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ABSTRACT

The extent and rates of sulfur and nitrogen oxides 'dry' adsorption 

by nahcolite and trona were measured. Experiments were conducted by 

passing simulated flue gas through a fixed bed of test material. Variables 

considered in the study were particle size, reaction temperature, 

concentration of sulfur dioxide, and concentration of water vapor in the 

flue gas..

High reaction rates were noted for the adsorption of sulfur dioxide 

by nahcolite at reaction temperatures of 400-650° F and for particle 

diameters of 0.19 mm or less. Based on the adsorption of sulfur dioxide, 

certain tests resulted in nahcolite utilizations of over 95 pet.

Trona also proved to be capable of adsorbing sulfur dioxide. However, 

reaction rates and utilizations were considerably lower. Neither nahcolite 

or trona proved to be an effective adsorbent of nitrogen oxide. Water 

vapor concentrations of 5 to 15 volume percent had no significant effect 

on reaction rates or utilizations. For the nahcolite-sulfur dioxide 

reaction both chemical reaction and gas diffusion through the ash layer 

mechanisms contributed major resistances in controlling the overall 

reaction rate.

The high reaction rates and utilizations determined for the nahcolite- 

sulfur dioxide reaction indicate that nahcolite has great potential as a 

sorbent for 'dry' flue gas desulfurization.

x



INTRODUCTION

The reduction of sulfur dioxide (SO2) emissions to the atmosphere 

is considered an environmental problem in the United States as well as 

other industrialized nations. In 1975, over 35 million tons of SO2 were 

discharged from industrial sources in the U.S., with electric power 

generation utilizing fossil fuels contributing nearly 60 pet of the 

total emissions (1).

The following environmental regulations apply to fossil-fuel 

combustion emissions: the U.S. Environmental Protection Agency (EPA) is 

presently enforcing a New Source Performance Standard (NSPS) and National 

Ambient Air Quality Standard (NAAQS) of 1.2 lb. SO2 emitted per million 

Btu input and 80 micrograms SO2 per cubic meter (annual mean concentration 

for a 24-hr. period) respectively (2,3). Other state and local governmental 

agencies, such as Clark County, Nevada and the State of Wyoming, have 

adopted even more stringent performance standards for new electrical 

generating units. In addition, the EPA at this time (August 1978) is 

considering NSPS revisions requiring removal of 85 pet or more of the total 

sulfur input (4).

These regulations have resulted in research and development (R&D) 

programs directed at removing SO2 from stack gases so as to meet the 

standards. From these efforts, several methods of SO2 removal have 

resulted. A very adequate listing and description of these methods are 

given by Slack and Holliden (5).

1
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Methods presently available for SO2 removal are generally termed 

either 'wet' or 'dry' and 'regenerative' or 'throw away'. Wet methods 

utilize a slurry or solution in a gas-liquid contacting system which may 

be a spray or packed tower. 'Dry' techniques use dry adsorbent particles 

in a gas-solid contacting system, such as a moving bed or a baghouse. 

Salable sulfur compounds are produced from the reacted adsorbent in a 

regenerative system and the reclaimed adsorbent is returned to the 

sulfur removal system. The spent adsorbent is disposed of without 

regeneration in 'throw away' methods.

In recent years nahcolite, a natural occurring form of sodium 

bicarbonate, and trona, a natural occurring form of sodium carbonate and 

sodium bicarbonate, have received considerable attention as possible 

adsorbents for SO2 removal in 'dry' throwaway systems. Previous inves­

tigations have shown nahcolite and trona to be capable of removing 

75-90 pet of the SO2 in a baghouse application (6,7). It is thought that 

these materials could be utilized in other 'dry' removal systems as well 

and would, therefore, be of great value in water-scarce areas such as 

are often found in the Western United States.

Although raw nahcolite and trona are presently unavailable com­

mercially, there are large resources of these materials. The U.S.

Bureau of Mines estimates 30 billion tons of nahcolite in the Piceance 

Creek Basin of Colorado, and trona reserves of 85 billion tons in the 

Green River formation of Colorado and Wyoming (8). Possible development 

of oil shale deposits and future changes in economic conditions may 

cause nahcolite and trona to be available at relatively low prices. The 

availability of these materials would allow their use for SO2 removal 

systems.



RESEARCH PLAN

The objectives of this investigation were to measure and evaluate 

the sulfur dioxide and nitrogen oxide adsorption properties of the dry 

sorbents, nahcolite and trona, including the kinetics of sulfur dioxide 

adsorption by nahcolite. The sulfur dioxide adsorption capability of 

trona was to be evaluated at more limited conditions only for comparison 

with nahcolite.

In order to obtain a definable system with a consistent sorbent 

surface area, pretreatment of the sorbents was required by thermal acti­

vation. The parameters investigated were reaction temperature, particle 

size, concentration of sulfur dioxide, and concentration of water vapor 

in the simulated flue gas. The concentration level of nitric oxide was 

held constant for all tests.

3



STATUS AND COMPARISON OF FLUE GAS DESULFURIZATION SYSTEMS

At the present time all flue gas desulfurization (FGD) units in 

utility service are 'wet' processes. The most widely and best developed 

of these processes are 1ime/1imestone systems (see Table 1). It is 

expected that 1ime/1imestone systems will continue to dominate utility 

FGD units for several years because of the more favorable economics of 

this process. Some other promising 'wet' FGD processes are listed in 

Table 2.

TABLE 1

FLUE GAS DESULFURIZATION UNITS IN U.S. (9)

No. of Percentage of units (by MW)
Status_____________ units MW _________1 ime/1 imestone_______

Operational............  30 6,476 92

Under construction.....  31 13,309 86

Planned:
Contract a w a r d e d . . 20 9,981 98

Letter of intent.....  2 365 52

Requesti ng/evaluati ng
bids.........[.... 4 2,327 14

Considering FGD
systems...........  _37 16,726 26

TOTAL..................  124 49,184

4
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TABLE 2

FLUE GAS DESULFURIZATION PROCESSES HAVING 
POTENTIAL FOR UTILITY APPLICATION

Process Sorbent Used

Lime/1imestone 

Double Alkali 

Wellman-Lord 

Citrate

She! 1

Lime or limestone

Sodium hydroxide/1ime

Sodium sulfite

Sodium citrate, citric 
acid, and sodium 
thiosulfate

Copper

Foster Wheeler- Activated char
Forschung

IZRe

Wet-Throw away 

Wet-Throw away 

Wet-Regenerative 

Wet-Regenerative

Dry-Regenerative 

Dry-Regenerative

Presently there are no actual 'dry' FGD processes available that 

have been proven on a full scale basis. However, a semi-'dry' process, 

developed by Rockwell International Corp., is to be used on Montana 

Dakota Utilities et al. Coyote Station at Beulah, ND (10). Rockwell's 

Spray Dryer process utilizes a system in which the water is evaporated 

from an aqueous solution of sodium carbonate by hot flue gases leaving 

dry solid particles. The partial listing of available FGD processes 

in Table 2 includes two other potential 'dry' methods.

Although 'dry' methods of flue gas desulfurization are not presently 

in use, certain economical and operational advantages exist over the 

'wet' methods. A study by Dulin et al. (6) in 1973 investigated the 

economics of a nahcolite injection-baghouse FGD system for the cases of a
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Southwestern and a Midwestern electrical generating plant. The 

investigation included a comparison of capital and annual costs for the 

nahcolite system versus a 'wet' limestone FGD system. The basis for 

this economic analysis are given in Table 3 and the results of this 

comparison are summarized in Table 4.

TABLE 3

BASIS FOR ECONOMIC ANALYSIS COMPARING 
S02 REMOVAL SYSTEMS FOR TWO POWER PLANTS

Southwestern Midwestern
Power Plant Power Plant

SO2 removal efficiency, %..... 70 75

Delivered nahcolite cost,
S/ton........................ . 23.80 19.00

Delivered limestone cost,
$/ton........................ . 10.00 3.00

TABLE 4

SUMMARY OF ESTIMATED COSTS FOR SO2 REMOVAL 
PROCESSES FOR TWO POWER PLANTS IN 1973 DOLLARS (6)

Southwestern Midwestern
Power 

(one 800
PI ant 

MW unit)
Power Plant 

(two 840 MW units)

Item
Nahcolite 
Injection

Wet
Limestone
Scrubbing

Nahcolite 
Injection

Wet
Limestone
Scrubbing

Capital Cost:
$ MM............. 15.8 25.8 45.2 66.7
$/kw............. 19.8 32.2 26.9 39.7

Annual Cost:
$ MM............. 8.42 7.8 35.6 27.1
$/ton coal burned.... 3.36 3.11 7.66 3.66
mills/kwh........ 1.77 1 .64 3.72 2.83
U 105 Btu........ 18.6 17.2 36.5 27.0
$/ton S removed... 676 625 292 215
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The nahcolite system represents a substantial savings in capital 

costs for each case. It should be noted that the figures in Table 4 

are in terms of 1973 dollars and that plant costs have now increased 

approximately 51 pet (VI). However, assuming that inflation has had an 

equal effect on all aspects of plant cost, a capital cost savings of 

38.6 pet for the Southwestern plant and 32.2 pet for the Midwestern 

plant could be realized by the nahcolite system. The annual costs of 

the nahcolite system were higher than those of the limestone system for 

both cases, but only slightly so for the plant in the southwest. The 

lower annual cost of the limestone systems can be directly attributed to 

the lower transportation costs of raw limestone.

The capital cost advantage for the nahcolite system is offset by 

the higher annual costs for a plant in the midwest. However, in the 

case of the Southwestern plant the annual costs are similar and the 

nahcolite system is able to economically compete with the limestone 

system.

The economic feasibility for a nahcolite system depends on location 

of the plant. For areas where nahcolite sources are near to the plant 

site a nahcolite FGD system would be economically viable. Whereas the 

limestone system would have an economic advantage for plants realizing 

low transportation costs for the limestone ore.

Systems utilizing dry adsorbents other than nahcolite may have 

greatly different economic characteristics and need to be evaluated on 

an individual basis.



8

'Dry' methods of FGD have a number of distinct ooerationai advan­

tages over 'wet1 methods. A major advantage of a 'dry' system is that 

no water is required. This eliminates problems associated with the 

handling and disposal of wet sludges. The absence of water requirements 

would also be of particular benefit for plants located in water scarce 

areas.

Another advantage of 'dry' FGD is that the SO2 adsorption occurs 

at relatively high temperatures. Wet SO2 removal systems operate at the 

adiabatic saturation temperature of the absorbent solution and require 

flue gas reheat or bypass to obtain satisfactory flue-gas buoyancy.

Other problems inherent in most 'wet' systems or 'scrubbers', but 

avoided in 'dry' systems, are: 1) scrubber scaling, 2) demister plug­

ging, and 3) equipment damage due to corrosion and abrasion.

An operational disadvantage of most 'dry' methods does exist; a 

'dry' system must generally be operated at a higher pressure drop than 

that of a 'wet' system in order to obtain similiar SO2 removal effi­

ciencies. It should be noted that this single factor alone may dictate 

whether or not a 'dry' method is acceptable for situations where high 

SO2 removal efficiencies are required.

Another problem associated with the use of dry sorbents containing 

sodium is disposal of the spent sorbent. Leaching of sodium from these 

water soluble compounds to groundwater sources must be controlled. One 

means of dealing with this problem is to chemically insolubilize the 

spent sorbent prior to disposal to land fill. A second solution is to 

line the land-fill site with plastic or clay.



THEORETICAL ASPECTS OF ADSORPTION 

Description of Adsorption

Adsorption is generally defined as the condensation of a gas or 

vapor on the surface of a porous solid. The phenomena of adsorption is 

explained by considering the surface molecules of a solid particle.

The atoms of a surface molecule have no like atoms above the surface 

plane with which to form a chemical bond. The unbalanced surface molecule 

thus exhibits an inward attraction which can be satisfied by adsorbing a 

gaseous or liquid molecule on to the solid surface. Two types of 

adsorption are known to exist--physical adsorption and chemisorption 

(12).

In physical adsorption, Van der Waal's forces attract the adsorbed 

species to the solid surface. No chemical reaction takes place and 

since the Van der Waal forces are relatively weak the process is often 

reversible. Generally low activation energies are required and the 

adsorption occurs only at temperatures less than the boiling point of 

the adsorbed species (adsorbate).

In the case of chemisorption, an actual chemical reaction occurs 

between the adsorbent and the adsorbate resulting in forces much greater 

than the Van der Waal forces of physical adsorption. The chemisorption 

process is generally considered irreversible and usually requires high 

activation energies. Chemisorption differs from physical adsorption 

also in that the rate of chemisorption is in most cases significantly

9



increased at higher temperatures. Since chemisorption is mainly responsible 

for gas-solid reactions, the remainder of this section will deal with 

factors affecting and describing chemisorption.

Surface Area, Activation, and Structural Changes 

A factor that affects the rate of adsorption is the number of 

active sites available for reaction. Langmuir related the number of 

sites to surface area and proposed that the rate of adsorption v/as 

directly proportional to the fractional portion of the surface area not 

covered by adsorbate (13). If 0 is the fraction of the surface area 

covered by adsorbate, the rate of adsorption per unit surface area, ra , 

is given as

ra = kaPA(l-e ) [1]

where,

ka= rate constant

PA= partial pressure of the adsorbate

The rate of desorption is directly proportional to the surface area 

covered by adsorbate expressed by Equation [2].

r d = kd0 [2]

The rates of adsorption and desorption are equal at equilibrium and the 

fraction of the surface area covered at equilibrium conditions is given 

by Equation [3].

= kaPA
kd + kaPA

10

[3]



11

The equilibrium expression of Equation [3] is often referred to as Langmuir's 

adsorption isotherm (13).

Brunauer, Emmett, and Teller (BET) further developed the principles 

of Langmuir to obtain a scheme for measuring the specific surface are'a 

of a solid (13). Use of the BET isotherm allows the surface area to be 

determined by measuring the volume of nitrogen adsorbed on a known 

weight of material at various pressures. Surface area measurements made 

in this study were based on the BET isotherm.

The specific surface area of a solid depends to a great extent on 

the pore development of the material. Materials such as activated 

carbon have a high degree of pore development and thus a large surface 

area per unit mass. According to Equation [1], a solid with a large 

surface area per unit mass should have high rates of adsorption. This 

statement, however, does not hold true in all instances. In some cases 

many of the pore openings of a material are smaller than the adsorbate 

molecule and the surface area within the pore is unavailable for reaction.

One method of promoting pore development in solids is thermal 

activation. In thermal activation, the heated material releases volatile 

matter or thermal decomposition products leaving void area within the 

solid particle. The thermal activation of nahcolite and trona is accom­

plished by the decomposition of sodium bicarbonate to sodium carbonate 

as shown in Equation [4].

2 NaHC03 - y  Na2C03 + H2O + CO2, AH = +31 kcal/g mole [4]
A

The surface area of activated materials may be several orders of magni­

tude greater than the surface area of the starting material. In some
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cases the activation'process proceeds so rapidly and violently that large 

cracks as weV as cores are formed resulting in somewhat higher surface 

areas.

When heac treating solids, other structural changes, which have a 

diminishing effect on surface area, can occur. 'One of the most common 

unwanted structural changes is known as the sintering phenomena. The 

sintering effect usually begins to take place at a temperature of 

0.4 to 0.5 tires the absolute melting point temperature of the solid and 

proceeds more rapidly at higher temperatures (13). In sintering, the 

necks of the grains within a particle contact and as this contact area 

grows the pores between the grains are diminished in size and eventually 

the pores are closed entirely. A schematic presentation of the sin­

tering effect is given in Figure 1 (13).

Chemisorption Models

Selecting a chemisorption model which closely corresponds to the 

actual case is the first step in developing a reaction rate expression. 

Proper model selection will lead to a rate expression capable of 

fitting experimental data and predicting the actual kinetics. In the 

study of gas-solid reactions involving particles of unchanging size, two 

reaction models are generally discussed (12). The continuous-reaction 

model is applied to cases in which the adsorbate enters the particle and 

reacts throughout the total particle volume. Figure 2 -is a schematic 

presentation of particle conversion in the continuous-reaction model (12)
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Figure 2 . -Reaction progression in a continuous reaction model.
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Time
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Figure 3. -  Ash layer development according to the unreacted 
core model.
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In the unreacted-core model, often referred to as the shrinking-

core model, the reaction occurs first at the particle surface.

reaction then proceeds inward leaving behind a zone of completely 

reacted material termed 'ash'. This 'ash1 layer, which for the compounds 

of this study is ^ S C ^ ,  thickens as the reaction proceeds and in some 

cases offers considerable resistance to adsorbate diffusion into the 

particle. The progress of particle conversion in an unreacted+core 

model is presented in Figure 3 (12).

Although the continuous-reaction model fits certain cases well, the 

unreacted-core model best represents actuality in most instances (12)

The unreacted-core model seems more representative of the actuc 

case in the present work, and will therefore be used in descrit 

kinetics of SO2 adsorption by nahcolite.

Rate Controlling Steps 

In order to obtain a reaction rate expression having physi 

significance, it is often necessary to determine which step or 

tion of steps offer the major reaction resistance. It should 

that a determined rate controlling step is only valid for speci 

experimental conditions. Varying the particle size, gas veloci 

temperature, or other parameters may cause a different step to 

rate controlling.

Levenspiel (12) indicates five possible rate controlling 

exist for the reaction of a gas with a particle of unchanging s 

These steps are as follows:

The

1 physical 

ing the

cal

combina- 

noted 

fied

te

ity.

become

steps
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FTFicr i. - Gas phase diffusion of gaseous reactant A.

STEP 2. - Diffusion of gaseous reactant A through the ash layer 

or the particle.

STEP 3. - Chemical reaction.

STEP 4. - Diffusion of gaseous products back through the 4sh layer. 

STEP 5. - Gas phase diffusion of gaseous products.

Since the reaction of activated nahcolite and trona with ^02: 

given by

Na2C03 - SO2 - 1/2 O2 Na2S04 + CO2, AH = -85 kcal/g mole

is considered to be irreversible up to approximately 1,500° F, 

and 5 can be eliminated from the list of possible rate control! 

for this study (12). The following expressions, given by Lever 

mathematically describe progression of the reaction according 

remaining possible rate controlling steps.

Case 1. - Controlling Step - Gas Film Diffusion

H  - (r )3 “ Xb

Case 2. Controlling Step - Diffusion through Ash

t = 1 - 3(Jc)2 + 2(Ic)3 = 1 - 3(1-Xb )2/3 + 2(1-XB)
t R R

Case 3. - Controlling Step - Chemical Reaction

t = •, _ Ic = l- (1 - XR )1/: 
T R B

[5]

Steps 4 

ing steps 

spiel, 

theto

[6]

[7]

[8]



where,

t = time, sec.

rc= radius of unreacted core, cm 

R = radius of particle, cm 

Xg= conversion of sorbent at any time, t 

t = time for complete reaction, sec.

The rate controlling step can then be identified by comparing 

experimental kinetic data with the curves predicted by Equations [6],

[7] and [8], A plot of (l-Xg) versus t/x, given in Figure 4 p2), 

serves this purpose.

Determination of the rate controlling step may not be straight­

forward. The curves predicted by Equations [7] and [8] are very similiar 

and experimental scatter could cause difficulty in determininc whether 

Step 2 or Step 3 is rate controlling. Also, it is possible that one 

step may be rate controlling for a portion of the reaction anc that 

another step may become controlling as the reaction progresses. One 

means of distinguishing whether chemical reaction or ash diffision is' 

rate controlling is to do kinetic runs at several temperatures. Since 

the effect of temperature is generally much more significant for chemical 

reaction than for diffusion, a large change in reaction rate w|ith 

respect to temperature would indicate chemical reaction to be Irate 

control ling.
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Figure 4. -  Reaction progress predicted by various rate 

controlling steps.
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Rate Expression Determination

A~ter a rate controlling step or steps have been determined, appli­

cation of Equations [9], [10], and [11] should allow the rate of reaction 

to be described and predicted (12). In order to obtain an overall ex­

pression that represents the actual case over a wide portion of the 

reaction, it ray be necessary to combine or modify Equation [9], [10], 

and [11].

Case 1. -

Case 2. -

Controlling Step - Gas Film Diffusion

dNA
4-R2 dt ^ 9

= \c Knw [9]

Controlling Step - Diffusion Through Ash

L  _ , _ n r m
dt • c R 4 ’■ D CAg DO]

Case 3. - Controlling Step - Chemical Reaction

dNA
4ttrc2 dt

l r m
kscAg [11]

= Crarn n'ioles of A in sorbent at any time, t 

kg = rate constant (gas diffusion controlling), cm/sec 

ks = rate constant (chemical reaction controlling), cm/sec 

3 = diffusivity of gas through ash layer, cm2/sec

C^g= concentration of A in gas phase, g mole/cm3 

m = order of reaction with respect to A



20

For a chemical reaction of the form aA + bB ->- cC + dD, Xg, the 

conversion of the sorbent is given as

b’(NA - nA0)
aNBO

[12]

The radius of the unreacted core, rc, is generally not known, but 

for particles related to the unreacted-core model it is expressed by

<V. - R(1 - XB>1/3 [13]

Regardless of which case is shown to be the controlling step for

a particular set of conditions, it will be necessary to evaluate m, the

order of reaction. This can be accomplished by determining the reaction

rate, at several concentration levels of A in the gas. The reaction
dt

rate is obtained by plotting (gram moles of A)/(gram of sorbent) versus 

reaction time. Measuring the tangent to the data curves then directly 

provides ~ ~  as (gram moles of A)/(gram sorbent - sec). Having obtained the 

reaction rate for several levels of C^g, a plot of log versus log C^g 

is made. The resultant slope is then equal to the order of reaction.



EQUIPMENT

A differential-type fixed bed reactor was chosen as the gas-solid 

contacting device in preference to a fluidized-bed reactor to insure no 

particle attrition during experimental tests (14). Four identical 

fixed bed reactors were constructed of 304 stainless steel. Each reactor 

had an overall length of 12 inches and an inside diameter of 2.0 inches. 

The reactors were designed such that the bed depth could be varied from

0.125 inch to 1.75 inch. A sintered stainless steel disc served as the 

sorbent support screen and gas distribution plate. In order to maintain 

a fixed bed, an identical sintered disc and a tubular spacer were placed 

directly above the sorbent. Reactor details are presented in Figure 5.

Reactor preheat and adiabatic conditions were accomplished by the 

use of Samox insulated electrical heating jackets. The four reactors 

with heating jackets were housed in an insulated container. A photograph 

of the reactor bank is given in Figure 6. Several of the heating jackets, 

rated at 1,000 watts each, failed during operation. Failures were 

attributed to poor heater-reactor contact and to power surges from the 

on-off temperature controllers. After fastening the heaters to the 

reactors more securely and limiting'the set point differential of the 

temperature controller to 10° F, no additional heater failures were 

experi enced.

In preparing simulated flue gas, a temperature controlled water 

bath was used to humidify an inert gas (approximately 85 volume percent

21
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TO
EXHAUST*

TO TEMPERATURE INDICATOR

1 REACTOR, 2" SCHEDULE 80
304  STAINLESS STEEL

2 SPACER, 30 4  STAINLESS STEEL

3 THERMOCOUPLE, TYPE K

4  SINTERED DISCS, 316 STAINLESS
STEEL, 2" O.D., 0.125" THICK

5 SORBENT BED

SIMULATED FLUE GAS FROM 

ELECTRICAL AIR HEATER

Figure 5 . - Fixed-bed reactor.



roco

Figure 6 .-R eactor Bank
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nitrogen and 15 volume percent carbon dioxide). The flow rates of 

oxygen, sulfur dioxide, and nitric oxide injected into- the main gas 

stream were controlled by manual adjustments of needle valves. A 

flange tap orifice meter was used to measure the flue gas flow rate.

An electrical air heater, constructed at the Grand Forks Energy 

Technology Center (GFETC), was used to heat the simulated flue gas.

The heater was designed to deliver flue gas at temperatures up to 1,200°

F for a maximum flow rate of 20 standard cubic feet per minute. Thirty 

Watlow 1Firerod' cartridges, powered by a 3 phase, 208 volt electrical 

source, provided 15,000 watts of heat input to the heater. Figure 7 

presents an illustration of the electrical air heater.

The experimental equipment was housed in the GFETC mobile instrument 

trailer. The trailer, designed for field testing of Dower plant type 

facilities, contains a complete flue gas sampling and analysis system 

as well as a 'wet' chemical laboratory. Several minor alterations of 

the trailer's gas analysis system allowed the reactor inlet and outlet 

gas compositions to be continuously monitored. The electronic gas 

analyzers used are listed in Table 5 and a view of the instrument panel 

is given in Figure 8.

TABLE 5

ELECTRONIC INSTRUMENTATION USED FOR FLUE GAS ANALYSIS

Gas analyzed Manufacturer and model Type
Accuracy,
% of ranqe

Sulfur dioxide DuPont 400 Ultraviolet + 2

Nitrogen oxides Thermo Electron Corp. 
Series 10

Chemilumines­
cent

+ 0.5

Carbon dioxide Beckman 864 Infrared + 1

Oxygen Beckman 742 Electrochemical + 1





Figure 8 -  Instrument Panel



"EST MATERIALS AND PROCEDURES

Nahcolite was provided by the Utah Power and Light Co., who obtained 

the material from the Superior Oil Co., Denver, Colorado. The 

Stauffer Chemical Co. of Wyoming, Green River, Wyoming provided the 

trona. The nahcolite was mined in the Green River Formation of Colorado 

and the trona was mined in Wyoming. The nahcolite assayed approximately 

70 pet sodium bicarbonate and 7 pet sodium carbonate. The composition 

of the trona was determined to be approximately 42 pet sodium carbonate 

and 30 pet sodium bicarbonate. Compositions and physical properties of 

the starting materials are given in Apoendix A.

The nahcolite and trona were crushed to -1/8 inch particles in a 

hammer mill. The test materials were classified into desired particle 

Size ranges using a Ro-Tap sieve apparatus. To obtain a more definable 

system, the sized fractions of the nahcolite and trona were pretreated 

by thermal activation at 600° F for 10 minutes in a forced draft oven.

(The activation of the materials are described in the Results and Discussion 

section.)

A 3.0 gram sample of the sized activated test material was placed 

in a test reactor resulting in a nominal bed height of 0.125 inches for 

all tests. After being assembled, the reactor was preheated to a 

temperature above the dew point of the flue gas to prevent moisture

27
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condensation. Heated inert gas was introduced into the reactor and 

the temperature of the reactor was increased to the desired reaction 

temperature. A gas flow rate of approximately 10.5 scfm as determined 

•by the orifice meter was then set by adjustment of the pressure 

regulator. The selected volume percentage of moisture was obtained 

by regulating the temperature of the water bath. (Calculations for the 

gas flow rate calibration and for moisture additions are given in 

Appendix B.)

The inert gas flow was then diverted to an empty reactor. Sulfur 

dioxide and nitric oxide were injected into the inert gas stream and 

flow rates adjusted to give the desired concentration levels as indicated 

by the gas analyzers. The injection of sulfur dioxide and nitric oxide 

was halted, and the inert gas flow returned to the test reactor. After 

the reaction temperature had again been established in the test reactor, 

the actual experimental test proceeded by injecting sulfur dioxide and 

nitric oxide at the determined flow rates for a specified test time.

The system was then purged of sulfur dioxide and nitric oxide and the 

reactor was allowed to cool. This procedure was repeated in turn for 

each of the other test reactors. A complete flow chart of the experi­

mental process is given in Figure 9.

After the test reactor had been disassembled, the sample was 

recovered, placed in a sealed glass sample vial, and retained for analysis 

Descriptions and calculations of the methods used for analysis of 

the sorbent are given in Appendix C.



STORAGE CYLINDERS 
(N2 , C02)

TO
EXHAUST

REACTORS

Figure 9 .-Flow diagram for study of S02 adsorption.
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calibra 

test ra 

for all 

calibra

Five replicate runs were conducted to determine reproducibility of 

the experimental procedure. It was found that 95 pet of the experimental 

values were within 4 pet of the average values for the five tests (see 

Appendix 3).

Calibration of the electronic gas analyzers was performed before 

and after each test series, which consisted of six experiments. The 

analyzqrs were zeroed by purging with nitrogen and spanned with

tion gases having concentration levels within the experimental 

nge. 'Meter outputs gave direct readings of gas concentrations 

analyzers except the Beckman 742 carbon dioxide analyzer. A 

tion curve for the Beckman 742 analyzer is given in Appendix D.

The accuracy of the DuPont 400 sulfur dioxide analyzers was 

periodically checked by comparison with a wet method of sulfur dioxide 

gas analysis. A modified version of the Shell-Thornton method was used 

for this comparison (15). Details of and calculations by this method 

are given in Apoendix D.

A set of tests conducted on naheolite served as a standard reference, 

ihe conditions of these tests were as follows:

Reaction temperature of 500° F.

Mean particle diameter of 0.191 mm.

Flue gas concentration levels of:

a. 1500 ppm SO2 (wet).

b. 1000 ppm NO (wet).

c. 10 vol. pet H2O.

Other experimental tests conducted are identified by run numbers described 

by a code system presented in Table 6.

1.

2 .

3.
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TABLE 6

INTERPRETATION OF RUM NUMBERS

X - Y - Z - T

X - Parameter varied from reference test

1. Reaction temp.,_°F
2. Particle size, Dp, mm
3. Water vapor concentration, vol pet.
4. Sulfur dioxide concentration, ppm.

Y - Sorbent tested

A. Nahcolite
B. Trona

Z - Numerical value of parameter variable 

T - Reaction time, sec.

SAMPLE: Run 1 - A - 650 - 350 is a test investigating the 
effect of temperature on nahcolite at 650° F for a 
reaction time of 350 sec.



CALCULATION OF REACTION RATES AMD SORBENT UTILIZATION

The basis for the results discussed are the plots of SO2 adsorbed 

per gram activated sorbent versus time and plots of NO adsorbed per gram 

activated sorbent versus time. A sample set of the calculations used in 

determining the data points presented in these figures are given in 

Appendix B. The data was found to closely fit a curve of the mathematical 

form
_(b/t)

y = ae [14]

where a and b are constants, y is the milligrams of SO2 adsorbed per 

gram activated sorbent, and t is the reaction time in seconds. A 

least squares linear regression technique was applied to obtain from 

the data an equation which would allow direct differentiation. Values 

obtained from the regression analysis are presented in Appendix B.

The rate of SO2 adsorption was calculated by taking the derivative 

of Equation [14], giving;

dy abe~(b/t) 
rate = dt ~ ----12--- [15]

where is the mg SO2 adsorbed per gram activated sorbent per second. 

Substitution of the linear regression values given in Table 10, Appendix 

B, allowed for direct calculation of the adsorption rate at any reaction 

time, t.

Based on the stoichiometry of Equation [5], the percentage of

sorbent utilization was calculated as follows:

I Utilization

, SO2 adsorbed . ,qmol S02wgmol Na2C03 . . .
ĝ activated sorbent ^64g SO2 g mol SO2 

( 9 f'ia2C03 ,g mol Na2C03
'g activated sorbent' M06 a Na2C03'

32



RESULTS AND DISCUSSION 

General Test Results

A summary of the results for each of the experimental tests is 

listed in Table 11, Appendix B. Figures 16, 19, 22, 23, 25, and 26 

indicate the amount of SO2 adsorbed with respect to reaction time. 

Similar plots of NO adsorption are given in Figures 27 and 23. All 

adsorption numbers given were calculated on an activated sorbent basis.

Evaluation of the test results indicate nahcolite to be more 

reactive toward SO2 than trona. The optimum reaction rate of SO2 with 

nahcolite was found to occur at a temperature of 650° F. Increased 

sorbent utilization and higher reaction rates were observed in tests 

using sorbent material of small particle sizes. Additionally, although 

only small amounts of NO were adsorbed, nahcolite appeared to be more 

reactive with NO than trona.

Effects of various variables, identification of rate controlling 

steps, and application of an overall reaction rate expression are 

discussed in the following subsections.

Sorbent Activation

A series of tests in which nahcolite was heated for 2 hours at 

various temperatures indicated maximum pore development to occur between 

275° F and 600° F. Heat treatment at temperatures above 600° F actually 

caused the specific surface area of nahcolite to be greatly diminished

33
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as illustrated in Figure 10. Scanning electron miscroscope (SEM) photos, 

Figures 11-14, verify this pore development and illustrate the sintering 

process.

The observed initial sintering temperature of approximately 600° F 

falls into the predicted sintering temperature range of 350-600° F 

(based on the melting point temperature of pure sodium carbonate).

Since a high specific surface area was desirable for this study, 

further activation tests were conducted in the 275-600° F range. The 

maximum specific surface area of approximately 9.0 m2/a for -100 mesh 

nahcolite was obtained at an activation temperature of 600° F (Figure 15). 

Howitson et al. (16) reported a high rate of pore development at 600° F, 

but also stated that activation at lower temperatures resulted in an 

end product of similar surface area. Howitson1s report of end products 

having a similar specific surface area is not suoported by this study.

The pore development of trona followed a pattern similar to that 

of nahcolite, but resulted in a specific surface area approximately 

30 pet less (Figure 15). The smaller specific surface area of trona is 

attributed to the lower concentration of NaHCOg available for thermal 

decomposition.

Effect of Temperature on SO2 Adsorption

It was expected that the nahcolite utilization and reaction rate 

would increase as the reaction temperature increased. However, as shown 

in Figure 16, the amount of SO2 adsorbed in a 10 minute period was virtually 

the same at reaction temperatures of 400-750° F. In order to obtain a 

similar utilization of approximately 75 pet, a much longer reaction time 

would be required at 300° F.
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FIGURE I I . - R a w  nahcolite-no pore
development.

^ 20/i.m
N H

FIGURE 12. -  Nahcolite treated at 

6 0 0  °F  -  good pore development. 

(Two hour treatm ent )
20Li.m

K------ — *1

FIGURE 1 3 .-Nahcolite treated at 
8 0 0  °F  -  intermediate stages 
of sintering.

(Two hour treatment.)
20um
— — — M

FIGURE 14. -  Nahcolite treated at

9 0 0  °F  -  final stage of sintering.

(Two hour treatm ent.)
20 /xm

H--— X
*
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ACTIVATION TIM E, minutes

Figure 15.- Results of nahcolite and trona 
activation tests.
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Figure 16. -  Temperature effect on adsorbance of S 02 on nahcolite.
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The reaction rate increased rapidly with temperature, but reached 

a maximum at 550' r (Figure 17). The lower reaction rate at 750° F 

is attributed to the greatly reduced surface area caused by sorbent 

sintering at this temperature. Since the reaction rate is much higher 

at temperatures above 300° F, a more effective SO2 removal system could 

be obtained by operating at higher temperatures. The notably higher 

reaction rates at increased temperatures indicate that chemisorption 

is the process by which nahcolite adsorbs sulfur dioxide temperatures. 

Figure 17 also illustrates that nahcolite possesses a relatively high 

reaction rate at levels of low sorbent conversion and short reaction 

times.

In order to calculate the activation energy of the nahcolite-S02 

reaction an Arrhenius plot was made (Figure 18). Since the reaction 

rate values given at 650° and 750° F may have been affected by sorbent 

sintering, these two points were excluded in determining the slope of 

the plot. ~he activation energy determined in this manner was calculated 

to be 10,470 cal/g mole. This value compares well with activation energies 

given for tne reaction of SO2 with similar compounds (17) (Calculations 

for the Arrhenius equation are given in Appendix B).

Effect of Particle Size

Figure 19 shows the adsorbance of SO2 versus time for three particle 

size ranges of nahcolite. The higher reactivity for smaller particles 

was expected because of the higher surface area to particle weight ratio 

for small particles.
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SORBENT CONVERSION, %
Figure 17. -  E ffect o f temperature on reaction rate.
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An excellent sorbent utilization of approximately 98 pet was observed 

for the 0.09 mm diameter particles. Conversion of the large particles, 

however, was considerably less. The lesser extent of conversion for 

these particles is readily apparent in the SEM photos of cleaved 

naheolite particles. Figure 20 is a view of a 0.19 mm diameter particle 

and Figure 21 is a 0.50 mm particle. The gray area along the surface 

of each particle is the sodium sulfate 'ash' layer. Both particles had 

been exposed to SO2 for 10 minutes and in each case the reacted depth is 

approximately 0.07 mm. According to Figure 19 the advancement of the 

'ash' layer beyond this depth and therefore the rate 0^ additional 

sorbent conversion will be very slow. The reduced rate of conversion at 

this 'ash' layer depth is thought to be due to pore blockage by sodium 

sulfate.

It should be emphasized that the sharp sodium sulfate interfaces 

shown in Figure 20 and 21 suggest the conversion of naheolite proceeds 

as described by the unreacted-core model. The selection of the unreacted 

core model is further confirmed by the nearly total absence of sulfur in 

the particle's interior core as determined by X-ray fluorescence (18).

Effect of Flue Gas Moisture

The effect of flue gas moisture on the adsorption of SO2 is shown 

in Figure 22. No significant change in reaction rate or naheolite 

utilization was observed at 500° F for flue gas moisture levels of 5 

to 15 vol pet. It should be noted that testing of the flue oas moisture 

effect was very limited. Based on the data presented here, it is not 

possible to predict the effect of flue gas moisture at lower reaction 

temperatures.
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FIGURE 2 0 . -0 .1 9 m m  diameter 
cleaved particle of nahcolite. 

Reacted for 10 minutes, 

5 0 0  °F.

100/xm
K----------*

FIGURE 21. -  Cleaved nahcolite 

particle of 0.50m m  diameter. 
Reacted for 10 minutes,

5 0 0  °F.

100/xm
K---- *
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Effect of Flue Gas SO2 Concentration 

Figure 23 shows the effect of gaseous SO2 loading on the adsorption 

of SOg• At longer reaction times the extent of nahcolite conversion was 

essentially the sane, approximately 75 pet, for each of the SO2 

concentrations tested. This utilization is in close agreement with 

utilization shown for the 0.19 mm particles under other conditions.

A significant increase in reaction rate was observed as the concen­

tration of SO2 in the flue gas was increased. The resultant slope of 

0.99 for the log of reaction rate versus SO2 concentration plot, Figure 

24, indicates that the reaction of nahcolite with SO2 is first order 

with respect to SO2.

Comparison of Nahcolite and Trona 

When compared to nahcolite tested at identical conditions, trona 

exhibited a much lower reaction rate and utilization as indicated in 

Figures 25 and 26. As with nahcolite, the reaction rate and utilization 

of trona increased as the reaction temperature was increased and the 

particle size decreased. However, at each set of conditions tested the 

utilization of trona was approximately 50 pet less than that of nahcolite. 

The only apparent explanation for these results is the significantly 

lower specific surface area of trona.

Adsorption of NO

As indicated in Figures 27 and 28, only small amounts of NO were 

adsorbed by nahcolite and trona. The rate of NO adsorption was observed 

to increase as the reaction temperature decreased. At reaction temperatures 

of 650° and 750° F no adsorption of NO was detected. The absence of NO
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Figure 2 3 . -Sorption of SO2  at various SO2  concentrations.

Figure 2 4  - Log of reaction rate vs. log SO2  concentration to estimate m.
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Figure 25-Sorption of SO2  on nahcolite and trona at two temperatures.

REACTION TIME, seconds
Figure 2 6 .-Comparison of SO2  sorption on nahcolite with trona for 

small particles.
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Figure 27 .-N O  sorption on nohcolite at various temperatures.

Figure 2 8 .-Adsorption of NO on trona at two temperatures.
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adsorption at these temperatures was expected because of the decomposition 

of both NaNQ? and NaNO^ at temperatures above 600° F.

In analyzing the reacted sorbent, the diazotization method was used 

for determining NaNC^, and NaNOg was quantified by specific ion 

electrode (19). NaNOg was not present in any of the samples tested and 

therefore all NO adsorbance numbers presented here are based on the 

sodium nitrate content of the reacted sorbent.

Rate Controlling Step

Determination of the rate controlling step for the nahcolite-SOg 

reaction was conducted by comparing experimental results with theoretical 

values predicted by Equations [6], [7], and [8]. For each set of conditions 

tested, chemical reaction appeared to be rate controlling initially.

As the reaction progressed and the surface area covered by adsorbate 

increased, the reaction resistance due to ash layer diffusion became 

more significant. Further conversion of the sorbent particles led to 

recognition of ash layer diffusion as being the rate controlling step.

Figure 29 presents a typical comparison of the experimental values with 

the theroretical curves predicted by Equations [7] and [8].

The nancolite conversion values at which chemical reaction, ash 

layer diffusion, or a combination of both were observed to be rate 

controlling were dependent on particle size and reaction temperature.

In general, chemical reaction was the rate controlling step for a larger 

portion of the conversion in the cases of small particle sizes and 

decreased temperatures. Estimated conversion value ranges for the 

stated reaction resistances are given in Table 7.
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Figure 2 9 .-Comparison of actual data with theoretical 
curves of two rate controlling steps.



TABLE 7

ESTIMATES OF SORBENT CONVERSION RANGES 
UNDER VARIOUS RATE CONTROLLING STEPS

Run Number

Fraction of Sorbent Conversion

Chemical[ reaction
Chemical reaction/ 
ash layer diffusion

Ash layer 
diffusion

1 -A-•300-7 0,.00 -• 0.06 0.06 - 0.18 0. 18-
1-A-•400-T 0..00 -■ 0.07 0.07 - 0.32 0.32-
1 -A-■500-7 0..00 -- 0.06 0.06 - 0.31 0. 31-

1-A- 650-T 0..00 -• 0.04 0.04 - 0.23 0.23-
1-A- 750-T 0..00 -- 0.06 0.06 - 0.26 0.26-

2-A- . 09-T 0..00 -■ 0.08 0.08 - 0.58 0.58-
2-A- . 50-T 0.,00 -■ 0.03 0.03 - 0.18 0.18-

4-A- 500-T 0..00 -■ 0.05 0.05 - 0.40 0.40-
4-A-2500-7 0.00 -■ 0.05 0.05 - 0.27 0.27-

Overall Rate Expression

Recognizing that both chemical reaction and diffusion through the 

'ash' layer presented significant resistance to the overall reaction, 

Equations [10] and [11] were combined to describe the overall reaction 

rate giving (13):

dt
• 4irDC/\q

4*ksCAgrc' [16]

Substituting for rc as given by Equation [13], adding a term for 

particle weight, and rearranging gives the following expression:

dNA _ AirRĈ g 
“dt W ^

r D(1 ~XB) 3 a  

I - ( I - X b ) 1/ 3
M O - xb)2/3] [17]
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where, = SO2 adsorbed, mg/g activated sorbent 

C^Q = gaseous SO? concentration, mg/cm^

W = weight of a single particle, q

Combining terms to obtain an overall rate expression is not an 

elaborate method of expressing coupled processes, but it is considered 

adequate for the data presented here. The only unknown variables in 

Equation [17], D and ks, were then solved for simultaneously by a computer 

program utilizing a least squares fit from ten sorbent conversion- 

reaction rate data points for each set of kinetic runs. The computer 

program used for this determination was the U.S. Bureau of Standards 

OMNITAB Program.

Figure 30 presents a comparison of the reaction rate predicted by 

Equation [17] with values determined by Equation [15] for a typical 

kinetic run. Values of D and ks for other kinetic runs with nahcolite 

are given in Table 8.

TABLE 8

DIFFUSION AND RATE CONSTANT VALUES 
OBTAINED BY COMPUTER SOLUTION OF EQUATION [17]

I

Run Number
Di ffusivity 

cm2/sec x 10"3
Rate constant, 

cm/sec
Multiple correlation 

squared

1-A-300-T 0.52 - 0.14 0.96
1-A-400-T 1 .79 2.48 .93
1-A-500-T 2.58 5.74 .87

1-A-650-T 5.44 4.32 .93
1-A-750-T 3.27 3.83 .93

2-A-.50-T 7.81 - .34 .95
2-A-.09-T 1 .86 2.06 .97

4-A-500-T 4.02 3.58. .92
4-A-2500-T 3.18 5.25 .92
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Figure 30. -  Comparison of rate predicted by Equation 
17 with experimental values.
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It should be noted that values given in Table 8 are the best fit 

of a mathematical equation. Since no restrictions were placed on the 

coefficients, it is possible that a coefficient may have been under 

or over-emphasized during computations, resulting in a slightly negative 

rate value.

As shown in Table 8, the values for diffusivity and reaction rate 

constants increased with reaction temperature as expected with the 

exception of tests at 750° F. The lower diffusivity and rate constant 

at this temperature is thought to be due to the smaller specific surface 

area of nahcolite at 750° F.

Values of diffusivity and rate constants were expected to remain 

relatively constant for tests of varying particle size and SO2 concentra­

tion. Although values varied considerably for such tests, the most 

notable variation occurred in diffusivity values for varying particle 

sizes.

The higher diffusivity indicated in Table 8 for large particle 

sizes can be attributed to more extensive pore development in the larger 

particles. Based on the surface area of a spherical particle, the specific 

surface area per gram of a 0.50 mm diameter particle should be approximately 

80 pet less than that of 0.09 mm particles. However, as indicated in 

Table 9, Appendix A, the specific surface area of 0.5Q mm diameter 

nahcolite particles is only 21 pet less than the specific surface area 

of 0.09 mm diameter nahcolite particles. This suggests greater pore 

development in the larger particles thereby reducing the resistance to 

diffusion. The only explanation for this increased porosity is that the 

larger particles may have been subject to greater thermal and pressure 

stresses during activation.



APPLICATION TO POWER PLANT FGO

The results of this study indicate nahcolite to be a viable sorbent 

of SO2. As a dry sorbent, nahcolite could perhaps be best used in a FGD 

system utilizing a baghouse. The nahcolite could be injected into the 

hot flue gas stream near the air preheater section at a site where the 

gas temperature is 600-700° F. Injection at these temperatures would 

result in high reaction rates and yet not cause extensive sintering of 

the nahcolite. The partially reacted nahcolite would then be collected 

downstream in a baghouse.

The baghouse would remove other particulate matter along with 

nahcolite from the flue gas and act as a gas-solid contacting device for 

continued nahcolite-S02 reaction. Based on results of this study more 

favorable utilization and reactivity would be realized by injecting 

nahcolite particles of -100 Tyler mesh and by operating the baghouse at 

temperatures above 300° F.

Although nahcolite appears to be a feasible sorbent for 'dry' FGD 

methods, its use in a commercial process remains in doubt. Use of 

nahcolite will firstly depend on nahcolite becoming commercially available. 

Secondly, should nahcolite become available, its cost must be low enough 

such that the 'dry' process will be economically favorable.
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CONCLUSIONS

Due to sufficient utilization and reaction rate of nahcolite, it 

appears that nahcolite would be an effective sorbent for use in 'dry1 

FGD systems. The most favorable utilizations and reaction rates for 

the nahcolite-S02 reaction were noted at temperatures of 400-650° F 

and sorbent particle sizes of less than 0.19 mm in diameter. Trona 

demonstrated considerable capability for SO2 removal also, but utilization 

and reaction rate were far less favorable. Both nahcolite and trona 

adsorbed only small quantities of NO, amounting to less than 2.5 pet 

of the sorbent utilization possible.

Based on test results and observations, other conclusions of this 

investigation are:

1. Reaction Temperature - The rate of reaction with SO2 

increases with temperature for temperatures up to 650° F.

For temperatures above 650° F the reaction rate decreases 

because of sorbent sintering.

2. Particle Size - The reaction rate of sorbent with SO2 and 

sorbent utilization increases rapidly as the particle size 

decreases.

3. SO? Loading - The reaction rate of nahcolite with SO2 is 

directly proportional to the gaseous S02 concentration.
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4. Flue Gas Moisture - At a reaction temperature of 500° F 

varying the volume percentage of moisture in the flue gas 

from 5 to 15 pet has no significant effect on reaction rate 

or utilization.

5. Rate - Controlling Step - Under the conditions tested, 

chemical reaction was the rate controlling step only for 

initial portions of the reaction. The remaining majority of 

the reaction period was rate controlled by reactant diffusion 

through the ash layer.

6. NO Adsorption - Trona adsorbed less NO than naheolite. For 

both naheolite and trona the rate of NO adsorption was very 

low and decreased as the reaction temperature increased.

7. Sorbent Activation - The surface area developed by thermal 

activation increases with activation temperature. However, 

extended heating of naheolite at temperature above 650° F 

causes reduced surface area.

8. Activation Energy - Based on data from three reaction temperatures 

the energy of activation for the nahcolite-S02 reaction was 

calculated to be 10,470 cal/g mole.

9. Overall Rate Expression - By combining mathematical expressions 

for the rate of gas diffusion in a solid particle and for the 

chemical reaction of a particle, a rate expression was obtained 

that fit experimental values. Diffusivity was determined to

be 0.0026 cm2/sec and the rate constant was 5.74 cm/sec for 

the reaction of naheolite with S02 at 500° F.



RECOMMENDATIONS

The investigation of utilizing sorbents for 'dry' FGD is not com­

plete. Recommendations for further study are as follows:

1. Since in some applications it may not be possible to operate 

at determined optimum conditions, additional experimentation 

should be conducted at lower reaction temperatures and with 

larger sorbent particle sizes.

2. The effect of flue gas moisture at low reaction temperatures 

should be investigated.

3. The adsorption of NO by nahcolite and trona in the presence of 

higher O2 concentrations should be studied. A similar study 

using NOo as the adsorbate would also be of interest.

4. Expand the activation study of nahcolite and trona to include 

high temperature activation at extremely low residence times 

of 3 to 4 seconds. (It will be necessary to design a special 

apparatus for this study.)

5. Potential sorbent materials such as potash, chars derived from 

Western coals, and Western fly ashes should be submitted to 

SO2 adsorption screening tests.

6. The experimental apparatus used in this study could be modified 

to allow sorbent placement into the reactor after the reactor

has reached the selected reaction temperature. This modification 

would allow materials, which had not undergone a physical or 

chemical change prior to reactor introduction, to be studied.
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TABLE 9

COMPOSITION AND PHYSICAL CHARACTERISTICS OF TEST MATERIALS

Nahcolite Trona

J r  = 0.50 mm Dp = 0.19 mm Dp = 0.09 mm Dp = 0.19 mm Dp = 0.09 mm
Raw Activated Raw Activated Raw Activated Raw Activated Raw Activated

Composition, wt pet:

Na£C03............ 9.8 71.0 6.5 74.8 8.2 74.2 41.9 83.4 41.2 83.7
NaHC03............ 61.1 .2 71.6 1.1 69.0 . 6 29.6 .0 32.0 .1
CaC03............. 2.0 3.0 1.7 2.5 1.7 2.5 2.5 3.4 2.4 3.3
MgC03............. 1.6 2.3 1.1 1.7 1.4 2.1 1.2 1.6 1.2 1.7
Na2Sd4............ 1.6 2.3 1.6 2.3 1.9 2.8 .5 .7 .5 .7
Water insolubles3.. 16.8 23.7 13.3 17.6 13.3 17.9 8.0 11.0 7.7 10.7
H20b.............. 7.1 .0 4.2 .0 4.5 .0 16.3 .0 16.0 .0

Wt. pet change on
activation.......... -32. 7 -32..5 -32 .8 -27 .4 -28.,0

Surface area,0 m2/g.. 6.0 6.8 7.6 3.2 4.2

Buik density, g/cm3.. .72 .67 .67 .80 .73

True density,0* g/cm3. 2.51 2.51 2.44 2.50 2.51

a - includes organics 
b - by difference
c - as determined on the Quantachrome Monosorb Surface Area Analyzer 
d - as determined on the Micromeritics Pycnometer Model 1302
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Calculation of SO2 and NO Adsorption 

The amount of SO2 adsorbed was based on the sulfur analysis 

reported by X-ray fluorescence. Values were calculated as follows

mg SO? adsorbed 
g activated sorbent

(WtJJOi . 
100% r

(wV%_S04 }
■ 100% aI UU /j_______________I UU h____

(gram). ( 9ram-  )(96 9 S04) 
a '1000 mgn 64 g S02'

The subscripts, r and a, indicate reacted and activated sorbent 

respectively.

Based on results of the nitrate analysis, the amount of NO adsorbed 

was calculated in a similar manner.

mg NO adsorbed 
g activated sorbent

( 1 ^ 2 3  gram)r _ {wtTj M W a gram)
tttot;

(gram)a ( gram 
1000 mg )(

62 q NO3, 
30 g NO ;

Flue Gas Flow Rate and Water Vapor Percentage Calculations 

The dry flue gas flow rate was calculated by the following equation 

given by McCabe and Smith (20).

c s
™ = /(-j_B “ Pb)pa)  ̂ )

where, m = mass flow rate, Ib/sec

C0 = orifice coefficient, dimensionless (experimentally 

determined to be 0.63)

S0 = cross sectional area of orifice, ft2 (determined to 

be 0.00136 ft2)
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6 = orifice diameter/pipe diameter, dimensionless

/0.5 in 
'0.75 in ) = 0.667

gc = Newton's -law proportionality factor,

32.17 f t  1b/1bf (sec2 )

Pa-P(-)= orifice differential pressure, lb^/ft2 

pa = gas density upstream of orifice, 1b/ft3

The volumetric flow rate was then calculated at 1 atm and 32° F as 

follows:

¥s«nr> ■ »

where, = volumetric flow rate, ft3/sec

Mw = average molecular weight of gas, 1b/1b mol

The volume percent moisture of the gas leaving the water bath was 

determined by noting the vapor pressure of H2O and assuming that mole 

percent H2O is equivalent to volume percent H2O. The volume percent 

H2O was calculated as

vol. % H20
ph2o ,t

(100%)

where, P^g j = vapor pressure of water at water bath temperature 

of T, psia

Pt = water bath pressure, psia
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The volumetric flow rate of the simulate flue gas including moisture 

was then computed as follows:

VG(wet) =
VG(dry)

1 0 - ,v°1 • °/° ^20 
( TocT

Calculation of Activation Energy

Calculation of the activation energy for the nahcolite-S02 reaction 

was performed using the expression for activation energy given by Fogler 

(21). The expression, derived from the Arrhenius equation, is given as

E =

2.3Rlog (M.) 
_________^2_
( . 1  .  -1 ) 
lT2 T] >

where, E = activation energy, cal/g mol 

R = gas constant, 1.987 cal/g mol °K 

k = reaction rate constant, cm/sec 

T = reaction temperature, °K

Noting that the reaction rate is directly proportional to the rate 

constant, the activation energy was calculated from the following values 

taken from Figure 18.

at T-] = 434.8° K, the reaction rate = 0.931 mg S02/g sorbent • sec

and at T2 = 540.5° K, the reaction rate = 9.99 mg S02/g sorbent • sec.

Substituting the ratio of reaction rates for the ratio of reaction rate 

constants then gives
n cm

(2.3) (1.987 cal/g mol °K) log 9.99

( 1
540.5° K

. 1
434.8° K-)

= 10,470 cal/g mol
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Reproducibility

In order to determine the variance and confidence interval of the 

experimental tests, five replicates of Run 1-A-500-120 were conducted. 

The variance was calculated as

0 E (Xi -X)2
5 =..H"— —

and the confidence interval of the average for five tests by,

i t (a/2)(F)

where x.j is the observed value, x the mean value, N the number of tests, 

a the confidence level, and F the degrees of freedom (22). Based on the 

values, a = 0.95, F = 4, and t = 2.776, 95 pet of the average of the 

replicated values should be within + 4  pet.
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TABLE 10

VALUES' OF CONSTANTS FOR EQUATION [14] AS DETERMINED 
BY LEAST SQUARES LINEAR REGRESSION3

Test Number a b
Regression coefficient

-r2

1-A-300-T 130.38 41.97 0.82
1-A-400-T 319.49 46.83 .93
1-A-500-T 366.35 38.40 .98

1-A-650-T 358.27 30.61 .99
1-A-750-T 348.65 34.22 .94

2-A-0.09-T 184.75 43.23 .98
2-A-O.50-T 467.78 34.46 .99

3-A-5-T 363.15 40.53 .98
3-A-15-T 392.85 41.97 .99

4-A-500-T 297.85 55.36 .93
4-A-2500-T 393.10 29.52 .99

1-B-300-T 63.80 31.82 .80
1-B-500-T 194.20 34.00 .98

2-B-0.09-T 222.10 35.87 .97

a - computed by Hewlett- Packard HP--97 Standard Pac Program SD-03A
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Figure 31. -  Calibration curve for Beckman Model 
864 CC>2 Analyzer.
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Analysis of Nahcolite and Trona 

STEP 1. - Sarole Preparation.

A weighed sample of approximately 1.5 grams is placed in a 100 

ml beaker, 70 ml of distilled water are added, and they are then 

stirred for 15 minutes. Water insoluble material is separated from 

the solution by passing the solution through a tared filtering 

crucible. The residue is washed with distilled water and the 

crucible and residue are weighed after being dried at 104° C for 

one hour. The filtrate is then diluted to volume in a 100 ml 

volumetric flask and retained for analysis.

% H2O insol. =

[(wt. dried res. + crucible + paper) - (wt. dry crucible + paper)(100)
weight of sample

STEP 2. - Carbonate Determination.

A 20 ml. aliquot of filtrate from Step 1 is placed in a beaker 

and 20 ml. of distilled water are added. The solution is then 

titrated with 0.1 N HC1 to a pH of 8.16 with the aid of a pH meter.

e, ,, rn _ (ml of HC1) (normal ity of HC1)(10.6)_______
1 (sample wt, g) (ml. of aliquot/ml of total vol.)
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STEP 3. - Bicarbonate Determination.

Using the solution from Step 2, the titration with 0.1 N HC1 

is continued to a pH of 4.0.

% NaHC03 =

[(total ml HC1 used)-(2 x ml HC1 from Step 2)] (normality of HC1)(8.4) 
(sample wt., g) (ml of aliquot/ml of total vol.)

STEP 4. - Sulfur Determination.

The filtrate obtained from samples of reacted nahcolite and 

trona prepared in Step 1 was submitted for sulfur analysis by X-ray 

flourescence. Total sulfur present in the filtrate was reported as 

ppm SO4. The weight percent SO4 in the reacted sample was calculated 

as follows:

(ppm SO4)(mg)(0.1 1iter)(100)
^ 4  “ (ppm)(liter)(sample wt., mg)

STEP 5. - Nitrate Determination.

Samples of reacted nahcolite and trona prepared in Step 1 were 

analyzed with an Orion specific nitrate ion electrode as described 

by A.S.T.M. procedure 419 B (19). The reported values of ppm NO3 

were converted as follows:

wt % NO (ppm N03)(mg)(0.1 1iter)(100) 
3 (ppm)(1 iter)(sample wt., mg)
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SO2 Wet Test

The method used to check the accuracy of the Dupont 400 SO2 analyzers 

was. a modified ~orm of the Shell-Thronton method (15). The modifications 

consisted of a vacuum tank system rather than a gas meter for gas volume 

determinations and the selection of methyl purple as an indicator in 

titrations. Calculations of the ppm SO2 in the simulated flue gas are 

as follows:

The basic equation for parts per million by volume is

Vc
ppm = O 05)>

where, Vs =.volume of SO2 measured, cu ft.

\'t = volume of flue gas sampled, cu ft.

The volume 0  ̂SO2 measured,

Vs = (4.178 x 10~U)(N)(T),

where, N = normality of NaOH standard, gm-equiv/1 

T = volume of NaOH used in titration, m.

The volu~e of gas sampled on a dry basis at standard conditions 

(for metered systems this would be the volume of dry gas measured, 

corrected to standard conditions),

vt 44.47 (p2-Pl)(Pb-Pmv)
(Pb)(Tm)

where, (P2-P1) = absolute tank pressure- differential, test start

to finish, inches of Hg.
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Pb = barometric pressure, inches of Hg.

Prav = saturated water vapor pressure at Tm, inches of Hg. 

Tm = gas temperature in tanks, °R.

The resulting equation for ppm SO2 in a sample is then

(9.393)(N)(T)(Pb)(Tm)

PPm '  (P2-P 1) (Pb-Pmv)
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