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ABSTRACT 

Contour Extraction From HVEM Image of Microvessel 
Using Active Contour Models 

by 
Manping Xiao 

This thesis reports the research results on automatic contour extraction 

from high voltage electron microscope (HVEM) image of thick cross section 

montages of small blood vessels. The previous work on this subject, which 

was based on the conventional edge detection operations combined with edge 

linking, has proven inadequate to describe the inner structural compartments 

of microvessels. In this thesis, an active contour model (commonly referred 

to as "Snakes") has been applied to advance the previous work. Active 

contour models have proven themselves to be a powerful and flexible 

paradigm for many problems in image understanding, especially in contour 

extraction from medical images. With the developed energy functions, the 

active contour is attracted towards the edges under the action of internal 

forces (describing some elasticity properties of the contour), image forces and 

external forces by means of minimization of the energy functions. Based on 

this active model, an effective algorithm is implemented as a powerful tool 

for 2-D contour extraction in our problem for the first time. The results thus 

obtained turn out to be encouraging. 
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CHAPTER 1 

INTRODUCTION 

1.1 Research Background 

Every cell and every organ system in the body depend upon the circulation of 

blood for appropriate nutrients, humoral message exchange and removal of 

waste [1]. The smallest arteries, arterioles, capillaries and venules are 

generally considered the key vessels, the first two types mediating the 

distribution of the flow by changing their diameters and thus flow resistance 

and the latter two being the most important for their fluid and solute 

exchange properties. The structural aspects of these vessels therefore become 

crucial for the understanding of the mechanism that allow the optimal 

harmony for good health. 

Substantial advances have been made in the knowledge of the 

microcirculation particularly within the last thirty years. A combination of 

innovative methods and technology have made it possible to describe 

microvascular behavior in more precise quantitative terms. Microtechniques 

and computer assisted analysis of intra vital video microscopy have enabled 

us to study individual segments of the microcirculation vessel system for 

more accurate analysis and use such information to reconstruct the 

operational characteristics of an entire microvascular bed [2]. 

The most recent combination of the high voltage electron microscope 

(HVEM) and powerful computers allows to digitize microvascular electron 

microscope images and display them directly on the monitor along with the 

associated contour lines [1]. A three dimensional reconstructed picture is 

generated by using a series of sequential microscopic images simultaneously. 

1 
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This provides a method for assessment of detailed structure of microvessels. 

Such a method can also be amenable to both numerical calculations of 

parameters of cell wall compartments and can be used for image 

reconstruction of the vessel in solid or transparent mode that can be viewed 

from any chosen angle and can allow for computerized dissection. 

In this method, image recognition of the vessel in solid and 

transparent mode and computerized dissection of cell compartments are 

performed by using the contour data of the cross-section of microvessels. 

Thus, to provide a method, that will devise an accurate, versatile and time 

saving assessment of the detailed description of the contours of 

microvascular vessels, becomes very important. 

1.2 Active Contour Model 

Extracting boundaries (or contour) of objects from noisy images is an 

important problem in computer vision and image processing, especially in 

medical image processing applications. Traditional segmentation approaches 

have proven inadequate when faced with anatomical complexity and 

variability exhibited by biological structures [3]. Traditional approaches to 

finding object boundaries involve some form of local, low-level feature 

detection in order to locate image gradients. The gradients information is 

then used to interpret an object contour or surface. Unfortunately, noise and 

image artifacts can cause discontinuities to appear in boundaries recovered by 

these methods [4]. 

Recently Kass et al. have proposed a model called active contour 

(Snakes) which has the advantage that the final form of a contour can be 

influenced by feedback from a higher level process [4]. This model is an 

energy-minimization scheme based on the assumption that object boundaries 
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are continuous and smooth. The idea behind active contours is to redefine 

certain computer vision problems in terms of energy-minimization, a 

problem which has been thoroughly developed in the mathematical 

literature. The contour is initially placed near an edge under consideration, 

then image forces or external forces draw the contour to the edge of the 

image. As the algorithm iterates, the energy terms can be adjusted by higher 

level processes to obtain a global minimum. This method of redefining 

problems in terms of energy minimization makes active contours a very 

flexible tool with a variety of adaptations to solve particular problems. 

Snakes, or active contour models, are energy-minimizing splines which can 

be used to find image features such as minima or edges, and can be subject to 

a variety of user-defined, externally-generated "forces" in order to assist the 

snakes in finding the solution to the minimization problem. 

Active contour models have been applied to certain medical image 

understanding problems. Cohen introduced a "balloon-expansion" force 

inside a closed contour model to find the endocardial wall in transverse 

magnetic resonance images of the heart [5]. Rong applied active contour 

models to the detection of coronary arteries in digital subtraction angiography 

images of the beating heart [6]. Gwydir et al. used continuity splines to analyze 

neurite outgrowth and growth cone motility [7]. In this thesis, an active 

contour model is used to extract contours of microvessels from HVEM 

images. The results are encouraging. 

Research in active contour models has primarily focused on the 

methods of solving the variational problem, while illustrating these methods 

with a particular application. Kass, Witkin, and Terzopoulos solved the 

variational problem by employing Euler-Lagrange equations from calculus of 

variations [4]. The Euler-Lagrange equations result in partial differential 
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equations which the above authors solved by using the finite difference 

method. Cohen and Cohen also employed calculus of variations, but used 

the Galerkin solution from the finite element method to solve the Euler-

Lagrange equations [8]. Recently, Amini showed that dynamic programming 

could be used to solve many variational problems in computer vision, 

including the problem of energy-minimizing active contour models [9]. 

Williams and Shah proposed an active contour model using greedy 

algorithms, which is more stable and approaches minimum energy rapidly 

without costly matrix calculations [10]. This method works well when there is 

a prior knowledge of the data, as in our case. For each iteration of the 

program, a snake point can move to a set of its neighboring points, or remain 

at the same point, depending on which of the set of points has the minimum 

energy. 

My research work reported in this thesis employs Snakes to extract 

contours from HVEM image of microvessel instead of traditional methods of 

contour detection and develops an algorithm to implement the Snakes 

model. 



CHAPTER 2 

PROBLEM BACKGROUND 

2.1 Basic Structure of Microvessel 

The specimen of a microvessel is composed of vascular smooth muscle 

(VSM), internal lamina (IL), endothelium (EN), vascular smooth muscle 

nucleus (VSM-NUC), endothelium nucleus (EN-NUC), and lumen (L) which 

are shown in Figure 2.1. These elements or compartments used frequently in 

the following chapters are the objects of interest that play an important role in 

the microcirculation. The changes in their shape and size provide 

information for the microcirculation research. 

2.2 Contour Data Acquisition 

2.2.1 Conventional Manual Method 

There are two steps in collecting the boundary or contour data from the final 

glossy prints in this method [1]. 

1) Mark compartment contours on a clear plastic overlay; 

2) Convert those marked curves into data files. This work is 

accomplished by hand. A full-sized transparent overlay is placed over the 

microvessel electronmicrograph print. An investigator uses a water colored 

pen to trace the contour of particular compartment from a knowledge of the 

microvessel. One color is assigned to one particular compartment to obtain 

cross section contours. Then the marked plastic overlay is placed on a 

digitizing tablet called Digipad with fixed x-y coordinate. An operator holds a 

probe, that is connected to the digitizer interface, to follow each marked 

close contour. The coordinates of every point along the contour are 

5 
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Figure 2.1 Basic Structure of Microvessels 
Key: VSM — Vascular Smooth Muscle 

IL — Internal Lamina 
EN — Endothelium 
VSM-NUC—Vasc. Smooth Muscle Nucleus 
EN-NUC--Endothelium Nucleus 
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transformed into data. Then data are collected by the computer and stored as a 

data file. 

This manual data acquisition is a time consuming and tedious job. It is 

a routine job in processing the experimental microvessel specimen. An 

automatic digital image data acquisition system is demanded by the 

researchers in their study of HVEM image of microvessels. 

2.2.2 Method of Conventional Digital Image Processing 

A synthetic method of automatic contour extraction from HVEM images of 

microvessels was proposed by Liu et al. [11}. The method consists of several 

computer image processing techniques including median and extreme 

transforms, edge detection, edge linking and edge thinning. It is tested on the 

HVEM images of thick cross sections of microvessels. A gray scaled HVEM 

image is transferred into a binary code one pixel thick boundary picture, and a 

corresponding coordinate data file is created at the same time. The data file 

could serve as input to a 3-D image reconstruction device. 

This can be considered as a traditional approach to boundary detection. 

Objects in images are defined by their boundaries, which usually appear as 

abrupt changes in image intensity. After gradients of images are computed, 

the maxima of image intensity changes are extracted and then edges are 

linked together. Traditional approaches to finding object boundaries involve 

some form of local, low-level feature detection in order to locate these image 

gradients. The gradient information is then used to interpret object contours. 

Figure 2.2 shows the result obtained by using this digital image 

processing method. The results demonstrate that it is possible to use 

computer image processing techniques instead of manual methods to obtain 

contour data from electronmicroscopic pictures. However, it is also obvious 
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that information of small compartments of the microvessels such as IL, EN 

and VN are missing after application of this method. 

Figure 2.2 Final one pixel thick boundary picture in Liu's method 

In real-world images especially medical images, object boundaries 

cannot be detected solely on the basis of their photometry because of the 

presence of noise and various photometry anomalies . Thus, all methods for 

finding boundaries based on purely local statistical criteria are bound to 

generate errors, finding either too many or too few edges, because they lack a 

geometrical model to guide their search. Based on these problems, Kass et al. 

presented a technique that integrates both photometry and geometric models 

with an initial estimate of the boundary [4]. The models are incorporated by 

defining an energy function for curves that is minimal when the models are 

exactly satisfied. The initial estimate is used as the starting points for finding a 

local minimum of this energy function by embedding the initial curve in a 
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viscous medium and solving the equations of dynamics. The strength of this 

"energy-minimizing curve" approach are that the geometric constraints are 

directly used to guide the search for a boundary and that the edge information 

is integrated along the entire length of the curve, thereby providing a large 

support without including the irrelevant information off of the curve and at 

the same time finding boundaries that could not otherwise be found. This 

kind of geometric model is what are called active contour models, also called 

Snakes because of the way the contours slither while minimizing their 

energy. 



CHAPTER 3 

ACTIVE CONTOUR MODEL 

3.1 Basic Snake Behavior 

The basic Snake model is a controlled continuity spline under the influence 

of image forces and external constraint forces [4]. The internal spline forces 

serve to impose a piecewise smoothness constraint. The image forces push 

the Snake toward salient image features such as lines and edges. The external 

constraint forces are responsible for placing the Snake near the desired local 

minimum. These forces can, for example, come from a user interface, 

automatic attentional mechanisms, or high-level interpretations. 

3.2 Mathematical Description of Snakes 

In their work, Kass et al. represented a contour by a vector v(s) = [x(s) y(s)]T, 

having the arc length, s, as a parameter [4]. They defined an energy functional 

of the contour and described a method for finding contours which correspond 

to local minima of the functional. The energy functional is written as 

where E(v) is defined as the overall energy: 

10 
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Eint represents the internal energy of the contour due to bending or 

discontinuities, Eimage  is the image forces, and Eext is the external forces. 

The internal energy, sometimes also referred to as the spline energy, is 

written as 

where a(s) and ß(s) are functions that control the elasticity and rigidity of the 

spline, respectively. The terms vs(s) and vss(s) are the first and second order 

derivatives of v(s) with respect to s, respectively. 

The above equation contains a first-order term which will have large 

values where there is a gap in the curve, and a second-order term which will 

be larger where the curve is bending rapidly. The values of α and ß at a point 

determine the extent to which the contour is allowed to stretch or bend at that 

point. The relative sizes of a and ß. can be chosen to control the influence of 

the corresponding constraints. For instance, a large value of ß would make 

the second-order term larger than the other term; thus the minimum value 

of E*  would occur when the curve was smoother, approaching a circle for a 

closed contour, and a straight line for a contour which was not closed. If a is 0 

at a point, a discontinuity can occur at that point, while if ß is 0, a corner can 

develop, because large values of these terms would not be included in the 

total. 

From calculus, we know that the length of a parametrically-defined 

planar curve v(s)=(x(s),y(s)) where 0≤s≤1 (normalized) is 
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Also note that the term I vs I 2  from equation 1 can be written as 

Therefore, the above equations state that the overall length of the 

spline can be obtained by integrating I vs  I over the entire length of the spline. 

Notice also that I vs I is the magnitude of the vector which is tangent to |vs|. 

From the above observations, we can then make several conclusions 

concerning the elasticity-controlling function a(s): 

1. If a(s) > 0 in a particular region, then the minimization process will 

tend to minimize the length of the spline in that region, producing a 

contraction effect. 

2. If a(s) = 0 in a region, then the length of the spline should not be 

affected. 

3. If a(s) <0, the system diverges. 

4. The normal minimization process will tend to minimize the 

magnitude of the tangential vector, thereby forcing the spline to tend toward 

a straight line. 
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Similar comments can be made for the effect of p(s), the flexibility-

controlling term. Since ß(s) operates on a second derivative term, it will affect 

the degree to which the spline is "straightened out" and where the 

straightening occurs. Allowing ß(s) to go to zero at a particular s would allow 

the magnitude of the second derivative of v(s) to be arbitrarily large at that 

point-thus allowing for a discontinuity at that point. However, a large value 

of ß(s) would make the second-order term larger than the other term; thus 

the minimum value of E(v) would occur when the curve was smoother, 

approaching a circle for a circle for a dosed contour, and a straight line for a 

contour which was not closed. In this particular application, we assume that 

the microvessels are relatively smooth and do not have sharp corners or 

discontinuities. 

An additional energy functional Eimage(v)  is defined which includes 

the influence of the image. It is used to generate gradients to push or pull the 

Snake in a particular direction. The image forces can be determined by to 

various events. Those presented by Kass et al. are lines and edges. If 

Eimage(x,y) = kI(x,y) 	 (3.6) 

where I(x,y) is the image intensity function, then the Snake will tend toward 

ridges or valleys in the image, depending upon the sign of k If 

where vI(x,y) is the gradient of the image, then the Snake will tend toward 

edges in the image. The overall Eimage can be written as: 
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Eimage (x,y) = Wimage I(x,y) + Wedge | ∇I(x,y) |2 	 (3.8) 

where Wimage  and Wedge  are relative weights in the range [-1,-1]. 

Eext is used to denote the energy function of external constraint forces 

which are responsible for putting the Snake near the desired local minimum. 

For example, an energy function Emagnet can be defined which will repulse 

or attract the snake in a particular direction[6], depending upon the sign of 

kmagnet (constant). Also, an energy function Espring can be defined which 

always pulls the snake toward a particular (x,y) location. We shall let 

kmagnet  
Emagnet(x,y) = 

	

	 (3.9) 
(x-xmagnet)2 + (Y-Ymagnet)2  

and let 

Espring(x,y) = kspring((x - xspring)2  (y - yspring)2). 	(3.10) 

Therefore, the overall Eext can be written as 

Eext(x,y) = WmagnetEmagnet(x,y) + WspringEspring. 	(3.11) 

where Wmagnet  and Wspring  are relative weights in the range [-1,1]. 

The Euler-Lagrange condition from the calculus of variations states 

that the spline v(s) which minimizes E*  must satisfy 
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where Evs is the partial derivative of E with respectto vs  and Ev is the partial 

derivative of E with respect to v. The above equation reduces to 

In order to solve the Euler-Lagrange equation, we assume that we have an 

initial estimate of v(s) and then have an evolution equation 

∂v(s,t)  so that when at 	goes to zero, then a solution to Euler-Lagrange equation 

has been found. 

At this point, a few different numerical solutions have been 

developed. Kass et al. estimated the partial derivatives in s and t by the finite 

differences method, which is by far the simplest solution, but several 

inherent problems of numerical instability must be avoided [4]. Cohen and 

Cohen used the Galerkin solution of the finite element method which has 

the advantage of greater numerical stability and better efficiency than the 

method Kass et al. proposed [8]. However, there are some problems with both 

of these solutions. Williams et al. pointed out some of these, including 

instability and a tendency for points to bunch up on a strong portion of an 

edge [10]. They have proposed a greedy algorithm for minimizing the energy 

functional to obtain more desirable behavior of the Snakes. 
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The following is a description of the most basic and original solution 

of the Snakes model developed by Kass et al. [4]. 

When a(s)=a, and ß(s)=b are constants, minimizing the energy 

functional of equation (3.1) gives rise to the following two independent Euler-

Lagrange equations: 

where xss and xssss  are the second and fourth order derivatives of x with 

respect to s, respectively, yss and yssss are the second and fourth order 

derivatives of y with respect to s, respectively. 

When α(s) and ß(s) are not constant, it is simpler to go directly to a 

discrete formulation of the energy functional in equation (3.1), that is 

Approximating the derivatives with finite differences and converting 

to vector notation with vi=(xi,yi)=(x(ih),y(ih)), we expand Eint(i) 

where we define v(0)=v(n), h is the unit length in the second derivative. Let 
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where the derivatives are approximated by a finite difference if they cannot be 

computed analytically. Now the corresponding Euler-Lagrange equations are 

The above Euler equations can be written in matrix form as: 

Ax + fx(x,y) = 0 	 (3.20) 

Ay + fy(x,y) = 0 	 (3.21) 

where A is a pentadiagonal banded matrix. 

To solve Equation (3.20) and (3.21), we set the right-hand sides of the 

equations equal to the product of a step size and the negative time derivatives 

of a step size of the left-hand sides. Taking into account derivatives of the 

external forces we use requires changing A at each iteration, so we achieve 

faster iteration by simply assuming that fx and fy are constant during a time 

step. This yields an explicit Euler method with respect to the external forces. 

The internal forces, however, are completely specified by the banded matrix, 

so we can evaluate the time derivative at time t rather than time t-1 and 
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therefore arrive at an implicit Euler step for the internal forces. The resulting 

equations are 

Axt + fx(xt-1, yt-l) = - g(xt - xt-1) 	 (3.22) 

Ayt + fy(xt-i1, yt-1) = - g(yt - yt-1) 	 (3.23) 

where g is a step size. At equilibrium, the time derivative vanishes and we 

end up with a solution of Equations (3.20) and (3.21). 

Equations (3.22) and (3.23) can be solved by matrix inversion: 

xt = (A + gI) (xt-1 - fx(xt-1,yt-1)) 	 (3.24) 

yt = (A + gI) (yt-1 - fy(xt-1,yt-1)) 	 (3.75) 

The matrix A+gI is a pentadiagonal banded matrix, so its inverse can 

calculated by LU decompositions in 0(n) time. Hence Equation (3.24) and 

(3.25) provide a rapid solution to Equation (3.20) and (3.21). The method is 

implicit with respect to the internal forces, therefore it can solve very rigid 

Snakes with large step sizes. If the external forces become large, however, the 

explicit Euler steps of the external forces will require much smaller step sizes. 



CHAFFER 4 

IMPLEMENTATION OF SNAKES AND ALGORITHM 

4.1 Digitized Image 

Before any processing can be implemented, enlarged HVEM prints must be 

converted into digitized images that are acceptable by a computer. There are 

several kinds of image digitization devices. For example, scanners, video 

cameras, even fax machines can be used. 

In my research, I used a scanner (Hewlett Packard ScanJet IIc model), a 

Macintosh computer and a SUN workstation to digitize enlarged HVEM 

prints which were obtained from Dr. L. Horn from his work with the HVEM 

group at the Wadsworth Center for Laboratories and Research at New York 

State Department of Health. The HP scanner is connected to a Macintosh 

computer. After scanning, a 670x350 8-bit gray TIFF(Tag Image File Format) 

format computer file is formed from HVEM prints. 

Then the TIFF file is transferred from the Macintosh to the SUN 

workstation. The TIFF data is converted by using the specific conversion 

program into a VIFF file, a format that is compatible with the software called 

KHOROS assembled in the SUN workstation at NJIT. The purpose is to use 

SUN workstations as computing platforms, that have a high resolution 

monitor, and to use KHOROS as a library of software that can provide 

capability for sophisticated image processing and visualization. Figure 4.1 

shows the gray level scaled original image that is a part of a cross-section of 

digitized HVEM microvessel image. 

19 



20 

Figure 4.1 Gray level scaled original image 
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4.2 Pre-processing 

The first task is the pre-processing which makes subsequent processing easier 

and accurately. 

The task of pre-processing is to eliminate the surrounding useless parts 

of the microvessel in the image because the response from these useless parts 

may interfere with the extraction of microvessel boundaries. 

This part of the program is developed in the CANTATA, which is a 

visual programming environment in the SUN workstation for the rapid 

prototyping of information processing programs based on the KHOROS 

library of routines [12]. At first, cutting the unwanted regions using the 

cutting program, a relatively "clean" image is generated, see Figure 4.2. After 

cutting, image preprocessing included speckle reduction and image 

smoothing. 

4.2.1 Speckle Reduction 

It is desirable to reduce speckle noise in raw images for late usage of 

automatic recognition algorithms on computer. The goal is to smooth out the 

speckle but at the same time preserve features of interest such as the arteriole 

ring as in our case. 

A nonlinear geometric filter, based upon geometric concepts, was used 

to accomplished this [13]. This filter uses the complementary hulling 

technique to reduce the speckle index of an image. The algorithm is available 

in KHOROS routine library. It is an iterative algorithm which usually 

requires about ten iterations to reach an optimal effect [12]. 

The geometric filter utilizes the complementary technique which has a 

history starting with a problem which has nothing to do with speckle 

reduction [13]. The original problem was to generate approximations of the 
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Figure 4.2 Gray level scaled image after cutting 
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convex hulls of maximal connected subsets of foreground of a binary image. 

(The foreground is the set of pixels with values 1.) The motivation for this 

was enhancement of medical imagery. The convex hull of a set is the 

intersection of all the half-planes containing it. An approximation to this, 

calles the 8-hull, is defined as the intersection of only those half-planes which 

contain the set and whose edges are either horizontal or vertical or lie in 

either of the 450  diagonal directions. The 8-hull of a set has, at most, eight 

sides. 

The complementary hulling algorithm is an iterative algorithm [13]. It 

is developed to smooth the ragged edges of binary images. One iteration 

consists of the following. First, one step of the 8-hull algorithm, that is an 

iterative algorithm to generate an 8 hull of a set, is applied to the set. 

Second, one step of the 8-hull algorithm is applied to its complement. In 

other words, one step of 8-hull algorithm is applied, then zeros and ones are 

interchanged, then another step of the 8-hull algorithm is applied, and 

finally, zeros and ones are interchanged again. This has an effect of gradually 

reducing the maximum curvature of the boundary of the set. 

The geometric filter uses this complementary hulling technique in the 

following way. Each pixel in the image is compared with all eight of its 

surrounding pixels. The pixels above and below the pixel are the N-S pair, the 

pixels on either side are the E-W pair, those on diagonals are the NW-SE and 

NE-SW pair. The image and a pair of pixels are sent to the symmetric hull 

function which in turn sends the image to the positive hull function and to 

the negative hull function. The positive and negative hull functions are 

called twice; the first time the neighboring pair of pixels is sent and the 

second time the complement of the pixels is sent. The positive hull function 

replaces each "middle pixel" with the result of a several comparisons. These 
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comparisons are a combination of maximums and minimums. The final 

comparison is a maximum for the positive hull algorithm. The image is then 

sent to the negative hull function where the middle pixel is replaced with the 

result of more comparisons. The final comparison for the negative hull 

algorithm is a minimum. The result of all these replacements has the effect of 

reducing the undesired speckle noise while preserving the edges of the 

original image. We can see this result in Figure 4.3. 

4.2.2 Image Smoothing 

To use the active contour models, we have to estimate the initial contours 

that are chosen to be placed near an edge under consideration. For this 

purpose, we can count on conventional local edge detection techniques. The 

edges coincide, generally speaking, with gray level transition, so they can be 

detected by gradients or the zero-crossing of the second order derivatives 

calculated by some differential operators [12]. Because the differential 

operators are sensitive to noise, a preprocessing such as smoothing is often 

necessary to eliminate the noise. One, well-known smoothing filter is the 

Gaussian filter and the edges can therefore be detected by a Laplacien-

Gaussian filter. The edges can therefore be detected by using a Laplacien-

Gaussian filter. But there is an essential difficulty in applying the Laplacien-

Gaussian filter that is the conflict between the smoothing effect and the 

precision of edge localization. To overcome this difficulty, Castan proposed 

an optimal exponential filter based on one step model (a step edge and white 

noise) and multi-edge model [12]. This optimal smoothing filter is a 

symmetric exponential filter of an infinitely large window size and can be 

realized by a very simple recursive algorithm in the KHOROS library of 

routines. 
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Figure 4.3 Gray level scaled image after speckle reduction 
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A normalized symmetric exponential filter on 1-D can be written as: 

where: 

a0  is the filter parameter, c=1/(2-a0) 

# means the convolution, d(x) is dirac function. 

Because the exponential function is separable, we can write out 2-D 

exponential filter: 

f(x,y) = fL(x) * fL(y) 	 (4.4) 

Figure 4.4 shows the image after smoothing by this optimal 

exponential filter and we see the exponential filter has the very obvious noise 

eliminating effect. It is shown in the following section that the symmetric 

exponential filter is also the optimal edge detector filter in the criteria of the 

signal to noise ratio, the localization precision and antique maximum. We 

can see this result in Figure 4.5. 
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Figure 4.4 Gray level scaled image after smoothing 
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4.3 Implementation of Snakes 

4.3.1 Initial Contour Estimation 

As discussed above, we must give an initial contour estimation before using 

the Snakes according to Williams's algorithm [10]. The initial contour of the 

microvessel in my research was produced by the edge detection algorithm 

developed by Castan [12]. This allows us to combine the quality of a good local 

edge detector with global active model. 

The Castan edge detector is based on the symmetric exponential filter of 

an infinitely large window size, that is discussed in Section 4.2.2. According to 

Castan, the band-limited first and second directional derivative of the input 

image filtered by the symmetric exponential filter can be obtained by the 

algorithms as stated below. Using them; then the edge detection for an image 

can be realized. 

We can write the first order derivative operator of exponential filter: 

fL' (x) = f2(x) - f1(x) 	(4.5) 

And we can obtain the normalized second order derivative operator of 

exponential filter: 

fL"(x) = f1(x) + f2(x) - 2d(x) 	 (4.6) 

The first and the second order directional derivative operators for 

symmetric exponential filter can be written like this in KHOROS routine: 
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fx(x,y) = fL(y)* (12(x) - f1(x)) (4.7) 

fy(x,y) = fL(x) * (12(y) - f1(y)) (4.8) 

fxx(x,y) = fL(y) * (f1(x) + 12(x) - 2*d(x)) (4.9) 

fyy(x,y) = fL(x)*(f1(y) + f2(y) - 2*d(y)) (4.10) 

We use the recursive algorithm, that is available in KHOROS, to 

implement the above directional derivative operators of symmetric 

exponential filter in an image. 

Supposing I(x,y) is the input image, I1(x,y)=I(x,y)#f1(x) and 

I2(x,y)=I(x,y)#f2(x), we have the recursive algorithm: 

I1(x,y) = 	+ a0*(I(x,y) - I1(x-1,y)) 	(4.11) 

I2(x,y) = I2(x+1,y) + a0*(I(x,y) -I2(x+1,y) 	 (4.12) 

From the Equations (4.1), (4.4), (4.7), (4.8) and (4.9), the band-limited 

first and second directional derivative of input image can be calculated by the 

recursive algorithm fi and 12 as follows 

Ix(x,y)=I(x,y)#f1(y)#f2(y)#(f2(x)-f1(x)) (4.13) 

Ixx(x,y)=I(x,y)#f1(y)#f2(y)#(f2(x)+f1(x))-2*I(x,y)#f1(y)#f2(y) (4.14) 

Iy(x,y) = I(x,y)#f1(x)#f2(x)#(f2(y)-f1(y)) (4.15) 

Iyy(x,y) = I(x,y)#f1(x)#f2(x)#f2(y)+f1(y))-2*I(x,y)#f1(x)#f2(x) (4.16) 

With this algorithm, we can calculate at the same time the band-

limited first and second directional derivative Ix and Ixx (or Iy and Iyy) of 

input image. 
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The maxima of gradient or zeros of the second order directional 

derivative along the gradient are the natural definition of intensity edges. 

Zeros of the Laplacian are only extensively used for their computational 

convenience. However, we must stress here that the zero crossing of the 

Laplacian are not always coincided with the maxima of gradient, for example, 

the zeros of the Laplacien are farther apart than the maxima of gradient for 

circularity symmetric patterns, this lack of localization by Laplacien can also 

be seen in the fact that zeros of Laplacien "swing wide" of corners. Therefore, 

it had better to detect the edges by maxima of gradients or zeros of the second 

directional derivative along the gradient. So in this work, I present two 

methods for edge detection, one uses maxima of gradient, another uses the 

zero crossing of second order directional derivative along the gradient, both 

by using the differential operators of the exponential filter. 

1). Edges from the maxima of gradient 

Using the first order derivative operator of the exponential filter (see 

Section 4.2.2), the two band-limited first order derivatives, Ix and Iy, can be 

calculated, and the gradient vector can therefore be determined approximately 

for every point in the image. The gradient magnitude image is then non-

maxima suppressed in the gradient direction and threshold with hysterics, i.e. 

if the entire segment of the contour lies above a low threshold T1, and at least 

one part of the segment is above a high threshold T2, that contour is output. 

The non-maxima suppression scheme requires three points, one of which 

will be the current point, and the other two should be estimated from the 

gradient magnitude at points displaced from the current point by vector 

normal to the edge direction. Figure 4.5 shows the result of this method. 
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2). Edges from the zero-crossings of the second order directional 

derivative along the gradient direction 

Because edges detected from local gradient maxima can not be a pixel 

width (less precision of localization), we propose another method which 

detect the edges from the zeros crossing of the second directional derivative 

along the gradient direction. 

We can calculate Ix, Iy, Ixx and Iyy by using the method shown above, 

and therefore obtain approximately the gradient vector and the second order 

directional derivative along the gradient direction for every point in image. 

We extract at first the zero crossing of second order directional derivative 

along the gradient direction on which the gradient magnitude must be above 

a low threshold, so an edge image is 'obtained. To this image, the entire 

segment of the contour will kept, if the gradient magnitude on at least one 

part of this contour is above a high threshold. 

From Figure 4.6 , we can see the edges detected by this method are less 

noisy and with a much better precision in terms of localization than that 

shown in Figure 4.5. 

Filtering is a problem of estimation from noisy signal, and edge 

detection is a problem of estimating the positions of maximal local signal 

changes. Up to now, many works have been done for edge detection in image 

processing, and different filters are proposed, for example, Gaussian filter, 

Canny filter, Deriche filter and the exponential filter that is used in this 

thesis. The exponential filter is chosen to use here because of its good 

performance listed below: 
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1) Precision of edge localization 

According to Castan [12], we can calculate the average localization error 

for Gaussian filter, Canny filter, Deriche filter and the exponential filter, 

denoted by xeG, xeC, xeD, and xeE, respectvely, 

xeG = (4*(2*e*3.14)**0.5)/a 

xeC = 0.81/a 

xeD = 4*exp(-1)/a 

xeE = 0 

i.e. xeG > xeD > xeC > xeE = 0 

So, we can see that the exponential filter localizes edge points with the best 

precision among these four filters. 

2) Signal/Noise ratio on the edge point detected 

The signal/noise ratio for the Gaussien filter, Canny filter, Deriche 

filter and the exponential filter, denoted by snrG, snrC, snrD and snrE, 

respectively, are: 

snrG = 2*s*exp(-32*s) / ((3.14)**0.5 

snrC = 0.39/a 

snrD = 0.64/ a 

snrE = 1/a 

i.e. snrE > snrD > snrC > snrG 

Then, we see that the exponential filter has the best noise eliminating effect 

among the above four. 

According to the analysis results above, the exponential filter is 

superior to the others at the two principal aspects of the performance of 

filters. 



Figure 4.5 Edges of the microvessel by using the method of maxima 
of gradient 
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Figure 4.6 Edges of the microvessel by using the method of zero-
crossing of second directional derivative along the gradient direction 
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4.3.2 Snakes Implementation 

Kass et al. approximate derivatives in Equation (3.3) with finite differences [4]. 

If vi=(xi,yi) is a point on the contour, the following approximations are used: 

dvi 
I vs I 2  = I ds I 2 = I Vi-Vi-1  I 2  = (Xi Xi-1)2  + (yi - yi-1)2  

= Econt 	 (4.17) 

and 

| vss | 2  = I vi-1 - 2vi + vi+1 | 2  = (xi-1 - 2xi + x1+1)2  + (yi-1 - 2yi + yi+1)2  

= Ecure 	 (4.18) 

where Econt and Ecury are the first- and second-order constraints, the 

distance between two consecutive pixels in x or y direction is set to 1. 

The quantity to be minimized in this implementation of Snakes is 

Determining an appropriate approximation for the first term in Eq.4.19, 

the first order term, encounters some difficulties. Using I vi - 	1 | 2 causes the 

curve to shrink, as this is actually minimizing the distance between 

neighboring points. It also contributes to the problem of points bunching up 

on strong portions of the contour. The tendency is for points to always be 

moved nearer the previous point, which also moves a point farther from the 

following point. This causes a chain reaction, moving all points toward the 

previous ones. In observing the behavior of the given algorithms, it became 
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apparent that a term which encourages even spacing of the points would 

reflect the desired behavior of the contours more than one which caused 

shrinking. So an assumption that the points are spaced at unit intervals have 

been made here. If the points are evenly spaced, then Equation 4.17 should be 

divided by d2, where d is the distance between points, and Equation 4.18 by d4. 

This is not a major problem since the values of a and ß can be chosen to 

include these factors. 

The second term in Equation 4.19 is curvature, that is vss, the second 

order term• Discrete approximation of curvature in an accurate and efficient 

manner is necessary for curvature term. Williams et al. proposed six different 

approximations of curvature [10]. Since the formulation of the continuity 

term causes the points to be relatively evenly spaced, the formula: |  

vi-1-2vi+vi+1 | 2 , giving a reasonable estimation of curvature multiplied by a 

constant is used in my research work. The constant term is not significant 

since this term, like the continuity term, is normalized by dividing by the 

largest value in the neighborhood, giving a number from 0 to 1. 

The third term in Equation 4.19, Eimage, is the image force, which is 

negative gradient magnitude. Gradient magnitude at each point in the image 

is input as an eight bit integer, with values 0-255. There is a significant 

difference between a point with gradient magnitude 240, and one having 

magnitude 255. This is not reflected when the values are normalized by 

division by 255. Thus, given the magnitude at a point (mag) and the 

maximum (max) and minimum (min) gradient in each neighborhood, the 

following quantity 

(min - mag)/(max - min) 
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is used for the normalized edge strength term. A negative sign is placed prior 

to gradient magnitude term so that points with large gradient will have small 

values. 

If (max - min) < 5 then min is given the value (max - 5). This prevents 

large differences in the value of this term from occurring in areas where the 

gradient magnitude is nearly uniform. 

The last term in Equation 4.19 is the external force, which makes the 

Snake has a more dynamic behavior. The external forces that push the curve 

to the edges are modified to give more stable results. In Cohen's model [5], 

the curve behaves like a balloon which is inflated towards edges by an 

additional force. It is stopped if the edge is strong, or is passed through if the 

edge is too weak with respect to the inflation force. From an initial oriented 

curve we add to the previous forces a pressure force pushing outside as if we 

introduced air inside. This external force can be defined as 

F = δn(s) 

where n(s) is the normal unitary vector to the curve at point v(s) and δ is the 

amplitude of this force. If we change the sign of δ, it will have an effect of 

deflation instead of inflation. 

The parameters α, ß, γ, and δ are used to balance the relative influence 

of the four terms above. Their relative sizes, rather than absolute sizes, are 

significant. 

In my research work, I chose α=1, ß=1, δ=1 and γ=1.2. These were 

chosen so that the image gradient will have slightly more importance than 

either of the continuity terms in determining where points on the contour 

move and an edge point can stop the inflation force. 
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4.4 Algorithm 

Based on the above implementation, now we get the algorithm below. 

************************************************************************ 

Algorithm for the Snakes Model 

Index arithmetic is modulo n 

Initialize αi, ßi, δi  to 1, and γi to 1.2 for all i 

Do 

/*loop to move points to new locations*/ 

For i=0 to n 	/*point 0 is first and last one */ 

Emin = BIG 

for j=0 to m-1 	/*m is the size of neighborhood*/ 

Econt,j = vi,j - vi-1,j I 2  

Ecurv,j = I vi-1,j - 2vi,j + vi+1,j I 2  

Eimage,j = (I(i-1,j) - I(i,j) )2  + (I(i,j-1)  - I(i,j) )2  

Eext,j = 1/ I vi,j - vi-1,j I 2  

Ej = αi Econt,j + ßi Ecurv,j  + γ i Eimage,j + δi Eext 

if Ej < Emin then 

Emin = Ej 

jmin = j 

Move point vi to location jmin 

If Jmin is not current location 

ptsmoved+ = 1 	/*count points moved */ 

until ptsmoved<THR /*THR is the threshold used for convergence 

************************************************************************ 
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Figure 4.7 Algorithm schema 
The energy function is computed at vi and each of its eight neighbors. 
The point before and after it on the contour are used in computing 
the continuity constrains. The location having the smallest value 
is chosen as the new position of vi. 

Figure 4.7 demonstrates how the algorithm works. The energy function 

is computed for the current location of vi and each of its neighbors. The 

location having the smallest value is chosen as the new position of vi• vi-1 

has already been moved to its new position during the current iteration. Its 

location is used with that of each of the proposed locations for vi to compute 

the first-order continuity term. The location of vi+1 has not yet been moved. 

Its location, along with that of vi-1, is used to compute the second-order 

constraint for each point in the neighborhood of vi. For i=0, only old values 

are used. For this reason v0 is processed twice, one as the first point in the list, 

and another as the last point. This helps to make its behavior more like that 

of the other point. 

This algorithm is iterative. At first, an initial contour is put near the 

edge by a prior knowledge of the object, see Figure 4.8, then for each contour, 

each point in the contour (about 50-60 points spaced a distance of 

approximately 4-6 pixels apart) is relocated to the points with the smallest 
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Figure 4.8 Initial contours of the Snakes 
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value of energy in the neighborhood. The neighborhood examined at each 

point consists of the point itself and its eight neighbors, refer to Figure 4.7. 

Thus the neighborhood size, m was 9. During each iteration, a neighborhood 

of a point is examined and the point in the neighborhood giving the smallest 

value for the energy term is chosen as the new location of the point. When a 

few iterations are done, a local minimum may be reached and the active 

contour converges to edges. Here a threshold used for determining convergence 

is a number of points that experience changes during the iteration. That is, 

when the number of pixels that change their positions during the iteration is 

less than the predefined threshold, one considers the algorithm converges. 

In my research work, I choos small, nonzero values, between 2 and 5, as the 

threshold and they work quite well for our case. Only closed contours are 

being considered, so all index arithmetic is modulo n. In my work, the several 

closed boundaries are extracted sequentially. However, in principle, these 

contours can be extracted parallelly. Figure 4.9 is the final result that we've got 

after the implementation of the Snakes model. 
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Figure 4.9 Final contours of the Snakes 



CHAPTER 5 

CONCLUSION AND RECOMMENDATION 

Our main goal in this thesis is to extract contours from HVEM image of 

microvessels. Previous methods to extract contours have generally been based 

on traditional edge detection operations combined with edge linking or 

contour-following procedures. Here we do it in an alternative way: we start 

with a continuous curve model that is localized by the examination of the 

zero-crossings of the second order directional derivative along the gradient 

direction according to the Castan local edge detector. Then we draw a simple 

curve close to the intended contours, (see Figure 4.8). The Snake algorithm is 

then applied. The action of the image forces and external forces push the 

initial contour curve the rest of the way. The internal forces serve to impose a 

piecewise smoothness constraint on the curve. The final position corresponds 

to the equilibrium reached at the minimum of the model's energy. Figure 4.9 

shows the final positions of contours extracted. 

Using the Snake model to extract the contour of microvessels from 

HVEM image provides better results than the conventional contour 

extraction methods by Liu, described in Chapter 2. Comparing Figure 4.9 with 

Figure 2.2, we can see the use of the Snakes significantly improves the results. 

For instance, our algorithm developed here is capable of extracting the 

compartments of the microvessel such like Endothelium Nucleus and 

Smooth Muscle Nucleus, which had not been extracted by Liu's method. 

From Figure 4.9, we can also see that the contours have settled nicely around 

the edges of the microvessel. This is an indication of the accuracy of 

localization of edges obtained by using the Snake model. 
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In the field of computer vision, the problem for detection of edges, or 

other feature, seems to lie on combining local information. However, they 

may be able to be obtained nicely with a global structure. Snakes [4] provide an 

elegant way of linking local information to form edges, of providing a prior 

knowledge about the likely structure of an edge. In this thesis, it is a first time 

trial to apply the Snake model to HVEM images in order to obtain a contour 

data file of microvessels. The final result shows that the method is practical 

and the result is acceptable. 

However, our algorithm developed here is not capable of detecting the 

compartment of Internal Lamina. The problem lies in: a) our algorithm 

considers only closed contours, but the IL in the original image (see Figure 

4.1) that we obtained from HP scanner is not close because of the size 

limitation of the scanner, b) we only used montage prints with a enlargement 

of 2500x in the research work so that the digitized image is not clear enough 

to obtain more information for the IL compartment. Therefore in the future, 

we can try to extract the boundary of IL by working on larger and finer HVEM 

images of microvessels that contain complete IL. 

Some ideas developed in this paper deserve more attention in future 

work. First, the idea of initial contour prediction could certainly be more 

accurate than we have obtained at present. The penalized maximum 

likelihood algorithm to obtain an initial contour proposed by Liu et al. [3] 

could be considered. Second, we could use a frequency domain analysis of the 

active contour algorithm [17]. It can provide interesting insights into the 

behavior of the algorithm and a fast way of solving closed active contour 

problems. Finally, an analysis could be conducted to examine how accurate 

the extracted contours of interest are compared with true contours. 
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