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THE ROUTING PROBLEMS WITH OPTIMIZATION OF THE STARTING POINT:
DYNAMIC PROGRAMMING

The extreme routing problem focused on engineering applications in mechanical engineering is considered.
We mean the well-known task of tool controlling in the CNC sheet cutting machines. A mathematical
model is presented which includes a system of megalopolises (nonempty finite sets) and cost functions
depending on the list of tasks. Megalopolises are constructed on the basis of discretization of equidistant
curves of part contours. The dependence on the list of tasks is connected with reasons associated with the
dynamic constraints that arise in the process of task completion. Among all restrictions, the conditions of
precedence are distinguished (earlier cutting of the inner contours and more earlier cutting of large parts).
Rational consideration of the precedence conditions allows one to reduce the complexity of calculations
when widely understood dynamic programming (DP) is used in the implementation that develops R. Bell-
man’s scheme. This approach makes it possible to solve the problem of optimizing complexes, which
include the initial state (starting point), the method of numbering megalopolises in the order of their visits,
and the specific trajectory of the process. For a problem complicated by the dependence of the terminal
function on the initial state, a decomposition algorithm is used, which allows, in a substantial part of the
procedure, the application of a single (for all initial states) DP scheme. The optimal algorithm based on
DP is implemented as a program for PC; a computational experiment is conducted.
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Introduction

Routing problems arise in many applications. In particular, these problems arise in investi-
gating sheet cutting on CNC machines. Another applied problem related to routing is that of
minimization of radiation dose of employees for the work complex under increased radiation; the
above-mentioned radiation dose depends on the route selected for work execution. Of course,
many other applied problems with elements of routing exist. Therefore, investigation of routing
problems is of much current interest.

Of course, the well-known TSP [1,2] can be considered as a prototype of the above-mentioned
routing problems. But many new difficulties arise. These difficulties have both numerical and
qualitative nature. These difficulties are related to diverse constraints and complicated cost func-
tions; they are generated by requirements of applied problems. We note separately precedence
conditions. So, for sheet cutting on CNC machines, these conditions arise by concepts of pre-
cutting of interior contours of details. Moreover, under these conditions some technological
requirements can be taken into account. So, we can require that large details be cut out earlier
than the small ones.

Other constraints can be related to works already done. Such constraints can be called dy-
namic: roughly speaking, we should avoid thin jumpers and domains with poor heat dissipation.
These restrictions can be taken into account through the introduction of penalties. As a result,
cost functions admitting the dependence on the list of tasks arise.

In the above-mentioned problem, megalopolises arise under discretization of equidistant
curves of contours. So, originally, we have a discrete-continuous extremal problem. In addi-
tion, megalopolises are typically large; therefore, we have the extremal problem of perceptible
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dimension. Thus, numerical difficulties inherent in the task TSP are saved and, what is more,
aggravated.

Now we note a useful circumstance. It is related to the problem of the starting point opti-
mization. This problem has received fairly little attention. In the present article, we consider all
above-mentioned singularities. As a result, we obtain more complicated investigation than one in
the TSP task. We are oriented to applied problems related to sheet cutting. But special attention
is given to the question of the starting point optimization. This article is a natural continuation
of [3,4].

In our investigation, the basic method is dynamic programming (DP). We use a variant of
the DP procedure that is a serious development of the Bellman procedure (see [5]): we use the
retrograde construction of the Bellman function (in the investigation of TSP, the variant of Held
and Karp [6] is used more often). The used variant of the DP procedure is more appropriate for the
starting point optimization. We note that this variant was also implemented for the “nonadditive”
routing problem in [7]; in addition, optimization of the starting point was realized in this problem
also.

It is useful to note that, for some versions of our problems, the requirement about return to
the starting point arises. Then, the used variant of DP procedure is complicated. Namely, in this
case, our DP procedure depends on the starting point. For this setting, in [4], the decomposition
solution was constructed. In this article, we combine constructions of [3,4].

§ 1. General notions and designations

We use standard set-theoretical symbolics (quantors, propositional connectives etc.); we de-
note the empty set by () and equality by definition by 2 A family is a set of sets. If x and y
are objects, then by {z;y} we denote the nonempty set for which = € {z;y}, y € {z;y}, and
Vz e {zy}

(z=2)V(y=-2)
So, we have an unordered pair of objects x and y. Of course, for every object h, the set

{h} 2 {h; h} is the singleton containing h. In accordance with [8, ch.II, § 3], for every objects «
and (3, the ordered pair (OP) (v, ) with the first element o and the second element S is defined

as («a, ) 2 {{a};{«; 5}}. If z is an arbitrary OP, then by pr,(z) and pr,(z) we denote the first
and the second element of z, respectively. For every three objects a, b, and ¢, in the form of

(a,b,c) = ((a,b), c), the (ordered) triplet with the first element a, the second element b, and the
third element c is defined. In this connection, we recall that, for every three sets A, B, and C, the

set Ax B x C'is defined as A x B x C' 2 (Ax B) x Cj;see [9, ch. 1, §3]. These stipulations will
be essential in what follows. If P and @) are nonempty sets, then by Q7 we denote (see [8, ch. I,
§ 6]) the set of all mappings from P into (); of course, these mappings are functions from P into
Q (as usual, under f € QF and z € P, in the form of f(z) € Q, the value of mapping f at the
point z is realized).

For every set H, by P(H) and P'(H) we denote a family of all subsets and all nonempty
subsets of H, respectively; we suppose that Fin(H) is a family of all finite subsets of H. So,
Fin(H) is a family of all nonempty finite subsets of H; if H is a nonempty finite set, then
Fin(H) = P'(H).

If P and () are nonempty sets, h € Q, and A € P(P), then h'(A) 2 {h(z) : = € A} is the
image of A under operation f.

In the following, R is a real line, R, = {¢ e R | 0 < ¢}, N 2 {1;2;...} € P'(R,),

Ny 2 {0}UN = {0:1;2;...} € P'(R,), and

Pa={keNy | (p<k)&(k<q)}ePMNy) VpeNyVgeN,
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(we note that 1, m = {k € N | k < m} under m € N; moreover, 1,0 = ()). For every nonempty
finite set K, the number |K| € N is cardinality of the set K’; by (bi)[K] we denote the set of all

bijections [10, § 5.3] from 1, | K| onto K. As usual, |0 20.
For every nonempty set S, by R, [S] we denote the set of all nonnegative (real-valued)

functions from S into R; so, R [S] 2 (R.)S.
§ 2. Setting the problem

In the following, we fix a nonempty set X and X° € P/(X). So, X is a nonempty subset of
X. Elements of X are used as starting points of the processes under study. Fix N € N for which
N > 2, and

M; € Fin(X), ..., My € Fin(X). 2.1)

We consider the sets (2.1) as megalopolises and suppose that
(X°(\M; =0 Vj e TN)&(M,( M, =0 Vpe TN YgeLN\{p}). (22
Conditions (2.2) are typical for routing problems. We fix (nonempty) relations
M, € P'(My x My), ..., My € P (My x My). (2.3)

Under j € 1, N, the relation M; defines all possible variants for interior permutations: if z € M},
then pr (z) € M; is the arrival point and pry(z) € M; is the point of departure from M.
Permutation from pr,(z) to pry(z) means that some works called internal are performed. Let

P2 (bi)[1, N]| (the set of all routes in the complete problem). We match a bundle of trajectories
to each route. So, we consider processes of the type

(x € X% = (2 € Mygy ~ 2l € Mypy) = ... = (&™) € Myy ~ 2 € Myy) (2.4)
for which z; 2 (azgl),xgl)) € My, ..., 2N 2 (ang),a:gN)) € M, (). So, relations (2.3) define

constraints for internal permutations. By (2.4) the trajectory bundle corresponding to route « is
defined at a meaningful level. Later, this bundle will be determined strictly.

Now we introduce precedence conditions for which the relation K € P(1, N x 1, N) is
fixed (the case K = () is not excluded; in this case, constraints in the form of precedence
conditions are lacking). We suppose that VK, € P'(K) 3z € Ko : pry(20) # pry(z) Vz € K.
Then [11, (2.2.53)]

A= {aeP| (v e LN Ve LN((a(h),altz) € K) = (t < 1)} =

(2.5)
—{aeP|a"(pry(2)) < a”M(pry(2)) Vz € K} € P'(P)

is a set of all K-admissible (admissible by precedence) routes. Of course, A € Fin(PP); see (2.5).
Now we suppose that for every j € 1, N

A A
(M = {pri(z) : 2 € My}) & (M = {pry(z) : z € My}); (2.6)
every of sets (2.6) is nonempty. In (2.6), we have subsets of M;. Then

N

(X2 (U ) X0 e P(x) & (X = (M) X0 e P(x)). (2.7)

i=1

Moreover, X 2 X UX € P'(X). By Z we denote the set of all collections

(2t)eow 1 0, N — X x X; (2.8)
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of course, under each collection (2.8) and 7 € 0, N, the inclusion z, € X x X is realized. In

addition,
Z.[2] = {(2)cow €2 | (20 = (3,2)) & 2.9)

& (2 € My Vt€1,N)} € Fin(Z) Va e P Va € X°.

In (2.9), we use (2.1) and (2.3): under j € 1, N, the inclusion M; € Fin(X x X) is realized.
Using (2.5) and (2.9), we find that under x € X°

~ A .
D[z] = {(a, (Zt)ieo,_N) €EAXZ| (Zt)teo,_N € Z,|z|} € Fin(A x Z) (2.10)
is the set of all admissible solutions corresponding to the starting point x. As a corollary,

D £ {(a, (2)icon: ) € A X Z x X° | (@, (20),c0%) € D]} 2.11)

is the set of all admissible solutions of our complete problem. For exact statement of this problem,
we introduce and fix cost functions

CERX XX XN, ¢ e RAYX XX XN, ..., en e RUX x X x N, feRL[X], (2.12)

D oy . . oy . .
where 91 = P’(1, N). In addition, c is used for estimation of external permutations. The functions
c1,-..,cy are used for estimation of internal works and f realizes estimation of the terminal state
(the point xéN) in (2.4)). Suppose that under o € P and (2;),5% € Z

é
[(2¢) te0, N =

Mz

c(pry(2e-1), pry(20), &' (£, N) + oy (21, o' (£, N))] + f(pry(2n)); - (2.13)

t=1

of course, €4[(2), o] € Ry. We use the case a € A and (z),.gy € Za[z], where z € X
then («, (2¢);cow) € € DIz] (see (2.10)). Under z € X°, we obtain the problem

Cal(zt)icon] — min, (o, (2)eqx) € D] (2.14)

for which the value (extremum) V[z] € Ry is defined as the least of numbers &,[(2);c57);
(@, (0)ueny) € Dl and

(soD)[2] = {(a®, (z})eqw) € Dlal | €aol(2f)rc.n] = VIal} € P/(Dla)). (2.15)

Of course, (2.14) can be considered (see (2.10)) as a very complicated problem of discrete opti-
mization. This problem was investigated in [12-14]. But now we consider the complete problem

Qa[(zt)teo,_N] — inf, (o, (2¢)i5w,7) €D (2.16)

as basic; for problem (2.16), the value

VE  inf  Cuf(z)egn] = inf V[z] € Ry (2.17)

(o (2t); o x)ED reX0
is defined (in (2.17), we have the global extremum) and
A
SOL = {(a”, (#)scow- 2") € D | €aol()eow] = V} € P(D). (2.18)

We note that the case SOL = () is possible since the set X can be infinite; in this case, we strive
to find an admissible solution realizing V with a high degree of accuracy.
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§ 3. Dynamic programming, 1

In this section, we consider construction of the Bellman function and its layers. In this
connection, we recall the natural construction of extension for problem (2.14); we follow [12-14].
But first we recall the deletion operator of [11, part 2]: suppose that I € N™ is defined by the
rule .

I(K) = K\ {pry(2) : z € Z[K]}, (3.1)

where K € 91 and Z[K] 2 {z € K| (pry(z) € K)& (pry(z) € K)}. Now we suppose that for
KeMn
(T bi)[K] 2 {a € (b)[K] | a(m) € I(a (m, [KT)) ¥m € T,IK]) (32)

in (3.2), we obtain the set of all admissible (by deletion) local routes; see [13, (3.16)]. In addition,
by [13, (3.17)]

A = (I —bi)[1, N]. (3.3)
Under K € I, by Z we denote the set of all collections
(Zi)iem : 0, |K| — X x X.
For x € X, K € M, and « € (bi)[K], we introduce the set
A -
Zla; ;0] 2 {(20),5m € Zc | (20 = (2,2)) & (21 € Moy VE€ LKD) (3.4)

We note that (3.4) coincides with Z(x, K, a) of [14, (3.11)] (of course, in [14, (3.11)], the “point”
variant of X° was considiered). If K € M, o € (bi)[K], and (z;) reoqr] € L, then

K|

Cal(z) e | K12 Y le(pra(zio1), pry (=), ol (6 [K])) +

t=1

+ oy (2, & (8, )] + f(pra(zx)))-

We recall that (I —bi)[K] € P'((bi)[K]) VK € D (see [11, part 2]). Moreover, by (2.3) and (3.4)

(3.5)

Z[r; K;a) € Fin(Zg) Ve € X VK € M Va € (bi)[K].
As aresult, for z € X and K € 91, we obtain

Dicle] 2 {(er (zt)ser) € (A= DOIK] * Zic | (=), € Zlos Kial} €
Fin((I — bi)[K] X Z).

Therefore, for x € X and K € 91, the value

A : -
vz, K) = min Cal(zt)scorzmy | K] € Ry (3.6)

(o(2t) oz €DK [2]

is defined. Moreover, we suppose that

o, 0) =
By (3.6) and (3.7) we find that values v(z, K) are defined for all positions (z, K), z € X,
K € P(1,N). So, we have the Bellman function v € R, [X x P(1, N)]. Now we supplement
(3.3). Namely, since |1, N| = N, we have the inclusion Z C Ziz. In addition, from (3.4), we
find that under € X°, the inclusion Z[x;1, N;a] C Z holds, where o € P (we recall that

f(x) VzeX. (3.7)
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P = (bi)[1, N]). And what is more, from (2.9) and (3.4), the equality Z,[z] = Z[x;1, N;q]
holds, where z € X and o € P. As a corollary, from (2.10) and (3.3), we obtain

D[z] = Dilz] Vx € X°. (3.8)
Therefore, under x € XY, the equality
V]z] = v(z, 1, N) (3.9)

~

is realized (we use the obvious property (see (2.13) and (3.5)): €, [(2),c5w) = €al(2t)icow | 1, V]
under a € P and (2;),c55 € Z). From [14, (4.5)], we obtain that
o(w, K) = min_ minle(r, pry(2), K)+¢;(z K)+v(pra(z), K\ {j})] Yz, K) € XxN. (3.10)
]EI(K) ZeMj
Remark 3.1. In connection with representation of (3.6) in the form (3.10), we note that (3.5)
corresponds to [14, (4.1)]. Therefore, (3.6) is coordinated with [14, (4.3)]. Of course, [14, (4.4)] is the
value replaced by function V[-] defined on X°. This means that [14, (4.4)] can be used at different starting
points (i.e., under different initial states). We can consider our problem as a totality of x-problems (2.14)
where € X is fixed. Respectively, our Bellman function can be considered as result of combination of

all Bellman functions for z-problems (2.14). U
So, our Bellman function v is defined by (3.10). From (3.9) and (3.10),

Vie) = min minfe(z, pr, (), T,N) + (5 T N) + 0(pry(=), TN\ {j})] ¥ € X0 3.11)

JEI(1,N) 2€M;
§ 4. Dynamic programming, 2: the layers of Bellman function

In the present section, we use procedure of [14, Section 4] ascending to [11, §4.9]. At least,
we recall about essential lists of tasks: we suppose that

BE(KeN|VzeK (pry(2) € K) = (pry(2) € K)} (4.1)

and &, 2 {K€®|s=|K|}Vsel N. Of course, {®y;...; By} is a decomposition of &. In
addition, & = {1, N} and

6 ={{t} :t€ N\ Ky} (4.2)
where K; £ {pry(z) : z € K}. In addition [14, (4.6))],
G, ={K\{t}: Ke&,tcl(K)} Vs€2,N. (4.3)

Along with (4.2) and (4.3), we obtain the next recurrent procedure
By — OBy 1 — ... — B (4.4)

defined by (4.3) and representation of & . After realization of &, ..., &y by (4.4) we construct

layers of the position space. For extreme layers Dy and Dy, we suppose that D 2 {(z,0): z €
M}, where

M= |J wmy,
JELN\K1
and Dy 2 {(z,T,N) : = € X°}. Of course, Dy C X x P(I,N) and Dy C X x P(I, V). For

intermediate layers Dy, ..., Dy_1, we use the procedure of [14, Section 4]. Namely, at first, for
s€ 1, N —1and K € &, we suppose that

J(K) = e TN\K [ (73K € 6.1},
MJIKE | M, DK = {(z,K) € MJK]}.

jeJs(K)

(4.5)
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Using (4.5), we construct the intermediate layers: for s € 1, N — 1, suppose that

D, = | DJK]. (4.6)

Ke®,
As a result (see (4.5) and (4.6)), we obtain the layers-sets
Dy, e P'(X xP(1,N)) Vs €0, N; 4.7)

in this connection, see [11, Proposition 4.9.3]. As a corollary, the constrictions of the Bellman
function v are defined: if ¢t € 0, N, then v, € R [D] is realized by the rule

vz, K) £ v(z, K) Y(x,K) € D,. (4.8)

In particular, vy € R [Dy] is defined as vy(x,#) = v(x,0) = f(z) under = € M; see (3.7). So,
vg is defined by the terminal function f. Moreover, vy € R, [Dy] is defined by the rule

vy(z,1,N) = V]z] Vo € X° 4.9)
So, vy defines the function V[-] and, as a corollary, the global extremum: by (2.17) and (4.9)

V = inf vy(z,1,N). (4.10)

e X0

We note the known [14, Section 4] property of layers of the position space: for s € 1,1V,
(x,K) € Dy, j € I(K), and z € M;, we have

(pry(2), K\ {j}) € Ds—1; (4.11)

therefore, the value v,_1(pry(2), K\ {j}) € R, is defined. From (3.10), (4.8), and (4.11), we
obtain that for s € 1, IV, the transformation of v,_; to vs corresponds to the following rule:

vs(x, K) = min min|c(z,pr,(2), K)+c¢;(z, K)+vs_1(pro(2), K\{j})] V(z,K) € D,. (4.12)

JEI(K) ZeMj
So, we obtain the natural recurrent procedure:
Vg — V3 — ... —> UN. (4.13)

From (4.9) and (4.12), we have the next representation: for z € X°

Viz] = min minc(z,pry(2),1, N) +¢j(z, 1, N) +on_1(pro(2), 1, N\ {5})]. (4.14)
FEI(T,N) 2EM

So, by (4.13) and (4.14) we construct the value function V[-|; this function realizes the global
extremum V.

Algorithm for construction of V[-]. By (4.12)—(4.14) we can realize V[-] using the DP proce-
dure with overwriting layers of the Bellman function. So, we have vy defined in terms of f. Let
s € 1,N and v,_; € R, [D,_1] be already constructed. Then we construct v, € R, [D,] by the
rule (4.12) using only the function v, ;. If s = N, then we have the value function V[-] (in
this case, (4.12) is reduced to (4.14)): in this case our procedure is completed. If s < NN, then
we replace vs_; by v,; the function v,_; (the Bellman function layer) is destroyed. So, in the
computer memory, only one of the functions vy, vy, ...,vy_1 is available (in this connection, we
recall investigation [15]).
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§ 5. Optimization of the starting point

So, we obtain the Bellman procedure for construction of the value function V[-]. By this
function, the global extremum V can be determinated. Of course, it is possible the case V[z] >
V Vx € X° (we recall that the set X is not necessarily finite). But some useful particular cases
can be chosen. Of course, the simplest case corresponds to variant when

XY € Fin(X). (5.1)
From (4.10) and (5.1), we obtain that
V = min vy(z, 1, N) (5.2)
z€X0

and SOL # (. Indeed, by (5.1) and (5.2) for some 2 € X°, we obtain that V[2°] = V =
vn(2°,1, N). By (2.15), (sol)[z°] # ). We choose (a’, (2)),c5) € (sol)[z°] and obtain

@ao[(zto)teo’—N] =V, (5.3)

where (a’, (2),cow,2") € D by (2.11) and (2.15). From (2.18) and (5.3), we have the required
property

(@’, (2o ") € SOL. (5.4)

We note that the scheme connected with (5.1)—(5.4) defines a solution near to optimal one in very
general case when (5.1) is violated. Now we consider such situation.

So, we suppose until the end of this section that X° € P’(X) (we return to the general case
of X in Section 2) is equipped with a metric

P XOx X0 R,
So, (X?, p) is a metric space. In the following, it is supposed that Ve € R, \ {0} 3§ € R, \ {0}
Vo, € X° Yz, € XO

N
(p(w1, 22) < 0) = (le(x1,y, T, N) — c(z2,y, T, N)| <& ¥y € [ M) (5.5)

i=1

So, by (5.5), the functional set
N
{c(y, TN) sy e | Jom}
i=1

is equipotentially uniformly continuous on (X°, p).

Proposition5.1. The function
un (4 1 N) = (un(2, 1, N))sexo € R [X]
is uniformly continuous, i.e., Ve € Ry \ {0} 36 € Ry \ {0} Vz; € X° Vay € X°
(p(z1,22) < 0) = (Jow(z1, 1, N) — vn (22,1, N)| <e). (5.6)

Proof. Fix gy € R, \ {0}. Using (5.5), we choose d, € R, \ {0} for which Vz; € X"
sz € XO

N
(p(xlwr?) < 50) = (‘C(x17y7 17N) - C(x27y717—N)‘ < &o vZJ € Umz) (57)

i=1
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Fix 2/ € X? and 2" € X for which p(2’, 2") < d. Then by (5.7)

N
le(2',y, I,N) —c(a”,y, I, N)| < & Yy e | M,

i=1

From (4.9) and (4.14), we have the equalities

on(2',1,N) = min minfe(2, pry(2), 1, N) + ¢;(2, 1, N) + v(pry(2), L, N\ {5})],
JEI(1,N) z€M;

UN x//, 17N — N1in min C .lyll,pI] z ,17N CI' ’27 17N) U(I 2(z)7] N\{J})]

Lett' € I(1,N) and 2’ € My realize (see (5.9)) the equality
on(2',1,N) = c(a,pry(2'),1, N) + cp(2', 1, N) + v(pry(2'), 1, N\ {t'}).

In addition, let t” € I(1, N) and 2" € M~ (see (5.10)) satisfy the condition

on(2”, 1, N) = c(x”,pry(2"), 1, N) + e (2", 1, N) + v(pry(2”), 1, N\ {t"}).

Hence (see (5.9)), we have, in particular, that

on (2,1, N) < (2, pry(2”), 1, N) + (2", 1, N) + v(pry(2”), 1, N\ {t"}).

Similarly, from (5.10), it follows that

on(z”,1,N) < c(2”,pry(2),1,N) + cp (2,1, N) + v(pry(2'), 1, N\ {t'}).
From (5.8) and (5.13), we obtain that
on (2,1, N) < c(2”,pri(2"), 1, N) + cor (2", 1, N) + v(pry(2”), 1, N\ {t"}) + o

(in (5.15) we take into account that according to (2.6)

N

pry(2") € U m;,

i=1

(5.8)

(5.9)

(5.10)

(5.11)

(5.12)

(5.13)

(5.14)

(5.15)

but then |c(2/, pry(2”), 1, N) —c(z”, pry(2”), 1, N)| < &¢). From (5.12) and (5.15), it follows that
1

on(2’, 1, N) < ouy(z",1,N) + eo.
Further, we note that (see (2.6))
N
pr1<z/) S Umiv
i=1

but then, by virtue (5.8),

lc(2/,pry(2'), 1, N) — c(2”, pry(2), 1, N)| < eo.
Therefore, it follows from (5.14) and (5.17), that
on(2", 1, N) < c(2/,pry(2'), 1, N) + e (2,1, N) + v(pry(2'), 1, N\ {t'}) + <o.

Thus, from (5.11) and (5.18), it follows that

on(2", 1, N) < un(a’,1,N) + €.
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(5.16)

(5.17)

(5.18)

(5.19)



From (5.16) and (5.19), it follows that
loy(2',1,N) —vn(2”,1,N)| < 0. (5.20)
So, the following implication is established
(p(',2") < do) = (low (', T,N) — ow(a", T, W) < o).
Since the choice of 2/, 2" was arbitrary, the required property (5.6) is fulfilled.
Corollary5.1. If (XY, p) is a compact metric space, then
32° € X oy (2,1, N) = V[z"] = V. (5.21)

Proof. Let (X° p) be a compact metric space. Then topology 7° of the set X° generated
by p transforms X° in a metrizable compactum. By Proposition 5.1 the function vy (-, 1, N) is
continuous (on (X 7%)). By Weierstrass theorem, the function vy (-, 1, N) attains minimum on
XY, Therefore, by (4.9) and (4.10), we obtain the property (5.21). 0

We introduce open balls: for z € X% and ¢ € R, \ {0}, we suppose that

A
By(z,e) = {y € X°| p(x,y) < &}, (5.22)
In the following (in this section), we suppose that X is a totally bounded set, i.e.,
Ve € Ry \ {0} 3K € Fin(X°): X | ] BY(x,e). (5.23)
rzeK

We note that for every K € Fin(X?), it is defined the value

géi}l(lv]v(x, I,N) € R;.

Proposition5.2. Ife € Ry \ {0}, then
JK € Fin(X") : mi}I{lUN(SL’,l,N) <V+e.
Te

Proof. Let gy € R, \ {0}. Using Proposition 5.1, we choose Jy € R, \ {0} for which
Va, € X0V, € XV

——, €
(p(a1, 22) < 69) = (\UN(:Q, LN — oy(22, T, N)| < 50) . (5.24)
By (5.23), for some K € Fin(X?), the equality
X = BS(x, ) (5.25)
zeK
holds. By (2.17), we obtain that
V[ <V + %0 (5.26)

for some 2 € X°. Using (5.25), we obtain that z° € B)(z*,d) for some z* € K. Then
p(2°, 2*) < §y and, by (5.24),

jox(a®, TN) = oy (2", TN < 5. (5.27)

In addition, by (4.9) V[2°] = vy (2%, 1, N). Therefore, by (5.26) and (5.27), the inequality
UN(Jf*, 1,N) <V+¢
holds. By the choice of x*,

miﬂrng(x, 1,N) <oyn(z*,1,N).
Te

As a corollary, we obtain the required inequality: miﬂrg un(z, 1, N) <V +¢. O
Te
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§ 6. Optimal solutions

Now, we suppose that procedure (4.13) was realized and we have all functions vg, vy, ..., vy.
Now, we very briefly consider the question about construction of the optimal solution of the
problem (2.14). So, we choose 7y € X° for which vy (zp,1, N) ~ V (in the case of compact
metric space (X°,p), we can suppose that vy(z9,1, N) = V; in this case, by the following
procedure we obtain an element of SOL (2.18)). Now, we consider the procedure for construction
of solution from (sol)[zo].

So, we suppose that z(®) 2 (zo,mp). Now, we use (4.14) for x = z, (we recall that
on(z0, 1, N) = V[zg] by (4.9)). Namely, we choose 1, € I(1, N) and zY) € M,, for which
the next equality holds:

on (w0, T, N) = c(x, pry(zM), T, N) + ¢, (21, 1, N) + vy _1(pry(zM), T, N\ {m}). (6.1

Of course, from (4.11), the inclusion (pry(z™)), 1, N\ {m}) € Dy_; follows and the expression
in right side of (6.1) is defined correctly. By (4.12)

on-1(pra(zM), LN\ {m}) =  min  minfe(pry(z), pri(2), T, N\ {m}) +
JENTN\{m}) #€M; (6.2)

+6(z LN\ {m}) +ov-2(pry(2), L, N\ {m; j})].
Using (6.2), we choose 17, € I(1, N \ {n:}) and z® € M,), such that

uv-1(pry(2), LN\ {m}) = e(pry(z®), pry (%), LN\ {m}) +

@ TN @y TN (6.3)
+ e (27, 1L, N\ {m}) + on—a(pra(z'), 1, N\ {ni;m2}).
By (4.11), (pry(z?®),1, N \ {n1;m2}) € Dy_o. From (6.1) and (6.3), we obtain that
un (w0, 1, N) = (0, pri(2"), 1, N) + c(pra(zV), pry (2®), T, N\ {m}) + (6.4)

+ Cm (Z(1)7 17 N) + an(Z(Q)v 17 N\ {771}) + UN—Q(pIQ(Z(Q))a 17 N \ {771; 772})

(if N = 2, the optimal solution is already constructed; see (6.4)). Next constructions are sim-
ilar to (6.1) and (6.3); they should continue until exhaustion of the index set 1, N. By these
constructions, an admissible solution (1, (z)) ;.5) € D[zo] with the property

¢, [(z7); o] = Vil (6.5)
will be constructed; from (2.15) and (6.5), we obtain the property

(1. (29) jex) € (s0l)[o].

We recall that in given procedure, all functions vy,...,vy should be saved in the computer
memory (we keep in mind the scheme (4.13)).

Remark 6.1. Now we note one typical case: the set X is equipped with a metric d € R [X x X]
and the metric p is the constriction of d on X° x X0, ie., p(x1,z2) = d(x1, 1) Vo1 € X0 Vag € XV,
So, (XY, p) is a subspace of (X, d). Let w € R, \ {0} and the selection of the function c be defined by
the following rule:
d(wl s 562)

c(xy, 29,1, N) =
w

Vo e X Vg € X (6.6)

N
Then, by the triangle inequality, we have that for 2’ € X, 2" € X, and y € |J M,
i=1

_ 1 1 1
lc(2,y,1,N) —c(z”,y, 1, N)| = —ld(z',y) — d(z",y)| < —d(2',2") = —p(z’, 2");
w w w

so, we obtain that (5.5) is fulfilled. We note that (6.6) corresponds to variant of the metric routing problems;
this variant is widely used in problems of discrete optimization. In addition, w can be considered as a
velocity; then c(x1,z2,1, N) corresponds to time for permutation from x; to xs.
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§ 7. The case when terminal function depends on initial state

Now, we consider the setting that is a generalization of the problem for which the return
to the initial state (starting point) is required. In TSP, this situation is typical: usually, closed
TSP is considered. We suppose (see [4]) more general variant: the terminal function depends
on the initial state x € X°. Then, our DP procedure is essentially complicated. Namely, for
determination of the global extermum, the corresponding DP procedure is required for every
7 € X°. Namely, in the following, we suppose that

fec R, [X x XY. (7.1)

In the case of the metric initial problem (we keep in mind the variant when cost functions are
defined as distances between points), the natural concrete variant of (7.1) is defined by distance
from x € X to 2° € X°. This concrete definition can corresponds to natural requirement the

return to the starting point.

For 2° € X°, the use of f(-,2") 2 (f(7,2°%))zex as f does not complicate the setting the

problem (2.14), where z = z°. For this special case f = f(-,2°), we can use the DP procedure
corresponding to [3,11-13]. In addition, the starting point 2° is a parameter. For completeness of
our presentation, we absolutely briefly recall the corresponding DP procedure for fixed starting
point 2° € X°; namely, we consider (2.14) under f = f(-,2°). So, for (e, (2),c5%) € D[z°], we
use

N
(=) e | 2% 2 Y le(pry(ze1), pry(22), @' (E;N)) +

T oty (21 MG + E(praen), )

for estimation of (a, (2),c5); of course, (7.2) coincides with €,[(z),5] of (2.13) for f =
f(-,2%). Then

(7.2)

Col(z0) o | #°) — min, (@, (20)e0.5) € D[z (7.3)
corresponds to the problem (2.14) under x = 2° and above-mentioned variant of f. As a corollary,

2

V(2] min @3[(zt)t€Q—N | 2°] € R, (7.4)

(a(20),c) D]
is V[2"] for our case connected with (7.1). Moreover,

(Sol)[2] = {(a®, (=))seow) € D[] | €%l(2f) s | 2°] = VI[2]} € P'(D[2°))

is the concrete variant of (sol)[z°] (2.15). For solving the problem (7.3), we use the special DP
procedure of attachment to z°. Of course, this 2°-procedure corresponds essentially to construc-
tions of Section 4 (we keep in mind (4.2)—(4.8)).

In addition, the Bellman function

v[2"] € Ry {SCO}UU )) x P(L,N)]

is defined similarly to [14, Section 4]. Also, as in [14, Section 4], we construct the layers v,[2°],
vi[2Y),..., and vy[2°] of the function v[z°]. In addition, v,[2°] € R [D,] under s € 1, N;
we note that Dy is defined as in Section 4 under s < N. The set Dy is replaced by singleton
{(2°,1, N)} and v[2°] € Ry [{(2°, 1, N)}]. In addition,

volz°)(x, 0) = f(x,2°) Vo € M. (7.5)
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Later, recurrent procedure of [14, Section 4] is realized. The basic transformation v,_;[2°] in
Vi, [azo] corresponds to [13]; moreover, see [14, Proposition 4.1]. As a result,

V[2°] = vy[2°)(2%,1,N) = min_min[c(2% pr;(2), 1, N) +
o jElLN) =My (7.6)
+¢j(2, 1, N) + v [2%)(pra(2), 1, N\ {7})].

Constructible (optimal) solution from the set (Sol)[z°] is realized similarly to Section 4. So, (7.5)
generalizes the individual DP procedure of attachment to 2° (see (7.5)). For determination of
the global extremum, we should realize procedures of above-mentioned type for all 2° € X0;

then we obtain V] 2 (V[z])zexo and can determine the greatest lower bound V. of the set
{V]z] : z € X°}. Later, we find 2°° € X° with V[2%°] ~ v, and realize the solving procedure
for problem (7.3) under 2° = 2% (we keep in mind the question about construction of the optimal
solution in the form of pair: route—trajectory). So, for the problem of optimization of the starting
point under terminal function (7.1), we obtain very complicated total optimal procedure.

Now we consider one decomposition algorithm (see [4]) realizing the upper estimate for V.
First, we note that

Vopt L inf V[z| = inf min @g[(zt)tea—]\, | z] € Ry

rEX? PEX? (a,(z1), ) €Dl

(of course we use (7.4) with obvious replacement 2z — z for definition of V[x] under z € X°).
We will apply the “unique” DP procedure of Sections 3 and 4 under f € R [X] defined by the
rule

f(x) 20 Vo e X. (7.7)

So, we return to settings of Section 2. But, in the following, these settings (see (2.14) and (2.16))
are used as the investigation instrument. Namely, we consider the algorithm at the functional
level. For this purpose, we introduce the special designations corresponding to employment of
definitions of Sections 3 and 4 under condition (7.7). So, for o € P and (z),.5% € Z, we
suppose that

5 é
[(2¢) te0, N =

Mz

c(pry(ze-1), pry(2), @' (£, N)) + caqo (2, o (1, N))]. (7.8)

t=1

Then, under z € X°, the our auxiliary problem

Q:a[(zt)teo,iN] — min, (a, (zt>teo,7N) € ]5[:(:] (7.9)
is a partial case of (2.14) for the case (7.7). We suppose that

Ve]2  min _ C[(z),cn] € Ry (7.10)

(o (24) ;o) €D a]

is the corresponding concrete variant of V[x] from Section 2. Now, we note also the natural
connection of (7.2) and (7.8); namely, by (7.2) and (7.8), we obtain that

0 [(2),eiw | 7] = Cal(20) o] + £(pra(2n), ) (7.11)

for (a, (2t),cow) € D[z] (recall that 2 € X°). We note that, by (7.11), the natural decomposition
variant of a solution will be found.

Now we introduce the solution set for problem (7.9) (of course, we keep in mind the obvious
concrete variant of (2.15)): under z € X°

(sol)[z] = {(a”, (=) cqw) € Dla] | €aol(2f)scom] = VIal} € P'(Dlal). (7.12)
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For determination of the function V[-], we can use the procedure of Section 4. In addition, we
preserve &,..., 8y, Dy, Dy, ..., Dy. Later, we construct the required variants of vy, vy, ..., vN.
For these variants, we use design~ations 0o, V1, - - -, Uy In addition, 0y € R [Dy| is the function
for which 0g(z,0)) = 0 V& € M. From (4.12), we extract the procedure for transformation
0s—1 — Us under s € 1, N: under (z, K) € D;

~S ; K)= I I ) ) K RG] K ~S— ; K . .

Us(, K) Join, gﬁ[c(x pry(2), K) + ¢;(z, K) 4+ 05-1(pra(2), K\ {j})] (7.13)
Of course, (7.13) is the variant of (4.12) for the case (7.7). We obtain the recurrent procedure
U9 — U1 —>... —> Uy; this procedure is the obvious particular case of (4.13). In addition,

Viz] = on(z,1,N) Vo € X°. (7.14)

So, we have the (unique) DP procedure universal with respect to € X°. For determination of
(optimal) solutions from the sets (7.12), we use the natural procedure of Section 5 (see (6.1)—(6.5)
under obvious redefinitions).

Now we return to (7.10). As in [4], we introduce

V(a, (2t) 15w, T) 2 Viz] + f(pry(zy), z) Vo e X° V(a, (2t)icow) € (sol)[z]. (7.15)
Then, by [4, Proposition 4.1], we obtain that
Vz] < V(a, (zt)tEQ—N,x) Ve e X° V(a, (Zt)teo,_N) € (sol)[x]. (7.16)

For employment of (7.16) under the required estimate obtaining, we introduce

V£ inf min V(a, (2),c5w @) € Ry (7.17)

2€XO (a,(2t),cg ) E(sol)[z]
Then, from (2.17), (7.16) and (7.17), the obvious estimate for the global extremum is realized:
Vot < V. (7.18)

Under XY € Fin(X), the estimate (7.18) corresponds to use the natural

Decomposition algorithm. Namely, under (7.7), we determine (&;,...,8y) and (later)
(Do, D1, ...,Dy). Later, we suppose that 05 € R, [Dy] is the function equal to zero identi-
cally.

With this function vy, we realize the recurrent procedure

Vg —> V1 —> ... —> Un; (7.19)

in (7.19), 9y € R4[Dxy], where Dy = {(x,1,N) : z € X"}. With this function 9y, we realize
V[-] by (7.14). Later, we determine (sol)[z] for every = € X©; for this, we use the procedure
of Section 6 (see (6.1)—(6.5)). Here, we use all functions (7.19). Of course, we can chop up
the procedure and determinate only some nonempty subset of (sol)[xz] for an arbitrary z € X°.
But now, we suppose that all set (sol)[z] can be constructed for every z € XY; in patricular,
this variant is realized by procedure similar to (6.1)—(6.5) in the case when every such set is a
singleton. Later, we determine

viz] = min V(ev, (20),c5w: *) € Ry Vo e X°. (7.20)

(o (22) 0. ) E(s0D [e]

Then, by (7.17) and (7.20), we obtain the equality

V = inf v[z]. (7.21)

zeX0

115



Recall that now we restrict oneself to the case X" € Fin(X). Then, in (7.21), the corresponding
minimum is achieved. We solve the problem

V[r] — min, z € X°.

So, we find 7° € X° with the property v[7°] = V. Later (see (7.20)), we use (a°, (2)icow) €
(sol)[z°] for which )
V(@ (2)icom, 7°) = v[7°] = V. (7.22)

(we recall that (sol)[x°] was defined under the previous step of our algorithm). In addition,

~

V(E°, (20)co: 7°) = €ol(2))cv | 7). (7.23)

Remark 7.1. Now we check (7.23). Indeed, by (7.12), (&°, (%), w) € D[z°] and, by (7.14),

Caol(Z) o] = VIE] = on (3, T, N). (7.24)
From (7.11), (7.15), and (7.24), we obtain that
V@, (2),com: %) = €aol(2) o] + £(ra(2R), 2°) = €U e | 2.

So, (7.23) is established. O
From (7.22) and (7.23), we obtain the following equality:

Col(Z)seow 1 2] = V.

In addition, (&°, (2)),co, 2°) € D realizes the estimate (7.18). We consider V and (&°, (27),co w-
7°) as a result of our decomposition algorithm, i.e.,

V< Col(Z)seow | 27 = V.

We recall that in [4] computing experiment showed that, under this decomposition, the loss by
result is unessential under perceptible prize in the sense of the calculation time (see [4, § 4]).

§ 8. Computational experiment

Calculations were made on the computer with the Intel 15-2400 processor, 8GB memory, and
operating system Windows 7 (64-bit). The program was developed in C++ language with using
of Qt library for build user interface.

For motion estimation, in this experiment, cost functions from [14, Section 6] were used.
These functions depend on visited megalopolises list and related with engineering restrictions in
CNC metal cutting plants. These functions allow to take account termal restrictions. There should
be enough metal to ensure the quality of the cut around the finish cut segment. In addition, for
both samples, computatuions with heuristic algorithm from [14, Section 6] (greedy and iterative
versions) were made. Data on the coordinates of the points for examples are not given by reasons
of economy.

Example 1. Number of contours is 35. Number of ordered pairs is 22. Length of the finish
cut area is 150 mm (see [14]). Width of finish cut area is 50 mm. The penalty with value 1000000
was used if 25% (or more) of finish cut area is covered by holes in metal or out of sheet space.

The starting point was selected from rectangle with corners (0,0), (0,1500), (1850,1500) and
(1850,0). The step of point checking was 100 mm.

The obtained result is 80.897. It is less than penalty value (i.e. 1000000). Therefore, all
thermal restrictions have been performed. Penalty was no occurred. The found start point is (0,
200). Computational duration is 40 h. 25 min. The route is shown in Fig. 1.

116



1459

1276 2

1094

912

729

047

365

182

/

0 . - g E il > X
0 182 365 547 729 912 1094 1276 1459 1641 1823
Figure 1. Example 1. Calculated DP results

B e e e T

The greedy algorithm result is 85.167, computation time is less than 1 second. The iterative
heuristic algorithm result is 82.722, computation time is 5 min. 38 sec. It is very close to the DP
result (deviation is 2.26%). No penalty found.

Example 2. Number of contours is 35. Number of ordered pairs is 24. Coordinates of finish
point are (0,0). Length of the finish cut area is 150 mm. Width of finish cut area is 50 mm. The
penalty with value 1000000 was used if 25% (or more) of finish cut area is covered by holes in
metal or out of sheet space.

The starting point was selected from rectangle with corners (0,0), (0,2000), (2300,2000) and
(2300,0). The step of point checking was 10 mm.

The obtained result is 85.508. Penalty was no occurred. The found start point is (0, 150).
Computational duration is 84 h. 26 min. The route is shown in Fig. 2.

The greedy algorithm result is 89.431, computation time is less than 1 second. The iterative
heuristic algorithm result is 88.406, computation time is 6 min. 4 sec. It is also close to the DP
result (deviation is 3.39%). No penalty found.

§9. Conclusion

Calculations confirm the good quality of the iterative algorithm from the article [14] under
real constraints for a problem of significant dimension (for the case of smaller dimension, the
comparison with the extremum was made in [14, Section 6], where good results are also obtained).
This algorithm gives gain in comparison with the greedy algorithm, and it’s result is close to the
optimal solution. Therefore, the following application of DP is useful: for problems of moderate
dimension containing a full complex of constraints, it makes sense to find a global extremum
with the aim of testing heuristics for later application in problems of large dimension (see [16]).

Funding. This research was supported by the Russian Foundation for Basic Research (projects
no. 17-08-01385).

117



10.
11.

1944 1

R LB QR e L PRI Bt B Y B Bt B Y o B B o Y BBV R BV IRV B

1701

1458

B g s

1215

972

729

486 3

243 X

0 243 486 729 972 1215 1458 1701 1944 2187
Figure 2. Example 2. Calculated DP results.

T

“N..

REFERENCES

Gutin G., Punnen A. The traveling salesman problem and its variations, Berlin: Springer, 2002.

Cook W.J. In pursuit of the traveling salesman. Mathematics at the limits of computation, Princeton,
New Jersey: Princeton University Press, 2012.

Chentsov A.G., Chentsov P.A. Optimization of the start point in the GTSP with the precedence con-
ditions, Vestnik Yuzhno-Uralskogo Universiteta. Seriya Matematicheskoe Modelirovanie i Program-
mirovanie, 2018, vol. 11, issue 2, pp. 83-95 (in Russian). https://doi.org/10.14529/mmp180207
Chentsov A.G., Chentsov P.A. On one routing task with the optimization of the start—finish point,
Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, 2018,
vol. 52, pp. 103—115 (in Russian). https://doi.org/10.20537/2226-3594-2018-52-08

Bellman R. Dynamic programming treatment of the travelling salesman problem, Journal of the ACM,
1962, vol. 9, issue 1, pp. 61-63.

Held M., Karp R.M. A dynamic programming approach to sequencing problems, Journal of the Society
Sfor Industrial and Applied Mathematics, 1962, vol. 10, no. 1, pp. 196-210.
https://doi.org/10.1137/0110015

Chentsov A.A., Chentsov A.G., Sesekin A.N. Dynamic programming in a generic bottleneck prob-
lem and starting point optimization, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika.
Komp yuternye Nauki, 2018, vol 28, issue 3, pp. 348-363 (in Russian).
https://doi.org/10.20537/vm180306

Kuratowski K., Mostowski A. Set theory, Amsterdam: North-Holland Publishing Company, 1967.
Dieudonne J. Foundations of modern analysis, New York: Academic Press, 1960.

Cormen T., Leiserson C., Rivest R. Introduction to algorithms, Cambridge: MIT Press, 1990.

Chentsov A.G. Ekstremal’nye zadachi marshrutizatsii i raspredeleniya zadanii: voprosy teorii (Ex-
tremal problems of routing and assignment of tasks: questions of theory), Moscow—Izhevsk: Regular
and Chaotic Dynamics, Institute of Computer Science, 2008.

118



12. Chentsov A.G. Problem of successive megalopolis traversal with the precedence conditions, Automa-
tion and Remote Control, 2014, vol. 75, issue 4, pp. 728-744.
https://doi.org/10.1134/S0005117914040122

13. Chentsov A.G. To question of routing of works complexes, Vestnik Udmurtskogo Universiteta. Matem-
atika. Mekhanika. Komp *yuternye Nauki, 2013, issue 1, pp. 59-82 (in Russian).
https://doi.org/10.20537/vm130107

14. Chentsov A.G., Chentsov P.A. Routing under constraints: Problem of visit to megalopolises, Automa-
tion and Remote Control, 2016, vol. 77, issue 11, pp. 1957-1974.
https://doi.org/10.1134/S0005117916110060

15. Lawler E.L. Efficient implementation of dynamic programming algorithms for sequencing prob-
lems, CWI. Technical Reports, Stichting Mathematish Centrum, Mathematische Besliskunde, 1979,
BW 106/79, pp. 1-16.

16. Chentsov A.G., Chentsov P.A. Dynamic programming and heuristic methods in routing problems,
Izvestiya Yuzhnogo Federal’nogo Universiteta. Tekhnicheskie Nauki, 2017, no. 9, pp. 169-181 (in
Russian). https://doi.org/10.23683/2311-3103-2017-9-169-181

Received 30.07.2019

Chentsov Aleksandr Georgievich, Doctor of Physics and Mathematics, Corresponding Member, Russian
Academy of Science, Chief Researcher, N.N. Krasovskii Institute of Mathematics and Mechanics, Ural
Branch of the Russian Academy of Sciences, ul. S. Kovalevskoi, 16, Yekaterinburg, 620219, Russia;
Professor, Institute of Radioelectronics and Information Technologies, Ural Federal University, ul. Mira,
19, Yekaterinburg, 620002, Russia.

E-mail: chentsov@imm.uran.ru

Chentsov Pavel Aleksandrovich, Candidate of Physics and Mathematics, Senior Researcher, Department of
Computer Networks, N. N. Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian
Academy of Sciences, ul. S. Kovalevskoi, 16, Yekaterinburg, 620219, Russia;

Senior Researcher, Mechanical Engineering Institute, Ural Federal University, ul. Mira, 19, Yekaterinburg,
620002, Russia.

E-mail: chentsov.p@mail.ru

Citation: A.G. Chentsov, P. A. Chentsov. The routing problems with optimization of the starting point:
dynamic programming, lzvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Uni-
versiteta, 2019, vol. 54, pp. 102-121.

119



A.I. Yenuyos, Il. A. Yenyos
MapuipyTHas 3a7a4a ¢ ONTHMHA3ANHEH CTAPTOBOI TOYKHU: IMHAMAYECKOE MMPOrPaMMHUPOBaHHE

Kniouesvie cnosa: MaplIpyTHas 3a1ada, JMHAMUYECKOE IIPOTPaMMUPOBAHNE, YCIOBHUS MPEIIIECTBOBAHNUSI.
YIK: 519.6
DOI: 10.20537/2226-3594-2019-54-08

PaccmarpuBaercs sKkcTpeMallbHasl 3a/1a4a MaplIPYTU3ALUKA, OPUEHTUPOBAHHAS HAa MH)KEHEPHbIE IIPUIIOXKE-
HUS B MAaIIMHOCTpoeHUH. MmeeTcss B BUly M3BECTHAs 3aJa4a YIpPaBJICHUS MHCTPYMEHTOM IIPH JIMCTOBOM
peske neraneid Ha MamuHax ¢ YITY. Mcnonb3zyercs mareMaTndeckas MOZAEIb, BKIIOYAKOIIAs CUCTEMY Me-
raroMcoB (HEMYCTHIX KOHEYHBIX MHOXKECTB) M (DYHKIIMH CTOMMOCTH, 3aBUCSIINE OT CITMCKA 3afmaHnid. Me-
rarnojIuchl KOHCTPYUPYIOTCS Ha OCHOBE JMCKPETH3allMU SKBUJIMCTAHT, OTBEYAIOIINX KOHTypaMm JAeTajeil, a
3aBUCHUMOCTD OT CIHCKa 3aJaHH{ BO3HUKAET U3 COOOPaKEHHH, CBA3aHHBIX C yYETOM OrpaHUYCHHI AUHAMU-
YECKOI'0 XapakTepa, BOZHUKAIOIIMX IO MEPEe BBINOJIHEHUS 3a1aHui. Cpeiu BCeX OrpaHUYE€HUN BBIACIAIOTCA
yCIIOBHA TpENIIecCTBOBaHUA (IpeABapsomas pe3ka BHyTPEHHUX KOHTYPOB JETald B CPaBHEHHMU C BHEII-
HUM, Ooiiee paHHSS pe3Ka KPYMHBIX JeTajed W T.J1.). PannoHanmbHBIN y4eT yCIOBWH HpeAmIecTBOBAHHS
MO3BOJISIET B OIPEACIEHHOW CTEIEHU CHU3HUTH CIOXKHOCTH BBIYUCIICHUI IIPH HUCIIOJIB30BAHUU LIMPOKO IO-
HAMaeMOro ITUHaMu4eckoro mporpammupoBanus (II1) B peamusanum, pasBuBaromieii cxemy P.bemnmana.
JlaHHBIN MOAXOX IMO3BOJIAET NPUHLUIHAIBHO PEllaTh 3a7ady ONTUMHU3ALUU KOMILIEKCOB, BKIHOUYAIOLIUX
Ha4YaJIbHOE COCTOSIHHE (TOYKY CTapTa), CIIoco0 HyMepalnuy METaroINCOB B MOPSIKE UX IMOCEIIEHHs U KOH-
KPETHYIO TpaeKTOpHIo mpouecca. s 3a1a4n, OCIOKHEHHOH 3aBHCUMOCTBIO TEPMHHAIBHON (YHKIUHU OT
HauyaJbHOIO COCTOSIHUS, UCIIOJB3YETCsSl ACKOMIIO3MIIMOHHBIM aJrOpUTM, IMO3BOJIIOIIMNA B CYLIECTBEHHOM
4acTH MPOIeAyPHl IPUMEHATH eIUHYI0 (U1 BCeX HadalbHBIX cocTosHuil) cxemy JI1. OnTuManbHbIA anro-
put™ Ha ocHose JIII peanu3oBan B Buze mnporpammsl ainst [I9BM; npoBeneH BBIUNCINUTENBHBIN dKCTIEPH-
MEHT.

dunancupoBanue. Pabora BbimonHeHa npu ¢uHaHCOBOM momaepxke Poccuiickoro ®onma dynnamen-
tanpHBIX MccnemoBanmii (mpoekt Ne 17-08-01385).
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