ~\&&2{mn)2] sinh -j Pm -[y2+ vj2{mn)2]sin®ym
=0
Pm[Pi ~vV2{mn)2] cosh]-pm -ym[yl +v>2{mn)2] cos]-yn

Which gives us the Eigen-value equation as
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mrl +vs2win21.122- V™ 2mr)21 ¢ 0 s y msinhaz2m

SIm[ A - W 2N ) 2]-[M+ v 2( ) 2]coshA-/2msinAxm=0  (5.50)

By substituting fimand ymin terms of A in Equation (5.50) and solving for different

values of m, gives us different eigenvalues A.

By setting Cm=1 in Equation (5.47), we get Bm as

Wi +vX&2(rrm)2] sin —ym

Bm=+
\ An “xydr ]sinh~Pm

By substituting Cmand Bmin Equation (5.41) and then into Equation (5.20), we get

mode shape of the plate as

[Vm + \y#=2(mn ) 2] sin—ym
sin +- 4-----sinh Pmj  sin mn£, (5.51)

\ Pm~ VA (mx) 2] sinh—@3m

Category II:

This category represents the set of solutions when the quantity in the inner square
root sign is imaginary.

If C2-C 2>A4
The corresponding solution for Equation (5.22) is given by Jayaraman G. et. al. [6] as
Ym(v) =  cosh/?nv7.cos ynmj +Bmcosh p nj.sin ym] +Cmsinh fiji. cosymj + Dmsinh p nrt.sin ynr]

(5.52)

We can separate the symmetrical modes and anti-symmetrical modes from the above

equation.
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For the symmetrical modes, the solution can be written as

Ym(n) =Amcoshp nrlcosyml+DmsinhPniz.sinynj (5.53)
And for Anti-symmetrical modes, the solution can be written as,

Ym(7) = Bmcoshp nrt.sin ymrj +Cmsinh/3ni7.c o s 77 (5.54)

Symmetrical modes:
The solution (as given in Equation (5.20)) to the differential Equation (5.19) is in

the form of

k
W(&*7) =Z 07):sin mn%

m=\
For the symmetrical modes, this equation becomes

W(E,7) = (Amcosh P j! cosynr] + Dmsinh pnrisinynt])smm?

~or/ =(A A sinh 7cos”™77 ~ AmYmcosh Pnrisin ynrj

+ DmPmcosh p nr]sin ynrt + Dy msinh p nri cos ynr7) sin mid;

= CShr  C SWill~ Am(5jm sinh®  sin”?
~AmYnPmsinh Pni) sinyni]- Any thcosh Pj i cosyj]
+DJ | sinhpji sinymj+Dnympmcoshp jt cosyj]
+DmYnPmcosh PmHcosy jj - Dny &sinh pnrisin ynrj)sinmn$

8 d~377) = (A A sinhPjicosyj)- Anp Bymcoshpjjsinyji

- AnP Irmcosh P ji siny jf - Anpnyasinhpnricosy ji

~AmvhPmcoshfij) sinyjt - Any2 msinhpji cosyji
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- AnrIP msinh Pji cosrmm + Anrl coshp j siny j
+DJ 1, coshpjjsiny j +Dny J | sinhPnrjcosyijj
+DJ I r msinhPjj cosy j - Dj~mpmcoshp j siny j
+DmYnmP&Sinh P j1 G8YJ1 ~Dj | P mCOshP jj sin J

- DmYIPmcosh Pnsin YJ! ~Dny@isinhp j cosyjj) sin

=mn(Amcoshpnrtcosy j +Dmsinh pn7siny j) cosmn£

/AN
32\/\(;(?,r]) =-{mn)2(Amcosh/3 j cosy j +Dmsinhp ji siny j) sin mnE,
4o fi =-{mnj2(AnPmsinh pnillcosy j - Amymcoshp jj siny j
?fig

+DmPmcosh Pji siny j +Dmymsinh P j cosy j) sinmn$

The boundary conditions of Equation (5.29) become

[ AJ I cosh®pmcos~ym~ Anpnymsinh~Pmsin |ym
. 2 1 1
AnMTFmSinn g, ﬁmsméér m~ AMYmQOSh- /2, COS- Ym
+DyP 2 sinh =Pynsin ~y+ B,V B mcosh =——6ncos+ o
1 1 . 1 .1 .
+DmyYnPmcosh - pmcos-y m- Dnygsinh- pmsin- ym ]sin mn%

2 2 1 1 1 1 )
-vj (mn) Amcos\i-pmcos-ym+Dmsvrti-pmsrn-ym sinm” =0

and,
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f AR gfinh BECos Yt Ak g REOSh —/?rfin +~vm
-A B REOSh—Bn$ IN~Y nr AnBPrihfinh +2af£0s+ym
~AmYnPn21coshi/?mSin-1y m- A rryr%Pmsinh ~1P mcos}"m
~AnrIPmsinh® mcos”™/m+ Anrl cosh®/?msin |/m
+DJ i cosh|13nsin*y m+Dny J fhsinhj pmcos|
+DnPlrmsinh|/2mcos™ ym- DnyBpmcosh|pmsin| rm
+Dny J Bsinh?/?mcos”m- D j&Pmcos\v~pmsin”/m
~Dnr @Pmcosh “ Pmsin# sinh”pmcos| ]sin

-v>2{mn)2(Ampmsinh~pmc o s - vAmcosh|pmsin®

+ A A c°shry?msin N /m+Z)nd msinh”y?mcos sin =0

These equations can be written as

(A\I.LAm+ A\2.Dm).sin =0 (5.55a)
(A21.Am+A22.Dm).sinmniff= 0 (5.55b)
Where,

All= Phgosh+Pmcos+ynr {’mynsinh +P isin ~Ynt ¥R Asinh ~Ppsinaym
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-ri cosh™/?2nt 0 s mVx(m7r)2cosh Azlﬂ:f-’mcosiz-ym
and

Al2- € sinh|pmsinfym+y jmcosh|Pmc o s ¢ o s h * pmcosi

-r« SinhZlPm  \ Ym~v j 2(mn)2sinh”™ pmsin”™ ym
A21 = Pisinh| Pmcos| " PiYmcoshj pmsin|
2 .1 o1 2 .1 1
-PmYmc®sh-p msin-/m Pnymsinh~p mcos
-YgPﬁmcoshAl—/’v’v sinlA—y - .\;anmsinhlA—/g coslA—ym
-¥a@ ABINN — A £OS—nit Y FOSh-~&inum
y .1 1 1 .1
-V {(nut) \PmSInh- pmCos- ym- ymcosh- pmsin-"ym
z z 4 z
A22 =Pi coshiPmsin~ym+ynp gsinh\ P mcosz"ym
+Pr¥1(msmh-1pmcos-1y m- y2j meosh - Pmdin- ym
+YAP i PiNh - PRCOS VT V2 fosh—Pnsin+im
-YiPmcosh- pmsin*y m-vy i sinh"Pmcos’Z‘l

1 .1 .
-V €(nut) VPmcosh- pmsin- ym+ymsmh-1 /?,,,cos-1 Y,
z z z z

J
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These equations can be written in a matrix form as

"AW  A\2~

(5.56)
A2l A22 A

To satisfy the Equation (5.56), the determinant of the first matrix has to equal to zero.

AW  A\2
= (5.57)
A21 A22
This gives us the Eigen-value equation as
AW.A22 - A12.A21 =0 (5.58)

By setting Dm=1, from Equation (5.558a)

A\2
A= -
N1

By substituting Dm and Amin Equation (5.53) and then into Equation (5.20), we get

mode shape of the plate as,
T . 412 . o
w(E, 7= VSInhijI sin ynrj—ﬂlcosh Prrjcosynmj sinmnZ, (5.59)

Anti-symmetrical modes:
For the anti-symmetrical modes the solution of differential Equation (5.19) can be

written as
=Y JYm(.Tl)sinm7tZ
nH
coshpnrisinynrj + CmsinhPmljcosy*smmnZ
~ i = (Bnp msinh (3nTj sin ynv7+ Bmy mcosh P mg cos y my
]

+ CmPmcosh p my7cos yntj - Cnymsinh (in¥7sin ym7) sin mnZ,
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5 d”27?7) = (BmPI coshPmVvsinyjl + BnP jmsinh Pji cosyj]

~Bn,rnPmsinh P jlcos 7J1 - By thcosh Pnrtsin y j]
+CmPI sinh P jlcosy jl - Cnynmpmcosh pmjsin ynj

~c nynpmcosh PmHsiny ji- Cnyfhsinh PnT)cosy jf) sin mnE,

~g(3?77) =(BmPI sinhPjisinym+B  mC«shpj] GByJ]

+BnPiymcosh P jlcosy * - KP nyl sinhp jl siny ji
+Bn,ynP thcosh P j] cosyml]- By 8p msinh pl]siny jt
~BnyIP msinh P j] sinyj) - BnyBicosh Pnri cos ynrj
+ C X coshpnt]cosy jj - Cnynp Bisinh pnrjsiny ji
-C Jlymsinh P j]sinyji - CnyBpmcosh P jicosy jt
~CnynP | sinh P jisinyj] - Cny2 mcosh pnrtcosy j!

-CnyiP mcosh pmljcosy ji + CnyBisinh pntjsin ynrj) sin mn%

— =m” {Bncoshpni]cosy ji + Cmsinh p jj sin ynri)cos nm%

= -(m7rf (BncoshPjicosyjt+ Cmsinhp j]sinyjj) sin mnE,

~drjd” =~(nr>?2 sinh P7Lsin YJI + B™r "'cosh P™lcos Y JI

+cnPmcoshPjicosy jj - Chymsinh Pj i siny jj) sin mnE,

The boundary conditions of Equation (5.29) become
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[ fPh.cosh~Pgpsin—., + BB, Sinh ~42, Cos v

i i
-/? -
sinh-/?mcos 2/7W

i, .
5l2m 2y, m B rrymcosh-?_p, msm

+c»#! sinh—?mcosi/m- Cny J mcosh sin™/m
-CnmY jmcosh?/?msin®/m-Cny2sinhPmcos™/m jsinm?”

f 1 1 1 1 A
~vxyE2(mft)2 i?mcoshZ—Pmcos?/ m+ CmsinhZ—Pmsinz—/ m sin runt; =0
y

and,

[ BnPIsinh- pmsin| /m+B J gymcosh| pmcos| /,,
+Bnp @Ymcosh”/?mcos™-/m- B J nyhsinh”™/?msin”/m
+qup-nq%cosh;1p nqncos-Al)g m-B m/nﬁ msinhA-l/,?gBinA-lll,,
-BnyJP psinh —Bmsin /- B.v ), cosh —/7,cos ¢,
+CliB,cosh ~BmecosH+ - C i pPk,sinh /7, sin >y,

-CJ r%ymsinh-lP msm-ly m-C ny'J mcosh%#’mcws%f/ra

Cny J msinhi/’?,,, sini/ m-C ny J mcosh-lp mcos}/,

cosh|A,cosMm+Cm”NsinhPmsin|/m ]sin

-v'<j$2{mx) 2(Brrp msinh-ll?m% in-/m+5ni racoshéll?nrq%osz-/,m
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+Q A cosh| pmcos”™ rm- Cnymsinh|y?msini  )sinmn£ =0

These equations can be written as

(M1 1.i?m+ y412.Cm).sin/M”~ = 0 (5.60a)
(A21.Bm+ A22.Cm).sinnuE, =0 (5.60b)
Where,

A\ = Pj cosh—? sin—y, +/? y_sinh—=p  cos—v_-ynpsinh—? cos—,
-r,, c°sh i/” sini -v/ () cosh11/?llcos 1_Jm
N 2= Prnsinh-lprnt:os-1 -V rrx:osh-lPrr'slln-y m-y j mcosh-lprr's%l- ym
-Ym sinh-1 Pmcos-lym v j (mrc) sinh 1 F’rrsin-lrm
=Pmsinh-7Pm
+PlYmcosh”™ Pmcostym- pny@sinh |pmsin|
+rJl coshi Pmcos| - ypmsinh~ Pnsin|
~V2 msinh|pmsin- /m- y’ cosh|Pmcos*ym
-v'(/)z(n?n) (Pmsinh -1pn%in- ym+ ymcosh -1prn&os- ym
A22 =PjJ cosh-—p, cos—y,, - ypP) sinh—2msin—y,,
-Ply:, sinh—2psin—r . -ytP ,, cosh—2, cos—y.,
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-y Bj sinh—B sin—v_-v 2/? cosh—/? cos+y,,
-y 2PIncosh 7, cos—ym+ y2sinh —Bpsin—+v,,

-V { (nut) (Pmcosh -l p mcos -ly m-y msinh 1 pmsin 1 ym)

These equations can be written in a matrix form as,

Al AL2 g

(5.61)
All A2 y

To satisfy the Equation (5.61), the determinant of the first matrix has to equal to zero.

All AL2
A21 A22

This gives us the Eigen-value equation as
AllLA22-Al12.A21 =0 (5.62)

By setting Cm=1, from Equation (5.60a)

__AI2

- Al
By substituting Cm and Bmin Equation (5.54) and then into Equation (5.20), we get

mode shape of the plate as,
(s . M2 - AN
w(%,7j)= " sinh Pni)cos ym j— — cosh Pnrjsinyml] sin mn% (5.63)
\ All

As seen earlier, the modulus of rigidities such as flexural rigidity and torsional

rigidity (Dx,Dy,H) tell us the behavior of the plate. Depending upon the values of

H D
C, =-*-(m7t)2 and C2="-(m7t)4, we have two different categories.
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Category I
If C2-C 2<A4
This category represents the plates which are stronger in torsion than in flexure
and is subdivided into two subcategories as,
Category 1(a):
If C, >"C,2-C 2+ T4 and,
Category 1(b):
If C, <Vc,2-C2+/14
Category II:
If C2-C 2>A4
This category represents the plates which are stronger in flexure than in torsion.
Depending upon the natural frequency of the plate T4, the plate in consideration either

falls into category 1(a), 1(b) or category Il for each mode. Only the first four natural
frequencies (m =1,2 :n = 1,2) are considered in this study. The Eigen-value Equations
(5.33), (5.38), (5.45), (5.50), (5.58), and (5.62) are used to calculate the Eigen-values of
the orthotropic plates.

A MATLAB program is written to solve these equations by trial and error
method. To verify the results from this program, a sample isotropic plate with two
opposite edges simply supported and the other two free is considered and the eigen-

values are compared with the eigen-values presented by Gorman D. J. [14] as shown in
Table 6. An isotropic plate with the aspect ratio of —= 1 and poisons ratio of 0.333 is
a

considered for the comparison.
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Table 6: Comparison of the first four eigen-values with the eigen-values derived by
Gorman D. J. [14],

Modes Gorman D. J. Current study

(1,1) 9.568 9.565
G.2) 15.88 15.885
(2,1) 38.79 38.795
(2.2) 46.33 46.335

From Table 6, we can see that the eigen-values calculated by a program in
MATLAB are in very good agreement with the eigen-values derived by Gorman D. J.
[14].

To verify the accuracy of the program for orthotropic plates, an orthotropic plate

(Two edges simply supported and the other two free) used by Jayaraman G. et. al. [6]
with the aspect ratio of 1 (i.e. —=1) and poisons ratio of 0.3 is solved for different
a

rigidity ratios, and the first four Eigen-values are compared with the frequency
parameters given by Jayaraman G. et. al. [6]. We can see from Table 7 that the Eigen-
values calculated from a MATLAB program are well matched with the frequency
parameter given by Jayaraman G. et. al. [6].

Table 8 shows us the mode shape categorization of orthotropic plates for different

H D
values of C, =-— {mnj2 and C2= for the modes with m =1, that means for the

modes (1,1) and (1,2).
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Table 7: Comparison of the first four eigen-values with the frequency parameters derived
by Jayaraman et. al. [6],

H/Dy
Dx/Dy Modes 05 1 2

Jayaraman Current Jayaraman Current Jayaraman Current

et. al. study et. al. study et. al. study

(1.1) 6.4705 6.45 6.6377 6.65 6.7529 6.75

05 (1.2) 9.5537 9.55 14.5474 14.55 20.8297 20.85
(2,1) 26.4882 26.45 27.1557 27.15 27.4505 27.45

(2,2) 29.9614 29.95 37.4857 37.45 47.6178 47.65

(1.1) 9.5169 9.55 9.6314 9.65 9.7111 9.75

1 (1.2) 11.8312 11.85 16.1348 16.15 21.9677 21.95

(2,1) 38.4824 3845 389449 3895 39151  39.15
(2,2) 40.9506  40.95  46.7381  46.75 551972  55.15
(1.1) 187106 1375  13.7903  13.75 138461  13.85
(1,2) 154074 1545  18.9140 1895  24.0830  24.05
(2,1) 551311 5515 554550 5545 555998  55.55
(22) 56.8814 5685  61.1800 61.15  67.8621  67.85
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Table 8: Categorization of orthotropic plates in accordance with the rigidity ratios.

Dx

Dy
12

un
1(a)
1(b)
I
1(2)
1(b)
I
1(a)
1(b)
I
1(a)
1(b)
I
1(2)
1(b)

% y=025

0<A2<6.528

6.528 < A2<6.978
6.978 < X1

0< A2<9.556

9.556 < X <9.869
9.869 <A2

0<X <13.737
13.737 < X2<13.957
13.957 < X2
0<A2<16.915
16.915 < X2<17.094
17.094 < A2
0<A2<19.584
19.584 < A2<19.739
19.739 < A2

=0

0<A2<4.934
4.934 < A2<6.978
6.978 < A2
0<A2<8.547

8.547 < A2<9.869
9.869 < A2
0<A2<13.056
13.056 < A2<13.957
13.957 < A2

0< A2<16.366
16.366 < A2<17.094
17.094 < A2
0<A2<19.112
19.112 < A2<19.739
19.739 < A2

0< A2<6.978

6.978 < A2
0<A2<9.869

9.869 < A2

0< A2<9.8696
9.8696 < A2<13.957
13.957 < A2

0< A2<13.957
13.957 < A2<17.094
17.094 < A2

0< A2<19.094
19.094 < A2<19.739
19.739 < A2

%y -2

0< A2<6.978
6.978 < A2

0< A2<9.869
9.869 < A2

0< A2<13.957
13.957 < A2
0< A2<17.094
17.094 < A2
0< A2<19.739
19.739 < A2



Dx
Dy

Table 8 contd: Categorization of orthotropic plates in accordance with the rigidity ratios.

I
1(2)
1(b)
I
1(a)
1(b)
1
1(a)
1(b)

1(a)
1(b)
I

1)
1(b)

% ,= 025

0</12<21.930
21.930 </12<22.069
22.069 <A2

0< A2<24.049
24.049 < A2<24.175
24.175 < A2

0< A2<25.995
25.995 < A2<26.112
26.112 <A2
0<A2<27.806
27.806 <A2<27.915
27.915 < X2
0<A2<29.505
29.505 <A2<29.608
29.608 < X2

A - o

0<A2<21510
21.510 < A2<22.069
22.069 < X2
0<A2<23.666
23.666 <A2<24.175
24.175 </12

0< A2<25.641
25.641 <A2<26.112
26.112 < A2

0< A2<27.475
27.475 <A2<27.915
27.915 <A2

0< A2<29.194
29.194 < A2<29.608
29.608 <A2

0< A2<19.739
19.739 < A2<22.069
22.069 < A2
0<A2<22.069
22.069 < A2<24.175
24.175 < A2

0< A2<24.175
24.175 <A2<26.112
26.112 < A2
0<A2<26.112
26.112<A2<27.915
27.915 <A2

0< A2<27.915
27.915 < A2<29.608
29.608 < A2

7y =2

0< A2<9.869

9.869 < A2<22.069
22.069 < A2

0< A2<13.957
13.957 < A2<24.175
24.175 < A2

0< A2<17.094
17.094 < A2<26.112
26.112 < A2

0< A2<19.739
19.739 < A2<27.915
27.915 < A2

0< A2<22.069
22.069 < A2<29.608
29.608 < A2



To study the mode shape categorization of orthotropic plates according to the

rigidity ratios, a sample orthotropic plate is considered as shown is Figure 13.

In this investigation, the sample data used for the analysis is

h = 0.5ft
a =36ft
v/~=0.333
b =\Sft
b/ =
I a 0.5

Table 9 shows the first four Eigen-values of orthotropic plates for different rigidity ratios.
These Eigen-values are compared with the categorization limits given in Table 8. In the
Table 10, the categories are defined for an orthotropic plate with different rigidity ratios.

For all the plates with any ratio of flexural rigidity in X and Y direction considered in this

investigation, the plates with the torsional rigidity ratio, — 0f0.25 only falls in the

category Il for modes (1,1) and (2,1). All the other plates with higher torsional rigidity
ratios fall under category I-a for modes (1,1) and (2,1). All the plates studied here fall in

the category I-b for modes (1,2) and (2,2).
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Table 9: First four eigen-values of an orthotropic plate for different rigidity ratios.

Dx/Dy Mode

0.25 0.5 1 2

(1.1) 6.15 6.25 6.35 6.45

05 (1.2) 24785 1415 2605  40.05
2.1) 2425 2525 2615  26.75

(22) 25235 3605 5705 8275

(1,D 9.25 9.35 9.45 9.55

1 (1,2) 24795 1575 2695  40.65
2.1) 36.95  37.65 3825  38.65

(2,2) 25385 4565 6355  87.35

(1,1) 13.55 1355 1365  13.75

5 (1,2) 24815 1865 2865  41.85
(2,1) 5405 5455 5495 5525

(22) 25695 60.35 7475 9585

1.1) 16.75 1685  16.85  16.85

3 (1,2) 24835 21.05 3035 4295
.1) 66.95  67.35  67.65  67.95
(22) 25995 7215 8455  103.65

L1 19.45 19.45 1955 1955

4 (1,2) 24855 2325  31.95  44.15
.1) 7775 7805 7835 7855
(22) 26295 8225 9335  110.95

1) 2185  21.85 2185  21.95

5 (1,2) 24875 2525 3345 4515
2.1) 87.15  87.45  87.75  87.95
(22) 26585 9115 10135 117.75

(1,1) 2395 2395 2405  24.05

5 (1,2) 24895 2715 3485  46.25

2.1) 95.65 9595 9625  96.35
(22) 26875  99.35  108.75  124.15
(1.1) 2585 2595 2595 2505
7 (1,2) 24905 2885 3625  47.25
(2,1) 10355  103.75 10405  104.15
(22) 27165 10695 11575  130.25
(1.1) 2775 2775 2175 27.75
(1,2) 24925 3055 3755  48.35
(2,1) 11075  111.05 11125 11135
(22) 27455 11395 12225  136.15
(1.1) 29.45 2945 2945  29.45
9 (1,2) 24945 3205 3875  49.35
(1) 11805 117.85 118.05 118.15
(22) 27735 12065 12845 14175
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Table 10: Categories of orthotropic plates with different rigidity ratios for the first four
mode shapes.

Dx/Dy (Vo R — H/Dy

025 0.5 1 2

1.1) [ l-a l-a l-a

0.5 412> b I-b l-b I-b

(2.2) Il l-a l-a l-a

(2,2) -b -b hb -b

(1.1) I l-a l-a l-a

! (1.2) -b -b I-b l-b

2.1) I l-a la  la

(2.2) I-b I-b b b

(1.1) [ l-a I-a l-a

2 (1.2) l-b -b I-b l-b

(2.1) [ l-a l-a l-a

(2.2) b b hb for

(1.1) || l-a l-a l-a

3 1.2) -b -b -b -b

(2.1) N l-a l-a l-a

(2,2) -b -b -b -b

(1.1) M l-a l-a l-a

4 (1,2) -b -b -b -b

(2.1) I l-a l-a l-a

(2,2) -b -b l-b fib

(1.1) N l-a l-a l-a

5 1,2) l-b -b -b l-b

(2.1) || l-a l-a l-a

(2,2) -b -b -b l-b

(1.1) N l-a l-a l-a

6 (1,2) -b -b l-b -b

(2.1) 1 [-a l-a l-a

(2,2) -b l-b l-b l-b

(1.1) n l-a l-a l-a

7 (1,2) -b -b -b l-b

(2.1) || l-a l-a l-a

(2,2) -b -b -b -b

(1.1) N l-a l-a l-a

8 1.2 b -b b b

(2.1) 1 l-a l-a l-a

(2"2) hb_ -b -b l-b

(1.1 N l-a l-a l-a

9 1,2) -b -b -b -b

(2.1) I l-a l-a l-a

hb_ -b l-b -b
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V-c: Analysis of Orthotropic Plates under Moving Loads

Natural mode shapes wnn(x,y) calculated for each category as explained in the

previous section are substituted into the equation of motion given in Equation (5.13) to
get the mass matrix, damping matrix, stiffness matrix, and the force matrix. Two
MATLAB programs are written to calculate the response in terms of vertical
displacements of an orthotropic plate by considering two different possibilities as per the
Table 10. First program gives the response of the plates which fall into category-la for
modes (1,1) and (2,1), and fall into category-lb for modes (1,2) and (2,2). Second
program gives the response in terms of vertical displacements of the plates which fall into
category-11 for modes (1,1) and (2,1), and fall into category-Ib for modes (1,2) and (2,2).
Depending on in which category the given orthotropic plate falls in, the respective natural
mode shape equations from the section V-b are substituted into the equation of motion.
MATLAB codes given in Appendix-D are used to get the mass matrix, damping matrix,

stiffness matrix, and force matrix required in the equation of motion. The forcing

ab N,
function in the equation of motion is P = ®SKx  x, {)B(y yt{t)wm(x,y)dxdy,
0042

where Pl (/) is the Ith load moving on the bridge at tim et. The movement of this Ith load
in the X and Y direction of the plate is represented by two Dirac-delta
functions 8 (x - x, (t)) and 5(y -y, (t)) respectively. Equation of motion given in

Equation (5.13) is an ordinary differential equation and is solved by the Runge-Kutta
method by using a MATLAB code shown in Appendix-D.
To check the accuracy of these two programs in MATLAB, a sample isotropic

plate is considered and the results are compared with the responses in terms of vertical
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displacements investigated by Jong-Shyong Wu et. at. [15]. The dimensions and physical

properties of the plate are a =36ft, b =12ft, h=0.5ft, v=0.3, E =4.32x109psf , and

p =15.19slugs/ft3. A single moving load with a magnitude of 20,000 Ib is considered to
move with a speed of 36ft /sec (24.69 mph) and 12ft /sec (49.39 mph) on a center line
ofthe plate. Figures 14 and 15 show response history of vertical displacements at the
center of the plate with a load of magnitude 20,000 Ib moving at the speed of 36ft/sec and
72 ft/sec respectively. Maximum vertical displacements from Figures 14 and 15 are
compared with the displacements investigated by Jong-Shyong Wu et. at. [15] in Table
11.

Table 11: Comparison of maximum vertical displacements with the
displacements investigated by Jong-Shyong Wu et. at. [15].

(?tl;fsg Vertical displacement (in.)
MATLAB Wu et. al. % difference

36 0.492 0.466 5.57

72 0.624 0.610 2.29

From Table 11 we can see that the results from the MATLAB program are in a
good agreement with the displacements investigated by Jong-Shyong Wu et. at. [15].
Accuracy of the two programs for the orthotropic plates is checked by considering two
different types of orthotropic plates. The time history of vertical displacements is
compared with the results from the finite element analysis of the same plates using the

finite element analysis package NISA [2],
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Figure 14: Vertical displacement history at the center of the plate with a load of

magnitude 20,000 Ib moving at the speed of 36ft/sec (24.69 mph).

Figure 15: Vertical displacement history at the center of the plate with a load of
magnitude 20,000 Ib moving at the speed of 72 ft/sec (49.39 mph).
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The dimensions and physical properties of the first plate considered are a = 36ft,
b=\%ft, h=0.5ft, xy=0.3, Dx =5.06y-XOllb.ft, Dy =\0A 2x\01lb.ft,

H =20.24x107Ib.ft ,and p =15.19slugs/f f . A single moving load of magnitude 20,000

Ib is considered moving with a speed of 36 ft/sec. The Eigen-values are calculated by
solving Equations (5.33), (5.38), (5.45), and (5.50). Table 12 gives the first four Eigen-

values of the plate.

Table 12: First four Eigen-values of the plate with =05 & H D~ 2.
Mode X1
(1.1) 6.85
(1.2) 41.75
2,1) 27.65
(2,2) 85.45

Figure 16 shows the comparison of the vertical displacement at the center of the plate
with the displacement calculated by the finite element analysis in NISA [2],

The maximum vertical displacement from the MATLAB program is 0.328 in.
where as it is 0.339 in. in NISA. As we can see the difference in the results is 3.8%, that

means the results from the program are acceptable.
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MATLAB NISA

Figure 16: Comparison of the vertical displacement at the center of the first plate at the

speed of 36ft/sec (24.69 mph).

The dimensions and physical properties of the second plate considered are

a=36ft, b=\8ft, h=0.5ft, vw=0.3, Dx=10.\2x\01lb.ft, Dy =5.06x\07Ib.ft,

H =15x10Ub.ft ,and p =15.19slugs/f f . A single moving load of magnitude 20,000 Ib

is considered moving with a speed of 36 ft/sec. The Eigen-values are calculated by

solving Equations (5.45), (5.50), (5.58), and (5.62). Table 13 gives the first four Eigen-

values of the plate.

Table 13: First four Eigen-values of the plate with =20 & =0.3.

Mode X2

(1.1) 13.639
(1.2) 249.25
(2.1) 54.55
(2.2) 261.15
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Figure 17 shows the comparison of the vertical displacement at the center of the plate
with the displacement calculated by the finite element analysis in NISA [2]. The
maximum vertical displacement from the MATLAB program is 0.086 in. where as it is
0.0825 in. in NISA. As we can see the difference in the results is 5.0%, that means the

results from the program are acceptable.

MATLAB --------- NISA

Figure 17: Comparison of the vertical displacement at the center of the second plate at the

speed of 36ft/sec (24.69 mph).

Analysis of a T-beam Bridge under Moving Loads
The equations derived earlier in the chapter for the deflection of an orthotropic
plate are dependent upon the flexural rigidities Dx and Dy and the torsional rigidity
2H ofthe deck. These rigidities are the functions of the elastic properties of the material

and the intersection of the individual beams and slab forming the orthotropic deck. Only
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the T-beam bridge decks are considered in this study. Figure 18 shows the general
elements ofa T-beam bridge deck. A generalized derivation of a T-beam bridge deck

given by A.R. Cusens and R. P. Pama [16] is used to calculate the rigidities.

Figure 18: Element of T-beam bridge deck.
The flexural rigidities Dx and Dy are calculated from the second moment of area

per unit length and the torsional rigidity 2H is calculated as

2H = By + Byx+ T (5.64)
Where,
Q = Glfl'rA‘TJL and B =EkML

K by

A simply supported T-beam bridge deck as shown in Figure 19 is considered in

this investigation.
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512 in.

1350 in.

H 8 in.

Transverse beam
cross-section

cross-section

Figure 19: Simply supported bridge considered in the investigation.

The flexural rigidities are calculated as,

Fl
Dr= —b" = 7983.53E and

El
D =—=883.36£

b.

The torsional rigidity H is calculated as

2H =By +Byx+~
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kx in the terms Bx and Bwdepends upon the ratio of hand t of the section, and is plotted
by A.R. Cusens and R. P. Pama [16]. The value of kx is considered as 0.30 for the
calculation ofBxy, and is considered as 0.29 for the calculation ofByx.

The torsional rigidity becomes
Et3
2H =B_ +B +—=1M.12E
Y oo €

Modulus of elasticity for the bridge deck is considered as E =3.5x106psi and the
poisons ratio is considered as vxy =0.15.
Which gives us

Dx =2.3285 x\09lb.ft
Dv=0.2575 x\09Ib.ft
2H =0.0342 x\09b.ft

Eigen-values for this orthotropic plate are calculated by using the MATLAB program as

For mode (1,1)= 29.64.
mode (1,2)= 427.25.
mode (2,1)= 118.55.

mode (2,2)= 439.55.

D H
The rigidity ratios are ~ =9.042, — =0.066. According to these rigidity ratios, the

mode shape categorization of the orthotropic plate for m=1 is
If 0 <X2<29.670, the orthotropic plate fall into category-II.

If 29.670 < X1<29.677, the orthotropic plate fall into category-la.
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If 29.677 < X , the orthotropic plate fall into category-Ib.

The mode shape categorization of the orthotropic plate for m=2 is

If 0 <X2<118.682, the orthotropic plate fall into category-II.

If 118.682 <A2<118.711, the orthotropic plate fall into category-la.
If 118.711 < X , the orthotropic plate fall into category-I1b.

From the Eigen-values calculated from MATLAB program, we can see that the
orthotropic plate in consideration falls into category-Il for modes (1,1) and (2,1), and fall
into category-lb for modes (1,2) and (2,2). A single load of magnitude 10,000 Ib is
considered moving with different speeds on the center line of the bridge deck. Response

in terms of vertical displacement is calculated by using the MATLAB program.

40 mph 60 m ph *...90 mph

Figure 20: Time history of vertical displacement at the center of the T-beam bridge deck
under a single moving load.

81



Figure 20 shows the time history of vertical displacements at the center of the plate

f?é %) at the speed of 40, 60, and 90 mph. Table 14 summarizes the maximum

vertical displacement at different speeds of a single moving load of magnitude 10,000 Ib.

Table 14: Summary of maximum vertical displacement at the center of the T-beam bridge
deck under a single moving load.

Vertical Static vertical
Speed displacement displacement Impact
mph (in.) (in.) %

40 0.0340 0.0321 591
45 0.0349 0.0321 8.72
50 0.0354 0.0321 10.28
55 0.0351 0.0321 9.34
60 0.0346 0.0321 7.78
65 0.0358 0.0321 11.52
70 0.0367 0.0321 14.33
75 0.0372 0.0321 15.88
80 0.0375 0.0321 16.82
85 0.0375 0.0321 16.82
90 0.0373 0.0321 16.19

Figure 21: Comparison of maximum vertical displacement at the center of T-beam bridge
deck at different speeds under a single moving load.
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Figure 21 shows the comparison of the maximum vertical displacement at the
center of the T-beam bridge deck at different speeds. Static displacement in Table 14 is
calculated by considering the speed of single moving load as 5 mph in the MATLAB
program. As we can see from the Table 14 and Figure 21, the maximum vertical
displacement at the center of the T-beam bridge deck increases with the increase in the
speed. The maximum impact is of 16.82 % when the single moving of magnitude 10,000
Ib is moving at a speed of 80 mph. To study the effect of multiple moving loads on the
bridge deck, two loads of magnitude 10,000 Ib each are considered moving at 10 ft apart
from each other on the center line of the T-beam bridge deck at different speeds. Figure
22 shows the times history of vertical displacement at the center of the bridge deck at the

speed of 40, 60, and 90 mph.

--------- 40 mph.......... 60 mph «~~"*"~90 mph

Figure 22: Time history of vertical displacement at the center of the T-beam bridge deck
under two moving loads.
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Table 15 summarizes the maximum vertical displacement at the center of the bridge deck
when two moving loads of magnitude 10,000 Ib each with 10 ft apart are moving at
different speeds.

Table 15: Summary of maximum vertical displacement at the center of the T-beam bridge
deck under two moving loads.

Vertical Static vertical

Speed displacement displacement Impact
mph (in.) (in) %
40 0.0658 0.0642 2.49
45 0.0646 0.0642 0.62
50 0.0645 0.0642 0.46
55 0.0645 0.0642 0.46
60 0.0644 0.0642 0.31
65 0.0664 0.0642 3.42
70 0.0682 0.0642 6.23
75 0.0694 0.0642 8.09
80 0.0702 0.0642 9.34
85 0.0704 0.0642 9.65
90 0.0700 0.0642 9.03

MATLAB -A - MATLAB static

Figure 23: Comparison of maximum vertical displacement at the center of T-beam bridge
deck at different speeds under two moving loads.
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Figure 23 shows the comparison of the maximum vertical displacement at the center of
the T-beam bridge deck under two moving loads. Static displacement in Table 15 is
calculated by considering the speed of two moving loads as 5 mph following each other
at 10 ft apart in the MATLAB program. As we can see from the Table 15 and Figure 23,
that the maximum impact is of 9.65 % at the speed of 85 mph. From these two analyses
of the T-beam bridge deck in consideration, we can see that the effect of the speed of the
moving load on the vertical displacement at the center of the bridge deck is more for a
single load of magnitude 10,000 Ib than for the two loads of magnitude 10,000 Ib each

following each other at 10ft apart.
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CHAPTER VI

FINITE ELEMENT ANALYSIS OF BRIDGES UNDER MOVING LAODS

Finite element analysis is a strong method to solve the generalized problems in
the field of engineering. The purpose of this part of the study is to investigate the
behavior of bridges under moving loads by the use of finite element analysis and compare
the results with the analytical method. NISA (Numerically Integrated System for
Analysis) is one of the comprehensive suites of general purpose finite element analysis
programs.

There are two ways to analysis a bridge by this method. First is to model the
bridge by considering it as an orthotropic plate with material orthotrophy and the second
is to model it in great details so that the geometrical orthotrophy is taken care of.

Figure 24 shows an orthotropic plate with a single moving load on it.

X
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A sample isotropic plate is considered for the analysis in NISA and the results are
compared with the responses in terms of vertical displacements investigated by Jong-

Shyong Wu et. al. [15]. The dimensions and physical properties of the plate are a =36ft,

b=U ft, h=0.5ft, v=0.3, E =4.32x\09p sf, and p =15.19slugs/f f .

Figure 25: Finite element model of isotropic plate by using 3D shell elements in NISA.

Figure 25 shows the finite element model of the isotropic plate in consideration in
NISA. The 3D shell elements are used to model the plate in NISA with a uniform
thickness of 0.5ft at all the edges. Modulus of elasticity, poison’s ratio, and mass density
of the material is provided. First of all, Eigen-value analysis is done to calculate the
natural frequencies and modal shapes of the plate. A single moving load with a

magnitude of 20,000 Ib is considered to move with a speed of 36ft!sec and 72ft/sec

on a centerline of the plate. Moving load is simulated in NISA by using arrival time data
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and time function data for different speeds and the plate is then solved by modal
superposition method to calculate the responses.

First four mode shapes of the isotropic plate in consideration are shown in Figures
B.l to B.4 in Appendix-B and the first four natural frequencies calculated by the Eigen-
value analysis are shown in Table 16.

Table 16: Comparison ofthe first four natural frequencies of the isotropic plate
from Eigen-value analysis in NISA with the Eigen-values calculated in MATLAB.

Modes Natural frequency Eigen-values
from NISA (Hz) NISA  MATLAB
(1.1) 2.9683 9.472 9.465
(1.2) 12.3302 39.347 39.865
(2,1 12.0205 38.360 38.235
(2,2 26.8394 85.650 86.545

We get the natural frequency (/) ofthe plate in cycles/sec (Hz) in NISA, which is

converted in to radians/sec (ru= 2kf ). Eigen-values of the plate are calculated as

X? =coa’J'2" . As we can see from the Table 16, Eigen-values calculated from NISA are

in well agreement with that are calculated by using the programs developed in MATLAB.
Figures 26 and 27 show the response history of vertical displacements at the
center of the plate (node #171) with a load of magnitude 20,000 Ib moving at the speed

of 36ft/sec and 72 ft/sec respectively.
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Time (sec.)

MATLAB e N IS A

Figure 26: Time history of the vertical displacements at the center of the plate with a load
of magnitude 20,000 Ib moving at the speed of 36ft/sec in NISA.

MATLAB N IS A

Figure 27: Time history of the vertical displacements at the center of the plate with a load
of magnitude 20,000 Ib moving at the speed of 72 ft/sec in NISA.

Maximum vertical displacements from Figures 26 and 27 are compared with the
displacements calculated by using MATLAB program, and with the displacements

investigated by Jong-Shyong Wu et. al. [15] in Table 17.
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Table 17: Comparison of maximum vertical displacements with the displacements
investigated by Jong-Shyong Wu et. al. [15].

(?tr/)s(fg) Vertical displacement (in.)
MATLAB Wu et. al. NISA
36 0.492 0.466 0.477
72 0.624 0.610 0.612

From Table 17 we can see that the results from the finite element analysis program NISA
are in a good agreement with the displacements investigated by Jong-Shyong Wu et. al.
[15]. The T-beam bridge deck as shown in Figure 19 is modeled as an orthotropic plate.

The flexural rigidities and torsional rigidity of the bridge deck are

Dx =2.3285 x\09lb.ft, Dy =0.2575 x\09lb.ft, and 2H =0.0342x\06lb.ft. Modulus of

elasticities of the plate are calculated as

E =12D6I1.1V *> =1404x10"/&/ft1, and
* h

E = Dy12(!~\ Vyx) = o0 1552 x 1011lb /fi2
y A3 ]

The dimensions and physical properties of the plate are a =112.5/t, b = 42.6ft,
h=0.58ft, v=0.2, p - 4.658slugs/ff .

A single load of magnitude 10,000 Ib is considered moving with different speeds
on the centerline of the bridge deck. Response in terms of vertical displacement is

calculated by using the finite element analysis program NISA.
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40mph in ----— 60mph in ---------- 90 mph in

Figure 28: Time history of vertical displacements at the center of the T-beam bridge deck
under a single moving load in NISA.

Figure 28 shows the time history of vertical displacements at the center of the plate (node
# 536) at the speed of40, 60, and 90 mph. Table 18 summarizes the maximum vertical
displacement at different speeds of a single moving load of magnitude 10,000 Ib.

Table 18: Summary of maximum vertical displacement at the center of the T-beam bridge
deck under a single moving load in NISA.

Speed . Vertical S'tatic vertical Impact
displacement  displacement

mph (in.) (in.) %
40 0.0384 0.0362 6.070
45 0.0385 0.0362 6.353
50 0.0394 0.0362 8.839
55 0.0394 0.0362 8.839
60 0.0386 0.0362 6.629
65 0.0392 0.0362 8.287
70 0.0404 0.0362 11.602
75 0.0412 0.0362 13.812
80 0.0418 0.0362 15.469
85 0.0421 0.0362 16.298
90 0.0420 0.0362 16.022
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Figure 29: Comparison of maximum vertical displacement at the center of T-beam bridge
deck at different speeds under a single moving load in NISA.

Figure 29 shows the comparison ofthe maximum vertical displacement at the
center of the T-beam bridge deck at different speeds. Static displacement in Table 18 is
calculated by considering the speed of single moving load as 5 mph. As we can see from
the Table 18 and Figure 29, the maximum vertical displacement at the center of the T-
beam bridge deck increases with the increase in the speed. The maximum impact is of
16.29 % when the single moving of magnitude 10,000 Ib is moving at a speed of 85 mph.
To study the effect of multiple moving loads on the bridge deck, two loads of magnitude
10,000 Ib each are considered moving at 10 ft apart from each other on the centerline of
the T-beam bridge deck at different speeds. Figure 30 shows the times history of vertical
displacement at the center of the bridge deck (node # 536) at the speed of 40, 60, and 90

mph.

92



01

-0.02

Time (sec.)

40 mph -— —60 mph --------- 90 mph

Figure 30: Time history of vertical displacements at the center of the T-beam bridge deck

under two moving loads in NISA.

Table 19 summarizes the maximum vertical displacement at the center of the bridge deck

when two moving loads of magnitude 10,000 Ib each with 10 ft apart are moving at

different speeds.

Table 19: Summary of maximum vertical displacement at the center of the T-beam bridge
deck under two moving loads in NISA.

Speed

mph
40
45
50
55
60
65
70
75
80
85
90

Vertical
displacement

(in.)
0.0729
0.0722
0.0718
0.0724
0.0716
0.0729
0.0752
0.0771
0.0784
0.0792
0.0793
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Static vertical
displacement

(in.)
0.0716
0.0716
0.0716
0.0716
0.0716
0.0716
0.0716
0.0716
0.0716
0.0716
0.0716

Impact

%
1.815
0.837
0.279
1117
0.000
1.815
5.027
7.681
9.497

10.614
10.754
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Figure 31: Comparison of maximum vertical displacement at the center of T-beam bridge
deck at different speeds under two moving loads in NISA.

Figure 31 shows the comparison of the maximum vertical displacement at the
center of the T-beam bridge deck under two moving loads. Static displacement in Table
19 is calculated by considering the speed of two moving loads as 5 mph following each
other at 10 ft apart. As we can see from the Table 19 and Figure 31, that the maximum
impact is of 10.754 % at the speed of 90 mph. From these two analyses of the T-beam
bridge deck in consideration, we can see that the effect ofthe speed ofthe moving load
on the vertical displacement at the center of the bridge deck is more for a single load of
magnitude 10,000 Ib than for the two loads of magnitude 10,000 Ib each following each

other at 10ft apart.
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CHAPTER VII

ANALYSIS OF A T-BEAM BRIDGE UNDER A MOVING AASSHTO HS20-44
TRUCK LOAD

The objective of this research work is to study the cumulative effect of the
different factors such as road surface roughness, vehicle dynamics, vehicle weight, and
vehicle speed on the displacement of the bridge and compare the results with the impact
factor given by AASHTO. In the previous chapters we have seen the effect of all these
factors individually. To see the cumulative effect of all these factors on the bridge
dynamics, a simply supported T-beam bridge deck as shown in Figure 32 is considered in
this investigation. Span length of the bridge in consideration is 112.5 ft (1350 in.) and
width is 42.66 ft (512 in.). The T-beam bridge under the investigation is assumed to be
built on a motorway with a very good road condition. Only a single AASHTO HS20-44
truck load is considered moving along the centerline of the bridge deck at different

speeds.
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Figure 32: Simply supported bridge considered in the investigation.
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VH-a: Generation of Road Surface Roughness for the T-beam Bridge Deck.

Road surface roughness is generated for this bridge deck by using the Power
Spectral Density function as shown in Chapter IIl. The roughness coefficient A
according to the Table 1is 5x 10“6m1/cycle .Span length of the bridge is
a=\\2.5ft =34.298w .

Variance <j2 required to generate a series of random numbers is calculated by

using Equation 3.10.

2 AX
T — e
2
Where,
yl = 5x 10“6

X =34.298/2048 = 0.0167

5x10~6x0.0167
This gives us cr2 X )2( 0.041x10-6

A series of random numbers which have approximate white noise properties with
zero mean and variance a2- 0.041x10“6 are generated in MATLAB and passed through
a first order digital filter. The output function of this filter gives us the road surface
roughness. Figure 33 shows the spectrum of the random numbers generated in MATLAB.

Figure 34 shows the comparison of the PSD of the input spectrum with the approximate

PSD of the white noise spectrum.
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Figure 33: Spectrum of random numbers.
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Figure 34: Comparison of Power Spectral Density of a random spectrum with the
approximate Power Spectral Density.
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From Figure 34 we can see that the approximate power spectral density of the
white noise spectrum is in agreement with the power spectral density of the input
spectrum generated in MATLAB.

The output function of the first order digital filter gives us the road surface

roughness and is shown in Figure 35.

Figure 35: Road surface roughness of a very good road for the T-beam bridge deck.
Figure 36 shows the comparison of the PSD of the road surface roughness
generated in MATLAB with the PSD given by C. J. Dodds and J. D. Robson [3], we can
see from the comparison that the PSD of the road surface roughness is in well agreement

with the PSD given by C. J. Dodds and J. D. Robson [3].
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Figure 36: Comparison ofthe PSD of the road surface roughness generated in MATLAB
with the PSD given by C. J. Dodds and J. D. Robson [3],
VH-b: Suspension and Tire Forces of an AASHTO HS20-44 Truck.

Road surface roughness shown in Figure 35 is used to calculate the increased load
with an AASHTO HS20-44 truck [1] shown in Figures 9 and 10 traveling on the T-beam
bridge deck at different speeds. Suspension force and tire force histories for steer, tractor
and trailer axles are shown in Figures C.l to C.22 in Appendix-C. The maximum
suspension and tire forces for an AASHTO HS20-44 truck [1] at different speeds are
summarized in Tables 20 and 21. From the Tables 20 and 21, for a HS20-44 truck
traveling on a T-beam bridge deck with a very good road surface, we can see that the

impact on suspension force is in the range of 19.14% to 38.58% of the static load for the
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steer axle and is reaching as much as 65.52% for the tractor axle, where as the maximum
impact for the trailer axle is 50.82%.

The impact for tire force is lesser than that for the suspension force. For the steer
axle the impact is in the range of 14.76% to 29.57%, the maximum impact for the tractor
axle is 51.74% where as the maximum impact for trailer is 24.72% of the static load.

Table 20: Comparison of suspension forces at different speeds for HS20-44 truck on a T-
beam bridge deck.

Speed Stf':\tic Fsyl %impact Stgtic F§y3 Stgtic F§y5
(mph)  (Kips)  (Kips) (Kips)  (Kips) (Kips)  (Kips)
40 2.9119 3.4786 19.46 14.1780 22.4868 58.60 145579 20.6108  45.37
45 2.9119 3.6736 26.16 14.1780 22.6332 59.64 145579 20.1593 42.19
50 2.9119 3.5294 2121 14.1780 22.2406 56.87 14.5579 19.9298  40.57
55 2.9119 3.4692 19.14 14.1780 21.7862 53.66 14.5579 19.5557  37.93
60 2.9119 3.5845 23.10 14.1780 22.0677 55.65 14.5579 21.3838  50.82
65 2.9119 3.4699 19.16 14.1780 22.4452 5831 14.5579 20.0683  41.55
70 29119 3.5047 20.36 14.1780 22.8328 61.04 145579 20.1339 42.01
75 2.9119 3.8023 30.58 14.1780 22.5749 59.22 145579 20.1479 4211
80 2.9119 3.7685 29.42 14.1780 22.0939 55.83 14.5579 20.7978  46.69
85 29119 4.0352 38.58 14.1780 23.467 65.52 14.5579 20.3684  43.66
90 29119 3.8211 31.22 14.1780 22.6275 59.60 14.5579 21.2594  49.95

%Impact % Impact

Note: Fsy2, Fsy4, and Fsy6 are same as Fsyl, Fsy3, and Fsy5 respectively.

Table 21: Comparison of tire forces at different speeds for HS20-44 truck on a T-beam
bridge deck.

Speed Static Ftyl Static Fty3 Static Fty5
oy (oo (s PR Gind sy PP S (ipe)
40 3.99 4.6745 17.16 15.97 21.5269 34.80 15.99 19.9434 24.72
45 3.99 47072 17.98 15.97 24.2326 51.74 15.99 19.8154 23.92
50 3.99 4.7398 18.79 15.97 22.2853 39.54 15.99 19.2026 20.09
55 3.99 45789 14.76 15.97 21.7315 36.08 15.99 18.8615 17.96
60 3.99 48173 20.73 15.97 22.2798 39.51 15.99 19.2308 20.27
65 3.99 4.7157 18.19 15.97 22.6370 41.75 15.99 19.6400 22.83
70 3.99 47860 19.95 15.97 22.8174 42.88 15.99 19.8072 23.87
75 3.99 4.8639 21.90 15.97 23.9411 49.91 15.99 19.3369 20.93
80 3.99 48701 22.06 15.97 23.0975 44.63 15.99 19.5071 22.00
85 3.99 5.0782 27.27 15.97 23.3027 45,92 15.99 19.8858 24.36
90 3.99 5.1698 29.57 15.97 23.8396 49.28 15.99 19.4418 21.59

% Impact

Note: Fty2, Fty4, and Fty6 are same as Ftyl, Fty3, and Fty5 respectively.
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The increased load from Table 21, which has a cumulative effect of road surface
roughness and vehicle dynamics, is considered for the analysis first by using the
orthotropic plate theory as explained in Chapter V and secondly by the finite element

analysis as explained in Chapter VI.

VII-c: Analysis of the T-beam Bridge Deck by using the Orthotropic Plate Theory.
Tire forces from Table 21 are multiplied by 2 to get the total axle load for the
steer axle, trailer axle, and tractor axle of the truck. Table 22 shows the total axle loads at
different speeds.
Table 22: Total axle load of an AASHTO HS20-44 truck on a T-beam bridge deck.

Total axle load

Speed m
(mph) ~ Steer Tractor Trailer
axle axle axle
40 9349  43053.8 39886.8

45 9414.4 48465.2 39630.8
50 9479.6 44570.6 38405.2
55 9157.8 43463 377283

60 9634.6 44559.6 38461.6
65 9431.4 45274 39280

70 9572  45634.8 39614.4
75 9727.8 47882.2 38673.8
80 9740.2 46195 39014.2
85 10156.4 46605.4 39771.6
90 10339.6 47679.2 38883.6

A T-beam bridge deck shown in Figure 32 is used for the analysis. Dimensions

and the physical properties of the plate are a =1\2.5ft, b =42.66ft, h =0.58ft,

p - 4.65%slugs/ft3, vy = 0.2, Dx=2.3285x\091b.ft, Dy = 0.2575x\09Ib.ft, and

2 //- 0.0342x\09IDb.ft.
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Figures C.23 to C.33 in Appendix-C show the time history plot of the vertical
displacements at the center of the T-beam bridge deck under an AASHTO HS20-44 truck
at different speeds.

Table 23 summarizes the maximum vertical displacement at the center of the T-
beam bridge deck (node # 2901) at different speeds of the truck.

Table 23: Maximum vertical displacements at the center of the T-beam bridge deck under

an AASHTO HS20-44 truck moving with different speeds by the orthotropic plate
theory.

Speed . Vertical . Static Impact
displacementdisplacement

(mph) () (1 (%)
40 0.2988 0.2184 36.81
45 0.3144 0.2184 43.96
50 0.3048 0.2184 39.56
55 0.3012 0.2184 37.91
60 0.3060 0.2184 40.11
65 0.3036 0.2184 39.01
70 0.2988 0.2184 36.81
75 0.3024 0.2184 38.46
80 0.3012 0.2184 37.91
85 0.3084 0.2184 41.21
90 0.3120 0.2184 42.86

Figure 37 shows the comparison of the vertical displacement under a moving
truck load with the static displacement. Static displacement in Table 23 and Figure 37 is

calculated by assuming the AASHTO HS20-44 truck moving at a speed of 5 mph.

103



0.365

30 40 50 60 70 80 90 100

Speed (mph)

— ¢ — Maximum vertical displacementunder moving load — — Static displacement |

Figure 37: Comparison of the vertical displacement under a moving AASHTO HS20-44
truck load with the static displacement by the orthotropic plate theory.

From Table 23 and Figure 37 we can see that the impact on the maximum vertical
displacement at the center of the plate by using the orthotropic plate theory is in the range
01 36.81% to 43.96% whereas the impact given by AASFITO is 21.05%. This tells us that
the impact factor formula given by AASHTO underestimates the dynamic effect of the
bridge under moving loads. This might be because of the inability of the impact factor
formula given by AASHTO, which is a function of the span length of the bridge deck, to
take into account the effect of road surface roughness, vehicle dynamics, vehicle weight,

and vehicle speed.

VH-d: Analysis of the T-beam Bridge Deck by using the Finite Element Analysis
Method.

The T-beam bridge deck shown in Figure 32 is then modeled in the finite element
analysis package NISA. 3D beam elements are used to model the longitudinal and
transverse girders ofthe bridge, and 3D shell elements are used to model the slab of the

bridge deck. Increased load from the road surface roughness and vehicle dynamics given
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in Table 22 is used to simulate the AASHTO HS20-44 truck [1] load moving at different

speeds on the centerline of the bridge deck. Figures C.34 to C.44 in Appendix-C show the

time history of the vertical displacement at the center of the bridge deck at different

speeds. Table 24 summarizes the maximum vertical displacement at the center of the T-

beam bridge deck (node # 2901) at different speeds of the truck by the finite element

analysis method.

Table 24: Maximum vertical displacements at the center of the T-beam bridge deck under
an AASHTO HS20-44 truck moving with different speeds by FEM.

Speed
(mph)

40
45
50
55
60
65
70
75
80
85
90

Vertical Static
displacementdisplacement
™M) M)
0.346 0.2557
0.351 0.2557
0.334 0.2557
0.333 0.2557
0.343 0.2557
0.346 0.2557
0.346 0.2557
0.352 0.2557
0.358 0.2557
0.375 0.2557
0.390 0.2557

Speed (sec.)

Impact

(%)

35.31
37.27
30.62
30.23
34.14
35.31
35.31
37.66
40.01
46.66
52.52

M aximum vertical displacem entunder moving load —»--Static displacem ent

Figure 38: Comparison of the vertical displacement under a moving AASHTO HS20-44
truck load with the static displacement by FEM.
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Figure 38 shows the comparison of the vertical displacement under a moving
truck load with the static displacement. Static displacement in Table 24 and Figure 38 is
calculated by assuming the AASHTO HS20-44 truck moving at a speed of 5 mph.

From Table 24 and Figure 38 we can see that the impact on the maximum vertical
displacement at the center of the plate by using the finite element analysis method is in
the range of 30.23% to 52.52% whereas the impact given by AASHTO is 21.05%. Impact
calculated by the FEM confirms that the impact factor formula given by AASHTO
underestimate the dynamic effect of bridges under moving loads.

Table 25 and Figure 39 show the comparison of the impact calculated on the
maximum vertical displacement at the center of the plate by using the orthotropic plate
theory and by using the finite element analysis method.

Table 25: Comparison of maximum vertical displacements at the center of the T-beam

bridge deck under an AASHTO HS20-44 truck moving with different speeds by the
orthotropic plate theory and by the finite element analysis method.

Speed Img)act
(mph) . R
Orthotropic plate theory Finite element method

40 36.81 35.31
45 43.96 37.27
50 39.56 30.62
55 37.91 30.23
60 40.11 34.14
65 39.01 35.31
70 36.81 35.31
75 38.46 37.66
80 37.91 40.01
85 41.21 46.66
90 42.86 52.52
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Figure 39: Comparison of maximum vertical displacements at the center of the T-beam
bridge deck under an AASHTO HS20-44 truck moving with different speeds by the
orthotropic plate theory and by the finite element analysis method.

From Table 25 and Figure 39 we can see that the impact calculated by the
orthotropic plate theory is close to 40% for all the speeds and the impact calculated by the
finite element analysis method is less as much as 30% for the slower speeds and increases

to over 50% as the speed increases.
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CHAPTER VI
CONCLUSIONS AND RECOMMENDATIONS

In this study the cumulative effect of the road surface roughness, vehicle
dynamics, vehicle weight, and vehicle speed on the bridge dynamics is investigated in
terms of the vertical displacement at the center of the bridge deck. Road surface
roughness is generated by using the Power Spectral Density function given by C. J.
Dodds and J. D. Robson [3]. A 12 DOF model of an AASHTO HS20-44 truck is
developed. This truck model is assumed to be moving on a very good and good road
surface at different speeds to see the effect of the road surface roughness and vehicle
dynamics on the suspension and tire forces of the AASHTO HS20-44 truck.

Two methods are used in the study to analyze the bridges under moving loads, the
orthotropic plate theory and the finite element analysis method. The increased load
calculated above is simulated by using a Dirac-delta function for the analysis by the
orthotropic plate theory, and by using the arrival time data and time function data for the
analysis by the finite element analysis method.

Finally, a T-beam bridge is investigated to see the cumulative effect of the road
surface roughness, vehicle dynamics, vehicle weight, and vehicle speed on the bridge
dynamics in terms of the vertical displacement at the center of the T-beam bridge deck.
The T-beam bridge deck in the consideration is assumed to be built on a motorway with a

very good road condition. Road surface roughness generated is assumed
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to be the same along the width of the bridge deck. An AASHTO HS20-44 truck is
considered to be moving along the centerline of the bridge deck with a constant speed.
The truck is assumed to be moving only in X-direction and contact of the truck wheel
with the deck is assumed to be at a single point.

Impact factors calculated for the suspension forces of an AASHTO HS20-44
truck on a very good surface indicate that the impact for the steer axle, tractor axle, and
trailer axle is 44.71%, 73.31%, and 51.52% respectively. Impact factors calculated for the
tire forces of an AASHTO HS20-44 truck on a very good surface indicate that the impact
for the steer axle, tractor axle, and trailer axle is 44.21%, 51.20%, and 32.21%
respectively. These impact factors increase noticeably for a good road condition.

The impact on the vertical displacement at the center of the plate under a single
moving load calculated without considering the effect of road surface roughness and
vehicle dynamics indicates that the impact is more when we consider a single load than
the two loads moving along the centerline of the bridge. The impact is as much as
16.82% for a single load and as much as 9.65% for the two loads moving along the
centerline of the bridge.

The forces calculated for an AASHTO HS20-44 truck on a very good road
surface indicate that the impact for the tire forces is less than that for the suspension
forces and is as much as 29.57% for the steer axle, 51.74% for the tractor axle, and
24.72% for the trailer axle. Finally, when we consider the cumulative effect of the road
surface roughness, vehicle dynamics, vehicle weight, and vehicle speed, the impact
calculated by the orthotropic plate theory is as much as 43.96% and that is calculated by

the finite element analysis method is as much as 52.52%.
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Impact calculated without considering the road surface roughness and vehicle
dynamics under a single moving load is less than the impact calculated by using the
impact formula given by AASHTO which is 21.05% and further decreases with the
number of loads moving along the centerline of the bridge deck. Impact calculated by
considering all the factors such as road surface roughness, vehicle dynamics, vehicle
weight, and vehicle speed by both the methods is reasonably higher than that calculated
by the impact formula given by AASHTO.

For the bridge deck under investigation the impact factor formula given by
AASHTO underestimates the dynamic effect under the moving loads. This might be
because of the inability of the impact factor formula given by AASHTO, which is a
function of span length of the bridge deck, to take into account the effect of road surface
roughness, vehicle dynamics, vehicle weight, and vehicle speeds. This suggest that, it is
necessary to do the detailed dynamic analysis of the bridges by considering the road
surface roughness, vehicle dynamics, vehicle weight and speed instead ofjust applying
the dynamic load factor calculated by using the impact factor given by AASHTO to the

static results.
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Figure A. 1. Suspension force history of axles one, two, and three on a very good road surface at the speed of 15 mph
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Figure A.3: Suspension force history of axles one, two, and three on a very good road surface at the speed of 25 mph
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Figure A.4: Suspension force history of axles one, two, and three on a very good road surface at the speed of 30 mph
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Figure A.11: Tire force history of axles one, two, and three on a very good road surface at the speed of 25 mph
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Figure A. 13: Tire force history of axles one, two, and three on a very good road surface at the speed of 35 mph
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Figure A.14: Tire force history of axles one, two, and three on a very good road surface at the speed of 40 mph
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Figure A. 15: Tire force history of axles one, two, and three on a very good road surface at the speed of 45 mph
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Figure A.16: Tire force history of axles one, two, and three on a very good road surface at the speed of 50 mph
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Figure A.20: Suspension force history of axles one, two, and three on a good road surface at the speed of 30 mph
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Figure A.21: Suspension force history of axles one, two, and three on a good road surface at the speed of 35 mph
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Figure A.22: Suspension force history of axles one, two, and three on a good road surface at the speed of 40 mph
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Figure A.23: Suspension force history of axles one, two, and three on a good road surface at the speed of 45 mph
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Figure A.24: Suspension force history of axles one, two, and three on a good road surface at the speed of 50 mph
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Figure A.25: Tire force history of axles one, two, and three on a good road surface at the speed of 15 mph
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Figure A.26: Tire force history of axles one, two, and three on a good road surface at the speed of 20 mph
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Figure A.27: Tire force history of axles one, two, and three on a good road surface at the speed of 25 mph
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Figure A.28: Tire force history of axles one, two, and three on a good road surface at the speed of 30 mph
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Figure A.29: Tire force history of axles one, two, and three on a good road surface at the speed of 35 mph
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Figure A.30: Tire force history of axles one, two, and three on a good road surface at the speed of 40 mph
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Figure A.31: Tire force history of axles one, two, and three on a good road surface at the speed of 45 mph
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Figure A.32: Tire force history of axles one, two, and three on a good road surface at the speed of 50 mph



Data used in the simulation of the HS20-44 truck:

Dimensions:
Distance between the steer and tractor axles (LI) 168.000 in.
Distance between the tractor and trailer axles (L2) 168.000 in.

Distance between the steer axle and the center of the tractor (L3) 66.864 in.

Distance between the tractor axle and the center of the tractor (L4) 101.136 in.

Distance between the pivot and the center of the tractor (L5) 87.192 in.
Distance between the pivot and the trailer axle (L6) 181.944  in.
Distance between the pivot and the center of the trailer (L7) 92.064 in.

Distance between the trailer axle and the center of the trailer (L8) 89.880 in.

Spacing of suspensions in the steer axle (S1) 44.000 in.
Spacing of suspensions in the tractor axle (S2) 36.000 in.
Spacing of suspensions in the trailer axle (S3) 36.000 in.
Spacing of wheels in the steer axle (DI) 68.000 in.
Spacing of wheels in the tractor axle (D2) 72.000 in.
Spacing of wheels in the trailer axle (D3) 72.000 in.

Stiffness and damping characteristics:

Stiffness of suspension in the steer axle (Ksyl) 1.3850 kips/in.
Stiffness of suspension in the steer axle (Ksy2) 1.3850 kips/in.
Stiffness of suspension in the tractor axle (Ksy3) 10.8650  Kkips/in.
Stiffness of suspension in the tractor axle (Ksy4) 10.8650  kips/in.
Stiffness of suspension in the trailer axle (Ksy5) 11.2410  Kkips/in.
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Stiffness of suspension in the trailer axle (Ksy6)
Stiffness of tire in the steer axle (Ktyl)
Stiffness of tire in the steer axle (Kty2)
Stiffness of tire in the tractor axle (Kty3)
Stiffness of tire in the tractor axle (Kty4)
Stiffness of tire in the trailer axle (Kty5)
Stiffness of tire in the trailer axle (Kty6)
Damping coefficient in the steer axle (Dsyl)
Damping coefficient in the steer axle (Dsy2)
Damping coefficient in the tractor axle (Dsy3)
Damping coefficient in the tractor axle (Dsy4)
Damping coefficient in the trailer axle (Dsy5)
Damping coefficient in the trailer axle (Dsy6)
Damping coefficient in tire (Dtyl)

Damping coefficient in tire (Dty2)

Damping coefficient in tire (Dty3)

Damping coefficient in tire (Dty4)

Damping coefficient in tire (Dty5)

Damping coefficient in tire (Dty6)

Friction Force in the steer axle (Fyl)

Friction Force in the steer axle (Fy2)

Friction Force in the tractor (Fy3)

Friction Force in the tractor (Fy4)
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11.2410

4.9960

4.9960

20.0000

20.0000

20.0240

20.0240

0.0125

0.0125

0.0425

0.0425

0.0410

0.0410

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.3000

0.3000

3.2000

3.2000

Kips/in.
Kips/in.
Kips/in.
Kips/in.
Kips/in.
Kips/in.
Kips/in.
kips-sec/in.
kips-sec/in.
kips-sec/in.
kips-sec/in.
kips-sec/in.
kips-sec/in.
Kips-sec/in.
kips-sec/in.
kips-sec/in.
kips-sec/in.
kips-sec/in.
kips-sec/in.
Kips.

Kips.

Kips.
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Friction Force in the trailer (Fy5)

Friction Force in the trailer (Fy6)

Mass and Mass Moment of Inertias:

Mass ofthe tractor (mtl)

Roll mass moment of inertia of the tractor (Ixtl)
Pitch mass moment of inertia of the tractor (I1ztl)
Mass of the trailer (mt2)

Roll mass moment of inertia of the trailer (Ixt2)
Pitch mass moment of inertia of the trailer (1zt2)
Mass of the steer axle (mal)

Roll mass moment of inertia of the steer axle (Ixal)
Mass of the tractor axle (ma2)

Roll mass moment of inertia of the tractor axle (Ixa2)
Mass of the trailer axle (ma3)

Roll mass moment of inertia of the trailer axle (Ixa3)
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3.2000

3.2000

0.01491

17.88804

75.60312

0.14907

293.3665

1603.547

0.00559

4.3602

0.00932

7.26696

0.00745

5.81364

kips.

kips.

Kips-(sec)2 /in.
kips-in-(sec)2.
Kips-in-(sec)2.
kips-(sec)2 /in.
kips-in-(sec)2.
Kips-in-(sec)2.
Kips-(sec)2 /in.
Kips-in-(sec)2.
kips-(sec)2 /in.
kips-in-(sec)2.
Kips-(sec)2 /in.
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DISPLAY 111 - GEOMETRY MODELING SYSTEM ( 12.0.0 ) PRE/POST MODULE

MODE NO. = 1  FREQUENCY = 2.96837E+00 Hz
Plate- 12ft x 36ft

Figure B .I: First mode shape of the isotropic plate (12ft x 36ft) in NISA

DISPLAY 11l - GEOMETRY MODELING SYSTEM ( 12.0.0 ) PRE/POST MODULE

MODE NO. = 2  FREQUENCY = 1.20205E+01 Hz
Plate- 12ft x 36ft

MODE SHAPE PLOT
MX DEF= 2.53E-02
NODE NO.= 16
SCALE =1.0
(MAPPED SCALING)

EMRC-NISA/DISPLAY
JUL/31/06 12:12:22

MODE SHAPE PLOT
MX DEF= 2.63E-02
NODE NO.= 8
SCALE =1.0
(MAPPED SCALING)

EMRC-NISA/DISPLAY
JUL/31/06 12:13:04

Figure B.2: Second mode shape of the isotropic plate (12ft x 36ft) in NISA
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DISPLAY 111 - GEOMETRY MODELING SYSTEM ( 12.0.0 ) PRE/POST MODULE VODE SHAPE PLOT
MX DEF= 4.26E-02
NODE NO.= 16
SCALE =1.0

(MAPPED SCALING)

EMRC-NISA/DISPLAY

JUL/31/06 12:13:50

MODE NO. = 3  FREQUENCY = 1.23302E+01 Hz
Plate- 12ft x 36ft

Figure B.3: Third mode shape of the isotropic plate (12ft x 36ft) in NISA

DISPLAY 11l - GEOMETRY MODELING SYSTEM ( 12.0.0 ) PRE/POST MODULE

MODE NO. = 4  FREQUENCY = 2.68394E+01 Hz
Plate- 12ft x 36ft

Figure B.4: Fourth mode shape of the isotropic plate (12ft x 36ft) in NISA
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Figure C.1: Suspension force history of steer axle, tractor axle, and trailer axle of
an AASHTO HS20-44 truck at speed of 40 mph
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Figure C.2: Suspension force history of steer axle, tractor axle, and trailer axle of
an AASHTO HS20-44 truck at speed of 45 mph
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Figure C.3: Suspension force history of steer axle, tractor axle, and trailer axle of
an AASHTO HS20-44 truck at speed of 50 mph
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Figure C.4: Suspension force history of steer axle, tractor axle, and trailer axle of
an AASHTO HS20-44 truck at speed of 55 mph
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Figure C.5: Suspension force history of steer axle, tractor axle, and trailer axle of
an AASHTO HS20-44 truck at speed of 60 mph
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Figure C.6: Suspension force history of steer axle, tractor axle, and trailer axle
an AASHTO HS20-44 truck at speed of 65 mph
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Figure C.7: Suspension force history of steer axle, tractor axle, and trailer axle of
an AASHTO HS20-44 truck at speed of 70 mph
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Figure C.8: Suspension force history of steer axle, tractor axle, and trailer axle of
an AASHTO HS20-44 truck at speed of 75 mph
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Figure C.9: Suspension force history of steer axle, tractor axle, and trailer axle of
an AASHTO HS20-44 truck at speed of 80 mph
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Figure C.10: Suspension force history of steer axle, tractor axle, and trailer axle of
an AASHTO HS20-44 truck at speed of 85 mph
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Figure C.11: Suspension force history of steer axle, tractor axle, and trailer axle of
an AASHTO HS20-44 truck at speed of 90 mph
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Figure C.12: Tire force history of steer axle, tractor axle, and trailer axle of

an AASHTO HS20-44 truck at speed of 40 mph

Ftyl

Fty3

Ffysj



Tire force (Kips) Tire force (Kips)

Tire force (Kips)

5N

=
o

@

o

o

2 0.4 0.6 0.8 1 1.2 1.4

Time (Sec)

Figure C.13: Tire force history of steer axle, tractor axle, and trailer axle of
an AASHTO HS20-44 truck at speed of 45 mph
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Figure C.14: Tire force history of steer axle, tractor axle, and trailer axle of
an AASHTO HS20-44 truck at speed of 50 mph
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Figure C.16: Tire force history of steer axle, tractor axle, and trailer axle of
an AASHTO HS20-44 truck at speed of 60 mph
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Figure C.17: Tire force history of steer axle, tractor axle, and trailer axle of
an AASHTO HS20-44 truck at speed of 65 mph
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Figure C.18: Tire force history of steer axle, tractor axle, and trailer axle of
an AASHTO HS20-44 truck at speed of 70 mph
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Figure C.19: Tire force history of steer axle, tractor axle, and trailer axle of
an AASHTO HS20-44 truck at speed of 75 mph
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Figure C.20: Tire force history of steer axle, tractor axle, and trailer axle of
an AASHTO HS20-44 truck at speed of 80 mph
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Figure C.21: Tire force history of steer axle, tractor axle, and trailer axle of
an AASHTO HS20-44 truck at speed of 85 mph
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Figure C.22: Tire force history of steer axle, tractor axle, and trailer axle of
an AASHTO HS20-44 truck at speed of 90 mph
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Figures C.23: Time history of the vertical displacement at the center of the T-beam
bridge deck under an AASHTO HS20-44 truck with a speed of 40 mph.

Figures C.24: Time history of the vertical displacement at the center of the T-beam
bridge deck under an AASHTO HS20-44 truck with a speed of 45 mph.

Figures C.25: Time history of the vertical displacement at the center of the T-beam
bridge deck under an AASHTO HS20-44 truck with a speed of 50 mph.
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Figures C.26: Time history of the vertical displacement at the center of the T-beam
bridge deck under an AASHTO HS20-44 truck with a speed of 55 mph

Figures C.27: Time history of the vertical displacement at the center of the T-beam
bridge deck under an AASHTO HS20-44 truck with a speed of 60 mph

Figures C.28: Time history of the vertical displacement at the center of the T-beam
bridge deck under an AASHTO HS20-44 truck with a speed of 65 mph
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Figures C.29: Time history of the vertical displacement at the center of the T-beam
bridge deck under an AASHTO HS20-44 truck with a speed of 70 mph

Figures C.30: Time history of the vertical displacement at the center of the T-beam
bridge deck under an AASHTO HS20-44 truck with a speed of 75 mph
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Figures C.31: Time history of the vertical displacement at the center of the T-beam
bridge deck under an AASHTO HS20-44 truck with a speed of 80 mph
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Figures C.32: Time history of the vertical displacement at the center of the T-beam
bridge deck under an AASHTO HS20-44 truck with a speed of 85 mph

Figures C.33: Time history of the vertical displacement at the center of the T-beam
bridge deck under an AASHTO HS20-44 truck with a speed of 90 mph
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Figures C.34: Time history of the vertical displacement at the center of the T-beam
bridge deck under an AASHTO HS20-44 truck with a speed of 40 mph by FEM.

Figures C.35: Time history of the vertical displacement at the center of the T-beam
bridge deck under an AASHTO HS20-44 truck with a speed of 45 mph by FEM.

Figures C.36: Time history of the vertical displacement at the center of the T-beam
bridge deck under an AASHTO HS20-44 truck with a speed of 50 mph by FEM.
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Figures C.37: Time history of the vertical displacement at the center of the T-beam
bridge deck under an AASHTO HS20-44 truck with a speed of 55 mph by FEM.

Figures C.38: Time history of the vertical displacement at the center of the T-beam
bridge deck under an AASHTO HS20-44 truck with a speed of 60 mph by FEM.

Figures C.39: Time history of the vertical displacement at the center of the T-beam
bridge deck under an AASHTO HS20-44 truck with a speed of 65 mph by FEM.
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Figures C.40: Time history of the vertical displacement at the center of the T-beam
bridge deck under an AASHTO HS20-44 truck with a speed of 70 mph by FEM.

Figures C.41: Time history of the vertical displacement at the center of the T-beam
bridge deck under an AASHTO HS20-44 truck with a speed of 75 mph by FEM.
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Figures C.42: Time history of the vertical displacement at the center of the T-beam
bridge deck under an AASHTO HS20-44 truck with a speed of 80 mph by FEM.
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Figures C.43: Time history of the vertical displacement at the center of the T-beam
bridge deck under an AASHTO HS20-44 truck with a speed of 85 mph by FEM.

Figures C.44: Time history of the vertical displacement at the center of the T-beam
bridge deck under an AASHTO HS20-44 truck with a speed of 90 mph.
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