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ABSTRACT

Moving loads have great effect on dynamic stresses in structures and cause them 

to vibrate extensively, especially at high velocities. A peculiar feature of moving loads is 

that they are variable in both space and time. This is why the dynamic analysis of bridges 

under moving forces has attracted researchers worldwide. When a moving load is 

traveling on a bridge, different factors play an important role in the vibration of the 

bridge. Road surface profile, vehicle dynamics, weight and speed o f the moving vehicle 

and the geometry of the bridge all play an important roles in the analysis. The main 

objective of this research work is to study the collective effect o f all these factors over the 

impact factor.

Road surface roughness is generated by using a Power Spectral Density function 

which represents different classes of roads. A 12 Degree Of Freedom model of an HS20- 

44 truck is modeled and an interactive function o f this model with the road surface 

roughness is developed to find an increased load which is applied on the bridge decks to 

find the dynamic response. The bridge deck is analyzed by using analytical and numerical 

methods. An orthotropic plate theory is used to solve the bridge deck analytically and the 

finite element analysis method is used to solve the bridge numerically. The increased load 

calculated from the interaction function of road surface roughness and vehicle model is 

simulated as a train of moving loads by using Dirac-delta function in the orthotropic plate 

theory. The same train of moving loads is simulated in finite element analysis by using



Dynamic response is calculated in terms of the vertical deflection at the center of 

the bridge deck and compared with the static deflection where the load is considered to 

be steady. For the bridge deck under investigation, the impact factor given by AASHTO 

underestimates the dynamic effect under the moving loads. This might be because of the 

inability o f the impact factor formula given by AASHTO, which is a function o f span 

length o f the bridge deck, to take into account the effect of road surface roughness, 

vehicle dynamics, vehicle weight, and vehicle speeds. Its is suggested that it is necessary 

to do the detailed dynamic analysis of bridges by considering road surface roughess, 

vehicle dynamics, vehicle weight, and vehicle speed.

arrival time and time function data for the nodal points along the moving path of the truck

load.
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CHAPTER I

INTRODUCTION 

I-a: General Description

Vibration of bridges due to moving vehicles is important for two reasons. First, 

the stresses are increased above those due to static-load case, which is normally 

accounted by the “impact factor” in design. The second reason is that excessive vibration 

may have the psychological effect of impairing public confidence in the structure. The 

impact factor is provided in the “Standard Specifications for Highway Bridges” by

AASHTO [1] as,

/  =
50

I + 125

Where,
1= Impact Factor (maximum 30 percent)
L= Length in feet of the portion of the span that is loaded to 

produce the maximum stress in the member

If we see this impact factor, it is a function o f only the span length of the bridge, 

where in reality impact factor is affected by many other variables. Moving loads have 

great effect on dynamic stresses in structures and cause them to vibrate extensively, 

especially at high velocities. Peculiar feature o f moving loads is that they are variable in 

both the space and time. As the moving load travels on bridge with high velocities, it 

imparts vibrations to the bridge which in turn increases stresses in the members above 

their values under static loading. When a moving load travels on a multilane bridge,



different factors play important role in deciding the dynamic impact. First of all, the 

vehicles have their own dynamic system with suspension and damping, and when these 

vehicles move on bridge decks with different road surface profiles, they impart more load 

than the static load values on bridge decks. Bridge characteristics such as its natural 

frequencies and damping also play a very important role in deciding the dynamic impact. 

Other important factors in analysis are weight and speed of the vehicle, and location of 

the vehicle on a bridge deck. It is therefore necessary to do the detailed dynamic analysis 

of bridges under moving loads to predict increase in the stresses.

I-b: Objectives

The behavior of highway bridges under moving loads is a subject o f investigation 

with many researchers from early 1950s. Some of the researchers have studied a role of 

road surface roughness on the increased load and some have studied a bridge deck 

behavior under a constant load or a train of loads moving across the bridge deck with 

different speeds. C. J. Dodds and J. D. Robson [3] have studied the road surface 

roughness and the free vibrations of rectangular orthotropic plates with parallel edges 

simply supported are studied by Jayaraman G. et. al. [6]. Very few researchers have 

studied the forced vibrations of the orthotropic plates under moving loads. Bridge decks 

can be considered as orthotropic plates on which moving loads can be simulated by using 

Dirac-delta function. The main objective of this research work is to combine the effects 

o f the road surface roughness, vehicle dynamics to get the increased load on the bridge 

deck and simulate this increased load on the orthotropic plates by using Dirac-delta 

function and do the forced vibrations analysis of orthotropic plates under the increased

2



load at different speeds and compare the results with the finite element analysis of the 

same bridge.

The general objective of this research is to 

1: Generate different road surface roughness profiles.

2: Develop a 12 DOF model of an AASHTO HS20-44 truck.

3: Study the effect of AASHTO HS20-44 truck on a bridge deck by considering it as

an orthotropic plate with two opposite edges simply supported and the other two 

edges free, and simulate moving loads by using a Dirac-Delta function to 

investigate the dynamic effect.

4: Model the same bridge deck in a finite element analysis program and simulate

moving loads on it to study the dynamic effect.

5: Compare results from the analysis of an orthotropic plate and the finite element

analysis.

The first objective is achieved in Chapter III where different road surface 

roughness profiles are generated by using a power spectral density function. Two 

different classes o f road surface profiles are considered for the study. A 12 DOF model of 

an HS20-44 truck is developed in Chapter IV. The interaction o f this truck with a road 

surface profile is derived to find the increased load effect o f the truck which will give us 

the effect of different road surface profiles and vehicle dynamics. The truck, which has 

the increased load effect from the truck dynamics and road surface roughness calculated 

in Chapter IV, is used as a moving load vehicle on the bridge decks to investigate its 

dynamic effect. In Chapter V, a simply supported bridge deck is modeled as an 

orthotropic plate with two opposite edges simply supported and two edges free. The



natural frequencies of this plate depend upon the flexural and torsional rigidities of the 

plate. Orthotropic plates are divided into two categories depending on their natural 

frequencies and rigidities, and different frequency equations for different categories of 

the plates are derived and moving loads are simulated on the plate to get an equation of 

motion. Equation of motion is then solved by using fourth order Runge-Kutta method to 

get the analytical results. The same bridge deck is then modeled in great details by using 

the finite element analysis package ‘NISA’ [2] in Chapter VI. Moving loads are 

simulated in NISA [2] by the use of arrival time and time function data.



CHAPTER II

LITERATURE REVIEW

C. J. Dodds and J. D. Robson [3] studied the road surface roughness and showed 

that the typical road surface may be considered as realization o f homogeneous and 

isotropic Gaussian random process and proposed a new road classification method based 

on power spectral density function. J. G. S. da Silva [4] presented an analysis 

methodology to evaluate the dynamic effect on highway bridge decks due to vehicles 

crossing on the rough surface defined by a probabilistic model. He obtained the results 

mainly for heavy vehicles moving over rough reinforced concrete highway bridge deck 

made of a straight box section girder. It was verified in all the cases studied in this 

investigation, for usual vehicle velocities, that the dynamic effect on highway bridge 

decks due to the interaction of the vehicle suspension flexibility with a smooth pavement 

surface can be as high as 90%. T. L. Wang et. al. [5] studied dynamic response of 

highway trucks due to road surface roughness and used the road classification method 

proposed by C. J. Dodds and J. D. Robson [3] and generated different types of road 

surface profiles. They developed vehicle models for H20-44 and HS20-44 trucks with 

seven or twelve degrees o f freedom respectively and obtained impact factors for the 

suspension and tire forces for vehicle model running on different classes of roads at 

various speeds.



Free vibrations of rectangular orthotropic plates with parallel edges simply 

supported are studied by Jayaraman G. et. al. [6], They studied the influence of the 

material orthotrophy, foundation modulus and aspect ratio on the natural frequencies. 

They also studied the influence of different boundary condition on the natural 

frequencies. According to Jayaraman G. et. al. [6] the influence o f the ratio of the flexural 

rigidities in x and y directions on the natural frequencies is more for the plates with two 

opposite edges simply supported and two edges free; where as the influence of the ratio 

of torsional rigidity and flexural rigidity on the natural frequencies is more for the plates 

with two opposite edges simply supported and two edges clamped. X. Q. Zhu and S. S. 

Law [7] investigated the dynamic behavior of continuous multi-lane bridge deck from the 

moving vehicles. They modeled the bridge as a multi-span continuous orthotropic 

rectangular plate with line rigid intermediate supports and investigated the dynamic 

behavior of the bridge deck under single and several vehicles moving in different lanes 

using the orthotropic plate theory and modal superposition technique. They found that the 

vehicle position has an important effect on the impact factor. They also found that the 

impact factors associated with the multiple vehicles are smaller than those are for single 

vehicle.

Fryba L. [8] analytically solved the dynamic responses of uniform flat plate under 

a moving load and used a Dirac delta function to simulate a moving load on the plate. D. 

P. Thambiratnam et. al. [9] performed the experimental analysis of a reinforced concrete 

bridge under vehicular loads to record the strains at different locations. They investigated 

the dependence of the dynamic amplification of the strain on bridge deck location and



As we can see, in the previous studies no one has studied all the affecting factors 

together. The purpose of this project is to investigate the effect o f road surface roughness, 

vehicle dynamics, bridge characteristic, weight and speed of the vehicle on the vertical 

deflection at different locations on the bridge decks.

vehicle speed, and recorded the dynamic amplification up to 1.5, which was higher than

values predicted by bridge design codes.



CHAPTER III

ROAD SURFACE ROUGHNESS

Ill-a: Power Spectral Density Function

Out o f many factors affecting the impact factor o f bridges, road surface roughness 

is the primary factor. Due to the irregularities of the road surface, moving vehicle jumps 

up and down, and in the process changes the static load values o f the vehicle because of 

the suspension and damping system of the vehicle. According to the classification of 

roads based on road spectra presented by MIRA [10], there are three different classes of 

roads and every class have two, three or four road conditions as very good, good, 

average, and poor. In the previous studies, C. J. Dodds and J. D. Robson [3] have 

developed the Power Spectral Density (PSD) functions to describe the road surface 

roughness as,

S ( j ) = A
( A \~W'

V^o J

S  ((/>)= A
( , v w2 
i f

V^o J

Where, S(^) = P S D (w 2 / cycle! m)

(j) = Wave number (cycle/ m)

A = Roughness coefficient (m3 / cycle)

<p0 = Discontinuity frequency = (l / 2n \cyc le ! m)

(3.1)
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wl, w2 =Roughness exponent.

Table 1 shows the roughness coefficient A as well as exponents wl and w2 as a 

function of road class.

Table 1: Spectrum constants according to classification of roads, MIRA [10].

A Range
Road class

(x l0 “6m3/ cycle)
wl w2

Very Good 2-8
Motorways

Good 8-12
1.945 1.360

Very Good 2-8

Principal Good 8-32
2.050 1.440

Roads Average 32-128

Poor 128-512

Average 32-128

Minor Roads Poor 128-512 2.280 1.428

Very Poor 512-2048

In order to simplify the description of road surface roughness, both wl and 

w2 are assumed to have a value of 2.

The PSD function then becomes

s {4>)=A
(  , Y

(3.2)

Power Spectral Density is a method of scaling the amplitude axis in certain 

spectra, which consists of random rather than deterministic signals. A random signal has



energy spread out over a frequency band; it is not meaningful to calculate RMS value at 

any specific frequency. It only makes sense to consider its amplitude in a fixed frequency 

band. PSD is defined in terms of amplitude squared per frequency, and is thus 

proportional to the power delivered by the signal in one hertz band.

MATLAB 6.5.1 is used to generate a sequence of random numbers having 

Gaussian probability distribution with zero mean and approximate “white noise” 

properties. White noise is a signal with a flat frequency spectrum in linear space. In other 

words, the signal has equal power in any linear band at any center frequency having 

given a bandwidth. The white noise is then passed through a first order recursive filter to 

shape the spectrum to the form given in Equation (3.2).

Generation o f  Sequence o f Random Numbers Using MA TLAB

Digital Signal Processing (DSP Blockset) has a Random Source, which generates 

different types o f sequence of random numbers depending upon the selection of the 

source type. The Gaussian (normal) distribution with Zero mean and a specified value of 

Variance, which depends upon the Roughness coefficient (A ) of Equation (3.2), is 

selected for the different types of Random Sources. By assigning this zero mean and the 

variance to the source data, a random signal is produced. The power spectral density 

function o f this random signal is a flat line. This random signal is the input signal for the 

first order digital filter in MATLAB.

First Order Recursive Filter in MATLAB

The digital filter block in MATLAB independently filters each channel of the 

input signal with a specified digital Infinite Impulse Response (HR) filter. Since the

10



Equation of the HR filter in MATLAB is given as

output of each input depends upon the previous inputs and outputs, these filters are called

as recursive filters.

y (n) = (1/ a (l))*
6(l) * x{n) + b(2) * x(n - 1) +... + b(nb) * x(n -  nb) 
- a ( 2 )* y(n -1  )-...a (na  + !)*>>(« - na)

(3.3)

If we consider only the immediately previous output sample, the recursive filter 

given in Equation (3.3) becomes “first order” which means, na = 1 which gives 

na + 1 = 2 . To modify this filter given in Equation (3.3) to the first order filter where the 

input at the sample point is added to the only previous output sample. This is achieved by

assigning

a (i)= i,
a (2) = - l ,

6(1) =1,
b(2) = b{3)... = b(nb)=0.

Hence the Equation (3.3) becomes

y{n) = [x (n )+ y (n -1)] (3.4)

Where,

x{n) = Input at the n'h sample distance 

y(n) = Output at the n'h sample distance

Equation (3.4) is identical with the first order digital filter given by Otnes and Enochson

[ 11].

When a random signal with white noise properties is passed through this first 

order digital filter, the power spectral density of the output function gets modified and is 

related with the power spectral density of the input function through a transfer function.

11



The power spectral density of the output function should match with the power spectral 

density function given in Equation (3.2). The variance required to generate the random 

signal in MATLAB is calculated by comparing this transfer function with the power 

spectral density function given in Equation (3.2).

The transfer function of the first order recursive filter is

1_______
1 -  exp(-«2?r/l^)

Where,

X = Sample length / total number of samples. 

By using the approximation 

exp(x) = 1 + x

» (* ) =
_______ 1_______
1 - ( l  + (— nlnXcj)))

(3.5)

i.e n  M =
1

n2rzX<f)

The absolute value o f the squared of the transfer function is

\ H W  = f  1 ^
2 f  i \

ro
2
_ 1

v 2nX(f),

i ^
 

I _̂_
* /l2 J

(3.6)

The output PSD of this filter, in response to a continuous white noise input spectrum, N 0

sW=|wMAto
Where, S x (<j>) = N 0 = input PSD

By substituting Equation (3.6), the above Equation becomes



By comparing Equation (3.2) and (3.7), we get

Which gives, N 0 = A/12

The PSD of white noise response given by Otnes and Enochson [11] is 

S X{<I>)=(J2 2A

Where,

cr2 is the variance

By comparing Equations (3.8) and (3.9), we get

AA2 = <j 22A

2 A A i.e. a  - -—
2

Where,

A = Roughness coefficient from Table 1.

A = Sample length / total number o f samples.

(3.8)

(3.9)

(3.10)

Equation (3.10) gives us the relationship between the roughness coefficient for 

different classes of roads and the variance used to generate a random signal in MATLAB.



Ill-b: Generation of Road Surface Roughness

The following procedure was used for a numerical generation of surface 

roughness,

1. Generate random numbers, which have approximate white noise properties 

with zero mean and variance a 2 (from Equation 3.10) by using Random 

Source of DSP Blockset using MATLAB.

2. Pass this random numbers through the first order recursive filter (HR filter of 

DSP Blockset using MATLAB). The output function is the road surface 

roughness.

In this investigation the sampling time depends upon the length of the road and 

the number of samples in that length. For example, let’s consider the length of the road as 

256 m and number of samples as 2048 (211), which gives us sampling time (A  ) as 0.125.

If we consider a very good road surface, range o f roughness coefficient according 

to Table 1 is A = 2to8e -  6 . Let’s consider A = 5e -  6 for the simplicity.

From Equation (3.10) we get the required variance of the input random source as,

cr 2 S .-06 *<M 23  
2 2

Byusing Mean = Zero, Var = a 2 = 3.125e- 0 7 ,  and sampling time =A = 0A25 forthe 

random source in MATLAB, we can generate random spectrum as shown in Figure 1.
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x 10'3
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Figure 1: Spectrum of random numbers.

As we have considered the random source generator from MATLAB to have 

Gaussian probability distribution with approximate white noise properties, the power 

spectral density function o f this random signal should be flat. Figure 2 shows the 

comparison of the power spectral densities of the random signal and that from the 

Equation (3.8).
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Figure 2: Comparison o f Power Spectral Density o f a random spectrum with the 

approximate Power Spectral Density.

From Figure 2, we can see that the general behavior of the PSD of the random 

signal is comparable with that from Equation (3.8).

When we pass this random spectrum through the first order recursive digital filter

as given in Equation (3.4), output of this filter gives us the desired road surface profile as 

shown in Figure 3.



0.01

Figure 3: Output from the first order digital filter.

Figure 3 shows an example o f a road surface profile generated by passing a 

random signal through a first order digital filter. Since we have used roughness 

coefficient of a very good road surface, this output signal represents a general road 

surface profile o f a very good road surface with numbers of data points showing on X 

axis and a vertical distance between a tip o f the road surface at that point from an 

imagined zero surface level in meters. We can see from the plot, the variation o f the road 

surface is from + 8.5 mm to -  13 mm.

The power spectral density o f the output spectrum is calculated in MATLAB and 

compared with that given by C. J. Dodds and J. D. Robson [3],
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Figure 4: Comparison of PSD of the output spectrum with the PSD 
from C. J. Dodds et. al.

From Figure 4 we can see that, PSD calculated from the output spectrum is 

comparable with the PSD function proposed by C. J. Dodds and J. D. Robson [3], Figures 

5 and 6 show typical road surface profile generated by using MATLAB for a very good 

road surface and a good road surface. Figures 7 and 8 show the comparison of the Power 

Spectral Density of a very good road surface and a good road surface with the 

approximate Power Spectral Density respectively.
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Figure 3.5: Typical road surface profile of a very good road

Figure 3.6: Typical road surface profile of a good road
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Figure 3.7: Comparison of Power Spectral Density of a very good road surface with the 
approximate Power Spectral Density given by C. J. Dodds and J. D. Robson [3]
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Figure 3.8: Comparison of Power Spectral Density of a good road surface with the 
approximate Power Spectral Density given by C. J. Dodds and J. D. Robson [3]



CHAPTER IV

VEHICLE DYNAMICS

IV-a: 12 DOF Model of an AASHTO HS20-44 Truck 

A nonlinear vehicle model with twelve degrees of freedom is developed 

according to the AASHTO HS20-44 truck [1],

Figures 9 and 10 illustrate the side and front views of the AASHTO HS20-44 [1] 

vehicle model. This model consists o f five rigid masses as tractor, semi-trailer, steer 

wheel/axle set, tractor wheel/axle set, and trailer wheel/axle set. Tractor and semi-trailer 

are assigned three degrees of freedom ( y ,6 , and tf>) individually. Two degrees of 

freedom ( y  and <f>) are assigned for each wheel/axle set. The tractor and semi-trailer are 

interconnected at the pivot point. Truck data used for this investigation is given in 

Appendix- A.
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Figure 9: Side view of HS20-44 vehicle model.
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The total potential energy, V = Vi of the system is computed from the spring

stiffness and relative displacements, whereas the dissipation energy, D = ^  D.t , of the

system is obtained from the damping forces. Total kinetic energy, T  = ^ 7 ] ,  of the

system is calculated using the mass, mass moment of inertia, and translational as well as 

rotational velocities, of the system components.

The equations o f motion of the system are derived, using Lagrange’s formulation, 

as follows:
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— ----  H-------------- 1------= One,
d t(d q i)  8qt dqi dq,
d f  d r )  8D 8T 8V

(4.1)

Where qt and qt are the generalized displacements and velocities, and Qnci is a 

generalized force.

Following are the degrees of freedom and masses of each rigid body: 

y n , mn = Tractor vertical displacement and mass

</>n , I xti = Tractor roll displacement and mass moment of inertia about X axis 

6ti , 7Z„ = Tractor pitch displacement and mass moment o f inertia about Z axis 

y n , m , 2 = Trailer vertical displacement and mass

<t>a ,Ixa~  Trailer roll displacement and mass moment o f inertia about X axis 

6tlJ za= Trailer pitch displacement and mass moment of inertia about Z axis 

y a\’ma\= Steer axle vertical displacement and mass

</>ai, I xal = Steer axle roll displacement and mass moment of inertia about X axis 

y a2 ’ma2 = Tractor axle vertical displacement and mass

(f>a2,1xa2 = Tractor axle roll displacement and mass moment o f inertia about X axis 

y ai ’ma3 = Trailer axle vertical displacement and mass

^n3, / t(,3= Trailer axle roll displacement and mass moment of inertia about X axis 

Relative displacements at spring locations:

Suspension springs:

r

~ & ')  + ,A  ~ h j e,u
\ ■5 J
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/
U sy2 =

u \
y n - y a\ - y y ,2

j j
_ i 5><L )(+ fi-+ «) + h O n - li fO n

( L \
U sy3 =  y « ~  y 02+ j y <2

\  l5 J
+ 1 2̂

2 Jv^i A . W A h H

f L
Usy4 = y,l ~ y 02 + j y , 2

V 5 J
2 JVV'irl ^al) , @12

5

Usy5 = h
y ,2 - y a3 - f y n

*7

+ 5

(4.2)

h

Tire springs:

(4.3)

W5rl__6 — Vertical displacement of road
surface, considered +ve if upwards.
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The total kinetic energy, T = ' ^ T j of the system is

T  2  + 2 + 2 ẑ,]^n + 2 m'2̂ '2 + 2 x̂ '2̂ '2 2 ^z'2̂ '2 + 2 + 2 X̂a]<̂a]

+ “  W„2T„22 + |  K i t h  + ̂  mâ 2a3 + |  /Xn3^3 (4.4)

The total potential energy, V = ^  Vi o f the system is

1 1 1 1 1 1
y = ~ 2 ^ U  +\ K , K i  + f  -K K i + \ K , y K < + \ KsysUU + \K ,yeUU

1 1 1 1 1 1
+ -  K „ U l  + -  K ^ U l ,  + -  ̂ 3^3 + -  K J J l t  + -  K ^ U l  + -  (4.5)

The dissipation energy, D = ^ Z ) .  of the system is

D ~ ^ D s y f i ] y \  +  ~ D sy2U ]y2 + ~ D s y lU U  +  ~  D sy4U sy4  +  ~  D sySU U  +  ^  D s y 6 ^ s y 6

+ - D hAU l  + - D „ M l  + - D nM \  + -D „ M L  + - D ^ U L  +—D„,XJl2  ty\ ty\ 2  ty l ty l 2  tyl tyl 1 2  x^0'4 '~/ <y4 ' t y l ^  tyl ty6 ty 6 (4.6)

By substituting the relative displacements in the terms of 12 DOF from Equations 

(4.2) and (4.3), the equation of motion for vertical displacement o f the tractor y n can be 

derived as

dT

d_
dt

r d T ^

y fy n j
= mnyn (4.7)

dT

fyn
= 0

—  =  +  K„,U„, + K ^ V „  + K „ U V,  - f  K J J „  -  i
In

(4.8)

(4.9)
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(4.10)I r  = D,rf i „  +Dl„uv , + B ,X «  - f  ■ - k - D j j * .oyt\ i-j /7

And the generalized force in the vertical direction o f the tractor is

C M  = (4.11)

By substituting Equations (4.7-4.11) into Equation (4.1), we get the equation o f motion 

for y n as

V „  + + K,„U ,„  + K,y,Utr, + 7r,,4t/„4 - lf K t>sU ai - lf K lriU ^
h  *7

H A + V , ,  + + A,«W„ 4 - ‘f D v f i eS - lf D „ f i , rt = m„g (4.12)

On the similar lines as in Equations (4.7-4.12), equations of motions are derived 

for the rest of the 11 DOFs and are summarized below 

Equations of motion:

For Vertical Displacement of the Tractor, y n :

+  (F syi +  F sy2 +  F syi +  F sy4 ) ~  +  F sy6 )  +  (F dsyl +  F dsy2 +  F dsyl +  F dsy4 )

^ y , F dsyS + F dsy6 )  =  mnS (4-1 3)

For Pitch Displacement of the Tractor, 6n :

i J n  + / , f c .  + M ) - /4( M  + 0 + /s( % ) ( M  + FJ

+ ^ {Fdsy\ Fdsyl ) 4̂ [Fdsy3 + Fdsy4 )+ 8̂ + Fdsy6 ) = ^ (4-14)
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For Roll Displacement of the Tractor, </>n :

i J a  +{s/ i X F^ - f J A s/ 2 X f ^ - F ^ V ^ y C l F ^  ~FdJ = 0

For Vertical Displacement o f the Trailer, y l2:

- f V ]  (p .„ + f „2)+ {1- / \ f v , + f v M f ^ + f J

For Pitch Displacement of the Trailer, 9n :

I „ A - ' i f  / { ) ( ^ ,  +F„1)+ ‘̂ y l '!)(F„,+) - ' , K s  + F V J

v/ ‘5 V/ l5

For Roll Displacement of the Trailer, (f)n :

I , J n  +  { V l \ F .,s~ F.„  )+  [ S‘A ) K >  ~  F * »  ) =  0

For Vertical Displacement of the Steer axle, y a]: 

fliTfli ~  ( ^ l  +  Fsy2) +  l-^fyi +  F[y2 ) ~  [f dsy\ + Fdsy2) +  [f dty, +  Fdty2) =  malgm

For Roll Displacement of the Steer axle, tf>a^:

(4.15)

- f V V w  + ' r« ) + f V V «  + + F ^ ) = m , lg  (4.16)

v v « + ^ )+ ' / y  v * , + ^ ) -  /, k , + ) = o (4,i7)

(4.18)

(4.19)

( ' w j + f y ' K - r w ) - f y i ( F «  - ^ i + f y V w  - f w ) = o7,„Ai - [  J>2

For Vertical Displacement of the Steer axle, y a2:

maiya 2 ~ (Fsy3 + FSyd)+ [f ^  + Fly4)— + Fdsy4)+ (Frf?y3 + FdtyA) = ma2g

(4.20)

(4.21)
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For Roll Displacement of the Steer axle, <f>a2:

i , j . ,  - { s,A y . , > - FJ +{d2A ) (F,

(4.22)

For Vertical Displacement of the Steer axle, y a3:

m a J a l  -  (F syS +  F sy6 ) +  ( ^ 5  +  F <y6 ) “  (F dsyS +  F dsy6 ) +  (F dty5 +  F dry, )  =  ™ a l g  ( 4 - 2 3 )

For Roll Displacement of the Steer axle, <pa2:

A J a i - Fdly6) = 0

(4.24)

Where, i

F  ■ = K  U  . ± F.syi syi syi yi - Suspension spring force.

Fdsyi F syiF syi - Damping force in the suspension.

F#  = K tiU # - Tire spring force.

Fdtyi = F tyiU tyi - Damping force in the tire.

i = 1 to 6, and

F  i = The friction force at the ith suspension.

From the equations of motion for all the 12 degrees of freedoms from Equations 

(4.13-4.24), we get the second order differential equation as

[M]{<7}+ [C ]{ ?} + [/:]{ ,} = {F }  (4.25)

Where,

[M] = Global mass matrix.

30



= Global damping matrix.[C]

[Ai] = Global stiffness matrix.

{F} = Global force matrix,

and,

y,i y,i
On On
<t>n <Pn
y, 2 y, 2
0,2 0,2

fin and q = $,2
y.i y a i
<t>a\ kx
y a2 y a 2
Qal k 2
y a3 y a 3

J>ai_

----1

__
1

Second order differential equation (4.25) can be converted in to a first order differential

equation to simplify the solution.

The general form of second order differential equation is

mx + cx + kx -  f  (4.26)

Equation (4.26) can be written as

.. f  c . kx  = -------- x ----- X
m m  m

Where, m (mass), c (damping coefficient), and k (stiffness coefficient) are constants. 

Let’s assume that,

x\ = x

and,
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x2 = x

i.e. xl = x  = x2 (4.27)

and

f  c k *
x2 = x  = -------- x ----- x = F  -  c x 2 -k x \

m m  m
(4.28)

We can write equations (4.27) and (4.28) in matrix form as,

F
i l '  0 1 " x\ 'o '= * +
i 2 — k —c x2 1

(4.29)

Which we can write as, 

X  = A X  + BF

Where,

(4.30)

xl x\ '  0 1 ' 'o'
x  = , x  = , A = , and B =

x2 x2 111__1 1

IV'-b: Suspension and Tire Forces of an AASHTO HS20-44 Truck 

Equation (4.30) is a first order differential equation, which is easy to solve in 

MATLAB. On the similar lines equation of motion (4.25) is modified to a first order 

differential equation and used in MATLAB to get the solutions o f q and q . 

q gives us the displacements o f the suspension and tire springs because of the road 

surface roughness. From these displacement solutions, the suspension force and tire 

forces are calculated as,

F  . = K  U  . ± F  •syi syi syi yi

= W * (4.31)

Two road surface conditions are considered in this study, a very good road surface 

and a good road surface. Figures 5 and 6 show the typical road surface roughness profiles
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for these two road conditions on a motorway. Suspension force and tire force histories for 

steer, tractor and trailer axles are shown in Figures A.l to A.32 in Appendix-A on very 

good and good road surface.

The maximum suspension and tire forces on two different road surface conditions 

for an HS20-44 truck load with different speeds are summarized in Tables 2 to 5. From 

the Tables 2 and 3, for a HS20-44 truck traveling on a very good road surface, we can see 

that the impact suspension force is in the range of 23.47% to 44.71% of the static load for 

the steer axle and is reaching as much as 73.31% for the tractor axle, where as the 

maximum impact for the trailer axle is 51.52%.

The impact for tire force is lesser than that for the suspension force. For the steer

axle the impact is in the range of 21.85% to 44.21%, the maximum impact for the tractor

axle is 51.20% where as the maximum impact for trailer is 32.21% of the static load.

From the Tables 4 and 5, we can see that the impact values when an HS20-44 truck is

traveling on a good road surface have increased noticeably those from the very good

surface. The difference is much more in the steer axle than in the tractor and trailer axle.

Table 2: Comparison of suspension forces at different speeds for HS20-44 truck on a very 
good road surface.

Speed
(mph)

Static
(Kips)

Fsy1
(Kips) %lmpact Static

(Kips)
Fsy3
(Kips) %lmpac1 Static

(Kips)
Fsy5
(Kips) %lmpact

15 2.9119 3.6661 25.90 14.1780 23.0926 62.88 14.5579 20.7822 42.76
20 2.9119 3.5953 23.47 14.1780 22.0802 55.74 14.5579 20.1924 38.70
25 2.9119 3.7536 28.91 14.1780 21.7757 53.59 14.5579 20.7265 42.37
30 2.9119 3.7752 29.65 14.1780 24.5719 73.31 14.5579 22.0580 51.52
35 2.9119 3.8733 33.02 14.1780 23.0898 62.86 14.5579 20.4900 40.75
40 2.9119 3.8631 32.67 14.1780 21.5002 51.64 14.5579 21.3827 46.88
45 2.9119 4.2139 44.71 14.1780 22.8514 61.18 14.5579 20.9179 43.69
50 2.9119 4.1695 43.19 14.1780 23.4254 65.22 14.5579 20.4730 40.63

Note: Fsy2, Fsy4, and Fsy6 are same as Fsyl, Fsy3, and Fsy5 respectively.

33



Table 3: Comparison of tire forces at different speeds for HS20-44 truck on a very good 
road surface.

Speed
(mPh)

■
fi

co Ftyl
(Kips) %lmpact Static

(Kips)
Fty3

(Kips) %lmpact Static
(Kips)

Fty5
(Kips) %lmpact

15 3.99 4.902 22.86 15.97 23.968 50.08 15.99 20.37 27.39
20 3.99 4.862 21.85 15.97 23.886 49.57 15.99 20.892 30.66
25 3.99 5.437 36.27 15.97 23.423 46.67 15.99 20.006 25.12
30 3.99 5.011 25.59 15.97 23.906 49.69 15.99 20.042 25.34
35 3.99 5.252 31.63 15.97 22.646 41.80 15.99 20.202 26.34
40 3.99 5.378 34.79 15.97 22.773 42.60 15.99 20.546 28.49
45 3.99 5.378 34.79 15.97 23.54 47.40 15.99 21.141 32.21
50 3.99 5.754 44.21 15.97 24.146 51.20 15.99 20.944 30.98

Note: Fty2, Fty4, and Fty6 are same as Ftyl, Fty3, and Fty5 respectively.

Table 4: Comparison o f suspension forces at different speeds for HS20-44 truck on a 
good road surface.

Speed
(Mph)

Static
(Kips)

Fsy1
(Kips) % Impact Static

(Kips)
Fsy3
(Kips)

% Impact Static
(Kips)

Fsy5
(Kips)

% Impact

15 2.9119 4.0169 37.95 14.1780 23.8001 67.87 14.5579 21.0453 44.56
20 2.9119 4.0372 38.64 14.1780 22.7842 60.70 14.5579 21.8522 50.11
25 2.9119 4.5662 56.81 14.1780 23.2621 64.07 14.5579 20.8640 43.32
30 2.9119 4.3887 50.72 14.1780 23.5911 66.39 14.5579 20.8222 43.03
35 2.9119 5.1816 77.95 14.1780 23.6442 66.77 14.5579 21.5286 47.88
40 2.9119 5.0380 73.01 14.1780 24.8217 75.07 14.5579 22.2057 52.53
45 2.9119 4.7742 63.95 14.1780 23.3828 64.92 14.5579 22.4409 54.15
50 2.9119 5.5843 91.78 14.1780 25.8017 81.98 14.5579 23.1105 58.75

Note: Fsy2, Fsy4, and Fsy6 are same as Fsyl, Fsy3, and Fsy5 respectively.

Table 5: Comparison of tire forces at different speeds for F1S20-44 truck on a good road 
surface.

Speed
(Mph)

Static
(Kips)

Ftyl
(Kips) % Impact Static

(Kips)
Fty3

(Kips) % Impact Static
(Kips)

Fty5
(Kips) % Impact

15 3.99 5.916 48.27 15.97 26.675 67.03 15.99 20.37 21.59
20 3.99 5.549 39.07 15.97 24.855 55.64 15.99 20.892 21.54
25 3.99 6.3 57.89 15.97 24.308 52.21 15.99 20.006 22.67
30 3.99 5.8442 46.47 15.97 23.9643 50.06 15.99 20.042 21.50
35 3.99 7.1357 78.84 15.97 26.7785 67.68 15.99 20.202 23.01
40 3.99 6.3201 58.40 15.97 25.3836 58.95 15.99 20.546 23.49
45 3.99 6.5478 64.11 15.97 25.0641 56.94 15.99 21.141 24.45
50 3.99 7.2386 81.42 15.97 25.4537 59.38 15.99 20.944 23.91

Note: Fty2, Fty4, and Fty6 are same as Ftyl, Fty3, and Fty5 respectively.
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CHAPTER V

ANALYSIS OF AN ORTHOTROPIC PLATE UNDER MOVING LOADS 

V-a: Generation of Equation of Motion 

A bridge deck can be modeled as an orthotropic rectangular plate with two 

opposite edges simply supported and other two edges as free. An orthogonal orthotropic 

plate is defined as a plate which has different elastic properties in two mutually 

perpendicular directions x and y. Since the plate thickness is constant and the plate 

material is continuous, the different elastic properties in the two principal directions are 

due to different moduli o f elasticity, Ex * Ey and different Poisson’s ratios vxy ± vyx of 

the material.
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The strain energy of an orthotropic plate is well known and is given by Timoshenko [12]

as

-,ab
D.

( *7 \2O W

0 0 fix2

\d2w d 2w 
' r x y ) dx2 dy2

+ [d  v + D v )-— ——— + D\  x yx y  xy J - * 1 ^ *
d 2w

V 3
+ 4D

f  A2 o w
xy dxdy

dxdy

Where,

Eyh3

1 2 (1 -v v ) '  12(1 ~  v v )

G ^h 2
and D„ = ^ —

v  12

(5.1)

Ex = Modulus o f elasticity in X direction.

E  = Modulus of elasticity in Y direction.

= Poisson’s ratio associated with a strain in the Y direction for a load in the X 

direction.

v„r = Poisson’s ratio associated with a strain in the X direction for a load in the Y 

direction.

G = Shear modulus of the plate.

The kinetic energy of the plate is given as

T
2

a b

1 1 w(x, y , t f  phdxdy
o o

(5.2)

Where,

p  = Mass density of material of the plate. 

h = Thickness of the plate.
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a b
Wc = - ^ w { x , y , t ) c bM {x,y,t)dxdy  (5.3)

0 0

Where,

cb = Damping coefficient o f the plate.

The external work done by the force P{ (t) can be written as

The work done due to damping in the plate is given as

W = J J Z  Pi -  x, (t))S(y -  y, (t))w(x, y,t)dxdy (5.4)
0 0 /=1

Where,

P,(t), (/ = 1,2,...,N p) = Moving loads.

x ,(t),y ,(t) = Coordinates o f the position of moving load P,(t).

S (x -x ,( t ) ) ,  S{y -  y, (t)) = Dirac Delta function.

The displacement function o f the plate can be written as a summation o f the normal mode 

function in the X and Y coordinates as,

A x , y , t ) = Y J wmAx^y)cl mn{t) (5.5)
m,n

Where,

^ mnx^
(jc, y )  = Ymn (y )sin -----  = Normal modes of the plate.

\  a j

qmn (0 = Corresponding generalized coordinates.

By using the Lagrange’s equation,

r dT^d_
dt

dT_ dU dWc _ dW  
dq dq dq dq

(5.6)
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By substituting Equation (5.5) into Equations (5.1), (5.2), (5.3), (5.4) and by

differentiating with respect to q and q we get

dU
dq

a b

= 11

(
D.

dx2
(d  v + D v )-V x yx y  xy /

W mn d ‘

dx2 dy2
+ D ( d2w_

dy2
+ AD,

d2wmn
dxdy

\t)dxdy

Equation (5.2) becomes

2 a b

T  = — J jw 2mn (x ,y )q 2 mn{t)phdxdy
0 0

dT_
dq

—  = \ Wmn {x, y)qmn (t)phdxdy
0 0

= 0

a b

d_
dt

(  a ^
—  = f Wmn {x,y]ijmn (t)phdxdy
d(l )  0 0

Equation (5.3) becomes

a b

K = - \ l Wmn (*, yhmn W b  Wmn (X> (t)dxdy
0 0

= ~ W W™ y^b^mn {*, yVimn (t)dxdy
dci  0 0

Equation (5.4) becomes

W = ) \ Y J pi (W (x ~ x, (t))5(y -  y, (OK (x> yhmn {t]djcdy
0 0 /=1

8W a b N .

dq o
= IjZ PI (W (x -  X 1 (0)̂ (y -  h  (OK (x> y)dxdy

0 /-I

(5.7)

(5.8)

(5.9)

(5.10)

(5.11)
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By substituting Equations (5.7), (5.8), (5.9), (5.10), (5.11) into Equation (5.6), we get

a b

J \w 2m„ (x, y)qmn (t)phdxdy
0 0

+

0 0 
+

a b (  3 2 , , ,  \ 2

J J D- ^  +(d .* „ + d , vJ
V 9x2

d wmtl d wmn
yx y  x y j  - 2dxl dy2 +Dy

/  a  2 \' O w_____ mi

v K  y
+ 4Z)

y a 2 'X
^ W„n

V y
, (t)dxdy

a b a b N p

J  J K r t  ( * >  y)CbWn,n ( * >  yMmn (f)dxtfy = J  Pl "  X, ( 0 ) ^ ( v  “  Pl ( O K .  ( * >
0 0 /='

This can be written as

(5.12)

Mq + Cq + Kq = P  (5.13)

This is the equation of motion, where

a b

M  = S! w2 mn (x, y)phcbcdy
0 0

a b

C  =  I I  W mn {x,y)cbdxdy
0 0

K
u u

- uo o
D.

d2
dx1

(d  v + D v )\  t )>.t y xy /
52

dx2 dy
+ D.

d2w„

dy2
+ 4 D.

d 2w„

dxdy
dxdy

p = j  j z  pi -  X1 ( * M y -  Pi ( O K » {x,y)dxdy
0 0 1=1

This equation of motion is then solved for the generalized coordinate qmn by using a 

fourth order Runge-Kutta method.
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Normal modes o f the plate wmn(x ,y ) = Ymn(y) sin mnX required in the Equation (5.5) are
V a

obtained from the Eigen-value analysis of the orthotropic plate.

The governing differential equation of an orthotropic plate for free vibrations can 

be obtained from Equation (5.6). Since there is no moving load acting on the plate, there 

is no external work done and for the simplicity o f the problem it has been considered that 

there is no work done due to damping in the plate. So we just have two terms left in the 

Equation (5.6), which are the strain energy and the kinetic energy.

Which gives us the differential equation as

d4w / \ d4w d4w d4w , d2w
Dx dx4 *Vy* + yVxy’ dx2dy2 +Dy dy4 + D*y ~dx2dy2

+ p h ^ -  = 0 
dt2

(5.14)

By using the Betti’s law of reciprocity, as per the design manual for ortho tropic steel 

plate deck bridges [13], we get

Dx Vxy t n—-  = —— we get, D v = D v7-) & ’ x ’ yx y y xy
u y vy*

By substituting,

H  = Dxvyx+2Dxy

Equation (5.14) becomes,

£>
d w
dx4

+ 2 H d4w
dxzdy

+ D,
d 4w , d 2w

2 a . , 2 y  rv .4 + ph
dt2

= 0

V-b: Eigen-value Analysis o f an Orthotropic Plate 

The governing differential equation of an orthotropic plate is

D d4w (x ,y,t)
dx4

+ 2H d4w (x ,y ,t) d4w (x ,y ,t) d2w (x ,y ,t)
dx2dy2 +Dy dy4

+ ph-
dt2

=  0

(5.15)

(5.16)
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The displacement function w (x ,y ,t) can be expressed as the product of two functions, 

one involving only the space coordinates x  and y  and the other involving the variable 

time.

w (x,y ,t) = wmn(x ,y )* q mn(t) (5.17)

Where, qmn (t) is assumed to have the solution in terms o f e“

By substituting (5.17) into (5.16), we get

d . d M x o O  + 2H+D _ pha, ,w(x y )= 0
ax4 dx2 dy2 ay4

(5.18)

This is a homogeneous partial differential equation involving the mode shape expression 

w (x,y) , the plate properties, and the circular frequency o f oscillations co.

To make this equation dimensionless, let us introduce the dimensionless space 

variables £ = x/a ,rj = y /b  , where a and b are the plate dimensions and (j) = b /a . 

Equation (5.18) becomes

a<f d ^ d r j dr)

i.e.

a 4w ( ^ )  | 2 H  dAw {X v) 4 Dx a 4w (^,7)
a/74 Dy d ^ d r j2 9 Dy a ^4

4 phco2aA

A.
M £,ri) = 0

By substituting

X2 Which is a plate eigenvalue.

? i 2 H  d4w(X q) 4 Dx dAw{^,q) 
9 Dy d f d r ,2 9 Dy d f 4

-<PaAaw{X?1) = 0 (5.19)
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Levy-type solution fo r  the free vibration analysis o f  rectangular plates:

Let us consider a plate with simple support along edges £ = 0, and £ = 1 

We can express the solution to Equation (5.19) in the form

k

Ym{ r i) s m m ^
m=1

By substituting (5.20) into Equation (5.19), we get

(5.20)

d 2Ym(rj) 4 D
d p 4

Gives us,

-  2 f  —  {me)* + f ^  { m n f Ym{p)~ {p)
D y  d r j  D

sin m.7r% = 0

(5.21)

dp  dp
(5.22)

Where,

C, = ( jn jif  and C, = ^ JL{mn)4 
V  Dy

Equation (5.22) is an ordinary fourth-order homogeneous differential equation with 

constant coefficients. Assuming the solution of this equation in the form,

7  = CeM

p  = ± { f [ c x ± ^ c X c 2 + ^ Y 2

i.e.

p = ± t ( c , ± y [ c f ^ c l T F f (5.23)
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Roots o f the solution gives us two different categories depending if C 2 - C 2 + /l4is 

positive or negative.

Category I:

This category represents the solution when the quantity in the inner square root sign has 

real roots.

If C2 -  C 2 < A4

This category leads us to two other subcategories 

Category 1(a):

In this category the quantity in the outer square root sign has real roots.

If c, > Jc,2 - c 2 + a4

The corresponding solution is given by Gorman D. J. [14] as

Ym in) = Am c°sh Pm*! + Bm sinhPJ1  + Cm sinh ymrj + Dm cosh ymr7 (5.24)

Category 1(b):

In this category the quantity in the outer square root has imaginary roots.

If C, < V c 2 - C 2 +A4

The corresponding solution is given by Gorman D. J. [14] as

Ym W) = Am c° sh Pmri + Bm sinhPmti + Cm sin ymJj + Dm cosymr\ (5.25)

where,

(5.26)

r . = ^ c l - l c i - c , + x i or = - c 2T F - c ,
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whichever is real

The quantities Am, Bm, Cm and Dm are constants to be determined by means of boundary 

conditions.

If we locate the £ axis along the center o f the plate, we can divide the possible 

mode shapes into two types, symmetric or anti-symmetric modes.

a ^/Free

Figure 12: Plate with new axis system.

Symmetric modes:

Restricting to only symmetric modes, we can delete the anti-symmetric terms 

from Equations (5.24) and (5.25).

for C, > ^/C,2 -  C2 +A4

Ym0?) = Am coshPmti + D m coshymr/ (5.27)

for C, < ^/C,2 - C 2 +A4

Ym(Tl) = cosh fimTi + Dm cosymr/ (5.28)

By using the boundary conditions given by Jayaraman G. et. al. [6] at the free edges at

tj = ± —, where bending moment and shear force is zero.
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(5.29a)
dr? ** dE? n=>

+  v * .2 S 3 w ( ^ , t] )  

dr)3 drjdE?
(5.29b)

Where,

v =2
' h '

\ Dy J
-v_

For C, > VC,2 - C 2 +/14

By substituting (5.27) into (5.20), we get the solution as 

w(£ ,/7) = (Am coshPmt) + Dm coshymT))s\nmK^

g \
T ,T? = C i A  s inh^m̂  + Dmym sinhymr))s[nmn%
dr/

8 Ŵ 2 V) = [A*P l cosh Pmri + Dmy 2m cosh ymTi)smmn^

9 Wq^  = (A» P i s i n h  Pm n +  Dm r l s i n h  rm 7  ) s i n  ™  ^

'V / £ \
— - J —  = (rnx)(Am cosh Pmi) + Dm cosh y j i]) cos mn%

dE,

— Ŵ 2,T]) = C" 2̂ )2 (^ ra cosh PmV + Dm cosh ymr) \ - s in  mag)

9^ ’\ ; 2 ) = (m7r? { AmPm sinhpmr) + Dmym sinhy j ) \ - sinmnE? 
drjdg

Equation (5.29) becomes
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>2__ U 1 o . r\ .. 2 • 1
4 A  cosh ~  Pm + cosh -  sin

2 l  )

+vxvf-(m 7i)2 1 1 AA  cosh—Pm+Dm cosh—ym ( - s in m ^ )  = 0 
Z A )

i.e

4  \_Pl -  vA  (» * )2 ] cosh )-Pm + Dm [y2m -  v j 1 (m#)2] cosh -L ym = 0

(5.30)

and

3 1 , 1 ^
AmPm sm h - p m +  Dmym sinh - ym smmnE,

1 1 \
+ v <f) {ma) AmPm sinh —/?m + Dmym sinh — (-sinw/ r£)  = 0

v 4 2 y

i.e.

AmPm\Pl - v > 2(m^r)2] s i n h ^ m + Dmym[y2m - v V 2(rn^)2] s i n h ^ m = 0  

Equations (5.30) and (5.31) can be written as,

\_Pl~ VA  (.™x)2 ] cosh ̂ p m [ y 2 -  v j 2 0m n f  ] cosh |  y

Pm\_Pl~ vV 2 (m n)2 ] sinh ̂  p m ym [ y 2m -  v> 2 (m n )2 ]  sinh ̂

To satisfy Equation (5.32), determinant of the first term has to be equal to zero.

= 'o '

L A . 0 ii

[Pm - vA 2(m;r)2]cosh^y?m -  v ,̂ 2̂(m n)2 ] c o s h ym

Pm [ P i -  vV 2 ( " A 2 ] sinh ̂  Pm ym[ y 2m-  V> 2 {nut)2 ] sinh i  y„
= 0

Which gives us the Eigen-value equation as

(5.31)

(5.32)
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rm [rl -v  02(mtc) 2 ] . [ # j  -  {mn) 2 ] s i n h — ym c o s h ^ m

- A . [ ^ * - v V 2 ( ' ” ^ ) 2 ] . [ ^ - v ^ 2 ( w ^ ) 2 ] s i n h ^ m c o s h | y (II = 0  ( 5 . 3 3 )

B y  s u b s t i t u t i n g  (5m a n d  y m i n  t e r m s  o f  A  i n  E q u a t i o n  ( 5 . 3 3 )  a n d  s o l v i n g  f o r  d i f f e r e n t  

v a l u e s  o f  m ,  g i v e s  u s  d i f f e r e n t  e i g e n v a l u e s  1.

B y  s e t t i n g  Dm =  1 i n  E q u a t i o n  ( 5 . 3 0 ) ,  w e  g e t  Am a s

A_ =  ■
[Ym ~  V x>’^ 2 ( w ^ ) 2 ]  c o s h  —  Ym

\_Pl - v j 1 ]  c o s h  \  Pm

B y  s u b s t i t u t i n g  Dm a n d  Am i n  E q u a t i o n  ( 5 . 2 7 )  a n d  t h e n  i n t o  E q u a t i o n  ( 5 . 2 0 ) ,  w e  g e t  

m o d e  s h a p e  o f  t h e  p l a t e  a s

W{^,T]) = c ° s h  YJ1-
\jm ~  Vxy(t)2 im7r)2 ] COSh ~  ym 

\_Pl~ Vxy<t>2 (mn)2 ]  c o s h  ^
c o s h y ? m ^ s i n  mnE, ( 5 . 3 4 )

F o r  C\ < ^ C , 2 - C 2+ A4

B y  s u b s t i t u t i n g  ( 5 . 2 8 )  i n t o  ( 5 . 2 0 ) ,  w e  g e t  t h e  s o l u t i o n  a s  

w(^,ti) = (Am c o s h  pmri+Dm cosy^sinmn^

— ~-T1 =  {AmPm ̂ Pm l̂-DmYm ̂ 7^)̂ 17171%orj

G = (AmPl coshPmn - Dmr i  cosrmTj)sinm^

8 = [AmPi  sinhy?„,77 + Dmr i  sinymT])smm^
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'V / £ \
— ~r~~  = (m x){Am cosh J3m?i + Dm cos y mr/) cos mx%

dE,

9 = ( ™x) 2 (Am cosh y?m T) + Dm cos ym r] X~ sin m n£)

9 = (m7r)2{Am/3m sinh/3mr ] -D mym s m y ^ X - s m m x ^ )  
dr/d<;

Equation (5.29) becomes

(  , 1 1 ")
K Pm  c° s h - /? m ~ D my m c o s - y m sin mx%

2. A )

i i
+Vxy</) (m x) Am cosh ~ p m+Dm cos -  ym ( -  sin mx%) = 0 

\  l  2.

i.e

Am[ P l~  v j 2 0m x)2 ] cosh )-p m~D m[y 2m + v j 2 (w;r)2 ] cos ̂ y m = 0

and

1 1
A A  sinh- p m+ D mym sin -  sin mx% 

1 l  )

1 1
+ v<t>(mx) Amj5m sinh —/?m -  Dmym sin —/ m ( - s in m ^ )  = 0

V 2 l  )

i.e.

AmPm[pl - v > 2(w ^ )2]s in h i/? M +Dmym[y2m + v > 2(m ^)2] s in ^ /m = 0

Equations (5.35) and (5.36) can be written as

[P i - ( m n)2] cosh\P m  ~ [ r i+  v j 1 (m x)2 ] c o s |ym 'o '

Pm [P i -  v > 2 (m x)2 ] sinh ̂  /?„, ym[ y 2 + v > 2 (m;r)2 ] sin~  ym Dm. 0_

(5.35)

(5.36)

(5.37)
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To satisfy Equation (5.37), determinant of the first term has to be equal to zero.

\ f i l ~  v.xy(t 2 (m7r)2 ] cosh Pm 

Pm [_Pl ~ v<f>2 {mn)2 ] sinh ̂  p m

-[ r l+ V iy fi™ * )2]

rm[rl+v</>2(m7r)2]

1cos —y 
2

. 1
sm~rm

= o

Which gives us the Eigen-value equation as

r m [ / I  + v > 2(mzr)2] . [ ^  -  v^tj)2{m n'f ] s i n c o s h ^ m

+ ^ m [ ^ - vV 2("l^ )2] - [ ^ + v ^ 2(w ^)2] s in h |/ ? mc o s ^ m = 0  (5.38)

By substituting Pm and ym in terms of X in Equation (5.38) and solving for different 

values of m, gives us different eigenvalues X .

By setting Dm = 1 in Equation (5.35), we get Am as

A_ =
[Vm + Vxy(t>2 (m7r)2 ] COS Ym 

\_Pm ~ vxy<P2 (w/r)2 ] cosh ^  fim

By substituting Dm and Am in Equation (5.28) and then into Equation (5.20), we get 

mode shape of the plate as

w(£,ri) = cos ymri +
[ r 2m+ v J 2(m7r)2~\cos~ym

\_Pm~ v x y ^ 2 (mn)2 ]  c o s h  ^  Pn
-cosh p mri sin mnE, (5.39)

Antisymmetric modes:

Restricting to only anti-symmetric modes, we can delete the symmetric terms 

from Equations (5.24) and (5.25).

For C, > y jc 2 - C 2 +X4
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Ym (Jl) = Bm sinhp mrt + Cm sinh ym7 (5.40)

For C, < yjcf -  C2 + ;l4 

^  ft) = sinh Pmn + Cm sin y j i  

For C, > /̂C,2 -  C2 + ^4

By substituting (5.40) into (5.20), we get the solution as 

M£,rj) = {Bm sinhPmr] + Cm sinh ym7 )sin mn$

gVVy ,?7) = iBmPm coshp mt] + Cmym coshymij)s\nmK^

5 sinh/?m7  + Cmy 2m sinhym7])smmn%
8 tj

d ^ 3,77) = (BmPi coshPmTi + Cmyl  coshy mr])s\nmn^
or]

a w ( ^ )  = sinh/?m7 + Cm sinhymrj)cosm7T̂

9 =(m x)2 {Bm sinh Pmr] + Cra sinh r m7X -sin mng)

9 = m̂t^ 2(BmPm cosh Pmr] + Cmy m cosh ym r] \-  sin m ^ )
OT]d$

Equation (5.29) becomes

f 1 1
^BmPm sinh —/?m + Cmyl sinh — | sin««f

2 i f  1 1 A(mn) Bm sinh - p m+Cm sinh -  ym ( -  sin w ^ )  = 0
V z z y

(5.41)
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i.e

Bm \_Pl -  V. J 2{ m n f  ] sinh ̂ p m + Cm [ y 2m -  v j 2{ m n f  ] sinh]-ym = 0 (5.42)

and

?3 . 1 ~ ~ , , 1BmPm c° s h ~ Pm + Cmy m cosh- y m sinm 71% 
Z Z J

f 1 1
+ v (/) {mn) Bmp m cosh- f i m +Cmym cosh- y m (-sinm /z£) = 0

V 4 1 J

i.e.

BmP \ p l  - v > 2(rn^)2]cosh^/?m +Cmym[r2m - v > 2(w;r)2]co sh ^y m - 0  

Equations (5.42) and (5.43) can be written as

[Pm ~ Vxy(t>2 (mn )2 ] sinh Pm [ y 2m - v ^ 2(m7r)2]sin h ^ ym

Pm\_Pl~vV 2{m n f] cosh^ p m ym[ y 2m- v <fi2{mn)2] cosh~y,

To satisfy Equation (5.44), determinant of the first term has to be equal to zero

1 X 1 ‘o'
C 0L w

\_Pl ~ v j 1 )2 ] sinh ̂ P m [ r l -  v ^ 2 {mn)2 ] sinh ~  ym

Pm\_Pl- v'<t>2 (mjt)2 ] cosh ̂ Pm rm[ r l ~  v f -  {mn)2 ] cosh ̂  yn
=  0

(5.43)

(5.44)

Which gives us the Eigen-value equation as

rm [ r l  ~ vV 2 { m n f  ]. [ p 2 -  v ^ 2 { m n f  ]  cosh ̂  ym sinh ̂  p m

~Pm [ P l~ v  <l>2{ m n f ^ ! \ j 2m- v xy(l)2{m n f'\  cosh ̂ p m sinh |  ym =0  (5.45)

By substituting Pm and ym in terms of X in Equation (5.45) and solving for different 

values o f m, gives us different eigenvalues X .
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By setting Cm = 1 in Equation (5.42), we get Bm as

B =
[ r 2m~vxy<l>2(m7t)2]sinh^ym

By substituting Cm and Bm in Equation (5.40) and then into Equation (5.20), we get 

mode shape of the plate as

K&*7) = sinh?V7-
\_Ym ~ vxy(t>2 (m7r)2 ] sinh 7  yn

[_ P l-Vj \ m^ ) 2^ ^ \ P n
■sinh/?m/7 sin mnE,

For C, < VC,2 - C 2 + A4

By substituting (5.41) into (5.20), we get the solution as 

w(Z ,ti) = (Bmsinh PmTj + Cm sin ym̂ )sin mnE,

•̂v / C \
— = {BmPm coshPmrt + Cmym cosym̂ ) s in rn ^

OT]

= [BmP l sinh/?m77 ~ Cmy 2m smym7])smmn$
07]

9 = [BmP l cosh p m7] -  c y m cosym7])s\nmn$
07]

\

— - 7 —  = (mn){Bm sinh^ffl?7 + Cm sm ym7])cosmn%
dE,

^  = (m7r)2(Bm sinhPmT] + Cm sin y m7]\-sin  m n^)

= ( w 3 ; r ) 2 c o s h P ^  + C^rn  cosr m7X -sin W ^ )dijog

(5.46)

Equation (5.29) becomes
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1 . 1
B„,Pm sin h —Pm -  Cmym s i n - y m sin mn% 

2. I  y

+v J ) 2 {mn)2 Bm sinh ~ p m+Cm sin -  ym ( -  sin mnp) = 0

i.e

Bm \_Pl - v j 1 {mn)2] sinh\ p m- C m[ y 2m + vx/ { m n ) 2] sin \>ym = 0

(5-47)

and

7 3 1 1 ^
BmPm cosh-P m  ~ Cmy m cos-  y m sin mn£, 

V 1 z )

(   ̂ } A
+ v*tf>2 (m n )2 Bmp mco sh -/3 m +Cmymc o s - y m {-smmn% ) = 0

v z z )

i.e.

BmPm \pm -  v > 2 (w ;r) 2 ]coslX /?m -  Cmym[y2m + v '>2 {m n)2 ]cos± y m = 0

Equations (5.47) and (5.48) can be written as

[ p 2m ~ vxy</>2{mn)2] s i n h f5m - [ y 2m+ v j 2{mn)2] s m ^ y m X' 'o'
P m [P l- vV 2 {mn)2 ] cosh ̂  pm -y m [y 2m + v> 2 {mn)2 ] cos ̂  ym c m_ 0_

To satisfy Equation (5.49), determinant of the first term has to be equal to zero.

[Pm ~ Vxy<f>2 {mn)2 ] sinh -j Pm - [ y 2 + v j 2{mn)2] s in ^ y m 

Pm [ Pi ~ vV 2 {mn)2 ] cosh]-p m -y m [y l  + v> 2 {mn)2 ] cos ]- yn
= 0

Which gives us the Eigen-value equation as

(5.48)

(5.49)
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rm [rl + v> 2(w;r)2].[/?2 -  v^2(m^ )2 ] c o s y m sinh^/?m

- / ?m[ ^ - vV 2( ^ ) 2] - [ ^ + v^ 2( ^ ) 2]cosh^-/?ms in ^ x m = 0  (5.50)

By substituting fim and ym in terms of A in Equation (5.50) and solving for different 

values o f m, gives us different eigenvalues A .

By setting Cm = 1 in Equation (5.47), we get Bm as

W i + vXy<t>2 (rrm)2 ] sin — ym 
Bm = + ------------------------------- ------

\__Pm ^xy4  ̂ ] sinh ~  Pm

By substituting Cm and Bm in Equation (5.41) and then into Equation (5.20), we get 

mode shape o f the plate as

[Vm + Vxy</>2 (mn )2 ] sin — ym
sin + ------------------------------ 4-----sinh Pmrj

\_Pm ~ Vxy<t>1 (m x)2 ]  sinh—(3m
sin mn£, (5.51)

Category II:

This category represents the set o f solutions when the quantity in the inner square 

root sign is imaginary.

If C2 - C 2 >A4

The corresponding solution for Equation (5.22) is given by Jayaraman G. et. al. [6] as 

Ym(v) = cosh/?m77.cos ymrj + Bm cosh p mrj. sin ymr] + Cm sinh f i j i .  cos ymrj + Dm sinh p mrt.sin ymr]

(5.52)

We can separate the symmetrical modes and anti-symmetrical modes from the above 

equation.
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Ym(n) = Am coshp mr1.cosymr1 + Dm sinhPm 17.sinymrj (5.53)

And for Anti-symmetrical modes, the solution can be written as,

Ym(7) = Bm coshp mrt.sin ymrj + Cm sinh/3m 17.c o s 77 (5.54)

Symmetrical modes:

The solution (as given in Equation (5.20)) to the differential Equation (5.19) is in 

the form of

k
w(&*7) = Z  07):sin mn%

m =\

For the symmetrical modes, this equation becomes

w(£, 7 ) = (Am cosh P j !  cos y mr] + Dm sinh p mri sin y mt] ) s m m ^

— = ( A A  s i n h 7 cos ̂ 77 ~ AmYm cosh Pmri sin ymrj 
or/

+ DmPm cosh p mr] sin ymrt + Dmy m sinh p mri cos ymr7) sin mid;

= C° Sh^  C° SYmT1 ~ Am(5jm sinh^  s in^

~AmYmPm sinh Pmi) sin ymT] -  Amy 2m cosh Pj i  cos y j ]

+DJ l  sinh p j i  sin ymij + Dmymp m cosh p j t  cos y j]

+DmYmPm cosh PmH cosy j j  - Dmy 2m sinh p mri sin ymrj)sinmn$

8  d ^ 3,77) =  ( A  A  sinh  P j i  cos y j )  -  Amp 2mym cosh p j j  sin y j i

- AmP lrm cosh P ji  sin y j f  -  Ampmy2m sinh pmri cos y j i  

~AmYmPm cosh f i j )  sin y j t  -  Amy 2J m sinh p j i  cos y j i

For the symmetrical modes, the solution can be written as
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- AmrlPm sinh Pj i  cos rmn + Amrl  cosh p j  sin y j

+DJ l ,  cosh p j j  sin y j  + Dmy J l  sinh Pmrj cos y j j

+DJ l r m sinh Pj j  cos y j  -  D j~mp m cosh p j  sin y j

+DmYmP2m Sinh P jl  COS Y J1 ~ Dj l P m COSh P jj  sin J

- DmYlPm cosh PmV sin YJ! ~ Dmy 3m sinh p j  cos y j j )  sin

= m n ( Am coshp mrt cosy j  + Dm sinh p m77 s iny j ) cosmn£

32w(^,r])
d ?

= -{m n )2 (Am cosh /3 j  cos y j  + Dm sinh p j i  sin y j ) sin mnE,

d ? fig
= -{m n j2 (AmPm sinh p mT] cos y j  -  Amym cosh p j j  sin y j

+DmPm cosh Pj i  sin y j  + Dmym sinh P j  cos y j )  sin mn$ 

The boundary conditions of Equation (5.29) become

[ AJ l  c o sh ^ p m cos~ y m~ Amp mym sinh~ P m s i n | ym

2 1 1 
AmYmPm Sinh T  Pm Sln ~ Y m~ AmYm COSh -  /?„ COS- Ym1 /? • 1 -  Pm sin —

2 2 '

+DmP 2 sinh — Pm sin — ym + D v B m cosh —,6m cos—rTT\ ’ ftl ry ’ TYl ^  M W > KH/ ttl ^  M ry ' tT\

1 1 1 1
+DmYmPm cosh -  p m cos - y m-  Dmy 2m sinh -  p m sin -  ym ] sin mn%

2 2 1 1 1 1
- v j  (mn) Amc o s \i -p mc o s - y m+Dms v r ti-p ms r n -y m s in m ^  = 0

and,
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f A B 2 sinh — Bm cos — y -  A B 2ym cosh — /? sin — vL mi m r̂ i tn ^  ' m mi mi m m ^  ' m

-A mB2vm cosh— B s in - y  -  A B y*  sinh — /?, cos—ymi mi m i m ^  /  m mi mi m ^  ’ m ^  ' m

2 1 1 2 1 1 ~AmYmPm cosh—/?m Si n - y m- A mymPm sinh ~ P m c o s - ^ m

~Amr lP m sinh^ m c o s ^ /m + Amr l  cosh^/?m s i n | / m

+DJ i  c o s h |13m sin^ y m + Dmy J 2m sinh j p m c o s |

+DmP lr m s in h | /?m cos^  ym -  Dmy 2mp m c o s h |p m sin |  r ra

+Dmy J 2m sinh^/?m c o s ^ m - D j 2mPm cos\v~pm s i n ^ / m

~Dmr 2mPm cosh “  Pm sin ̂  s in h ^ p m cos |  ]sin

- v > 2{mn)2(.Amp m sinh^p m c o s -  v4m̂ m c o s h |p m sin^

+ A A  c°sh^y?m s in ^ /m +Z)m/ m sinh^y?m cos sin = 0

These equations can be written as 

(A \l.A m + A\2.Dm).sin = 0

(A21.Am + A22.Dm).sinm n iff = 0 

Where,

A11 = P l cosh — Pm cos — y -  /? y sinh — p m sin — y - ymp m sinh — P  s in - y' m ^  ^  /  m i mi m ^  m  ̂i m • m* m ^  ' m  ̂i m

(5.55a)

(5.55b)
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and

A 12 =

A21 =

A22 =

- r i  cosh^/?m c o s ^ m -Vxy</>2(m7r)2 cosh ̂ p m cos~ym1 /? 1— pn cos—
2 2

€  s i n h |p m sin^ y m + y j m c o s h |Pm c o s c o s h ^ p m c o s i

-r« sinh 2T Pm \  Ym ~ v j 2 (mn)2 sinh ̂  pm sin ̂  ym

Pi sinh |  Pm cos |  "  P iYm cosh j  pm sin |

2 1 1 2 1 1 
-PmYm c°sh- p m s in - /m - Pmym sinh~ p m cos

2 1 1 2 1 1-YmPm cosh — /? sin — y -  v Pm sinh—/? cos—y• m r  m ^  w ^  ^  ' m> m ^  • m ^  • m

-y2pm sinh — /? cos—v + yf, cosh — /? sin — v• mr m ' m • m • m  ̂• m ry • m

y 1 1 1 1-v (j> (nut) Pm sinh -  pm cos -  ym -  ym cosh -  pm sin -  ym 
\  z  z  z  z

Pi coshiPm sin~ y m+ ymp 2m sinh\ P m cos^ym
2 ‘

2 1 1 2 1 1+PmYm smh -  pm cos - y m-  y j m cosh -  Pm sin -  ym

+ymPi sinh — Pm cos—v -  y2/? cosh — Pm sin — v• m* m 2 ' m 2 ' m /  mi m # /w ry ' m

-YiPm cosh- pm sin^ y m- y i  sinh^Pm cos^
2 '

1 . 1 1 1-v <t>~ (nut) Pm cosh -  pm sin -  ym + ym sinh -  /?,„ cos -  y,
V z  z  z  z  j
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These equations can be written in a matrix form as

"AW A\2~
A21 A22 A .

(5.56)

To satisfy the Equation (5.56), the determinant o f the first matrix has to equal to zero.

AW A\2 
A21 A22

=  0 (5.57)

This gives us the Eigen-value equation as

AW.A22 -  A12.A21 = 0 (5.58)

By setting Dm= 1, from Equation (5.55 a)

A = -
A\2
^11

By substituting Dm and Am in Equation (5.53) and then into Equation (5.20), we get

mode shape o f the plate as,

,412
w(£ ,77)=  sinh f i j i  sin ymrj— —  

V A\ 1
cosh Pmrj cos ymrj sin mnZ, (5.59)

Anti-symmetrical modes:

For the anti-symmetrical modes the solution of differential Equation (5.19) can be 

written as

= Y JYm(.Tl)sinm7tZ
m=1

coshp mri sin ymrj + Cm sinhPmT]cosy ^ s m m n Z  

— = (Bm p m sinh (3m rj sin ym77 + Bm ym cosh Pmtj cos ymtj
OTj

+ Cm Pm cosh p m77 cos ymrj -  Cmym sinh (im77 sin ym77) sin mnZ,
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~Bn,rmPm s inh P j l cos 7J1 -  Bmy 2m cosh Pmrt sin y j ]

+CmPl sinh P j l cos y j l  -  Cmymp m cosh p mrj s in ymrj 

~c mymp m cosh PmH sin y j i -  Cmy 2m sinh PmT) cos y j f )  s in mnE,

•~- g(̂ 3,?7) = (BmPl sinh P j i  sin ymn + B m C«sh p j ]  COS yJ]

+BmP iy m cosh P j 1 cos y ^  -  K P my l  s inh p j l  sin y j i  

+ Bn,ymP 2m cosh P j ]  cos ymT] -  Bmy 2mp m sinh p mT] sin y j t  

~Bmy lP m s inh P j ]  sin y j )  -  Bmy 3m cosh Pmri cos ymrj 

+ C X  cosh p mr] cos y j j  -  Cmymp 2m sinh p mrj s in y j i  

- C J l y m s inh P j ]  sin y j i  -  Cmy 2mp m cosh P j i  cos y j t  

~CmymP l  sinh P j i  sin y j ]  -  Cmy 2J m cosh p mrt cos y j !  

-C my iP m cosh p mT] cos y j i  +  Cmy 3m s inh p mrj s in ymrj) sin mn%

— = m^ { Bn, cosh p mT] cos y j i  +  Cm sinh p j j  sin ymri)cos rrm%

=  - ( m7rf  ( Bn, cosh Pj i  cos y j t  +  Cm s inh p j ]  s in y j j )  s in mnE,

~ d r j d ^  = ~(m7r>)2 sinh P”71 sin YJI + B’”r " 'cosh P™71 cos YJI

+c mPm cosh Pj i  cos y j j  -  Cmym sinh Pj i  sin y j j )  s in mnE, 

The boundary cond itions o f  E quation (5.29) become

5 d ^ 2,?7) = (BmPl cosh PmV sin y j l  + BmP j m sinh Pj i  cos y j ]
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[ Pi cosh — Pm sin — /„, + Bm Bm v sinh — /?„, cos — vffi / /m ^ ' w 2 ' ^ w / w» w ^ * w 2 *

. ,  i i i „ . is in h -/?m cos- y m- B mym cosh- p m s in - / ,
2 ‘ m 2 ' m m 2 ' m 2 7 w

+ c »#! sinh—/?m c o s i / m -  Cmy J m cosh s i n ^ / m

-C mY j m cosh^/?m s i n ^ / m - C ny 2 s i n h Pm c o s ^ /m js in m ^

~vxy(t>2 (mft)2
f  1 1  1 1 A

i?m cosh—Pm cos—/ m + Cm sinh—Pm sin—/ m sin runt; = 0 
2 2 2 2 y

and,

[ BmP l sinh -  p m sin |  / m + B J 2mym cosh |  p m cos |  /„

+Bmp 2mYm cosh^/?m cos^-/m - B J my 2m sinh^/?m s i n ^ / m

2 1 1 2 1 1
+Bmymp-m cosh- p m cos- y m- B my J m s in h -/?m s in - / , ,w /  m r 'm  ^  '  m ^  /  m m /  m r  m ^  / m ^  1

-Bmy lP m sinh — Bm sin — /  -  B v \  cosh — /? cos — r• W/ ttl 2  /  W 2  W ^ ' W /-> / /M r\ > M

+CmBl cosh — Bm cos— r  - C v mPl  sinh — /? sin — yw / w 2 ' m 2 m m' m' m 2 m 2 ' m

2 1 1 ,
- C J mym sinh- P m sm - y m- C my J m co sh -/? ra c o s - / ra1 /? 1~ P m cos—

2 2'

1 „ . 1 1 1
Cmy J m sinh—/?„, sin—/ m - C my J m cosh- p m c o s - / ,

c o s h | A, c o s ^ /m +C m/^  s i n h Pm s i n | / m ]sin

. 2 2 1 1  1 1-v <j> {mx) (Bmp m s in h -/?m s i n - / m + 5 m/ ra co sh -/?m c o s - / ,
2 ' m 2 m
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These equations can be written as 

(̂ 41 l.i?m + y412.Cm).sin /M ^ = 0

(A21.Bm + A22.Cm). sin nutE, = 0 

Where,

+ Q A  cosh |  p m cos^ r m-  Cmy m sinh |y ? m sin i ) sin mn£ = 0

A\\ = Pi cosh — /? sin —y + /? y sinh — p  cos—v - y mpm sinh — /? cos—r• tn ^  t  tn Ttx / w / m ^  * tn ^  t tn / tn / tn ^  '  tn 2  * ^

1 1 1- r„  c°sh —/?„ sin — - v ^  (nrn) cosh T /?ffl cos 1

1 1 1 . 1 1 . 1
^  2 = Pm sinh -  pm cos -  -  y j m cosh -  Pm sin - y m-  y j m cosh -  pm sin -  ym

1 1 . , 1 „ . 1-Ym sinh - Pm cos -  ym -  v j  (mrc) sinh -  Pm sin -

= Pm sinh -7 Pm

+PlYm cosh ̂ Pm cos± y m-  pmy2m s in h |pm sin |

+ r J l  cosh i  Pm cos |  -  y2mpm sinh ~ Pm sin |

~V2J m s in h |pm sin-  / m - y’ c o s h |Pm cos^ym

. 2 2  1 1  1 1-v  (/)' (nrn) (Pm sinh -  pm sin -  ym + ym cosh -  pm cos -  ym)

A22 = Pi cosh — p  cos — y -  ymPl sinh — /?m sin — y• tn ^  m ^  W ' ftl' tn ^  ttl • tn

-P ly -  sinh — /?m sin —r  -y tP „  cosh — /?„, cos — y• m / tn ^  '  tn ^  t tn t tn / tn ^  '  tn ^  ' m

(5.60a)

(5.60b)

-Jm

r m
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- y mBi sinh —B sin — v - v 2/? cosh — /? cos —y* tn * w ^  ^  m • in • tn ^  * w 2  Jw

- y 2Pm cosh — cos—ym + y2 sinh — Bm sin—v* /n'  w /-» '  tn r\ • tn • in • tn r\ • tn

1 1 1 1
-V (f) (nut) (Pm cosh -  p m cos - y m- y m sinh -  p m sin -  ym)

These equations can be written in a matrix form as,

' A ll A12 ' K
A l l A22 X .

(5.61)

To satisfy the Equation (5.61), the determinant of the first matrix has to equal to zero. 

= 0
A ll  A12 
A21 A22

This gives us the Eigen-value equation as

A ll.A 2 2 -A l2 .A 2 l = 0

By setting Cm = 1, from Equation (5.60a)

(5.62)

B _ = - A l2 
A ll

By substituting Cm and Bm in Equation (5.54) and then into Equation (5.20), we get

mode shape of the plate as,

(  4̂12 ^w(%,7j)= sinh PmT) cos ymij— —  cosh Pmrj sin ymT] sin mn% 
\  A ll

(5.63)

As seen earlier, the modulus o f rigidities such as flexural rigidity and torsional 

rigidity (Dx,Dy,H )  tell us the behavior o f the plate. Depending upon the values of

H  D
C, =-^-(m 7t)2 and C2 = ^ -(m 7 t)4, we have two different categories.
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Category I:

If C2- C 2 <A4

This category represents the plates which are stronger in torsion than in flexure 

and is subdivided into two subcategories as,

Category 1(a):

If C, > ^C,2 - C 2 + T4 and,

Category 1(b):

If  C, <Vc,2- C 2+/l4

Category II:

If C2- C 2 >A4

This category represents the plates which are stronger in flexure than in torsion. 

Depending upon the natural frequency o f the plate T4, the plate in consideration either 

falls into category 1(a), 1(b) or category II for each mode. Only the first four natural 

frequencies (m = 1,2 : n = 1,2) are considered in this study. The Eigen-value Equations 

(5.33), (5.38), (5.45), (5.50), (5.58), and (5.62) are used to calculate the Eigen-values of 

the orthotropic plates.

A MATLAB program is written to solve these equations by trial and error 

method. To verify the results from this program, a sample isotropic plate with two 

opposite edges simply supported and the other two free is considered and the eigen­

values are compared with the eigen-values presented by Gorman D. J. [14] as shown in

Table 6. An isotropic plate with the aspect ratio of — = 1 and poisons ratio of 0.333 is
a

considered for the comparison.
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Table 6: Comparison of the first four eigen-values with the eigen-values derived by
Gorman D. J. [14],

Modes Gorman D. J. Current study

(1,1) 9.568 9.565
G.2) 15.88 15.885
(2,1) 38.79 38.795
(2.2) 46.33 46.335

From Table 6, we can see that the eigen-values calculated by a program in 

MATLAB are in very good agreement with the eigen-values derived by Gorman D. J. 

[14].

To verify the accuracy o f the program for orthotropic plates, an orthotropic plate 

(Two edges simply supported and the other two free) used by Jayaraman G. et. al. [6]

with the aspect ratio o f 1 (i.e. — = 1) and poisons ratio of 0.3 is solved for different
a

rigidity ratios, and the first four Eigen-values are compared with the frequency 

parameters given by Jayaraman G. et. al. [6]. We can see from Table 7 that the Eigen­

values calculated from a MATLAB program are well matched with the frequency 

parameter given by Jayaraman G. et. al. [6].

Table 8 shows us the mode shape categorization o f orthotropic plates for different 

H  D
values of C, = -— {m nj2 and C2 = for the modes with m = 1, that means for the

modes (1,1) and (1,2).
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Table 7: Comparison of the first four eigen-values with the frequency parameters derived
by Jayaraman et. al. [6],

H/Dy
Dx/Dy Modes 0.5 1 2

Jayaraman Current Jayaraman 1Current Jayaraman Current
et. al. study et. al. study et. al. study

(1.1) 6.4705 6.45 6.6377 6.65 6.7529 6.75

0.5 (1.2) 9.5537 9.55 14.5474 14.55 20.8297 20.85
(2,1) 26.4882 26.45 27.1557 27.15 27.4505 27.45
(2,2) 29.9614 29.95 37.4857 37.45 47.6178 47.65
(1.1) 9.5169 9.55 9.6314 9.65 9.7111 9.75

1 (1.2) 11.8312 11.85 16.1348 16.15 21.9677 21.95
(2,1) 38.4824 38.45 38.9449 38.95 39.151 39.15
(2,2) 40.9506 40.95 46.7381 46.75 55.1972 55.15
(1.1) 13.7106 13.75 13.7903 13.75 13.8461 13.85
(1,2) 15.4074 15.45 18.9140 18.95 24.0830 24.05
(2,1) 55.1311 55.15 55.4550 55.45 55.5998 55.55
(2,2) 56.8814 56.85 61.1800 61.15 67.8621 67.85
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Table 8: Categorization o f orthotropic plates in accordance with the rigidity ratios.

Dx

Dy
% y = 0-25

©II il

% y - 2

1/2 11 0 < A2 < 6.528 0 < A2 < 4.934 - -
1(a) 6.528 < A2 < 6.978 4.934 < A2 <6.978 0 <  A2 <6.978 0 <  A2 <6.978
1(b) 6.978 < X1 6.978 < A2 6.978 < A2 6.978 < A2

1 II 0<  A2 <9.556 0 < A2 <8.547 - -
1(a) 9.556 < X  <9.869 8.547 < A2 <9.869 0 < A2 <9.869 0 <  A2 <9.869
1(b) 9.869 < A2 9.869 < A2 9.869 < A2 9.869 < A2

2 II 0 < X  <13.737 0 < A2 <13.056 0 <  A2 <9.8696 -
1(a) 13.737 < X2 <13.957 13.056 < A2 <13.957 9.8696 < A2 <13.957 0 <  A2 <13.957
1(b) 13.957 < X2 13.957 < A2 13.957 < A2 13.957 < A2

3 II 0 < A 2 <16.915 0 <  A2 <16.366 0<  A2 <13.957 -
1(a) 16.915 < X2 <17.094 16.366 < A2 <17.094 13.957 < A2 <17.094 0 <  A2 <17.094
1(b) 17.094 < A2 17.094 < A2 17.094 < A2 17.094 < A2

4 II 0 < A 2 <19.584 0 < A2 < 19.112 0<  A2 <19.094 -
1(a) 19.584 < A2 <19.739 19.112 < A2 <19.739 19.094 < A2 <19.739 0 <  A2 <19.739
1(b) 19.739 < A2 19.739 < A2 19.739 < A2 19.739 < A2



Table 8 contd: Categorization o f orthotropic plates in accordance with the rigidity ratios.

Dx

Dy
% , = 0-25 HA - 0 5

II H/ =2/ D y

5 II 0 < / l 2 <21.930 0 < A2 < 21.510 0 <  A2 <19.739 0 <  A2 <9.869
1(a) 21.930 < /l2 <22.069 21.510 < A2 <22.069 19.739 < A2 <22.069 9.869 < A2 <22.069
1(b) 22.069 < A2 22.069 < X2 22.069 < A2 22.069 < A2

6 II 0 <  A2 <24.049 0 < A2 < 23.666 0 < A2 < 22.069 0 <  A2 <13.957
1(a) 24.049 < A2 <24.175 23.666 < A2 < 24.175 22.069 < A2 <24.175 13.957 < A2 <24.175
1(b) 24.175 < A2 24.175 < /l2 24.175 < A2 24.175 < A2

7 II 0<  A2 <25.995 0 <  A2 <25.641 0<  A2 <24.175 0 <  A2 <17.094
1(a) 25.995 < A2 <26.112 25.641 < A2 <26.112 24.175 < A2 <26.112 17.094 < A2 <26.112
1(b) 26.112 < A2 26.112 < A2 26.112 < A2 26.112 < A2

8 II 0 < A 2 <27.806 0 <  A2 <27.475 0 < A 2 <26.112 0 <  A2 <19.739
1(a) 27.806 < A2 <27.915 27.475 < A2 <27.915 26.112<A2 <27.915 19.739 < A2 <27.915
1(b) 27.915 < X2 27.915 < A2 27.915 < A2 27.915 < A2

9 II 0 < A2 < 29.505 0 <  A2 <29.194 0<  A2 <27.915 0 <  A2 <22.069
1(a) 29.505 < A2 < 29.608 29.194 < A2 <29.608 27.915 < A2 <29.608 22.069 < A2 < 29.608
1(b) 29.608 < X2 29.608 < A2 29.608 < A2 29.608 < A2



To study the mode shape categorization of orthotropic plates according to the

rigidity ratios, a sample orthotropic plate is considered as shown is Figure 13.

x

In this investigation, the sample data used for the analysis is

a = 36 f t
b = \S ft

b /  
/  a = 0.5

h = 0.5 f t  
v ^ =  0.333

Table 9 shows the first four Eigen-values o f orthotropic plates for different rigidity ratios.

These Eigen-values are compared with the categorization limits given in Table 8. In the

Table 10, the categories are defined for an orthotropic plate with different rigidity ratios. 

For all the plates with any ratio o f flexural rigidity in X and Y direction considered in this

investigation, the plates with the torsional rigidity ratio, —  of 0.25 only falls in the

category II for modes (1,1) and (2,1). All the other plates with higher torsional rigidity 

ratios fall under category I-a for modes (1,1) and (2,1). All the plates studied here fall in 

the category I-b for modes (1,2) and (2,2).
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Table 9: First four eigen-values of an orthotropic plate for different rigidity ratios.

Dx/Dy Mode
0.25 0.5 1 2

(1,1) 6.15 6.25 6.35 6.45

0 5 (1.2) 247.85 14.15 26.05 40.05
(2,1) 24.25 25.25 26.15 26.75
(2,2) 252.35 36.05 57.05 82.75
( 1 , D 9.25 9.35 9.45 9.55

1 (1,2) 247.95 15.75 26.95 40.65
(2,1) 36.95 37.65 38.25 38.65
(2,2) 253.85 45.65 63.55 87.35
(1,1) 13.55 13.55 13.65 13.75

2 (1,2) 248.15 18.65 28.65 41.85
(2,1) 54.05 54.55 54.95 55.25
(2,2) 256.95 60.35 74.75 95.85
(1,1) 16.75 16.85 16.85 16.85

3 (1,2) 248.35 21.05 30.35 42.95
(2,1) 66.95 67.35 67.65 67.95
(2,2) 259.95 72.15 84.55 103.65
(1,1) 19.45 19.45 19.55 19.55

4 (1,2) 248.55 23.25 31.95 44.15
(2,1) 77.75 78.05 78.35 78.55
(2,2) 262.95 82.25 93.35 110.95
(1,1) 21.85 21.85 21.85 21.95

5 (1,2) 248.75 25.25 33.45 45.15
(2,1) 87.15 87.45 87.75 87.95
(2,2) 265.85 91.15 101.35 117.75
(1,1) 23.95 23.95 24.05 24.05

6 (1,2) 248.95 27.15 34.85 46.25
(2,1) 95.65 95.95 96.25 96.35
(2,2) 268.75 99.35 108.75 124.15
(1.1) 25.85 25.95 25.95 25.95

7 (1,2) 249.05 28.85 36.25 47.25
(2,1) 103.55 103.75 104.05 104.15
(2,2) 271.65 106.95 115.75 130.25
(1,1) 27.75 27.75 27.75 27.75

8 (1,2) 249.25 30.55 37.55 48.35
(2,1) 110.75 111.05 111.25 111.35
(2,2) 274.55 113.95 122.25 136.15
(1,1) 29.45 29.45 29.45 29.45

9 (1,2) 249.45 32.05 38.75 49.35
(2,1) 118.05 117.85 118.05 118.15
(2,2) 277.35 120.65 128.45 141.75
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Table 10: Categories of orthotropic plates with different rigidity ratios for the first four 
mode shapes.

Dx/Dy Mode -------------
____ ________________ 025

(1.1) II

0.5 <1-2> '-b
(2.1) II

_________ (2,2) l-b
(1.1) II

! (1.2) l-b
(2.1) II

_________ (2,2) l-b
(1.1) II

2 (1.2) l-b
(2.1) II

_________ (2,2) l-b
( 1 . 1 )  II

3 (1,2) l-b
(2.1) N

_________ (2,2) l-b
( 1 . 1 )  M

4 (1,2) l-b
( 2. 1 )  II

_________ (2,2) l-b
( 1 . 1 )  N

5 (1,2) l-b
( 2 . 1 )  II

_________ (2,2) l-b
(1.1) N

6 (1,2) l-b
( 2. 1 )  II

_________ (2,2) l-b
( 1 . 1 )  II

7 (1,2) l-b
( 2. 1 )  II

_________ (2,2) l-b
(1.1) N

8 (1,2) l-b
( 2 . 1 )  II

_________ (2^2)_______ hb_
(1.1) N

9 (1,2) l-b
( 2 . 1 )  II

_________ ___________ hb_

H/Dy_____________
0.5 1_______2_
l-a l-a l-a
l-b l-b l-b
l-a l-a l-a
l-b______ hb____ l-b
l-a l-a l-a
l-b l-b l-b
l-a l-a l-a
l-b l-b l-b
l-a l-a l-a
l-b l-b l-b
l-a l-a l-a
l-b______ hb____ fb^
l-a l-a l-a
l-b l-b l-b
l-a l-a l-a
l-b l-b l-b
l-a l-a l-a
l-b l-b l-b
l-a l-a l-a
l-b______ l-b____ fib
l-a l-a l-a
l-b l-b l-b
l-a l-a l-a
l-b l-b l-b
l-a l-a l-a
l-b l-b l-b
l-a l-a l-a
l-b l-b l-b
l-a l-a l-a
l-b l-b l-b
l-a l-a l-a
l-b l-b l-b
l-a l-a l-a
l-b l-b l-b
l-a l-a l-a
l-b l-b l-b
l-a l-a l-a
l-b l-b l-b
l-a l-a l-a
l-b l-b l-b
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V-c: Analysis of Orthotropic Plates under Moving Loads 

Natural mode shapes wmn (x ,y )  calculated for each category as explained in the

previous section are substituted into the equation of motion given in Equation (5.13) to 

get the mass matrix, damping matrix, stiffness matrix, and the force matrix. Two 

MATLAB programs are written to calculate the response in terms o f vertical 

displacements of an orthotropic plate by considering two different possibilities as per the 

Table 10. First program gives the response o f the plates which fall into category-la for 

modes (1,1) and (2,1), and fall into category-lb for modes (1,2) and (2,2). Second 

program gives the response in terms of vertical displacements of the plates which fall into 

category-II for modes (1,1) and (2,1), and fall into category-lb for modes (1,2) and (2,2). 

Depending on in which category the given orthotropic plate falls in, the respective natural 

mode shape equations from the section V-b are substituted into the equation of motion. 

MATLAB codes given in Appendix-D are used to get the mass matrix, damping matrix, 

stiffness matrix, and force matrix required in the equation o f motion. The forcing

a b N„

function in the equation o f motion is P = (t)S(x x, {t))<5(y y t {t))wmn (x ,y)dxdy ,
0 0 '=1

where Pl (/) is the Ith load moving on the bridge at tim e t. The movement of this Ith load

in the X and Y direction of the plate is represented by two Dirac-delta

functions 8  (x -  x,, (t)) and 5  (y  -  y, (t)) respectively. Equation of motion given in

Equation (5.13) is an ordinary differential equation and is solved by the Runge-Kutta 

method by using a MATLAB code shown in Appendix-D.

To check the accuracy of these two programs in MATLAB, a sample isotropic 

plate is considered and the results are compared with the responses in terms of vertical
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displacements investigated by Jong-Shyong Wu et. at. [15]. The dimensions and physical 

properties of the plate are a = 36 f t , b = 12 f t , h = 0.5 f t , v = 0.3 , E = 4.32x109 p s f  , and 

p  = 15.19slugs / f t 3. A single moving load with a magnitude of 20,000 lb is considered to 

move with a speed of 36 f t  / sec (24.69 mph) and 12 f t  / sec (49.39 mph) on a center line 

of the plate. Figures 14 and 15 show response history of vertical displacements at the 

center o f the plate with a load o f magnitude 20,000 lb moving at the speed of 36ft/sec and 

72 ft/sec respectively. Maximum vertical displacements from Figures 14 and 15 are 

compared with the displacements investigated by Jong-Shyong Wu et. at. [15] in Table 

11.

Table 11: Comparison o f maximum vertical displacements with the 
displacements investigated by Jong-Shyong Wu et. at. [15].

Speed
(ft/sec) Vertical displacement (in.)

MATLAB Wu et. al. % difference
36 0.492 0.466 5.57
72 0.624 0.610 2.29

From Table 11 we can see that the results from the MATLAB program are in a 

good agreement with the displacements investigated by Jong-Shyong Wu et. at. [15]. 

Accuracy of the two programs for the orthotropic plates is checked by considering two 

different types of orthotropic plates. The time history o f vertical displacements is 

compared with the results from the finite element analysis of the same plates using the 

finite element analysis package NISA [2],

73



Figure 14: Vertical displacement history at the center of the plate with a load of 

magnitude 20,000 lb moving at the speed of 36ft/sec (24.69 mph).

Figure 15: Vertical displacement history at the center of the plate with a load of 
magnitude 20,000 lb moving at the speed o f 72 ft/sec (49.39 mph).
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The dimensions and physical properties of the first plate considered are a = 36 f t ,

b = \% ft, h = 0 .5 ft, vxy=0.3, Dx = 5.06 y-XO1 lb. f t , Dy = \0 A 2 x \0 1 Ib .f t ,

H  = 20.24 x 107 Ib.ft ,and p  = 15.19 slugs / f f . A single moving load of magnitude 20,000

lb is considered moving with a speed of 36 ft/sec. The Eigen-values are calculated by 

solving Equations (5.33), (5.38), (5.45), and (5.50). Table 12 gives the first four Eigen­

values o f the plate.

Table 12: First four Eigen-values of the plate with = 0.5 &. H D.. =  2 .

Mode X1
(1.1) 6.85
(1.2) 41.75
(2,1) 27.65
(2,2) 85.45

Figure 16 shows the comparison of the vertical displacement at the center o f the plate 

with the displacement calculated by the finite element analysis in NISA [2],

The maximum vertical displacement from the MATLAB program is 0.328 in. 

where as it is 0.339 in. in NISA. As we can see the difference in the results is 3.8%, that 

means the results from the program are acceptable.
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MATLAB NISA

Figure 16: Comparison o f the vertical displacement at the center of the first plate at the 

speed of 36ft/sec (24.69 mph).

The dimensions and physical properties o f the second plate considered are

a = 36f t ,  b = \8 f t ,  h = 0.5f t ,  vxy = 0.3, Dx = 1 0 .\2 x \0 1 lb .ft, Dy = 5 .0 6 x \0 7lb .f t ,

H  = 1.5 x 101 lb. f t  ,and p  = 15.19slugs / f f . A single moving load of magnitude 20,000 lb

is considered moving with a speed of 36 ft/sec. The Eigen-values are calculated by 

solving Equations (5.45), (5.50), (5.58), and (5.62). Table 13 gives the first four Eigen­

values of the plate.

Table 13: First four Eigen-values of the plate with = 2.0 &. D, = 0.3.

Mode X2
(1.1) 13.639
(1.2) 249.25
(2.1) 54.55
(2.2) 261.15

76



Figure 17 shows the comparison of the vertical displacement at the center of the plate 

with the displacement calculated by the finite element analysis in NISA [2]. The 

maximum vertical displacement from the MATLAB program is 0.086 in. where as it is 

0.0825 in. in NISA. As we can see the difference in the results is 5.0%, that means the 

results from the program are acceptable.

MATLAB ---------NISA

Figure 17: Comparison of the vertical displacement at the center of the second plate at the 

speed of 36ft/sec (24.69 mph).

Analysis of a T-beam Bridge under Moving Loads 

The equations derived earlier in the chapter for the deflection of an orthotropic 

plate are dependent upon the flexural rigidities Dx and Dy and the torsional rigidity 

2 H  of the deck. These rigidities are the functions of the elastic properties o f the material 

and the intersection of the individual beams and slab forming the orthotropic deck. Only
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the T-beam bridge decks are considered in this study. Figure 18 shows the general 

elements of a T-beam bridge deck. A generalized derivation o f a T-beam bridge deck 

given by A.R. Cusens and R. P. Pama [16] is used to calculate the rigidities.

Figure 18: Element of T-beam bridge deck.

The flexural rigidities Dx and Dy are calculated from the second moment of area

per unit length and the torsional rigidity 2H  is calculated as

Et3
2H  = Bxy + Byx + (5.64)

Where,

O GkA *l ,  „ Gkxh i B = - Jr UL and B = — ~ZJL
K  b y

A  simply supported T-beam bridge deck as shown in Figure 19 is considered in 

this investigation.
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Figure 19: Simply supported bridge considered in the investigation. 

The flexural rigidities are calculated as,

FI
Dr = — ^ = 7983.53E  and

b,

E l
D = -—— = 883.36£

b.

The torsional rigidity H  is calculated as

2 H  = Bxy + Byx+~
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kx in the terms Bxy and Bvx depends upon the ratio of h and t of the section, and is plotted 

by A.R. Cusens and R. P. Pama [16]. The value of kx is considered as 0.30 for the 

calculation of Bxy, and is considered as 0.29 for the calculation o f Byx .

The torsional rigidity becomes 

E t3
2 H  = B + B +---- = 1 M.12Exy yx e

Modulus of elasticity for the bridge deck is considered as E = 3.5 x 106 psi and the 

poisons ratio is considered as vxy =0.15.

Which gives us 

Dx =2.3285 x \0 9lb.ft

Dv =0.2575 x \0 9 lb. f t  

2H  = 0.0342 x \0 9lb.ft

Eigen-values for this orthotropic plate are calculated by using the MATLAB program as 

For mode (1,1)= 29.64. 

mode (1,2)= 427.25. 

mode (2,1)= 118.55. 

mode (2,2)= 439.55.

D H
The rigidity ratios are ~  = 9.042, —  = 0.066. According to these rigidity ratios, the

mode shape categorization of the orthotropic plate for m=l is 

If 0 < X2 < 29.670, the orthotropic plate fall into category-II.

If 29.670 < X1 < 29.677, the orthotropic plate fall into category-la.
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If 29.677 < X , the orthotropic plate fall into category-lb.

The mode shape categorization of the orthotropic plate for m=2 is 

If 0 < X2 < 118.682, the orthotropic plate fall into category-II.

If 118.682 <A2 <118.711, the orthotropic plate fall into category-la.

If 118.711 < X  , the orthotropic plate fall into category-lb.

From the Eigen-values calculated from MATLAB program, we can see that the 

orthotropic plate in consideration falls into category-II for modes (1,1) and (2,1), and fall 

into category-lb for modes (1,2) and (2,2). A single load of magnitude 10,000 lb is 

considered moving with different speeds on the center line of the bridge deck. Response 

in terms o f vertical displacement is calculated by using the MATLAB program.

4 0  m p h  ..........................6 0  m p h .................. *....... 9 0  m p h

Figure 20: Time history of vertical displacement at the center o f the T-beam bridge deck 
under a single moving load.
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Figure 20 shows the time history o f vertical displacements at the center o f the plate

( a /  b / \
l / 2 ’/2/ at the speed of 40, 60, and 90 mph. Table 14 summarizes the maximum

vertical displacement at different speeds of a single moving load of magnitude 10,000 lb.

Table 14: Summary of maximum vertical displacement at the center of the T-beam bridge 
deck under a single moving load.

Speed Vertical
displacement

Static vertical 
displacement Impact

mph (in.) (in.) %
40 0.0340 0.0321 5.91
45 0.0349 0.0321 8.72
50 0.0354 0.0321 10.28
55 0.0351 0.0321 9.34
60 0.0346 0.0321 7.78
65 0.0358 0.0321 11.52
70 0.0367 0.0321 14.33
75 0.0372 0.0321 15.88
80 0.0375 0.0321 16.82
85 0.0375 0.0321 16.82
90 0.0373 0.0321 16.19

— M A T L A B  — * —  M A T L A B - s t a t i c

Figure 21: Comparison of maximum vertical displacement at the center of T-beam bridge 
deck at different speeds under a single moving load.
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Figure 21 shows the comparison of the maximum vertical displacement at the 

center of the T-beam bridge deck at different speeds. Static displacement in Table 14 is 

calculated by considering the speed of single moving load as 5 mph in the MATLAB 

program. As we can see from the Table 14 and Figure 21, the maximum vertical 

displacement at the center of the T-beam bridge deck increases with the increase in the 

speed. The maximum impact is of 16.82 % when the single moving of magnitude 10,000 

lb is moving at a speed o f 80 mph. To study the effect of multiple moving loads on the 

bridge deck, two loads o f magnitude 10,000 lb each are considered moving at 10 ft apart 

from each other on the center line of the T-beam bridge deck at different speeds. Figure 

22 shows the times history of vertical displacement at the center of the bridge deck at the 

speed of 40, 60, and 90 mph.

---------40 mph.......... 60 mph •~~"*"~90 mph

Figure 22: Time history of vertical displacement at the center o f the T-beam bridge deck 
under two moving loads.
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Table 15 summarizes the maximum vertical displacement at the center o f the bridge deck 

when two moving loads of magnitude 10,000 lb each with 10 ft apart are moving at 

different speeds.

Table 15: Summary of maximum vertical displacement at the center of the T-beam bridge 
deck under two moving loads.

Speed Vertical
displacement

Static vertical 
displacement Impact

mph (in.) (in.) %
40 0.0658 0.0642 2.49
45 0.0646 0.0642 0.62
50 0.0645 0.0642 0.46
55 0.0645 0.0642 0.46
60 0.0644 0.0642 0.31
65 0.0664 0.0642 3.42
70 0.0682 0.0642 6.23
75 0.0694 0.0642 8.09
80 0.0702 0.0642 9.34
85 0.0704 0.0642 9.65
90 0.0700 0.0642 9.03

MATLAB - A -  MATLAB static

Figure 23: Comparison o f maximum vertical displacement at the center of T-beam bridge 
deck at different speeds under two moving loads.
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Figure 23 shows the comparison of the maximum vertical displacement at the center of 

the T-beam bridge deck under two moving loads. Static displacement in Table 15 is 

calculated by considering the speed of two moving loads as 5 mph following each other 

at 10 ft apart in the MATLAB program. As we can see from the Table 15 and Figure 23, 

that the maximum impact is of 9.65 % at the speed of 85 mph. From these two analyses 

of the T-beam bridge deck in consideration, we can see that the effect of the speed of the 

moving load on the vertical displacement at the center of the bridge deck is more for a 

single load of magnitude 10,000 lb than for the two loads o f magnitude 10,000 lb each 

following each other at 10ft apart.
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CHAPTER VI

FINITE ELEMENT ANALYSIS OF BRIDGES UNDER MOVING LAODS

Finite element analysis is a strong method to solve the generalized problems in 

the field of engineering. The purpose o f this part of the study is to investigate the 

behavior o f bridges under moving loads by the use of finite element analysis and compare 

the results with the analytical method. NISA (Numerically Integrated System for 

Analysis) is one of the comprehensive suites o f general purpose finite element analysis 

programs.

There are two ways to analysis a bridge by this method. First is to model the 

bridge by considering it as an orthotropic plate with material orthotrophy and the second 

is to model it in great details so that the geometrical orthotrophy is taken care of.

Figure 24 shows an orthotropic plate with a single moving load on it.

x
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A sample isotropic plate is considered for the analysis in NISA and the results are 

compared with the responses in terms of vertical displacements investigated by Jong- 

Shyong Wu et. al. [15]. The dimensions and physical properties of the plate are a = 36 f t ,

b = U f t ,  h = 0 .5 ft , v = 0.3, E = 4.32x \0 9p s f , and p  = 15.19slugs/ f f .

Figure 25: Finite element model of isotropic plate by using 3D shell elements in NISA.

Figure 25 shows the finite element model of the isotropic plate in consideration in 

NISA. The 3D shell elements are used to model the plate in NISA with a uniform 

thickness o f 0.5 f t  at all the edges. Modulus of elasticity, poison’s ratio, and mass density 

of the material is provided. First o f all, Eigen-value analysis is done to calculate the 

natural frequencies and modal shapes of the plate. A single moving load with a 

magnitude of 20,000 lb is considered to move with a speed of 36f t !sec and 72f t / sec 

on a centerline of the plate. Moving load is simulated in NISA by using arrival time data
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and time function data for different speeds and the plate is then solved by modal 

superposition method to calculate the responses.

First four mode shapes of the isotropic plate in consideration are shown in Figures

B.l to B.4 in Appendix-B and the first four natural frequencies calculated by the Eigen­

value analysis are shown in Table 16.

Table 16: Comparison of the first four natural frequencies o f the isotropic plate 
from Eigen-value analysis in NISA with the Eigen-values calculated in MATLAB.

Modes Natural frequency 
from NISA (Hz)

Eigen-values 
NISA MATLAB

(1.1) 2.9683 9.472 9.465
(1.2) 12.3302 39.347 39.865
(2,1) 12.0205 38.360 38.235
(2,2) 26.8394 85.650 86.545

We get the natural frequency ( / )  o f the plate in cycles/sec (Hz) in NISA, which is 

converted in to radians/sec (ru = 2k  f ) . Eigen-values of the plate are calculated as

2 2 I P hX =coa J —  . As we can see from the Table 16, Eigen-values calculated from NISA are

in well agreement with that are calculated by using the programs developed in MATLAB.

Figures 26 and 27 show the response history of vertical displacements at the 

center o f the plate (node #171) with a load o f magnitude 20,000 lb moving at the speed 

of 36ft/sec and 72 ft/sec respectively.
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0 .6

Time (sec.)

M A T L A B  ------------------- N I S A

Figure 26: Time history of the vertical displacements at the center of the plate with a load 
of magnitude 20,000 lb moving at the speed of 36ft/sec in NISA.

M A T L A B  ------------------- N I S A

Figure 27: Time history of the vertical displacements at the center of the plate with a load 
of magnitude 20,000 lb moving at the speed of 72 ft/sec in NISA.

Maximum vertical displacements from Figures 26 and 27 are compared with the 

displacements calculated by using MATLAB program, and with the displacements 

investigated by Jong-Shyong Wu et. al. [15] in Table 17.

89



Table 17: Comparison of maximum vertical displacements with the displacements 
investigated by Jong-Shyong Wu et. al. [15].

Speed
(ft/sec) Vertical displacement (in.)

MATLAB Wu et. al. NISA
36 0.492 0.466 0.477
72 0.624 0.610 0.612

From Table 17 we can see that the results from the finite element analysis program NISA 

are in a good agreement with the displacements investigated by Jong-Shyong Wu et. al. 

[15]. The T-beam bridge deck as shown in Figure 19 is modeled as an orthotropic plate. 

The flexural rigidities and torsional rigidity of the bridge deck are 

Dx =2.3285 x \0 9 lb. f t ,  Dy =0.2575 x \0 9lb .ft, and 2H  = 0.0342 x \0 6lb . f t . Modulus of 

elasticities of the plate are calculated as

E = l 2D-xS l.I  V * >  = 1.404x 10” /&/ f t 1 , and 
* h

E  =  D y 1 2 ( !  ~  \ V yx )  =  o  1 5  5 2  x  1 0 11 l b  /  f i 2
y A 3 j

The dimensions and physical properties of the plate are a = 11 2 .5 /t, b = 42.6 f t , 

h = 0 .58ft, v = 0.2, p  -  4.658slugs / f f  .

A single load o f magnitude 10,000 lb is considered moving with different speeds 

on the centerline o f the bridge deck. Response in terms of vertical displacement is 

calculated by using the finite element analysis program NISA.
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40mph in ----— 60mph in ----------90 mph in

Figure 28: Time history of vertical displacements at the center of the T-beam bridge deck 
under a single moving load in NISA.

Figure 28 shows the time history of vertical displacements at the center o f the plate (node 

# 536) at the speed of 40, 60, and 90 mph. Table 18 summarizes the maximum vertical 

displacement at different speeds of a single moving load o f magnitude 10,000 lb.

Table 18: Summary o f maximum vertical displacement at the center of the T-beam bridge 
deck under a single moving load in NISA.

Speed Vertical
displacement

Static vertical 
displacement Impact

mph (in.) (in.) %
40 0.0384 0.0362 6.070
45 0.0385 0.0362 6.353
50 0.0394 0.0362 8.839
55 0.0394 0.0362 8.839
60 0.0386 0.0362 6.629
65 0.0392 0.0362 8.287
70 0.0404 0.0362 11.602
75 0.0412 0.0362 13.812
80 0.0418 0.0362 15.469
85 0.0421 0.0362 16.298
90 0.0420 0.0362 16.022

91



— ♦ —  N I S A  — +—  N I S A - s t a t i c

Figure 29: Comparison o f maximum vertical displacement at the center of T-beam bridge 
deck at different speeds under a single moving load in NISA.

Figure 29 shows the comparison of the maximum vertical displacement at the 

center o f the T-beam bridge deck at different speeds. Static displacement in Table 18 is 

calculated by considering the speed of single moving load as 5 mph. As we can see from 

the Table 18 and Figure 29, the maximum vertical displacement at the center of the T- 

beam bridge deck increases with the increase in the speed. The maximum impact is of 

16.29 % when the single moving of magnitude 10,000 lb is moving at a speed o f 85 mph. 

To study the effect of multiple moving loads on the bridge deck, two loads of magnitude 

10,000 lb each are considered moving at 10 ft apart from each other on the centerline of 

the T-beam bridge deck at different speeds. Figure 30 shows the times history o f vertical 

displacement at the center o f the bridge deck (node # 536) at the speed of 40, 60, and 90 

mph.
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Figure 30: Time history of vertical displacements at the center o f the T-beam bridge deck 
under two moving loads in NISA.

Table 19 summarizes the maximum vertical displacement at the center o f the bridge deck 

when two moving loads of magnitude 10,000 lb each with 10 ft apart are moving at 

different speeds.

Table 19: Summary o f maximum vertical displacement at the center o f the T-beam bridge 
deck under two moving loads in NISA.

Speed Vertical
displacement

Static vertical 
displacement Impact

mph (in.) (in.) %
40 0.0729 0.0716 1.815
45 0.0722 0.0716 0.837
50 0.0718 0.0716 0.279
55 0.0724 0.0716 1.117
60 0.0716 0.0716 0.000
65 0.0729 0.0716 1.815
70 0.0752 0.0716 5.027
75 0.0771 0.0716 7.681
80 0.0784 0.0716 9.497
85 0.0792 0.0716 10.614
90 0.0793 0.0716 10.754
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Figure 31: Comparison of maximum vertical displacement at the center o f T-beam bridge 
deck at different speeds under two moving loads in NISA.

Figure 31 shows the comparison o f the maximum vertical displacement at the 

center o f the T-beam bridge deck under two moving loads. Static displacement in Table 

19 is calculated by considering the speed of two moving loads as 5 mph following each 

other at 10 ft apart. As we can see from the Table 19 and Figure 31, that the maximum 

impact is of 10.754 % at the speed of 90 mph. From these two analyses o f the T-beam 

bridge deck in consideration, we can see that the effect o f the speed of the moving load 

on the vertical displacement at the center of the bridge deck is more for a single load of 

magnitude 10,000 lb than for the two loads of magnitude 10,000 lb each following each 

other at 1 Oft apart.
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CHAPTER VII

ANALYSIS OF A T-BEAM BRIDGE UNDER A MOVING AASSHTO HS20-44
TRUCK LOAD

The objective of this research work is to study the cumulative effect of the 

different factors such as road surface roughness, vehicle dynamics, vehicle weight, and 

vehicle speed on the displacement of the bridge and compare the results with the impact 

factor given by AASHTO. In the previous chapters we have seen the effect of all these 

factors individually. To see the cumulative effect o f all these factors on the bridge 

dynamics, a simply supported T-beam bridge deck as shown in Figure 32 is considered in 

this investigation. Span length of the bridge in consideration is 112.5 ft (1350 in.) and 

width is 42.66 ft (512 in.). The T-beam bridge under the investigation is assumed to be 

built on a motorway with a very good road condition. Only a single AASHTO HS20-44 

truck load is considered moving along the centerline of the bridge deck at different 

speeds.
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Figure 32: Simply supported bridge considered in the investigation.
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VH-a: Generation of Road Surface Roughness for the T-beam Bridge Deck. 

Road surface roughness is generated for this bridge deck by using the Power 

Spectral Density function as shown in Chapter III. The roughness coefficient A 

according to the Table 1 is 5 x 10“6 m1 / cycle .Span length o f the bridge is 

a = \ \2 .5 ft  = 34.298w .

Variance <j2 required to generate a series o f random numbers is calculated by

using Equation 3.10.

2 AX
(T  — --------

2

Where,

yl = 5 x 10“6

X = 34.298/2048 = 0.0167

This gives us cr2
5 xl0~6x 0.0167

2
0.041 xlO-6

A series o f random numbers which have approximate white noise properties with 

zero mean and variance a 2 -  0.041 x l0 “6 are generated in MATLAB and passed through 

a first order digital filter. The output function of this filter gives us the road surface 

roughness. Figure 33 shows the spectrum of the random numbers generated in MATLAB. 

Figure 34 shows the comparison of the PSD of the input spectrum with the approximate 

PSD of the white noise spectrum.

97



toi_(D
- Q

E3
c

Eo■O
croa:

6.00E-04

4.00E-04

2.00E-04

O.OOE+OO

-2.00E-04

-4.00E-04

-6.00E-04

-8.00E-04

-1.00E-03

8.00E-04

0 500 1000 1500 2000 2500
Number of samples

Figure 33: Spectrum of random numbers.

10

<L>
O
O

mC<D
13H-t—*o<DO*m
<3
&oCM

Approximate Power Spectral 
Density (PSD) = 1.3732e-9

Power Spectral Density (PSD) of 
random source

Wave number (cycle/m)
Figure 34: Comparison o f Power Spectral Density of a random spectrum with the 

approximate Power Spectral Density.

98



From Figure 34 we can see that the approximate power spectral density of the 

white noise spectrum is in agreement with the power spectral density of the input 

spectrum generated in MATLAB.

The output function of the first order digital filter gives us the road surface 

roughness and is shown in Figure 35.

Figure 35: Road surface roughness o f a very good road for the T-beam bridge deck.

Figure 36 shows the comparison of the PSD of the road surface roughness 

generated in MATLAB with the PSD given by C. J. Dodds and J. D. Robson [3], we can 

see from the comparison that the PSD of the road surface roughness is in well agreement 

with the PSD given by C. J. Dodds and J. D. Robson [3].
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Figure 36: Comparison o f the PSD of the road surface roughness generated in MATLAB 
with the PSD given by C. J. Dodds and J. D. Robson [3],

VH-b: Suspension and Tire Forces o f an AASHTO HS20-44 Truck.

Road surface roughness shown in Figure 35 is used to calculate the increased load 

with an AASHTO HS20-44 truck [1] shown in Figures 9 and 10 traveling on the T-beam 

bridge deck at different speeds. Suspension force and tire force histories for steer, tractor 

and trailer axles are shown in Figures C.l to C.22 in Appendix-C. The maximum 

suspension and tire forces for an AASHTO HS20-44 truck [1] at different speeds are 

summarized in Tables 20 and 21. From the Tables 20 and 21, for a HS20-44 truck 

traveling on a T-beam bridge deck with a very good road surface, we can see that the 

impact on suspension force is in the range of 19.14% to 38.58% of the static load for the
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steer axle and is reaching as much as 65.52% for the tractor axle, where as the maximum 

impact for the trailer axle is 50.82%.

The impact for tire force is lesser than that for the suspension force. For the steer

axle the impact is in the range of 14.76% to 29.57%, the maximum impact for the tractor

axle is 51.74% where as the maximum impact for trailer is 24.72% of the static load.

Table 20: Comparison of suspension forces at different speeds for HS20-44 truck on a T- 
beam bridge deck.

Speed
(mph)

Static
(Kips)

Fsy1 , 
(Kips) %lmpact Static

(Kips)
Fsy3
(Kips) %lmpact Static

(Kips)
Fsy5
(Kips) % Impact

40 2.9119 3.4786 19.46 14.1780 22.4868 58.60 14.5579 20.6108 45.37
45 2.9119 3.6736 26.16 14.1780 22.6332 59.64 14.5579 20.1593 42.19
50 2.9119 3.5294 21.21 14.1780 22.2406 56.87 14.5579 19.9298 40.57
55 2.9119 3.4692 19.14 14.1780 21.7862 53.66 14.5579 19.5557 37.93
60 2.9119 3.5845 23.10 14.1780 22.0677 55.65 14.5579 21.3838 50.82
65 2.9119 3.4699 19.16 14.1780 22.4452 58.31 14.5579 20.0683 41.55
70 2.9119 3.5047 20.36 14.1780 22.8328 61.04 14.5579 20.1339 42.01
75 2.9119 3.8023 30.58 14.1780 22.5749 59.22 14.5579 20.1479 42.11
80 2.9119 3.7685 29.42 14.1780 22.0939 55.83 14.5579 20.7978 46.69
85 2.9119 4.0352 38.58 14.1780 23.467 65.52 14.5579 20.3684 43.66
90 2.9119 3.8211 31.22 14.1780 22.6275 59.60 14.5579 21.2594 49.95

Note: Fsy2, Fsy4, and Fsy6 are same as Fsyl, Fsy3, and Fsy5 respectively.

Table 21: Comparison o f tire forces at different speeds for HS20-44 truck on a T-beam 
bridge deck.

Speed
(mph)

Static
(Kips)

Fty1
(Kips) %lmpact Static

(Kips)
Fty3

(Kips) %lmpact Static
(Kips)

Fty5
(Kips) % Impact

40 3.99 4.6745 17.16 15.97 21.5269 34.80 15.99 19.9434 24.72
45 3.99 4.7072 17.98 15.97 24.2326 51.74 15.99 19.8154 23.92
50 3.99 4.7398 18.79 15.97 22.2853 39.54 15.99 19.2026 20.09
55 3.99 4.5789 14.76 15.97 21.7315 36.08 15.99 18.8615 17.96
60 3.99 4.8173 20.73 15.97 22.2798 39.51 15.99 19.2308 20.27
65 3.99 4.7157 18.19 15.97 22.6370 41.75 15.99 19.6400 22.83
70 3.99 4.7860 19.95 15.97 22.8174 42.88 15.99 19.8072 23.87
75 3.99 4.8639 21.90 15.97 23.9411 49.91 15.99 19.3369 20.93
80 3.99 4.8701 22.06 15.97 23.0975 44.63 15.99 19.5071 22.00
85 3.99 5.0782 27.27 15.97 23.3027 45.92 15.99 19.8858 24.36
90 3.99 5.1698 29.57 15.97 23.8396 49.28 15.99 19.4418 21.59

Note: Fty2, Fty4, and Fty6 are same as Ftyl, Fty3, and Fty5 respectively.
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The increased load from Table 21, which has a cumulative effect of road surface 

roughness and vehicle dynamics, is considered for the analysis first by using the 

orthotropic plate theory as explained in Chapter V and secondly by the finite element 

analysis as explained in Chapter VI.

VII-c: Analysis of the T-beam Bridge Deck by using the Orthotropic Plate Theory. 

Tire forces from Table 21 are multiplied by 2 to get the total axle load for the 

steer axle, trailer axle, and tractor axle of the truck. Table 22 shows the total axle loads at 

different speeds.

Table 22: Total axle load o f an AASHTO HS20-44 truck on a T-beam bridge deck.

Speed
(mph)

Total axle load
___________m ___________

Steer
axle

T ractor 
axle

Trailer
axle

40 9349 43053.8 39886.8
45 9414.4 48465.2 39630.8
50 9479.6 44570.6 38405.2
55 9157.8 43463 37723
60 9634.6 44559.6 38461.6
65 9431.4 45274 39280
70 9572 45634.8 39614.4
75 9727.8 47882.2 38673.8
80 9740.2 46195 39014.2
85 10156.4 46605.4 39771.6
90 10339.6 47679.2 38883.6

A T-beam bridge deck shown in Figure 32 is used for the analysis. Dimensions 

and the physical properties o f the plate are a = 1 \2.5 f t , b = 42.66f t , h = 0.58 f t ,

p  -  4.65%slugs / f t 3, vxy = 0.2 , Dx =2.3285 x \0 9lb .ft, Dy = 0.2575 x \0 9lb .ft, and

2 / / -  0.0342 x \0 9lb .ft.
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Figures C.23 to C.33 in Appendix-C show the time history plot of the vertical 

displacements at the center o f the T-beam bridge deck under an AASHTO HS20-44 truck 

at different speeds.

Table 23 summarizes the maximum vertical displacement at the center of the T- 

beam bridge deck (node # 2901) at different speeds o f the truck.

Table 23: Maximum vertical displacements at the center o f the T-beam bridge deck under 
an AASHTO HS20-44 truck moving with different speeds by the orthotropic plate 
theory.

Speed
(mph)

Vertical Static 
displacementdisplacement 

____ (!!!)_______ (!!!)____

Impact
(%)

40 0.2988 0.2184 36.81
45 0.3144 0.2184 43.96
50 0.3048 0.2184 39.56
55 0.3012 0.2184 37.91
60 0.3060 0.2184 40.11
65 0.3036 0.2184 39.01
70 0.2988 0.2184 36.81
75 0.3024 0.2184 38.46
80 0.3012 0.2184 37.91
85 0.3084 0.2184 41.21
90 0.3120 0.2184 42.86

Figure 37 shows the comparison o f the vertical displacement under a moving 

truck load with the static displacement. Static displacement in Table 23 and Figure 37 is 

calculated by assuming the AASHTO HS20-44 truck moving at a speed of 5 mph.
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Figure 37: Comparison of the vertical displacement under a moving AASHTO HS20-44 
truck load with the static displacement by the orthotropic plate theory.

From Table 23 and Figure 37 we can see that the impact on the maximum vertical 

displacement at the center of the plate by using the orthotropic plate theory is in the range 

of 36.81% to 43.96% whereas the impact given by AASFITO is 21.05%. This tells us that 

the impact factor formula given by AASHTO underestimates the dynamic effect of the 

bridge under moving loads. This might be because o f the inability of the impact factor 

formula given by AASHTO, which is a function of the span length of the bridge deck, to 

take into account the effect of road surface roughness, vehicle dynamics, vehicle weight, 

and vehicle speed.

VH-d: Analysis of the T-beam Bridge Deck by using the Finite Element Analysis
Method.

The T-beam bridge deck shown in Figure 32 is then modeled in the finite element 

analysis package NISA. 3D beam elements are used to model the longitudinal and 

transverse girders of the bridge, and 3D shell elements are used to model the slab of the 

bridge deck. Increased load from the road surface roughness and vehicle dynamics given
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in Table 22 is used to simulate the AASHTO HS20-44 truck [1] load moving at different 

speeds on the centerline o f the bridge deck. Figures C.34 to C.44 in Appendix-C show the 

time history of the vertical displacement at the center of the bridge deck at different 

speeds. Table 24 summarizes the maximum vertical displacement at the center of the T- 

beam bridge deck (node # 2901) at different speeds of the truck by the finite element 

analysis method.

Table 24: Maximum vertical displacements at the center of the T-beam bridge deck under 
an AASHTO HS20-44 truck moving with different speeds by FEM.

Speed
(mph)

Vertical Static 
displacementdisplacement 

____ (ML)_______ (ML)____

Impact
(%)

40 0.346 0.2557 35.31
45 0.351 0.2557 37.27
50 0.334 0.2557 30.62
55 0.333 0.2557 30.23
60 0.343 0.2557 34.14
65 0.346 0.2557 35.31
70 0.346 0.2557 35.31
75 0.352 0.2557 37.66
80 0.358 0.2557 40.01
85 0.375 0.2557 46.66
90 0.390 0.2557 52.52

S p e e d  ( s e c . )
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Figure 38: Comparison of the vertical displacement under a moving AASHTO HS20-44 
truck load with the static displacement by FEM.
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Figure 38 shows the comparison of the vertical displacement under a moving 

truck load with the static displacement. Static displacement in Table 24 and Figure 38 is 

calculated by assuming the AASHTO HS20-44 truck moving at a speed of 5 mph.

From Table 24 and Figure 38 we can see that the impact on the maximum vertical 

displacement at the center of the plate by using the finite element analysis method is in 

the range of 30.23% to 52.52% whereas the impact given by AASHTO is 21.05%. Impact 

calculated by the FEM confirms that the impact factor formula given by AASHTO 

underestimate the dynamic effect of bridges under moving loads.

Table 25 and Figure 39 show the comparison of the impact calculated on the 

maximum vertical displacement at the center o f the plate by using the orthotropic plate 

theory and by using the finite element analysis method.

Table 25: Comparison of maximum vertical displacements at the center of the T-beam 
bridge deck under an AASHTO HS20-44 truck moving with different speeds by the 
orthotropic plate theory and by the finite element analysis method.

Speed
(mph)

Impact
___________________ {%}___________________
Orthotropic plate theory Finite element method

40 36.81 35.31
45 43.96 37.27
50 39.56 30.62
55 37.91 30.23
60 40.11 34.14
65 39.01 35.31
70 36.81 35.31
75 38.46 37.66
80 37.91 40.01
85 41.21 46.66
90 42.86 52.52
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Figure 39: Comparison o f maximum vertical displacements at the center of the T-beam 
bridge deck under an AASHTO HS20-44 truck moving with different speeds by the 
orthotropic plate theory and by the finite element analysis method.

From Table 25 and Figure 39 we can see that the impact calculated by the 

orthotropic plate theory is close to 40% for all the speeds and the impact calculated by the 

finite element analysis method is less as much as 30% for the slower speeds and increases 

to over 50% as the speed increases.
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CHAPTER VIII

CONCLUSIONS AND RECOMMENDATIONS 

In this study the cumulative effect of the road surface roughness, vehicle 

dynamics, vehicle weight, and vehicle speed on the bridge dynamics is investigated in 

terms of the vertical displacement at the center of the bridge deck. Road surface 

roughness is generated by using the Power Spectral Density function given by C. J. 

Dodds and J. D. Robson [3]. A 12 DOF model o f an AASHTO HS20-44 truck is 

developed. This truck model is assumed to be moving on a very good and good road 

surface at different speeds to see the effect of the road surface roughness and vehicle 

dynamics on the suspension and tire forces of the AASHTO HS20-44 truck.

Two methods are used in the study to analyze the bridges under moving loads, the 

orthotropic plate theory and the finite element analysis method. The increased load 

calculated above is simulated by using a Dirac-delta function for the analysis by the 

orthotropic plate theory, and by using the arrival time data and time function data for the 

analysis by the finite element analysis method.

Finally, a T-beam bridge is investigated to see the cumulative effect of the road 

surface roughness, vehicle dynamics, vehicle weight, and vehicle speed on the bridge 

dynamics in terms of the vertical displacement at the center o f the T-beam bridge deck. 

The T-beam bridge deck in the consideration is assumed to be built on a motorway with a 

very good road condition. Road surface roughness generated is assumed
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to be the same along the width of the bridge deck. An AASHTO HS20-44 truck is 

considered to be moving along the centerline of the bridge deck with a constant speed. 

The truck is assumed to be moving only in X-direction and contact o f the truck wheel 

with the deck is assumed to be at a single point.

Impact factors calculated for the suspension forces o f an AASHTO HS20-44 

truck on a very good surface indicate that the impact for the steer axle, tractor axle, and 

trailer axle is 44.71%, 73.31%, and 51.52% respectively. Impact factors calculated for the 

tire forces of an AASHTO HS20-44 truck on a very good surface indicate that the impact 

for the steer axle, tractor axle, and trailer axle is 44.21%, 51.20%, and 32.21% 

respectively. These impact factors increase noticeably for a good road condition.

The impact on the vertical displacement at the center of the plate under a single 

moving load calculated without considering the effect of road surface roughness and 

vehicle dynamics indicates that the impact is more when we consider a single load than 

the two loads moving along the centerline of the bridge. The impact is as much as 

16.82% for a single load and as much as 9.65% for the two loads moving along the 

centerline of the bridge.

The forces calculated for an AASHTO HS20-44 truck on a very good road 

surface indicate that the impact for the tire forces is less than that for the suspension 

forces and is as much as 29.57% for the steer axle, 51.74% for the tractor axle, and 

24.72% for the trailer axle. Finally, when we consider the cumulative effect of the road 

surface roughness, vehicle dynamics, vehicle weight, and vehicle speed, the impact 

calculated by the orthotropic plate theory is as much as 43.96% and that is calculated by 

the finite element analysis method is as much as 52.52%.
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Impact calculated without considering the road surface roughness and vehicle 

dynamics under a single moving load is less than the impact calculated by using the 

impact formula given by AASHTO which is 21.05% and further decreases with the 

number o f loads moving along the centerline o f the bridge deck. Impact calculated by 

considering all the factors such as road surface roughness, vehicle dynamics, vehicle 

weight, and vehicle speed by both the methods is reasonably higher than that calculated 

by the impact formula given by AASHTO.

For the bridge deck under investigation the impact factor formula given by 

AASHTO underestimates the dynamic effect under the moving loads. This might be 

because o f the inability o f the impact factor formula given by AASHTO, which is a 

function of span length of the bridge deck, to take into account the effect o f road surface 

roughness, vehicle dynamics, vehicle weight, and vehicle speeds. This suggest that, it is 

necessary to do the detailed dynamic analysis of the bridges by considering the road 

surface roughness, vehicle dynamics, vehicle weight and speed instead of just applying 

the dynamic load factor calculated by using the impact factor given by AASHTO to the 

static results.
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Figure A. 1: Suspension force history of axles one, two, and three on a very good road surface at the speed of 15 mph
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Figure A.2: Suspension force history of axles one, two, and three on a very good road surface at the speed of 20 mph
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Figure A.3: Suspension force history of axles one, two, and three on a very good road surface at the speed of 25 mph
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Figure A.4: Suspension force history of axles one, two, and three on a very good road surface at the speed of 30 mph
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Figure A.7: Suspension force history of axles one, two, and three on a very good road surface at the speed of 45 mph
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Figure A.8: Suspension force history of axles one, two, and three on a very good road surface at the speed of 50 mph
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Figure A.9: Tire force history of axles one, two, and three on a very good road surface at the speed of 15 mph
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Figure A. 10: Tire force history of axles one, two, and three on a very good road surface at the speed of 20 mph
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Figure A.11: Tire force history of axles one, two, and three on a very good road surface at the speed of 25 mph
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Figure A.12: Tire force history of axles one, two, and three on a very good road surface at the speed of 30 mph
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Figure A. 13: Tire force history of axles one, two, and three on a very good road surface at the speed of 35 mph
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Figure A.14: Tire force history of axles one, two, and three on a very good road surface at the speed of 40 mph
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Figure A. 15: Tire force history of axles one, two, and three on a very good road surface at the speed of 45 mph
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Figure A. 16: Tire force history of axles one, two, and three on a very good road surface at the speed of 50 mph
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Figure A. 17: Suspension force history of axles one, two, and three on a good road surface at the speed of 15 mph

F S Y 5



S
u

s
p

e
n

s
io

n
 f

o
rc

e
 (

K
ip

s
) 

S
u

s
p

e
n

s
io

n
 f

o
rc

e
 (

K
ip

s)
 

S
u

s
p

e
n

s
io

n
 f

o
rc

e
 (

K
ip

s)

F S Y 3

2 5

5

0  ---------------------------------------------------------------------- r - -------------------------------------------------------------r--------------------------------------------------------------------------- t----------------------------------------------------------------- ,--------------------------------------------------------------------- T--------------------------------------------------------------

0  5  1 0  1 5  2 0  2 5

T i m e  ( S e c )

Figure A. 18: Suspension force history of axles one, two, and three on a good road surface at the speed of 20 mph
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Figure A.19: Suspension force history of axles one, two, and three on a good road surface at the speed of 25 mph
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Figure A.20: Suspension force history of axles one, two, and three on a good road surface at the speed of 30 mph
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Figure A.21: Suspension force history of axles one, two, and three on a good road surface at the speed of 35 mph
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Figure A.22: Suspension force history of axles one, two, and three on a good road surface at the speed of 40 mph
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Figure A.23: Suspension force history of axles one, two, and three on a good road surface at the speed of 45 mph
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Figure A.24: Suspension force history of axles one, two, and three on a good road surface at the speed of 50 mph
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Figure A.25: Tire force history of axles one, two, and three on a good road surface at the speed of 15 mph
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Figure A.26: Tire force history of axles one, two, and three on a good road surface at the speed of 20 mph
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Figure A.27: Tire force history of axles one, two, and three on a good road surface at the speed of 25 mph
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Figure A.28: Tire force history of axles one, two, and three on a good road surface at the speed of 30 mph
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Figure A.29: Tire force history of axles one, two, and three on a good road surface at the speed of 35 mph
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Figure A.30: Tire force history of axles one, two, and three on a good road surface at the speed of 40 mph
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Figure A.31: Tire force history of axles one, two, and three on a good road surface at the speed of 45 mph
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Figure A.32: Tire force history of axles one, two, and three on a good road surface at the speed of 50 mph



Data used in the simulation of the HS20-44 truck:

Dimensions:

Distance between the steer and tractor axles (LI) 168.000 in.

Distance between the tractor and trailer axles (L2) 168.000 in.

Distance between the steer axle and the center of the tractor (L3) 66.864 in.

Distance between the tractor axle and the center o f the tractor (L4) 101.136 in.

Distance between the pivot and the center of the tractor (L5) 87.192 in.

Distance between the pivot and the trailer axle (L6) 181.944 in.

Distance between the pivot and the center o f the trailer (L7) 92.064 in.

Distance between the trailer axle and the center of the trailer (L8) 89.880 in.

Spacing o f suspensions in the steer axle (SI) 44.000 in.

Spacing o f suspensions in the tractor axle (S2) 36.000 in.

Spacing o f suspensions in the trailer axle (S3) 36.000 in.

Spacing o f wheels in the steer axle (D l) 68.000 in.

Spacing o f wheels in the tractor axle (D2) 72.000 in.

Spacing o f wheels in the trailer axle (D3) 72.000 in.

Stiffness and damping characteristics:

Stiffness o f suspension in the steer axle (Ksyl) 1.3850 kips/in.

Stiffness o f suspension in the steer axle (Ksy2) 1.3850 kips/in.

Stiffness o f suspension in the tractor axle (Ksy3) 10.8650 kips/in.

Stiffness o f suspension in the tractor axle (Ksy4) 10.8650 kips/in.

Stiffness o f suspension in the trailer axle (Ksy5) 11.2410 kips/in.
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Stiffness of suspension in the trailer axle (Ksy6) 11.2410 kips/in.

Stiffness o f tire in the steer axle (Ktyl) 4.9960 kips/in.

Stiffness of tire in the steer axle (Kty2) 4.9960 kips/in.

Stiffness o f tire in the tractor axle (Kty3) 20.0000 kips/in.

Stiffness of tire in the tractor axle (Kty4) 20.0000 kips/in.

Stiffness o f tire in the trailer axle (Kty5) 20.0240 kips/in.

Stiffness o f tire in the trailer axle (Kty6) 20.0240 kips/in.

Damping coefficient in the steer axle (Dsyl) 0.0125 kips-sec/in.

Damping coefficient in the steer axle (Dsy2) 0.0125 kips-sec/in.

Damping coefficient in the tractor axle (Dsy3) 0.0425 kips-sec/in.

Damping coefficient in the tractor axle (Dsy4) 0.0425 kips-sec/in.

Damping coefficient in the trailer axle (Dsy5) 0.0410 kips-sec/in.

Damping coefficient in the trailer axle (Dsy6) 0.0410 kips-sec/in.

Damping coefficient in tire (Dtyl) 0.0000 kips-sec/in.

Damping coefficient in tire (Dty2) 0.0000 kips-sec/in.

Damping coefficient in tire (Dty3) 0.0000 kips-sec/in.

Damping coefficient in tire (Dty4) 0.0000 kips-sec/in.

Damping coefficient in tire (Dty5) 0.0000 kips-sec/in.

Damping coefficient in tire (Dty6) 0.0000 kips-sec/in.

Friction Force in the steer axle (Fyl) 0.3000 kips.

Friction Force in the steer axle (Fy2) 0.3000 kips.

Friction Force in the tractor (Fy3) 3.2000 kips.

Friction Force in the tractor (Fy4) 3.2000 kips.
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Friction Force in the trailer (Fy5) 3.2000 kips.

Friction Force in the trailer (Fy6) 3.2000 kips.

Mass and Mass Moment of Inertias:

Mass o f the tractor (mtl) 0.01491 kips-(sec)2 /in.

Roll mass moment of inertia of the tractor (Ix tl) 17.88804 kips-in-(sec)2.

Pitch mass moment of inertia of the tractor (Iztl) 75.60312 kips-in-(sec)2.

Mass o f the trailer (mt2) 0.14907 kips-(sec)2 /in.

Roll mass moment of inertia o f the trailer (Ixt2) 293.3665 kips-in-(sec)2.

Pitch mass moment o f inertia of the trailer (Izt2) 1603.547 kips-in-(sec)2.

Mass of the steer axle (mal) 0.00559 kips-(sec)2 /in.

Roll mass moment of inertia of the steer axle (Ixal) 4.3602 kips-in-(sec)2.

Mass o f the tractor axle (ma2) 0.00932 kips-(sec)2 /in.

Roll mass moment of inertia of the tractor axle (Ixa2) 7.26696 kips-in-(sec)2.

Mass of the trailer axle (ma3) 0.00745 kips-(sec)2 /in.

Roll mass moment of inertia of the trailer axle (Ixa3) 5.81364 kips-in-(sec)2.
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DISPLAY III - GEOMETRY MODELING SYSTEM ( 12.0.0 ) PRE/POST MODULE

MODE NO. = 1 FREQUENCY = 2.96837E+00 Hz

Plate- 12ft x 36ft

MODE SHAPE PLOT 
MX DEF= 2.53E-02 
NODE NO.= 16 
SCALE =1.0 
(MAPPED SCALING)

EMRC-NISA/DISPLAY

JUL/31/06 12:12:22
ROTX

-45.0
ROTY0.0
R0T2

-45.0

Figure B .l : First mode shape of the isotropic plate (12ft x 36ft) in NISA

DISPLAY III - GEOMETRY MODELING SYSTEM ( 12.0.0 ) PRE/POST MODULE

MODE NO. = 2 FREQUENCY = 1.20205E+01 Hz

Plate- 12ft x 36ft

MODE SHAPE PLOT 
MX DEF= 2.63E-02 
NODE NO.= 8 
SCALE =1.0 
(MAPPED SCALING)

EMRC-NISA/DISPLAY

JUL/31/06 12:13:04
ROTX

-45.0
ROTY0.0
ROTZ

-45.0

Figure B.2: Second mode shape o f the isotropic plate (12ft x 36ft) in NISA
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DISPLAY III - GEOMETRY MODELING SYSTEM ( 12.0.0 ) PRE/POST MODULE

MODE NO. = 3 FREQUENCY = 1.23302E+01 Hz

Plate- 12ft x 36ft

MODE SHAPE PLOT 
MX DEF= 4.26E-02 
NODE NO.= 16 
SCALE =1.0 
(MAPPED SCALING)

EMRC-NISA/DISPLAY

JUL/31/06 12:13:50
ROTX

-45.0
ROTY0.0
ROTZ

-45.0

Figure B.3: Third mode shape o f the isotropic plate (12ft x 36ft) in NISA

DISPLAY III - GEOMETRY MODELING SYSTEM ( 12.0.0 ) PRE/POST MODULE

MODE NO. = 4 FREQUENCY = 2.68394E+01 Hz

Plate- 12ft x 36ft

MODE SHAPE PLOT 
MX DEF= 4.25E-02 
NODE NO.= 8 
SCALE =1.0 
(MAPPED SCALING)

EMRC-NISA/DISPLAY

JUL/31/06 12:14:38
ROTX

-45.0
ROTY0.0
ROTZ

-45.0

Figure B.4: Fourth mode shape of the isotropic plate (12ft x 36ft) in NISA
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Figure C.1: Suspension force history of steer axle, tractor axle, and trailer axle of
an AASHTO HS20-44 truck at speed of 40 mph
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an AASHTO HS20-44 truck at speed of 45 mph
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Figure C.3: Suspension force history of steer axle, tractor axle, and trailer axle of
an AASHTO HS20-44 truck at speed of 50 mph
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Figure C.5: Suspension force history of steer axle, tractor axle, and trailer axle of
an AASHTO HS20-44 truck at speed of 60 mph
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Figure C.6: Suspension force history of steer axle, tractor axle, and trailer axle of
an AASHTO HS20-44 truck at speed of 65 mph
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Figure C.7: Suspension force history of steer axle, tractor axle, and trailer axle of
an AASHTO HS20-44 truck at speed of 70 mph
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Figure C.8: Suspension force history of steer axle, tractor axle, and trailer axle of
an AASHTO HS20-44 truck at speed of 75 mph
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Figure C.9: Suspension force history of steer axle, tractor axle, and trailer axle of
an AASHTO HS20-44 truck at speed of 80 mph
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Figure C.10: Suspension force history of steer axle, tractor axle, and trailer axle of
an AASHTO HS20-44 truck at speed of 85 mph
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Figure C.11: Suspension force history of steer axle, tractor axle, and trailer axle of
an AASHTO HS20-44 truck at speed of 90 mph
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Figure C.12: Tire force history of steer axle, tractor axle, and trailer axle of
an AASHTO HS20-44 truck at speed of 40 mph
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Figure C.13: Tire force history of steer axle, tractor axle, and trailer axle of
an AASHTO HS20-44 truck at speed of 45 mph
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Figure C.14: Tire force history of steer axle, tractor axle, and trailer axle of
an AASHTO HS20-44 truck at speed of 50 mph
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Figure C.15: Tire force history of steer axle, tractor axle, and trailer axle of
an AASHTO HS20-44 truck at speed of 55 mph
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Figure C.16: Tire force history of steer axle, tractor axle, and trailer axle of
an AASHTO HS20-44 truck at speed of 60 mph
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Figure C.17: Tire force history of steer axle, tractor axle, and trailer axle of
an AASHTO HS20-44 truck at speed of 65 mph
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Figure C.18: Tire force history of steer axle, tractor axle, and trailer axle of
an AASHTO HS20-44 truck at speed of 70 mph
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Figure C.19: Tire force history of steer axle, tractor axle, and trailer axle of
an AASHTO HS20-44 truck at speed of 75 mph
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Figure C.20: Tire force history of steer axle, tractor axle, and trailer axle of
an AASHTO HS20-44 truck at speed of 80 mph
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Figure C.21: Tire force history of steer axle, tractor axle, and trailer axle of
an AASHTO HS20-44 truck at speed of 85 mph
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Figure C.22: Tire force history of steer axle, tractor axle, and trailer axle of
an AASHTO HS20-44 truck at speed of 90 mph
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Figures C.23: Time history of the vertical displacement at the center of the T-beam 
bridge deck under an AASHTO HS20-44 truck with a speed of 40 mph.

Figures C.24: Time history of the vertical displacement at the center of the T-beam 
bridge deck under an AASHTO HS20-44 truck with a speed of 45 mph.

Figures C.25: Time history of the vertical displacement at the center of the T-beam
bridge deck under an AASHTO HS20-44 truck with a speed of 50 mph.
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Figures C.26: Time history of the vertical displacement at the center of the T-beam 
bridge deck under an AASHTO HS20-44 truck with a speed of 55 mph

Figures C.27: Time history of the vertical displacement at the center of the T-beam 
bridge deck under an AASHTO HS20-44 truck with a speed of 60 mph

Figures C.28: Time history of the vertical displacement at the center of the T-beam
bridge deck under an AASHTO HS20-44 truck with a speed of 65 mph
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Figures C.29: Time history of the vertical displacement at the center of the T-beam 
bridge deck under an AASHTO HS20-44 truck with a speed of 70 mph

0 . 3 5

Figures C.30: Time history of the vertical displacement at the center of the T-beam 
bridge deck under an AASHTO HS20-44 truck with a speed of 75 mph
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Figures C.31: Time history of the vertical displacement at the center of the T-beam
bridge deck under an AASHTO HS20-44 truck with a speed of 80 mph
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Figures C.32: Time history of the vertical displacement at the center of the T-beam 
bridge deck under an AASHTO HS20-44 truck with a speed of 85 mph

Figures C.33: Time history of the vertical displacement at the center of the T-beam 
bridge deck under an AASHTO HS20-44 truck with a speed of 90 mph
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Figures C.34: Time history of the vertical displacement at the center of the T-beam 
bridge deck under an AASHTO HS20-44 truck with a speed of 40 mph by FEM.

Figures C.35: Time history of the vertical displacement at the center of the T-beam 
bridge deck under an AASHTO HS20-44 truck with a speed of 45 mph by FEM.

Figures C.36: Time history of the vertical displacement at the center of the T-beam
bridge deck under an AASHTO HS20-44 truck with a speed of 50 mph by FEM.
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Figures C.37: Time history of the vertical displacement at the center of the T-beam 
bridge deck under an AASHTO HS20-44 truck with a speed of 55 mph by FEM.

Figures C.38: Time history of the vertical displacement at the center of the T-beam 
bridge deck under an AASHTO HS20-44 truck with a speed of 60 mph by FEM.

Figures C.39: Time history of the vertical displacement at the center of the T-beam
bridge deck under an AASHTO HS20-44 truck with a speed of 65 mph by FEM.
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Figures C.40: Time history of the vertical displacement at the center of the T-beam 
bridge deck under an AASHTO HS20-44 truck with a speed of 70 mph by FEM.

Figures C.41: Time history of the vertical displacement at the center of the T-beam 
bridge deck under an AASHTO HS20-44 truck with a speed of 75 mph by FEM.
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Figures C.42: Time history of the vertical displacement at the center of the T-beam 
bridge deck under an AASHTO HS20-44 truck with a speed of 80 mph by FEM.
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Figures C.43: Time history of the vertical displacement at the center of the T-beam 
bridge deck under an AASHTO HS20-44 truck with a speed of 85 mph by FEM.

Figures C.44: Time history of the vertical displacement at the center of the T-beam 
bridge deck under an AASHTO HS20-44 truck with a speed of 90 mph.
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