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ABSTRACT

This project addresses the fundamental aspects of toxic metal (mercury) sorption 

by metal oxides. The emission of toxic trace elements from anthropogenic sources, such 

as combustion, has drawn attention to potential dangers for the ecosystem. Particular 

concern has been directed toward mercury species because of their high toxicity and 

tendency to convert into forms leading to mercury accumulation in mammals. Efforts to 

control mercury species release have centered on sorption technology using carbonaceous 

sorbents. However, it has been found, in some cases, that fly ash also has some sorptive 

properties towards mercury species. In order to further understand the sorption processes 

in the fly ash, a project was initiated to study the mercury sorption properties of various 

metal oxides. The purpose of the project was to serve as a baseline for further fly asli 

studies by determining differential sorption capacities of fly ash types. Along with the 

metal oxides studies, an assortment of fly ashes were looked at.

Some of the metal oxide species (AI20 3) have no sorption properties for Hg. On 

the other hand, other metal oxides can oxidize the Hg° or catalyze the air oxidation of Hg° 

to form HgO. If S02 or HC1 are present in the flue gas, a mercury salt can form. A 

parametric study was undertaken of the effects of condition variables such as temperature 

and air on the sorption of mercury on metal oxides. The investigation began with simple 

oxides and proceeded to more complex mixed oxides and other transition or lanthanide
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metal oxides. Elemental mercury (Hg°) mass uptake efficiency of the oxides was 

monitored using a continuous mercury vapor monitor. Infrared spectrophotometry was 

used to characterize the oxides before mercury uptake experiments to achieve a better 

understanding of the binding interactions that determine the sorption process for each 

mercury species.

The determination was made that molecular oxygen is not involved in the reaction 

of supports with elemental mercury. The reaction, therefore, is not catalytic.

Chemical activation of supports (A120 3 and carbon) increased their adsorption 

capacity. For example, A120 3 alone emitted 84 % Hg into the effluent; after activation 

with Mn02, no trace (0 %) Hg was emitted into the effluent.

Several iron oxides were tested; active samples were less dense than inactive 

samples. Active samples, like maghemite, include vacant sites. Vacancies in the iron 

oxide structure make it possible for Hg to be oxidized by iron species on ihe inside of the 

structure.

All but one fly ash failed as sorbents for Hg. Fly ashes are inactive due to the iron 

species which are heated to high temperatures. The iron forms hematite which is inactive
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CHAPTER I

INTRODUCTION

The emission of toxic trace elements from combustion has drawn attention to 

potential dangers for the ecosystem. During combustion processes, mercury can vaporize 

and condense and/or undergo speciation change. Mercury is sorbed or. the surface of the 

fly ash particles, usually oxides. These particles are hard to remove from stack gases using 

current collection devices and mercury pollution is released in the flue gases from plant 

stacks. Particular concern has been directed toward mercury species because of their high 

toxicity and tendency to convert into forms leading to mercury accumulation in mammals.

Mercury can be removed from a flue gas stream by three processes: physical 

adsorption, chemisorption, or amalgamation. Mojtahedi and Mroueh define physical 

adsorption as when the reactant is attracted by surface or van der Waals forces 

(responsible for the nonideal behavior of gases). Chemisorption involves chemical bonds 

which arise from an actual sharing and donation of electrons; the forces being of the same 

order of magnitude as those in chemical reaetions.(Mojtahedi and Mroueh, 1989) 

Amalgamation occurs when mercury reacts with a metal to form a metal alloy.(Ebbing and 

Wrighton, 1990)

Activated carbons adsorb a few hundred micrograms to a few milligrams of 

mercury primarily by physisorption. For maximum physisorption to take place, operation

1
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2

must be maintained below 100°C. For temperatures up to 200°C, activated carbon will 

adsorb most mercury (II) chloride; but, it does not adsorb all forms of mercury.(Metzger 

and Braun, 1987)

It has been found that activated carbons that have been chemically treated with 

iodine, sulfur, copper (II) chloride, or copper and zinc have a increased capacity for 

mercury. However, chemically impregnated activated carbons cost more and their usage 

has to be optimized for the specific application.

Most current inorganic adsorben*s do not work well as mercury adsorbents when 

water vapor is present in the flue gas streams. Chemical impregnation increases their 

adsorption capacity and the adsorbent is no longer affected unfavorably by water 

vapor.(Mojtahedi and Mroueh, 1989) One plausible explanation for this phenomena is 

that the physisorption principle is operating, and the water is competing for sites with the 

mercury. If the carbon sorbents are chemically treated to introduce chemisorption sites 

specifically for mercury species, the efTect of water vapor adsorption is minimized

Inorganics like clay and zeolites have a low cost and are readily available, but, 

adsorption can only occur at the microgram level at room temperature. At high 

temperatures, oxygen needs to be present for significant adsorption to take place with 

chabazite, a type of zeolite. This effect may be due to chemical oxidation of the surface, 

allowing the appropriate interaction with mcrcury.(Mojtahedi and Mroueh, 1989)

Several adsorbents adsorb mercury by amalgamation. Silver/4A molecular sieves 

remove Hg and moisture from gases, t hey arc also regenerate a:<d have long term 

stability.(Yan, 1994) Mercu-Rc manufactured ADA Technologies, Inc , contains noble
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3

metals that capture Hg and recycle it. Mercury removal efficiencies are greater than 90 

percent.fCaruana, 1996)

It has been found, in very limited cases, that fly ash has some sorptive properties 

towards mercury species. Some of the metal oxide species (A120 3) have no sorption 

properties for Hg°. On the other hand, other metal oxide fly ash constituents could 

oxidize Hg° to form HgO or a mixed metal oxide; the ability of fly ash to adsorb mercury 

may be due to this.

There are several metal oxides in fly ash A majority is mullite, an alumina silicate. 

Other aluminum silicates include: gohlenite, anorthite, and albite Fly ash also includes 

spinel, a dense iron aluminum silicon; quartz, Si02, calcium minerals; hemaite, an iron 

oxide; spinel, MgFe20 4; and opal.

In order to further understand the sorption processes in the fly ash, a project was 

initiated to study the mercury sorption properties of various metal oxides. The objectives 

of this research are to evaluate the potential for the adsorption of elemental mercury vapor 

on inorganic oxide materials, determine which metal inorganic oxides can cuialy.'p the 

oxidation of elemental mercury, and ascertain the nature of the sorption process by 

examing temperature effects and oxygen requirements. This goal will assist in 

understanding flue gas treatment processes and has the potential to provide process 

information for controlling mercury emissions.
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CHAPTER II

LITERATURE REVIEW

This chapter covers the literature review in two sections: Mercury Pollution and 

Mer cury Control Technologies. The review of mercury pollution will address the toxicity 

of mercury and its progression up the food chain leading to adverse effects on humans. 

Control technologies will include aqueous scrubbers and solid adsorbents such as carbon 

and inorganic adsorbents

Mercury Pollution

Mercury is listed third on the Environmental Protection Agency’s list of 89 toxic 

substances.(Caruana, 1996) The principal anthropogenic sources of mercury emissions 

are coal combustion, smelting, and incineration. These sources contribute 30-75 percent 

of the total yearly addition of mercury to the environment, amounting to 25,000 to

150,000 tons per year compared to 20,000 tons per year from other human activity (Von 

Burg, 1995) Several large countries (e g. China, India, Brazil) are undergoing rapid 

industrialization and could quickly increase mercury emissions to the atmosphere from 

coal consumption in the fiiture.(Prestbo and Bloom, 1995)

Mercury has a high toxicity and tendency to convert into forms , e.g methyl 

mercury, leading to mercury accumulation in mammals. Mercury is released in the flue 

gases from plant stacks and can exist in the environment in the form of elemental mercury,

4
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5

inorganic mercury salts or oxides, or organornercury compounds. Mercury in the air can 

then become deposited in the soil and water. The half-life of mercury in air is estimated to 

be about one year.(Von Burg 1995) Mercury in soil can adsorb onto organic matter. 

Adsorbed mercury cannot be released until decay processes take place. Mercury in water 

can settle into sediment or be adsorbed by suspended particulate matter. Terrestrial and 

aquatic plants then uptake the mercury into their roots, stems, leaves, and flowers or fruit 

depending on how the plant is exposed to the mercury (air, soil, etc ).

The next step in the food chain is consumption of the plants by aquatic life or 

humans. The number one source of non-occupational exposure to mercury is ingestion of 

mercury containing food, especially fish and other seafood (Von Burg, 1995) Mercury 

has a tendency to accumulate in biota and large fish and is considered the most serious 

environmental threat to fish and wildlife in the southwestern United States.(Constantinou, 

et a!., 1995) The mercury concentrations are higher than the acceptable limits and fish 

consumption advisories have been issued in all ten southwestern states.(Dvonch, el at., 

1995) Seventy percent of all US. fish consumption advisories issued relate to mercury. 

The amount of mercury in fish is increasing at the rate of three and a half percent per year 

in some lakes.(Shell and Anderson-Carhahan, 1995) The consumption of these fish have 

proven detrimental to reptiles, birds, and mammals (including humans). Effects of 

mercury accumulation include inability to reproduce, hair loss, nervous disorders, and 

mortality.(Facemire, etal., 1995)

Because of the significant adverse effects of mercury accumulation in the 

ecosystem, stricter regulations regarding mercury emissions have been put in place. The
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6

regulation of hazardous air pollutants, including mercury, was significantly revised by the 

1990 Clean Air Act.(Zeugin, etal., 1994) The Occupational Safety and Health Act; The 

Food, Drug, and Cosmetic Act; and The Clean Water Act also regulate the emission of 

mercury.

During combustion processes, mercury vaporizes, may undergo a change of 

valence state, and then condenses out as flue gas cools. The condensation can be 

homogeneous forming a fume or heterogeneous by adsorbing on the surface of ash 

particles. Heterogeneous condensation predominates when a surface is present and will 

usually occur on the smallest particles. The core of these particles are metal oxides which 

have heavy metals, such as mercury, on the surface These particles are not easily 

removed from stack gases using current collection devices like electrostatic precipitators 

(ESPs) and baghouses Therefore, the gases escape into the atmosphere taking the 

captive mercury species. Although there is only a small amount of mercury in coal (e g.

0.07 to 0.28 pg Hg/g coal), it is estimated that 90 percent of it is released into the 

environment after buming.(Fang, 1978 and U S. Department of Energy, 1996)

There are three techniques for mercury removal: physical adsorption, 

chemisorption, and amalgamation. Physical adsorption is the attraction of the reactant by 

the surface or by van der Waals forces.(Mojtahedi and Mroueh, 1989) Chemisorption 

involves quasi chemical bonding arising from the sharing of electrons with the forces being 

of the same order of magnitude as those in chemical reactions.(Majtahedi and Mroueh,
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1989) Amalgamation is a solid solution process when mercury reacts with a metal to form 

a metal alloy. (Ebbing and Wright on, 1990)

The behavior of mercury vapor in collection devices is not clearly understood 

because it exists in many forms including elemental mercury (Hg°), divalent mercury 

(Hg(II)), such as mercury chloride (HgCl2).(Schlager, el a!., 1995) Mercury also 

undergoes several complex interactions. Current cleaning systems can remove oxidized 

mercury including Hg(II); but, elemental mercury is still emitted.(Sappey, el al., 1995) 

Studies performed by the U.S Environmental Protection Agency’s Research Division and 

the Utility Air Group in 1995 indicated that the removal of mercury is not consistent in 

electrostatic precipitators (ESP) or fabric filters. The mean removal efficiency at the 

temperatures encountered in these devices is thirty percent. The removal in a combined 

ESP and wet Flue Gas Desulfurization (FGD) systems is also inconsistent, with 

efficiencies ranging from zero to ninety percent. The mean removal efficiency was 45 

percent.(Behrens and Chu, 1994) Current techniques for mercury emissions are difficult, 

time consuming, and expensive.(Sappey, el al., 1995) Consequently, there exists a need 

for the development of technology to decrease the amount of mercury released into the 

environment. In order to develop control technologies, we need a fundamental knowledge 

of the behavior of mercury.(Morency, el al., 1994 and Otani, et al., 1984) Presently, there 

is not a single cost-effective, reliable method for the collection of all mercury pollution 

species.(Caruana, 1996)
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8

Two types of mercury control technologies that will be discussed are aqueous 

scrubbers and solid adsorbents. Solid adsorbents include activated carbons and inorganic 

compounds.

Aqueous Scrubbers

Wet scrubbers only work for water soluble compounds like mercury chloride 

(HgCl2), not elemental mercury The solubility of HgCl2 is not high; but at low 

concentrations, HgCl2 will go into solution. This is because lime is added to control the 

pH because sulfur converts Cl to an acid. A problem with using a wet scrubber for 

mercury control is that mercury is captured in the wet scrubber and becomes another 

hazardous waste disposal problem. Another problem with wet scrubbers is that their 

removal efficiency is inconsistent. The removal efficiency can be high at times and low to 

moderate at others depending on flue-gas conditions; coal burned; fly ash and gas 

composition; mercury speciation; or compound, sorbent, or scrubber properties.(Caruana, 

1996)

Wet scrubbers have lower removal efficiencies than ESPs or fabric filters They 

are also the least effective for very small particle sizes (<5pm). Wet scrubbers are the 

most common FGD system in coal-fired power stations. In the wet FGD unit, gaseous 

compounds condense on particles. There is a prescrubber that removes approximately 

sixty percent of the Hg(II) and the scrubber that removes approximately forty percent. 

There is warm enough air flow that Hg° is carried through the FGD systems as a vapor. 

There is nothing in the system to chemically oxidize/catalyze the Hg!l; hence, the Hg11 

cannot adsorb on anything for removal. Flue gases cool in the wet scrubber and allow
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most volatile trace elements to condense. The outlet temperature of the scrubber is 50- 

60°C. Some mercury does remain in the flue gas.(Clarke, 1993)

Research conducted by the U S. Environmental Protection Agency (EPA) Office 

of Research and Development (ORD) on particulate removal efficiencies of air pollution 

control systems (APCSs) indicated that removal efficiencies of mercury from wet 

scrubbers ranged from 67 to 99 percent. The average removal efficiency was 87 percent. 

The removal efficiencies decrease with lower inlet concentrations.(Carrol and Thurnau, 

1994)

Solid adsorbents will be classified into two categories: activated carbons and 

inorganic compounds.

Activated Carbons

Activated carbons are widely used as adsorbents which are effective at low 

temperatures for physically sorbing pollutants or contaminated species. At temperatures 

of 100°C or greater, physical desorption is very rapid and the carbon does not work well 

as a sorbent. Impregnation with sulfur, iodide, or chloride ions increase the adsorption 

capacity of activated carbons. The impregnated species react with mercury to form a 

stable compound, i s. chemisorption. Chemisorption reactions only produce stable 

compounds at temperatures below 200-300 °C. Nonetheless, activated carbons only 

adsorb a few hundred micrograms to a few milligrams of heavy metals like mercury 

depending on speciation of Hg, the type of activated carbon used, and reaction 

conditions.(Mojtahedi and Mroueh, 1989)
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For temperatures up to 200°C, activated carbon can adsorb most mercury (II) 

chloride contained in the gas stream.(Metzger and Braun, 1987) Several activated 

carbons have been used for the removal of mercury. These include coconut shell, 

hardwood, and low-rank coals which have been thermally, steam, or chemically activated. 

However, it can not be used for extracting total mercury or for adsorbing specific forms of 

mercury due to the loss of impregnation material by vaporization or the formation of 

volatile compounds when the adsorbent is used at elevated temperatures.(Mojtahedi and 

Mroueh, 1989) Iodized activated carbon is an excellent adsorbent for metallic mercury 

and mercury (II) halogenides in an air stream for temperatures up to 180 °C. (Metzger and 

Braun, 1987)

Chemically impregnated activated carbons adsorbed several times more mercury(O) 

than do thermally activated carbons. Activated carbons impregnated with a chloride salt 

can adsorb up to three-hundred times as much mercury(O) as thermaliy activated carbons. 

For maximum mercury sorption to take place, operation must be maintained under 

100°C.(Mojtahedi and Mroueh, 1989) However, chemically impregnated activated 

carbons are very expensive ($3-5 per pound) and their usage has to be optimized. 

Inorganics

Many inorganic adsorbents are polar and preferentially adsorb water vapor over 

mercury from the flue gas stream. Water vapor is present in most flue gas streams and 

this limis the use of such adsorbents for mercury is ineffective. Chemical impregnatio i 

increases ‘heir sorption capacity. The impregnated compound reacts with mercury to 

form a stable mercury species The chemisorption process is not detrimentally affected by
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water vapor as is the case with physical adsorption. Water vapor adsorption may on 

occasion be favorable. (Mojtahedi and Mroueh, 1989) Seven types of inorganics will now 

be discussed.

Clavs

The low cost and ready availability of clays make them attractive candidates for 

adsorbent use. They can adsorb mercury at the microgram level at room 

temperature.(Mojtahedi and Mroueh, 1989) They can also be used with other low cost 

materials like fly ash or limestone to yield a greater adsorption capacity than any of its 

original components.

Zeolites

Zeolites also have a low cost and are readily available but their tendency to 

preferentially adsorb water limits their use. They will adsorb mercury only if oxygen is 

present; otherwise, adsorption of mercury is minimal. Hence, the uptake of mercury is 

most likely due to a surface reaction with oxygen. The sorption capacity of zeolites is 

increased with sulfide or iodide impregnation. Nonetheless, zeolites must be used under 

100°C for maximum mercury adsorption.(Mojtahedi and Mroueh, 1989)

Chabazite, a type of zeolite, can adsorb twenty-seven percent of its own weight in 

mercury.(Barrer and Whiteman, 1967) The mercury-chabazite complex can only be 

formed in the presence of oxygen. Again, this may indicate that the chabazite is working 

as a heterogeneous catalyst to catalyze the oxidation of mercury. Chabazite containing 

0a4\  N a\ and Pb44 can only adsorb a small amount of mercury. Mercury(Hg")- and
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silver(Ag+)-rich chabazite are reduced during chemisorption to adsorb a larger amount of 

mercury. (Barrer and Whiteman, 1967)

The Medisorbon process uses a hydrophobic silica zeolite that is manufactured by 

Degussa AG. Medisorbon is a synthetic dealuminized Y-Zeolite that has hydrophobic 

properties. It can be used at high temperatures and is acid resistance This proprietary 

zeolite captures mercury, dioxins, and furans in flue gas The zeolite also captures a small 

amount of the sulfur dioxide (S02) emissions. Medisorbon is more expensive than 

activated carbon; but, it only needs replacement every three years The operation costs 

are comparable to activated carbon.tSamdani, 1994) The zeolite is regenerable by 

decomposing or distilling the adsorbed substances, it can be regenerated several times. 

The Medisorbon process is almost maintenance free. No corrosion problems occur from 

the zeolite since the formation of sulfuric acid (H2S04) is low (Caruana, 1996)

Fly Ash

Highly active sites on the surface of the fly ash particles make it a promising 

candidate for adsorbing mercury(II) particles. Mercury(II) is reduced to mercury(I) 

which is reduced to mercury(O) at high temperatures. The most important factors for 

mercury adsorption on fly ash are adsorption temperature, contact time, specific surface 

area, and carbon content. If mercury is not in a oxidized form, the adsorp ion capacity is 

less. Operation must take place under I00°C for maximum mercuiy 

adsorption.(Mojtahedi and Mroueh, 1989)
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Fly ash is one of the least expensive adsorbents. It has a smaller surface area than 

activated carbon and leads to uniform diffusion of the adsorbate. Bonding is induced 

between the adsorbent and adsorbate due to the surface charge (chemical adsorption). 

Calcium Compounds

Calcium compounds used as adsorbents for mercury have the best removal rate 

using wet-dry methods. Mercury adsorption must be done under low temperatures. In 

the temperature range of 180-220°C, there is almost no mercury removal. Under 100°C, 

removal rates range for zero to twenty-five percent (Mojtahedi and Mroueh, 1989). 

Removal rates for Hg (II) with calcium hydroxide (Ca(OIT)2) are approximately 95 

percent at bed temperatures between 75°C and 100 °C. (Lancia, el a/., 1993) This 

removes ninety percent of the mercury, mostly HgC!2 and elemental mercury.

Chromasorb W solid particles (mesh 30/60) coated with palladium chloride (PdCl2) 

can be used as a mercury adsorbent. Mercury emissions of 6-20 mg/m3 have been reduced 

to 0 005 mg/m3. The percentage removal is not changed with the addition of water vapor 

or sulfur dioxide (S02).(Nguhen, 1979)

AJekseevskii, elal., proved that Mn02 has high adsorptive properties for Hg as a 

result of the high oxidation power of MnM.(Cavallaro, el al., 1982) The study of 

manganese based reagents supported on an inert medium was performed at atmospheric 

pressure and ambient temperature. y-Al20 ,  has a low mercury sorption capacity Copper 

doped y-Al20 3 has higher activity than aluminum oxide alone.
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The powerful oxidizing nature of Mn^ has been demonstrated in oxidation 

reactions of CO, S02, and aniline.(Cavallaro, etal., 1982) Oxidation properties of M n02 

are determined by the presence of oxygen dissociatively chemisorbed on the surface.

Iron Compounds

Iron compounds are readily available at a low cost and have the capacity to adsorb 

mercury and sulfur. Maximum adsorption of Hg takes place at high temperatures. There 

is only minimal information on the sorption kinetics and sorption capacity for Hg° and 

cannot be used practically for trace element sorption purposes. (Mojtahedi and Mroueh, 

1989)

Sorbalit

Sorbalit controls emissions of acid gases, Hg, and organics in a single application 

The sorbalit mixture consists of sullur, activated carbon, and lime in the form of calcium 

hydroxide or calcium oxide. The activated carbon adsorbs organic dioxins, lime adsorbs 

the acidic S 02, and the sullur adsorbs the Hg. Sorbalit captured 88 % of the total Hg and 

83 % of the vapor phase Hg under normal Hg capture conditions Sorbalit has also been 

tested under difficult Hg capture conditions, high temperature and low moisture. Under 

these conditions, Sorbalit captured 44 to 55 % of the vapor phase Hg.(Licata, et a/., 1994) 

Noble Metals

Noble metals adsorb mercury by amalgamation. Tin, zinc, copper, lead, cadmium, 

silver, and copper alloys form mercury amalgams.
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Silver/4A molecular sieves remove mercury and moisture from flue gases. It is 

regenerate and has a long-term stability.(Yan, 1994) Zeolites do not generate mercury 

adsorbent waste and mercury can be recovered as a product (Weekman and Yan, 1995) 

ADA Technologies, Inc., has developed the Mercu-P£ process. This system not 

only captures the mercury, it recycles it. The mercury removal efficiencies for all mercury 

forms are claimed to be above ninety percent. Currently, it has been tested for flow rates 

up to fifty actual cubic feet per minute and temperatures up to 350°F.(Caruana, 1996)
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CHAPTER III

EQUIPMENT AND PROCEDURE

This chapter describes the methodologies used to prepare a range of metal oxides

and to evaluate the adsorption capacities of these metal oxides and fly ash for mercury.

Equipment Setup

Figure 1 below shows a schematic of the equipment setup

Ambfont 
Tamp 
day 'C

Figure 1. Equipment Schematic

16
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This flow is approximately 100 cm3 per minute. Compressed air is used but the nitrogen is 

bled from a liquid nitrogen tank. The nitrogen contains a negligible amount of oxygen and 

moisture which will not drastically affect the results of the experimentation

The diffusion rate of mercury' is defined by the temperature of the permeation tube. 

The tube is calibrated to emit a specific concentration of mercury at a certain temperature 

The range of mercury concentrations that can be emitted into the air is 100-500 gg/m3. In 

this study, the source was maintained at 140°C at which it emits 320 gg/rn’ of mercury 

with our flow rate.

A gate valve allows the mercury to either be vented and captured or passed 

through the metal oxide sample in the gas chromatography (GC) oven. The samples 

prepared as metal oxides are contained in small tubes. The tubes are placed in the GC 

oven and heated. The mercury laden gas passes through the sample tubes and is adsorbed 

depending on the oxide. The effluent passes through a continuous mercury vapor monitor 

that measures the mercury present in the effluent The efficiency of the metal oxides for 

elemental mercury adsorption is calculated from the amount of mercury remaining affer 

passing through the oxide bed.

A Hydra Data Logger measures the adsorbent bed temperature, ambient 

temperature, and the mercury concentration passing through the continuous mercury 

vapor monitor once every 60 seconds A computer is connected to the Hydra Data 

Logger storing the data for later reduction.

A flow meter controls the flow of air or nitrogen through the mercury source.
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After the mercury detector, the effluent passes through a second flow meter that 

measures the flow of air or nitrogen out the vent where any remaining mercury is captured 

in an iodized carbon filter.

EPM Model 793 Continuous Vapor Monitor

The EPM Mercury Vapor Monitor Model 793 is a direct reading instrument for 

the continuous determination of mercury vapor concentration in air. It is produced by 

Environmental & Process Monitoring b.v., Dalerstraat 32, Netherlands, +31 (0) 5916 

1828. A discharge type ultraviolet (UV) lamp generates ultraviolet light that is used as the 

light source. An optical filter selects a narrow spectral band containing the mercury line at 

253.4 nanometers (gm). The measuring beam, part of the light source, passes through a 

measuring cuvette to a photodiode, while a reference beam passes through the reference 

cuvette and is detected by a second diode. Both photodiode signals are compared 

continuously. The liquid crystal display (LCD) reading is linear with the concentration 

due to the use of a logarithmic amplifier circuit.

The samples were then tested for bonding structure using an Nicolet Magna 

Fourier Transform Infrared Spectrophotometer The data was collected at (8 cm)'1 

resolution. A Barnes Collector Model #869-032400 Diffuse Reflectance Cell was used 

with the infrared spectrophotometer

Preparation of Materials

A majority of the samples were prepared by impregnating an adsorbent matrix with 

the test metal oxide. The adsorbent matrices used were aluminum oxide (A120 }), carbon, 

and y-zeolite. Most of the procedures closely resemble the following description for
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preparing manganese oxide (Mn02) on A120 3 formed from manganese nitrate 

(Mn(N03)2)*6H20. Sample calculations are given in Appendix A: Calculations.

Preparation Technique #1 - Utilization of 25 wt % solution 

This technique consisted of preparing a 25 wt % solution of the metal oxide 

precursor which was then combined with the support (A120 3, carbon, zeolite). The 25 wt 

% solution was prepared and mixed with 10.00 g of A120 3 and dried at 100°C for at least 

12 hours. The sample is then oxidized/activated by heating in a furnace in air.(Cavallaro, 

et al., 1982) Table 1 shows the recipe used to prepare a 4.4 wt % Mn02 on A120 3 sample.

Table 1: Recipe For 4.4 wt % M n02 on A!20 3

Step # Procedure

1 Prepare of Mn(N03)2*6H20  
Solution

Add 3.33 g Mn(N03)2*6H20  to 10.00 g 
distilled H20

2 Prepare 7 wt % MnCyAljOj 
Sample

Mix 6.19 g of solution with 10.00 g A120 ,

3 Dry Sample Place in drying oven (100°C) overnight

4 Activate Sample Place in furnace (200°C) and heat for 4 
hours

This technique was used for several other samples. Table 2 shows the various 

samples prepared including the precursor used to prepare the oxide and the

uvuiioii/oxidation temperatuu.. .«u
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Table 2: Samples Following Sample Preparation Technique #1

Sample Test Oxide Precursor Activation Temperature (°C)
MnOj/AljO, (4.4 wt Manganese Nitrate 200 °C
%) (Mn(N03)2*6H20) 500°C

700°C
MnOj/carbon Manganese Nitrate 200°C
(4.1 wt %) (Mn(N03)2*6H20) 400”C
MnO^AljO, Manganese Acetate 200°C
(2.8 wt%) (Mn(C2H30 2)2*3H20) 500°C

600 °C
700°C

MnCyAl20, Manganese Acetate 200°C
(5.3 wt%) (Mn(C2H30 2)2*3H20) 250°C

300°C
350°C
400°C

MnOj/y-zcolite Manganese Nitrate 200°C
(2.2 wt%) (Mn(N03)2*6H20)

Fc/A120 3 Iron Nitrate Method U1 200°C
(4.3 wt%) (Fe(N03)3*9H20) 400°C

500°C
600 °C

Fe/Al20 3' Iron II Sulfate (Fe2(S04)3*nH20) 200 "C
400 °C
500°C
600°C
700 °C

Fc/AI20 3 Iron III Sulfate (FeS0/7H20) 200 °C
(4.0 wt %) 400°C

500fiC
600°C
700°C

Cr/Al20 3 Chromium Nitrate 200 “C
(4.0 wt %) (Cr(N03)j*9Hj0)

Ni/Al20 3 Nickel Nitrate (Ni(N03)2*6H20) 200 r,C
(5.0 wt%)

Co/A120 3 Cobalt Nitrate (Co(NO,)2*6H20) 200 “C
(4.8 wt%)

'Actual weight percent could not be calculated because the weight of hydrate was unknown.
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Preparation Technique #2 - Preparation of 7 wt % Samples

Another procedure was used to prepare sodium sulfate (Na^O.,) on A120 3. This 

procedure was based on seven weight percent NajSO,,. The recipe for seven weight 

percent Na2S04 on A120 3 is listed in Table 3.

Table 3: Recipe for 7 wt %  N a 2S 0 4 on A ljQ j

Step # Procedure

1 D isso lv e  N a2S O , in  H 20 A dd 2 m l d istilled  H 20  to  0 .7 0  g  N a 2S 0 4

2 P re p a re  7  w t %  N a ^ S O /A ljO , S am ple A dd so lu tion  d ro p w ise  to  10 .00  g A120 ,  w ith  s tir r in g

3 D ry  S am p le P lace  sa m p le  in d ry ing  o v en  ( 1 0 0 °C ) o v e rn ig h t

4 A ctiv a te  S am p le P lace  A l2O j/N a :S O , sa m p le  in fu rn ace  ( 2 0 0 ° C )  and  
h ea t fo r 4 hrs

This technique was used for several other samples. Table 4 shows the various

samples prepared. The table includes the activation/oxidation temperature used.

Table 4: Sam ples Following Sam ple Preparation Technique #2

Sam ple Test Oxide Precursor Activation  Tem perature (° C )

M n S O /A ljO j  (7  wt % ) M n S 0 4 200°C 
400°C 
600°C

M n /A l2Oj ( 7  wt % ) K M n O , N o  Activation
200°C

Fe/AljO, (7  wt % ) (CHjCOjJjFe
400"C  
60O°C 
7(X)°C

Fe/AljOj (7  wt % ) FeClj 200 “C

N H 4V O j /A I2O j  (7  wt % ) N H 4V O , 200 °C 
400 X

T i(O C ,H ,)4/A l2Oj ( 7  wt % ) T i(O C ,H ,)4 200"C  
400“C

C u ( N O j) j/A 12O j (7  wt % ) C u ( N O , ) 2 200°C
400°C
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Sample Preparation Technique #3

The procedure for preparing 4.4 wt % Mn02 and 1 wt % Cu(N03)2 on A120 3 is 

listed in Table 5.

Table 5: Recipe for 4,4 wt % MnOj and 1 wt % Cu(N03)2 on Al20 3

Step # Procedure

1 Prepare solution of 
Mn(N03)2*6H20

Add 3.33 g of Mn(N03)2*6H20  to 10.00 g 
distilled H20

2 Prepare 7 wt % Mn02 and 1 
wt % Cu(N0 3)2 on A120 3

Mix 6.19 g solution with 10.00 g Ai20 3 and 
0.12 g Cu(N03)2

3 Dry Sample Place sample in oven (100°C) and dry 
overnight

4 Activate Sample Place sample in furnace (200°C) for 4 hrs

Several other samples followed the above procedure. Table 6 lists their activation

temperatures and precursor for the test compounds.

Table 6: Samples Following Sample Preparation Technique #3

Sample Prepared From Activation Temperature (°C)

M n02 (4.4 wt %) & H2S04 
(1 wt %)/A12Oj

Mn(NO,)2 No Activation

ivtuOj (4.4 wt %) &. Na2SQ4 
(1 wt %)/AI20 3

Mn(N03)2 No Activation

M n02 (4.4 wt %) & MnS04 
(1 wt%)/Al20 3

Mn(N03)2 No Activation

Mn (7 wt %) & Oxalic Acid 
(10 wt %)/Al20 3

KMn04 No Activation 
200 °C

Mn (7 wt %) & Hydrogen 
Peroxide (5 wt %)/Al20 3

KMn04 No Activation 
200°C
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Recipe for FefNO,'), Method #2

The second preparation procedure for Fe(N03)3 on A120 3 is listed in Table 7.

Table 7: Recipe For Fe2(N03)3/Al20 3 Method #2

Step # Procedure
1 Prepare A120 3 solution Add 10 g A120 3 to 1000 g H20. Stir for 5 

mins.

2 Prepare Fe(N03)3*9H20  
solution

Add 2 g Fe(N03)3»9H20  to 80 g distilled H20. 
Stir for 5 min.

3 Combine solutions Combine solutions with stirring.

4 Add 40 g cone. NH3OH & 400 ml distilled 
II20  to solution.

5 Dry solution Air dry solution in hood for 72 hrs with 
constant stirring.

6 Activate samples Divide dry sample by three.

7 Activate samples Do not activate the 1 st sample

8 Place 2nd ^triple in furnace for 4 hrs at 200°C

9 Place 3rd sample in furnace for 4 hrs at 400°C

The recipe for manganese oxyhydroxide (MnOOH) and manganese sesquioxide 

(Mn20 3) is listed in Table 8. The procedure was obtained from the Journal of the 

American Chemical Society, “Solid Oxides and Hydroxides of Manganese” .(Moore, el al., 

1950)
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Table 8: Recipe for MnOOH and Mn20 3

Step # Procedure

1 Prepare MnS04*4H20  solution Mix 5 V4 g MnS04*4H20  with 875 
ml distilled H20.

2 Add 3 ml 30 wt % H20 4.

3 Add 125 ml 0.5M N H 3OH.

4 Formation of MnOOH (brown 
precipitate)

Boil solution with constant stirring.

5 Filter & wash solution.

Air dry Vi of sample.

6 Formation of Mn20 3 (black precipitate) Dry Vi of sample under vacuum at 
250°C for 72 hours.

Recipe for Iron Oxides

Feroxyhyte was prepared from FeCl2 and NaOH. Mn-Fe Goethite was prepared 

from Fe(N03)3, Mn(N03)2, and sodium hydroxide (NaOH). Geothite was prepared from 

Fe(N03)3 and Potassium Hydroxide (KOH). Lepidocrocite was prepared from FeCl2 and 

NaOH. Ferrihydrite was prepared from Fe(N03)3. 2-Line Ferrihydrite was prepared from 

Fe(N03)3 and KOH. Maghemite was prepared from FeCI3 and FeCI2. Hematite was 

prepared from Fe(N03)3, KOH, and NaHC03. Magnetite was prepared from FeS04, 

KN03, and KOH. Various iron oxides whose formulas are given in Table 9 were prepared 

according to details given in Iron Oxides in the Laboratory. Table 9 also lists the page 

number for each procedure.(Schwertmann, el al., 1991)
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Table 9: Reference Page Numbers For Iron Oxides

Iron Oxide Formula Reference Page Number’

Maghemite Y-FeA 117

Hematite a-Fe20 3 103

Magnetite Fe30 4 111

Feroxyhyte S’-FeOOH 85

Lepidocrocite Y-FeOOH 81

Geothite a-FeOOH 64

Mn-Fe Geothite (Fe^MnJOOH 73

Ferrihydrite Fe5H 08*4H20 89

2-Line Ferrihydrite Fe5H 08*4H20 90
’in “Iron Oxides in the Laboratory”(Schwertmann, ei a/., 1991)

Description of Ash Samples 

Table 10 gives a description of each of the ashes tested.

Infrared Spectoscopv of Samples

The procedure for preparing samples for infrared spectoscopy is listed below. 400 

mg of KBr was mixed with the sample. The amount of sample used depended on if it was 

coated on a support. 25 mg was used if the sample was not on support and lOOg if it was 

on a support. The spectra was obtained at single beam mode where the KBr background 

was subtracted. The support was not subtracted from the IR spectra.
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Table 10: Description of Ashes

Ash METC
Code

Coal Utilization 
Process

Fuel

Bitumin Orimulsion Ash
(1.3%Ni&7.7%FeA)

NA Not Available Orimulsion

Red Brown Bottom Ash 
(3.7% FeA )

702A Coal Combustion With 
Flue Gas Cleaning

Utah subbituminous coal

Grey-Black Bottom Ash
(21.2% FeA)

502A Coal Combustion With 
Flue Gas Cleaning

Illinois UG bituminous 
coal

Tan Coal Gasification Ash
(11% FeA )

302A Fixed-Bed Coal 
Gasification

Eastern Kentucky low- 
sulfur (<1%) bituminous 
coal

Grey-Black Coal Gasification 
Ash
(23.5% FeA)

203 Ash Agglomerating 
Fluidized-Bed Coal 
Gasification

Dolomite

Black-Brown Bottom Ash 
(8.3% FeA )

602A Coal Combustion With 
Flue Gas Cleaning

North Dakota lignite

Black Gasifier Ash
(16.2% FeA)

2201A Fluidizcd-bcd Coal 
Gasification

Pittsburgh #8 bituminous 
coal

Grey Economizer Ash
(6 .2% FeA)

2403A Fluidized-bcd Coal 
Gasification

Illinois bituminous coal

Grey Baghouse Fly Ash
(11.8% FeA )

2404 Fluidizcd-bcd Coal 
Gasification

Illinois bituminous coal

Red-Brown Spent Bed 
Material 
(25.5% FeA)

1202A Fluidized-bed Coal 
Gasification

Mixture of Illinois U5 
and Illinois #6 coals

Red-Brown Spent Bed 
Material
(21.1% FeA)

1204 Fluidizcd-bcd Coal 
Gasification

Mixture of Illinois #5 
and Illinois #6 coals

Grey Fly Ash
( 12.2% FeA)

403A Coal Combustion With 
Flue Gas Cleaning

Pittsburgh #8 bituminous 
coal

Spent Scrubber Sludge
(9.1% FeA)

503 Coal Combustion With 
Flue Gas Cleaning

Illinois #6 bituminous 
coal

* in “Gcotcchnicai/GcocKcmical Characterization Of Advanced Coal Process Waste 
Streams: Task 2 Report” (Moretti and Olson, 1992)
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Procedure For Experimentation

20-60 mesh aluminum oxide, carbon, and y-zeolite were used as supports. The 

aluminum oxide and y-zeolite were purchased from Aldrich. The surface areas of these 

supports were 146.25 m2/g and 440 m2/g for A120 , and carbon. The surface of y-zeolite 

was not available. These supports were then coated with 4-7 % of various metal oxides. 

0.20 g of samples were placed in a 6" long circular glass reactor tube with an outer 

diameter of 0.20".

Several metal oxides were screened by varying: temperature, presence and amount 

of oxygen, amount of acid, and the uptake of nitrogen oxide (NO) which is a flue gas 

component.

Activation energy and the order of reaction was determined by varying the 

temperature at which adsorption takes place. The initial temperature was 150°C. If the 

metal oxide did not adsorb the mercury, the temperature was increased to determine if 

adsorption would occur at a higher temperature.

The experimentation began with simple metal oxides and proceeded to more 

complex transition or lanthanide metal oxides. The work plan began with manganese 

oxides coated on aluminum oxide, carbon, and y-zeolite. In the next phase, iron oxides 

coated on aluminum oxide were tested. Thirdly, iron oxides were tested Transition 

metals on aluminum oxide were then tested. Finally, fly ash samples were tested
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CHAPTER IV

RESULTS AND DISCUSSION

The results and discussion will be discussed in this order: supports, manganese 

oxides on support, iron oxides, iron oxides on aluminum oxide, transition metals on 

aluminum oxide, and fly ashes. Lastly, overall results will include replication of runs, 

determination of reaction mechanism, and in-situ activation.

Supports

The supporting matrices used in testing metal oxides were aluminum oxide, 

carbon, and y-zeolite. These supports were tested for their Hg adsorption capacities 

From Table 11, it can be seen that the supports were ineffective for Hg sorption Due to 

its larger surface area, carbon adsorbed more Hg than A12Oj.

Table 11: Hg Sorption Capacities of Supporting Matrices

Support % Hg Passed into Effluent at 4 hrs and
a Reactor Oven Temp of 150°C

A lA 84

Carbon 75

Manganese Oxides on Support

Supporting matrices were coated with 4-7 wt % metal oxides to determine if 

chemical activation increased their Hg adsorption capacities From the literature review 

(Chapter II), we know that chemical activation should increase adsorption capacity. Table

28
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12 lists the samples, activation temperatures, reactor oven temperatures, and percentage

Hg passed into effluent at a time of 4 hours. Samples that passed less than 10 % Hg were

considered effective adsorbents for Hg.

Table 12: Manganese Oxides on Supports

Sample Activation Temperature (*C ) Reactor Oven %  Hg Passed Into Effluent
Temperature (° C ) at 4 hrs

M n 0 /A I,0 , 200 150 0
500 150 0
700 ISO 0

M nO/AIjO , f t  CufNO,), 200 150 0

MnO/y-zcolitc :oo 150 0

MnOj/carbon 200 150 26
400 150 12

N»,SO,/ A I.O , 200 150 100
400 150 85
600 150 83

M nSCVA l,0 , 200 150 92
400 150 80
600 150 78

MoO/AI A  f t  Na,SO, No Activation 150 0

M nO/Al A  f t  MnSO, No Activation 150 0

M n f V A lA * l l ,S O , No Activation 150 0

M n (C ,H ,0 ,y A I,0 , No Activation 150 65
(2.8 W1H) 200 150 70

500 150 48
600 150 46
700 150 44

M n f C . l lA V A lA 200 150 80
(5.3 wtAs) 250 150 0

300 150 0
350 ISO 1
400 ISO 0

K M n O /A JA No AlI ivauoii ISO 7
200 150 0

K M n O /A lA  f t  Oxalic Acid No Activision 150 0
200 150 0

KM nCVAIjO , f t  Hydrogen No Activation 150 0
Peroxide 200 150 0

MnOOII No Activation 150 0

M n A No Activation 1)0 0

IIT O . No Activation 150 64
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Comparison to Cavallaro. et al.

The ambient temperature studies of Cavallaro, et al. (1982) provided a baseline 

comparison for this work They found that A120 3 did not adsorb mercury. Additionally, 

M n02 on A120 3 was a poor adsorber of Hg, but improved when impregnated on 

Cu(N03)2. Finally, KMn04/AJ20 3 was shown to be a good adsorbent for Hg. However, 

the Cavallaro study is of limited relevance to the adsorption of Hg from stack gases 

because of the associated high temperature. To better simulate stack conditions, the tests 

in this study were performed at 150°C. The general trends observed at 150°C followed 

those present at ambient temperature, but MnO/AljC^ adsorbed Hg well at 150°C.

Comparison of Supports

A120 3 and carbon supports were tested with and without chemical activation The 

supports were coated with Mn02. A120 3 completely adsorbed Hg with chemical 

activation; carbon did not (32 % Hg released into the effluent stream). Chemical 

activation of A120 3 and carbon with Mn02 is required for significant adsorption of Hg. A 

probable reaction mechanism for Mn02 reacting with Hg may be:

2e-

Hg: + O - M n
\  ,eO -----

l lg '} + O
/ °  —  -  Mu -«*-
\  i

Hg'1 *  O' —  Mn

■ O
/ O

\

... XHg" —  O — Mn ^

Hg ----O -----  Mn

O

/ °

\

Additionally, Y-zeolite was coated with Mn02. Figure 2: Comparison of Supports 

Coated with Mn02 shows that AI20 3 and y-zeolite provided more effective Hg sorption
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than carbon at an reactor oven temperature of 150°C and time of 4 hours. Carbon has a 

larger surface area than A120 3 possibly providing more Mn02 sites for the Hg to react 

with, increasing the Hg sorption capacity. The results contradict this statement. One 

possible explanation is that Mn02 has a stronger interaction with carbon than the AUO, or 

y-zeolite, making Mn02 less available for bonding with Hg°.

Figure 2
Comparison of Supports With Mn02

Time (hrs)

Comparisoa.oTSulfatesonAljOjwilhandwilhoutMnOj 

MnS04/Al20 3 and Na2S04/Al20 3 activated at 200°C, 400°C, and 600°C were not 

effective adsorbents for Hg. None of the samples adsorbed more than 23 % of the 

mercury passed from the source. IR Spectroscopy showed that MnS04 did not 

decompose to Mn02 at any activation temperature. The results from performing 1R 

spectroscopy on manganese oxide samples is included in Appendix C given in Table 23: 

Infrared Spectroscopy Results It may possible that MnS04/AI20 3 was not activated at a
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high enough temperature so that decomposition to Mn02/Al20 3 could take place. This 

could further apply to Na2S04/Al20 3.

It was of interest to the determine the effect of the addition of sulfate to 

MnOj/AljOj since flue gas contains S02 and in the presence of oxygen it can oxidize to 

S04'2. Mn02/Al20 3 coated with MnS04, Na2S04, and H2S04 adsorbed all the Hg passed 

into the effluent. Therefore, there is no sulfate interference, inhibition, or poisoning. IR 

spectra show that H2S04 did not convert Mn02 on A120 3 to a different compound with its 

addition to the sample. Manganese oxide impregnated on alumina would be an effective 

adsorbent for Hg when used in streams contain S02.

Comparison of A12Q3 coated with 2.8 and 5.3 wt % Mn(C2H3Q2)2 

Mn(C2H30 2)2/Al20 3 was prepared coating 2.8 and 5.3 wt % metal oxide onto the 

A120 3. Adsorption Efficiencies in Table 12 show that the 2.8 wt % sample was ineffective 

for Hg sorption at a reactor oven temperature of 150°C. However 5.3 wt % 

M nCCjHjC^yAl^ activated at 250 °C was effective for Hg removal at an oven 

temperature of 150°C. Therefore, this sample required a minimum activation temperature 

(250°C) to become a good adsorbent for Hg. The activation temperature must be high 

enough to decompose the manganese acetate and convert it to the oxide. This was 

evident in the IR spectra results; there were no acetate peaks for Mn(C2H ,02)2/Al20 3 

activated at 250°C. The higher weight percent Mn(C2H ,02)2/Al20 3 is a better adsorbent 

because it includes more active sites for Hg adsorption.
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Chemical Impregnation of Carbon

Carbon was tested alone and with chemical impregnation of Mn(N03)2. 

MnfNOjycarbon was activated at 200°C and 400°C. This was done to determine if 

MnlNOjVcarbon would become activated/oxidized (forming Mn02/carbon) at a certain 

temperature. Table 12 shows that MnO/carbon had an increase in adsorption capacity 

with activation at a higher temperature; although it did not completely adsorb all the Hg 

Figure 3: Carbon Adsorption Efficiencies demonstrates that the carbon has some 

sorption capacity, since the bed initially removes some mercury. However, the sorption 

capacity of the non-treated carbon is quickly overwhelmed. The chemically treated 

carbons demonstrated improved mercury sorption. The higher activation temperature 

resulted in an adsorbent with better sorption capacity. This is probably due to a greater 

decomposition of Mn(N03)2 of Mn02 at the higher temperature (400°C) resulting in 

larger number of active sites.

Figure 3
Carbon Adsorption Efficiencies
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Iron Oxides

Table 14 lists the results of testing iron oxides for their effectiveness as mercury

adsorbents. The table includes the % Hg passed into the effluent at 30 minutes for each

reactor oven temperature used in testing. Figure 4 is a representative graph of the results

from testing iron oxides different oven temperatures. It shows that maghemite was an

effective adsorbent for Hg at a reactor oven temperature of 200°C.

Table 13: Iron Oxides

Sample Reactor Oven Temperature ( ° C l %  Hg Passed Into Effluent

l Maghemite 100 78
150 12
200 1,2
233 0
266 0
300 0
333 4
366 11
400 3

Hematite 60 81
80 81
100 78
120 78
140 80
150 82
160 79
180 83
200 84
250 57
300 80
350 78
400 72

Magnetite 60 100
80 100
100 100
120 98
140 100
160 99
180 100
200 98
250 86
300 47
350 38
400 18
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Table 13 cont

; Feroxyhyte 60 94
80 93
100 92
120 96
140 96
160 95
ISO S3
200 0

Lepidocrocite 60 96
80 92
100 91
120 94
140 93
160 92
180 74
200 5

Goethite 60 76
80 55
100 53
120 39
140 45
160 35
180 4
200 0

Mn-Fe Goethite 60 95
80 95
100 96
120 95
140 96
160 91
180 95
200 89

Ferrihydrite 60 83
80 92
100 97
120 100
140 100
160 95
180 71
200 99

2-Line Ferrihydrite 60 9!
80 89
100 82
120 SI
140 35
160 17
ISO 0
200 0

Determination of Activation Temperature

Several iron oxides (maghemite, feroxyhyte, lepidocrocite, goethite, and 2-line 

ferrihydrite) were effective at 200°C and it had to be determined if they were reaching an
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activation (oxidation) temperature. After testing the iron oxide at 200°C, the reactor 

oven temperature was then decreased to 150°C to determine if the sample was still 

effective for Hg adsorption. Table 14 shows the results of testing several samples for their 

activation temperature. These results can be visually seen in Figures 5 (maghemite), 6 

(feroxyhyte), 7 (lepidocrocite), 8 (goethite), and 9 (2-line ferrihydrite).

Table 14: Activation Temperature Determ ination For Iron  Oxides

%  H g  Passed into Effluent at 30 min

Oven Tem p 200°C Oven Tem p 15 0 "C

M ag h em ite 5 98

F eroxyhyte 0 4

L ep id o cro c ite 5 96

G o eth ite 0 79

2 -L ine F errih y d rite 0 2 6

Maghemite, lepidocrocite, goethite, and 2- line ferrihydrite passed the same 

amount of Hg into the effluent at an reactor oven temperature of 150° C before and after 

testing at 200°C. IR spectra showed that maghemite, goethite, and 2-line ferrihydrite did 

not form different compounds at 200°C. Therefore, they must be used at a temperature of 

200°C to be effective adsorbents (operating under chemisorption). From IR spectra, it 

was determined that lepidocrocite formed maghemite at 200°C. Maghemite requires a 

higher oven temperature to be an effective adsorbent, hence, the lepidocrocite sample 

should also. Feroxyhyte was an effective adsorbent for Hg when reactor oven 

temperature was decreased to 150°C. IR spectra showed that feroxyhyte formed new 

bonds at 200°C. The product must be an active iron oxide.
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Determination of activation temperature was also made by heating the iron oxides 

in a furnace to determine if they became activated/oxidized at those temperatures.

Table 15 lists the % Hg passed into the effluent for samples heated at several 

temperatures. Hematite’s adsorption capacity did not change with activation at a higher 

temperature. Mn-Fe goethite’s adsorption capacity increased at higher temperatures; 

although, activation at 400°C was significantly better than at 500°C. The two 

explanations for this are that scatter in the experimental data makes the values 

indistinguishable or that something more significant is happening at 400°C that is beyond 

the scope of this study.

Table 15: Iron  Oxide Adsorption  Capac ity  Determ ination A t  V a riou s Activation  Tem peratures

Iron  Oxide Activation  Tem perature (°C ) %  H g  Passed into Effluent at Reactor 
Oven Tem p o f 150°C and  4 hrs

H em atite N o  A ctivation 82
2 5 0 78
4 0 0 82

M n -F e  G o e th ite N o  A ctivation 93
4 0 0 52
5 0 0 77

Structure of Iron Oxides

The active iron oxides all were less dense than the inactive iron oxides and their 

structure includes vacancies (Schwertmann, el. a i, 1991) There is a correlation between 

the density of iron oxides and their adsorption efficiencies. These iron oxides were formed 

with different configurations of iron and oxygen in tetrahedra and octahedra. The 

structure of the individual oxides will be discussed in Table 16. (Schwertmann, el. al., 

1991)
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Tab ic  16: Structure o f Iron  Oxides

Iron  Oxide Structure

M ag h em ite O n e  h a lf  o f  th e  in te rstices a re  te trahed ra liy  c o o rd in a ted  w ith  oxy g en  and  2 /3  a re  
oc tah ed ra lly  coo rd ina ted . F iv e  s ix th s  o f  to ta l av a ilab le  p o s itio n s  a re  filled  by  F e3' ,  th e  re s t 
a re  vacan t. M ag h em ite  h as  d iffe ren t sym m etries d ep en d in g  o n  th e  d eg ree  o f  o rd e rin g  o f  
the  vacanc ies.

F eroxyhy te F eroxyhy te  h a s  a  h em atite -like  s tru c tu re  w h ich  is  hexagonally  c lo se -p ac k ed  oxy g en  p lan es  
w ith  F e  io n s  in  o c tahed ra l in te rstices . B u t, fero x y h y te’s s tru c tu re  in c lu d es  v acan t F e  sites.

L ep id o cro c ite L ep id o cro c ite  is co m p o sed  o f  d o u b le  b an d s  o f  oc tah ed ra  w h ich  sh a re  ed g e s  to  fo rm  z ig 
z a g  lay ers  w h ich  a re  co n n ec ted  to  each  o th e r  by  hyd rogen  bonds. O nly  h a lf  o f  the  
o c tahed ra l in te rs tices  a re  f illed  w ith  F e3'.

G o eth ite G eo th ite  is  co m p o sed  o f  d o u b le  b a n d s  linked  by  c o m e r-sh a r in g  in such  a  w ay a s  to  form  2 
x  1 o c tah ed ra  “ tu n n els” c ro ssed  by  h yd rogen  b ridges. O nly  h a lf  o f  o c tah ed ra l in te rs lices  
a re  filled  w ith  F e3'.

M ag n etite O n e  h a lf  o f  th e  in te rs tices  in  m ag n e tite  a re  te trah ed ra liy  c o o rd in a ted  w ith  o x y g en  and  2/3 
a re  o c tah ed ra lly  co o rd in a ted . A ll p o sitio n s  a re  filled  w ith  F e , te trah ed ra l p o sitio n s  filled  
w ith  F e3* and  th e  o c tahed ra l o n es  b y  equal am o u n ts o f  F e3* and  F e2' .

H em atite H em atite  is  co m p o sed  o f  lay ers  o f  F e 0 6 in  o c tah ed ra  w h ich  a re  co n n ec ted  by  ed g e -an d  
face-sharing . T w o  th ird s  o f  the  octahedra! in te rs tices  a re  filled  w ith  F c3\  F ace  sh a rin g  is 
acco m p lish ed  by  a  s ligh t d is to rtio n  c f  the  oc tah ed ra  w h ich  cau se s  a  reg u la r  d isp lac em en t 
o f  th e  Fe ions. T h e  d isto rtion  and  ab sen ce  o f  H  b o n d s y ie ld  a  co m p ac t s tru c tu re  w h ich  is 
re sp o n s ib le  fo r th e  h igh  density .

M n -F e
G o e th ite

C o n ta in s M n (lII)  an d  F e ( lll)  w ith  a  crysta l s tru c tu re  s im ila r  to  goe th ite ; e x cep t, tw o  o f  the  
un it cell ed g e  leng ths e re  sh o rte r  and  o ne  is  longer.

F errih y d rile F e irih y d rite  h a s  a h em alite -like  s tru c tu re  co m p o sed  o f  hexagonally  c lo se -p ac k ed  oxygen  
p la n e s  w ith  F e  ions in oc lrah ed ra l in terstices. Its s tru c tu re  in c lu d es  vacanc ies.

2 -L in e
F errih y d ite

S tru c tu re  s im ila r  to  fe rrihyd rile  ex cep t that it h a s  a  d iffe ren t s tru c tu ra l o rd e r  and  c ry sta lin e  
p lane.

Magnetite, hematite, Mn-Fe goethite, and ferrihydrite’s structures do not include 

vacancies which increases their densities. It is therefore harder for the Hg° to be oxidized 

by the molecules on the inside or edges of the structure. IR spectra showed that the 

hematite structure remained the same with heating. Therefore, hematite would remain 

inactive at this temperature; as evident from the adsorption results IR spectra showed 

that magnetite formed hematite at 200°C, which was shown to be ’tractive for Hg
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adsorption At a reactor oven temperature of 150°C, tan-Fe goethite was shown to 

contain goethite which was inactive at this temperature. IR spectra indicated that a 

greater amount of another compound was present at 200°C; hence, this may explain why 

it was not a good adsorbent at 200°C. Goethite was an effective adsorbent for Hg at 

200°C. Another possible explanation for Mn-Fe goethite inactivity may be that 

manganese and/or iron were not in their highest oxidation state. Ferrihydrite’s structure 

includes vacancies; but, adsorption results show that it is an ineffective adsorbent for Hg. 

A probable explanation is its hematite-like structure; hematite was previously found to be 

inactive.

Several iron oxides were tested for their Hg adsorption capacity. Table 17 shows 

% Hg passed into the effluent for several iron oxides on aluminum oxide activated at 

various temperatures.

Iron III Sulfate under heat should decompose to form a oxide. IR spectra showed 

that sulfate was present in samples activated at 200°C and 400°C. Hence, the sample did 

not decompose at these activation/oxidation temperatures. Figure 10 shows the inactivity 

ofFe,S04/Al20 3 activated at 200°C, 400°C, and 700°C.

Iron II Sulfate forms a hydroxy oxide which always forms maghemite with 

activation. Iron II Sulfate was a good adsorbent when activated at 200°C indicating that 

at this activation temperature iron II suFatc > decomposing to iron oxide At an 

activation temperature of 400 °C, it lost its sorption capacity. This loss maybe explained
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Table 17: Iron Oxides on Aluminum Oxide

Sample Activation Temperature % Hg Passed into the Effluent at
(°C) Reactor Oven Temp of 150°C 

and 4 hrs

Fe2(S04)3/Al20 J 200 64
400 78
500 82
600 84
700 77

FeS04/Al20 3 200 8
400 78
500 89
600 71
700 81

(CH2C02)2Fe/Al20, 200 70
400 83
500 84
600 60
700 78

FeClj/AlA 200 0

FeA /A l.O ,' 200 78
400 87
500 69
600 91

FeOOH/AljOj1 No Activation 26
200 0
400 85

'F c fN O jJ j/A IjO ) P re p a ra tio n  M eth o d  #1 
’FcCNO jJj/A IjO ,  P re p a ra tio n  M ethod  M2

by the formation of the inactive hematite. IR spectra of FeS04/Al20 j activated at 200 °C 

and 400°C did not show a peak corresponding to sulfate A sharp peak was in the spectra 

for activation at 200°C which does not correspond to any of the iron oxides already 

studied This peak disappeared in the sample activated at 400°C. The functional group
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corresponding to this peak probably was causing the activity of the sample. Figure 11 

shows that FeS04/Al20 3 became inactive at an activation temperature above 200°C

Upon heating, iron acetate should decompose to form an iron oxide. IR spectra 

showed that the acetate in the sample activated at 200°C did not decompose, although 

some decomposition did occur at 400°C. This was indicated by a smaller IR peak lR 

spectra previously showed that manganese acetate decomposed at 400°C but not at 

200°C. Figure 12 shows that the adsorption efficiency of (CH2C 02)2Fe/Al,0, did not 

increase with activation at a higher temperature

Iron nitrate was impregnated into alumnia by two methods. The first sorbent was 

prepared from the acid form. Iron III in that case always forms hematite, which is known 

to be inactive and will not adsorb Hr. The second sorbent was prepared from a hydroxy 

oxide which is known to be active and will adsorb Hg.

IR spectra showed that the structure of the two samples were completely different 

Both samples did contain nitrate which had not decomposed to an oxide. Figure 13 shows 

that Fe20j/Al20 3 was an ineffective adsorbent for Hg at several activation temperatures 

The second sample did show an IR peak corresponding to the hydroxy oxide. Figure 14 

shows that FeOOH/AI20 3 was an effective adsorbent for Hg when activated at 200°C but 

became uneffective with activation at a higher temperature.

Chlorides have a high adsorption capacity for Hg at the temperatures studied. Iron

chloride activated at 200°C exhibited good adsorption capacity at a reactor temperature 

of150°C.
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Transition Metals

This section lists the results obtained in the testing of transition metal oxides on 

aluminum oxide to determine if they were good adsorbents for mercury. Table 18 lists the

sample tested, with its activation temperature and mercury adsorption capacity.

Table 18: Transition Metai Adsorption Capacities

Sample Activation Temperature % Hg in Effluent at 4 hrs
<°C) and Reactor Oven Temp of

!50°C
Cr(N03)2/Al20 3 200°C 2

Ti(OC3H7)4/Al2G3 200°C 79
400°C 86

Ni(N0j)j/Al20 3 200 °C 1

Cu(N03)2/A120 3 200°C 77
400°C 81

CoOMOjV A IA 200°C 48
400°C 77
500°C 99

n h 4vo3/ai2o3 200°C 63
400°C 85

NH4VOj/Gascoyne
Lignite

400°C 70

Cr(NO,)2/Al2Oj and Ni(N03)2/Al20 3 were proven effective adsorbents for Hg.

The other samples failed as adsorbents for Hg. This nickel result is especially important 

because of its presence in bituminous orimulsion ash. The inactivity of titanium 

isopropoxide is due to its decomposition to form titanium oxide which is not a good 

oxidizing agent for most compounds. Copper nitrate was not a good adsorbent for Hg It
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is known that copper chloride is a good adsorbent for Hg. More studies should be done 

to determine if the copper ion is active component for adsorbing Hg.

Ammonium vanadate is known oxidize some compounds It decomposes to form 

vanadium oxide (V20 5). Vanadium oxide was not a good adsorbent for Hg when coated 

on aluminum oxide or carbon.

decreased adsorption capacity with activation at higher temperatures. These samples may 

be adsorbing at low temperatures under the physisorption principle.

This section lists the results obtained in the testing of ashes to determine if they 

were good adsorbents for mercury. Table 19 lists the ash, US Department of Energy 

Morgantown Energy Technology Center Code and percentage Hg emitted in effluent at a 

reactor temperature of 150°C.

The only fly ash found to be a good sorbent for Hg was Bitumin Orimulsion Ash 

It has a high nickel (1 percent) and vanadium (12 percent) content. Previous work 

showed that nickel oxide was an effective adsorbent and that vanadium oxide failed as an 

adsorbent for Hg. The other adsorbents did not adsorb a majority of the mercury emitted.

There is no relationship between Hg emissions and the type of ash produced in 

power plants. Iron content does vary with the parent coal, but the major form is hematite. 

The different types of iron most likely convert to hematite at higher temperatures, and 

hematite was shown to be inactive. The activity of bitumin orimulsion ash may be due to 

its high nickel content.
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Table 19: Ash Results

Ash METC Code % Hg Emitted

Bitumin Orimulsion Ash NA 2

Red Brown Bottom Ash (3.7% F e A ) 702A 100

Grey-Black Bottom Ash (21.2% F e A ) 502A 99

Tan Coal Gasification Ash (11% F e A ) 302A 99

Grey-Black Coal Gasification Ash (23.5% F e A ) 230 100

Black-Brown Bottom Ash (8.3% F e A ) 602A 100

Black Gasifier Ash (16.2% F e A ) 2201A 90

Grey Economizer Ash (6.2% F e A ) 2403 A 94

Grey Baghouse Fly Ash (11.8% F e A ) 2404 75

Red-Brown Spent Bed Material (25.5% F e A ) 1202A 86

Red-Brown Spend Bed Material (21.1% F e A ) 1204 65

Grey Fly Ash (12.2% F e A ) 403 A 95

Spent Scrubber Sludge (9.1% F e A ) 503 93

Overall Results

The following discussion covers the results from the testing of manganese oxides 

on supports, iron oxides, iron oxides on aluminum oxide, and transtion metal oxides on 

aluminum oxide.

Replication of Results

Table 22 presents the results obtained in replicating tests to determine the accuracy 

of results obtained from the mercury vapor monitor. It can be seen that the actual 

percentage Hg passed into the effluent varied up to 8 % when replicated. Due to the small
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number of runs replicated, this may not be a true indication of the error in calculating 

percentage Hg passed into the effluent.

Table 20: Replication of Runs

Sample
(Activation at 200°Q

% Hg Passed Into 
Effluent

Average % Hg Passed Into 
Effluent

NajSO/AljOj 319,319 319±0

FeS04/Al20 3 9,8 8.5±0.5

Mn(C2H30 2)2/Al20 3 74, 80 77±3

Hematite 84, 83 83.5±0.5

Magnetite 98, 90 94±4

Determination of Reaction Mechanism

Table 20 presents the results obtained from determining the role of oxygen in the 

sorption of mercury on metal oxides was evaluated. Without oxygen, the reaction is not 

necessarily catalytic. Iron oxides tested under air and nitrogen gave the same results.

Since under both conditions all the mercury passed from the source was adsorbed, 

molecular oxygen has no effect on the rate of Hg sorption by and therefore is not 

involved in the reaction. The metal oxide is all that is required for mercury sorption. The 

metal oxide is therefore oxidizing the mercury and the oxidation state of the metal (e.q. 

Mn, Fe, Ni) is lowered.

The percentage Hg passed into the effluent increased slightly for maghemite when 

tested under nitrogen. It is possible that this value is not real, since errors of up to 8 

actual %was obtained in replication. If the values are real, there is small catalytic effect of 

oxygen.
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Table 21: Comparison of Adsorption Capacities Using Air and Nitrogen

% Hg Passed into Effluent

Metal Oxide Activation Temperature (°C) Air Nitrogen

MnOj/AlA 150 0 0

Maghemite 200 1 7

Fe00H/Al20 3 200 0 0

FeClj/AljOj 200 0 0

Ni(N03yA l20 3 200 1 1

In-Situ Activation

Temperature studies were performed on several samples activated at 200°C. They 

involved testing the same metal oxide with isothermal reaction periods of 30 minutes and 

then increasing the oven temperature in at approximately 40°C intervals from ambient 

temperature (25°C) to 350°C and then decreasing the temperature by the same 

increments. Table 21 shows the oven temperatures, and % Hg passed into the effluent for 

MnCyAljOj and Mn(C2H30 2y A l20 3 (2 8 wt %).

Temperature studies were performed on Mn02/Al20 3 and Mn(C2H30 2)2/Al20 3 (2.8 

wt %). Table 13 shows that Mn02/Al20 3 was effective as an adsorbent for Hg at all 

reactor oven temperatures. This was not the case for Mn(C2H30 2)2/Al20 3 which was 

ineffective as an adsorbent for Hg below a reactor oven temperature of 220°C. Its 

effectiveness decreased when the temperature decreased to 100°C. If the reaction is 

physisorption, the adsorption capacity should decrease with higher activation 

temperatures This is not true and there may be an indication of chemisorption.
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Table 22: In-Situ Activation of Hg on Mn(C2H30 2)2/AI20 3

Oven
Temperature (°C)

% Hg Passed in Effluent 
for Mn02/Al20 3

% Ug Passed in Effluent for 
Mn(C2H30 2)2/AI20 3 (2.8 wt %)

20 1 84

60 0 82

100 1 77

140 1 66

180 0 49

220 0 0

260 0 0

300 0 0

330 0 0

350 0 0

330 0 0

300 0 0

260 0 1

220 0 1

180 0 2

140 0 6

100 1 32

60 1 91

20 1 100

These results are presented in Figure 15: In-Situ Activation included in Appendix

C.
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CHAPTER V

CONCLUSIONS AND RECOMMENDATIONS 

Conclusions

This project was initiated to study the mercury sorption properties of metal oxides 

so that some of sorption processes in fly ash may be understood. The objective of the 

project was to investigate the fundamental aspects of toxic metal (mercury) sorption by 

metal oxides. The overall goal of this research is to evaluate the potential for the 

adsorption of elemental mercury vapor on inorganic oxide materials, determine which 

metal inorganic oxides can catalyze the oxidation of elemental mercury, and ascertain the 

nature of the sorption process by examing temperature effects and oxygen requirements.

1. Oxygen is not required for the sorption of mercury on metal oxides. Therefore, 

the reaction of metal oxides with mercury is not catalytic, but direct oxidation.

2. Chemical impregnation with MnfNOj)^ Mn(C2H30 2)i  KMn04 MnOOH, Mn20 3 

FeOOH, FeClj, Cr(N03)2, or Ni(N03)2 increases the adsorption capacity of 

aluminum oxide.

3. The addition of sulfate on an active sorbent (e g. manganese oxide on aluminum 

oxide) does not poison the sorbent towar ds mercury adsorption.

4. There is a correlation between the density of iron oxides and their adsorption 

efficiencies. The lower the density, the higher the adsorption capacity.
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5. Fly ashes do not have a high adsorption capacity for mercury due to their 

conversion of iron compounds to hematite at high temperatures

Recommendations

Recommendations for further study on this project are listed below.

1 More testing should be done to determine if oxygen is a factor in the adsorption of 

mercury on metal oxides. Maghemite tested with air and nitrogen showed a slight 

difference in adsorption efficiencies at an oven temperature of 200°C. It should be 

determined if this difference is real or due to the error in the mercury 

measurements.

2. The effect of water vapor in the flue gas should be tested. Inorganic adsorbents 

are polar and preferentially adsorb water vapor over mercury from the flue gas 

stream. Water vapor is present in most flue gas streams. It may be found that 

samples that were previously good adsorbents for mercury may now be poor 

adsorbents.

3. The adsorption capacity for mercury increased when adding a higher weight 

percent manganese acetate to aluminum oxide. The exten of addition of 

manganese acetate before the mercury capacity of the oxde plateaus should be 

investigated.

4. Mor e testing should be performed to determine the effects of nitrates. Nitrate in 

the samples prepared did not completely decompose. This important because 

nitrate decomposition may lead to NO formation thus increasing the leval of Nox in 

the flue gas.
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5. Alternative methods for making goethite should be found and used due to the

impurities found the IR spectra. It may be possible to use FeS04 instead of FeClj. 

A critical pan of making goethite is the pH; hence, maintenance of the pH is 

required.

6. The IR spectra of the supports were not subtracted from the total IR spectra. 

Better interpretation of results may be formed by performing this subtraction. Y- 

zeolite shows several peaks on the IR spectra and it was difficult to interpret the 

results of Mn02 coated on y-zeolite. The peaks for KMn04, KMn04 and oxalic 

acid, and KMn04 and hydrogen peroxide were indistinguishable due to the large 

peak for aluminum oxide.

7. A better effort should be made to remove the water vapor from the IR 

spectrophotometer before testing. Water vapor cause several small peaks to form 

in the spectra, consequently increasing the difficulty to interpret the results.

8. Infrared spectrophotometry of the fly ash samples should be undertaken to 

determine if the iron contained in them did form hematite at combustion 

temperatures.

9. Testing should be performed to determine the oxidation state of each compound. 

The Mossbauer technique could be used for this. Higher oxidation states usually 

have better adsorption capacities.
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10. X-ray chromatography should be used to determine the crystalline structures of the 

compounds. It could then be determined if t^eir is a correlation between density 

and adsorption capacity for all metal oxides.

11. The density of manganese, iron, and transition metal oxides on supports should be 

compared with adsorption capacities.
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Calculations To Determine the Amount For MnO, on A120 3 

Calculations were made to determine the actual recipe for seven weight percent 

Mn02 on A120 3 To make the calculations simple, ten grams of H20  were used to prepare 

the Mn(N03)2 solution. For convenience, a twenty-five percent Mn(NO,)2 solution was 

utilized. Therefore, the amount of Mn(N03)2*6H20  required in the solution is calculated

5 } fo llo w s,

X = grams of Mn(N03)2*6H20  required

_____ X gMnfN0?V6H20 _______  = 0.25 g MnfNO,T-6H:Q
X g Mn(N03)2*6H20  + 10.00 g H20  g soln

0 25 * X + 0.25 * 10 00 = X

0.25 * 10.00 = X - 0.25 * X

2.5 = 0.75 * X

X = 3.33 g Mn(N03)2*6H20

Therefore, 3.33 grams Mn(N03)2*6H20  was added to 10.00 grants of water to 

make a twenty-five weight percent Mn(N03)2»6H20  solution which in (urn yields a seven 

weight percent Mn02 sample on A120 ,. To make the calculations simple, ten grains of 

A120 3 were used. The sample was dried in an oven on the assumption that 

Mn(N03)2*6H20  converts into Mn02 with drying.

Y “  grams of solution used in the sample

Y g soln * &25-gJVta(NQ3)2*6Hj£> * I mol Mn(N03)-6H20 ^  *
g soln 287 04 g Mn(N0,)2*6H20

1 mol MnO?_____* 86.94 gM n02 = 7.572E-02 * Y g Mn02
1 mol Mn(N0,)2*6H20  mol MnO,
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A seven weight percent MnO, sample was desired. Therefore, the amount of

solution added to ten grams of AJjOj could be determined.

_____ 7,S72E-02»Y g MnO,_____  = 0 07 g Mn02
7.572E-G2«Y g Mn02 + 10 g A120 3 g dry sample

where g sample = g MnO, + g A1,03

0.07 * 7 572E-02 * Y + 0.07 *10 = 7.572E-02 * Y

0.07 * 10 = 7.572E-02 * Y - 0 07 * 7 572E-02 * Y

0.7 = 7.042E-02 * Y

Y = 9.94 g soin

Therefore, 9.94 grams of solution should be added to 10 grams of A120 ,  to 

produce a seven weigh! percent Mn02 sample.
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The calculations used to determine the actual weight percent M n02 on A120 , 

follow. First, the weight percentage Mn(N03)2 in the Mn(N03)2*6H20  solution were 

determined.

_____ 3.33 g MnfNQ3V6H20 ______  = 0 25 g Mn(rNO,T«6H-,Q
3.33 g Mn(N03)2*6H20  + 10.00 g H20 g solution

25 wt % Mn(N03)2‘6H20

where g soln = g Mn(N0,)2*6H20  + g H20

Next, the amount of Mn(N03)2*6H20  used was calculated

6.19 g solution * O J 2 5 g M n ( N _ Q , = 1.53 g Mn(N03)2*6H20
1.00 g solution

1.55 g Mn(N03)2-6H20  * _ J_moiMnCN_Q3)2-0H2Q_
287 04 g Mn(N0j)2*6H20

= 5 340E-03 mole Mn(N03)2*6H20

It was assumed that during drying Mn(NO,)2 turned into MnOz.

5.34QE-Q3 mol Mn{NQ3)j = 5.340EUG3 mo! MnO, after drying

Moles of Mn02 was converted to grams and the actual weight percentage M n02

was calculated,

5.340E-03 mol Mn02 * 86.94 g = 0 46 g Mn02
mol

____jQL4<5 g Mn.Qj______  * 0.0440 g MnQ2 = 4.40 wt % Mn02
0 46 g Mn02 + 10.00 g AI2G3 g dry sample

where g dry sample « g Mn02 + g Al20 3

Calculations for Actual Weight Percent Mn02 on A1,0,
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Calculations To Determine Amount For 7 wt % Na2S04 On A120 3

The calculations used to determine the actual recipe for seven weight percent 

Na^O,, on A120 3 follow. The calculations were simplified by using ten grams of A120 3. A 

seven weight percent Na2S0 4 solution was desired 

X = grams of NajSO, required

X gN a2S04 + 10.00 gAl20 3 g dry sample 

where g dry sample = g Na2S04 + g Al20 3 

0.07 * X + 0.07 * 10.00 = X 

0.7 * X - 0.07 * X 

0.7 =0.93 * X 

X = 0.75 g NajSO,

Therefore 0.75 g Na2S04 were added to 10.00 g A120 3 to make a seven weight 

percent Na2S04 sample.

X  g Na2SQ4. 0.07gNa?SQ1
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The calculations used to determine the actual weight percent Na2S04 on A120 3

Calculations To Determine Actual Weight Percent Na2S04 on A120 ,

follow:

0.70 g Na.SC),
0.70 g N a^O , + 10.00 g A120 3

= 0.70 g Na-.SC), = 7.0 wt % Na2S04 
g dry sample
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Calculations To Determine Amount For 7 wt % Mn02 and 1 wt %Cu(N03)2 on A120 3 

The calculations to determine the amount for 7 wt % Mn02 are given above under 

Calculations To Determine the Amount For 7 wt % MnO, on A120 3.

One weight percent Cu(N03)2 was then added to this sample.

Z = grams of Cu(N03)2 used in sample

Z g Cu(N03)2 + 10.00 g A120 3 + 1.55 g Mn02 g dry sample 

where g dry sample = g Cu(N03)2 + g A120 3 + g Mn02 

0.01 *Z + 0.01 ♦ 10.00 + 0.01 * 1.55 = Z 

0.1 + 1.54E-02 = Z -0.01 *Z 

1.15E-01 = 0.99 * Z 

Z = 0.12 g Cu(N03)2

Therefore. 0.12 g Cu(N03)2 should be added to 9.96 grams of solution and 10.00 

grams of A120 3 to make a 7 wt % Mn02 and 1 wt %Cu(N03)2 on Al20 3.

Z g Cu(N03): Q.Qlg-CuCNQjk
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Calculations To Determine Actual Weight Percent Mn02 and Cu(N03)2 on A120 3 

The calculations used to determine the actual weight percent manganese oxide 

were calculated above.

The actual weight percentage is shown below.

0,12.g.Cn(NQ3)2
0.47 g M n02 + 10.00 g A120 3 + 0.12 g Cu(N03)2 

= 1.13 w t% Cu(N 03)2

00113 g CufNCXV. 
g dry sample
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The calculations used to determine the actual weight percent Fe(N03)3 follow.

2.00 g Fe(NO3)3»9H20 * lmol FefNO-,y9H:Q = 4.95E-03 mol Fe(NO,)3
404 g Fe(N03)3

4.95E-03 mol Fe(N03)3 * 55,85 gFe = 0.28 g Fe
1 mol Fe(N03)3

Calculations To Determine Amount For 7 wt % Fe(N03)3 on A120 3

0.28 g Fe 0.0055 g Fe =■- 0.55 wt % Fe 
g dry sample0.28 g Fe + 10.00 g AI20 3 + 40 g NH3OH

where g dry sample = g Fe + g A120 3 + g NH3OH
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Figure 4
Maghemite Adsorption Efficiencies
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Figure 5
Activation Temperature of Maghemite
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Figure 6
Activation Temperature of Feroxyhyte
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Figure 7
Activation Temp, of Lepidocrocite
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Figure 8
Activation Temperature of Goethite
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Figure 9
Activation Temp of 2-Line Ferrihydrite
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Figure 10
Fe2(S04)3/A!203 Adsorption Efficiency
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Figure 11
FeS04 /A I203  Adsorption Efficiencies
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Figure 12
(CH2C03)2Fe/AI203 Adsorption Eff.
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Figure 13
Fe203/AI203(Method #1) 
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Figure 14
F eO O H /A I203 (M e ihod  #2)
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Figure 15
In-Situ Activation

of Mn(C2H302)2/AI203
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APPENDIX C

INFRARED SPECTROSCOPY

The results of performing infrared spectrophotometry analysis on manganese 

oxides, iron oxides, and oxides on supports are given in Table 23 which includes the 

sample name, frequency of major peaks, and the interpretation of those peaks.

Table 23: Infrared Spectrophotometry Results

Sample Infrared
Wavenumber

Interpretation

(cm-1)

MnCyAljOj 1381 Characteristic of nitrates. No peak was found 
to correspond to manganese oxide.

Mn20 3 647 Unique peaks characteristic to manganese
604 sesquioxide.
533
510

Mn02/carbon 639 Few peaks observed. Carbon does not have 
significant characteristic peaks

MnOj/y-zeolite Hard to 
Interpret

Hard to interpret.

MnOOH 2062 Unique peaks characteristic to manganese
2103 oxyhydroxide. No peaks found to correspond
1161 to Mn2Oj and Mn02.
1086
587
483

MnSCyAljO, 1146 Characteristic to sulfates.

MnOj/AljOj & 1378 Characteristic to nitrates.
h 2s o 4 1130 Characteristic of aluminum oxide.
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Table 50 cont.

Mn(C2H30 2)2/Al20 3 1429 Characteristic to the acetate.
(Activ Temp 200) 1555

Mn(C2H30 2)2/Al20 3 
(Activ Temp 400)

No Significant Acetate peaks no longer appear.

Kmn04, Kmn04 & 914 Peaks characteristic to potasium permanganate
Oxalic Acid, are undistiguishable from the aluminum oxide
Kmn04 & 
Hydrogen Peroxide

bands. It is therefore hard to interpret.

Hematite 
(No Activation)

1385 Characteristic of hematite.

Hematite Same as Same as above.
(Oven Temp 200) Above

Magnetite 
(No Activation)

590 Characteristic of magnetite

Magnetite 597 Characteristic of magnetite.
(Oven Temp 200) 1370 Characteristic of hematite. The peak was 

small; therefore, only a small amount of 
hematite was formed.

1570 Formed another compound.

Maghemite 636 Characteristic of maghemite.
(No Activation) 1620

Maghemite Same as Same as above.
(Oven Temp 200) Above

Goethite 790 Characteristic of goethite.
(No Activation) 894 Chara?teristic of goethite.

1385 Characteristic of hematite

Goethite Same as Same as above.
(Oven Temp 200) Above

Lepidocrocite 
(No Activation)

1018 Characteristic to lepidocrocite.

Lepidocrocite 644 Peaks are characteristic to maghemite.
(Oven Temp 200) 746

1612
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Table 50 cont.

Ferrihydrite 1128 Both peaks characteristic of ferrihydrite.
(No Activation) 1626

Ferrihydrite 1130 Characteristic to ferrihydrite.
(Oven Temp 200) 1560 Similar structure to maghemite.

1620 Characteristic to ferrihydrite.

2-Line Ferrihydrite 654 Peaks are characteristic to 2-!ine ferrihydrite.
(No Activation) 1347

1513
1622

2-Line Ferrihydrite Same as Same as above.
(Oven Temp 200) Above

Feroxyhyte 533 Characteristic of feroxyhyte.
(No Activation) 1334

1558

Feroxyhyte 533
(Oven Temp 200) 894 Characteristic of goethite.

793 Characteristic of goethite.
1334

Mn-Fe Goethite 793 Characteristic of goethite.
(No Activation) 900

1380

Mn-Fe Goethite Same as Characteristic of manganese-iron goethite.
(Oven Temp 200) Above

(C2H30 2)2Fe/Al20 3 
(Oven Temp 200)

1455 Characteristic of acetate.
1563

(C2H30 2)2Fe/ A120 3 1550 Characteristic of acetate. Peak was smaller;
(Oven Temp 400) therefore, more acetate decomposed

FeClj/Al2C3 1620 Characteristic of maghemite.

Fe2(S04)3/Al20 3 1101 Characteristic of sulfate.
(Oven Temp 200) 1650 Unique peak could be due to sulfate combining 

with the iron oxide.

Fe2(S04)3/AI20 3 1641 Unique peak could be due to sulfate combining
(Oven Temp 400) with the iron oxide
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Table 50 cont.

FeS04/Al20 , 1370 This peak is not characteristic of sulfate and
(Oven Temp 200) therefore could be due to iron oxide.

FeS04/AI20 3 
(Oven Temp 400)

No Significant No significant peaks.

F e A /A lA 855 Characteristic to aluminum oxide.
(Oven Temp 200) 1360 Characteristic to nitrate.

Fe00H/Al20 3 1146 Characteristic of ferrihydrite.
(Oven Temp 200) 1380 laracteristic of nitrate.

1405 Characteristic of nitrate.
1652 Characteristic of hydroxyoxide.
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