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Abstract  
 
Additive manufacturing (AM) processes facilitate the fabrication of complex shape metallic 

components directly from Computer-Aided Design models, which may be challenging to be produced 

using conventional manufacturing technologies. However, it is revealed that additively manufactured 

components usually have non-equilibrium microstructures. Thus, post-built heat treatments are 

recommended for AM components to achieve homogenous microstructures. In this study, the effects 

of solution annealing and ageing treatments on the microstructure evolution of Inconel 718 alloy 

processed by laser powder bed fusion (LPBF) and directed energy deposition (DED) processes are 

compared with those produced by casting. Microstructural characterization techniques including OM, 

SEM/EDS analysis were employed on AM and cast components to obtain more information regarding 

the microstructure and phase evolution during these heat treatments. These microstructural studies 

demonstrate that the starting microstructure could play a key role in the microstructural evolution 

during the heat treatment of Inconel 718 alloy. 
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1. Introduction: 

Inconel 718 (IN718), a Ni-Cr-Fe austenite (γ) superalloy, has been widely used in various applications 

such as turbine blades, combustion chambers and nuclear reactors because of its excellent oxidation 

and corrosion resistance, as well as unique creep properties [1]. In general, IN718 superalloy has 

been produced and used in wrought, cast and powder metallurgy forms [2,3]. As a core element of the 

hot-end structural components, IN718 can retain its superior mechanical properties in a broad range of 

temperatures by virtue of solid–solution strengthening and precipitation strengthening [1,4]. Thus, the 

appropriate selection of a specific production technique for a given component depends on 

geometrical complexity, production quantity and cost, material and required mechanical properties. 

Based on these issues, the different manufacturing techniques offer certain disadvantages and 

advantages. Casting technology can provide high productivity and freedom in size of parts, however, 

owing to the high hardness and low thermal conductivity features of IN718, it is challenging to apply 

conventional machining methods as a consequence of tool over-wear and poor workpiece surface 

integrity [5]. Therefore, the application of the novel production technologies like Additive Manufacturing 

(AM) technologies is necessary to the net-shape manufacturing of IN718 components with complex 

shape and high performances. In fact, AM technologies offer a wide freedom in geometrical design 

https://www.sciencedirect.com/science/article/pii/S0264127518305434
https://www.sciencedirect.com/science/article/pii/S0264127518305434
https://www.sciencedirect.com/topics/engineering/nonequilibrium
https://www.sciencedirect.com/topics/materials-science/microstructure
https://www.sciencedirect.com/topics/engineering/heat-treatment
https://www.sciencedirect.com/topics/engineering/characterisation
https://www.sciencedirect.com/topics/materials-science/solid-solution
https://www.sciencedirect.com/topics/materials-science/thermal-conductivity
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whereas, the production quantity and the dimension of the part are limiting their applications [6,7]. 

Moreover, repeated rapid heating and cooling during AM processes can generate a steep thermal 

gradient which results in the formation of high residual stress inside the IN718 parts produced via 

these technologies. It is reported that this residual stress will cause distortionsfor the as-built AM 

samples and thus further thermal treatment is necessary to relieve the residual stresses and enable 

the precipitation of strengthening phases and [8]. One of the most important heat treatments to modify 

the phase composition of as-built components is solution-ageing treatment. The first step allows the 

dissolution of phases as well as chemical segregations while the ageing treatment promotes the 

formation of γ' and γ'' phases in order to strengthening the alloy. According to previous works, also 

deleterious Laves (Ni,Fe,Cr)2(Nb,Mo,Ti) phase and δ (Ni3Nb) phase may form. It is reported that since 

the Laves and δ phase are incoherent phases, do not contribute to the strengthening of IN718 alloy. 

Moreover, precipitation of these phases deplete the available Nb for the precipitation of the 

strengthening phases (γ’ and γ'' phases) and even decrease ductility [9]. Therefore, in order to improve 

the mechanical properties of IN718 samples, it is mandatory to properly optimize their heat treatment, 

both solution and ageing. 

In the literature, there are several works on the optimization of process parameters of Directed energy 

Deposition (DED) and Laser Powder Bed Fusion (LPBF) process to produce fully dense components 

[10–12]. However, to date, notwithstanding the reports that come out around the microstructural 

evolution during various process parameters, there are rather limited investigations on a direct 

comparison of how the different starting microstructures respond to the standard solution-ageing heat 

treatment [13]. Therefore, this work aims to study the effects of solution-ageing treatment on the 

microstructure evolution of IN718 alloy produced via various production processes such as casting, 

LPBF and DED process.  

2. Materials and methods: 

The samples processed by LPBF, DED and casting processes were heat-treated with the following 

schedule in this work; a solution heat treatment, a first ageing and second ageing. These steps were 

performed at 982, 720 and 620 °C with a dwell time of 1h, 8h and 8h, respectively (Figure 1). For each 

step, the heating rate was set at 20°C/min. All the heat treatments were performed in a low-pressure 

horizontal furnace TAV MINIJET HP S/N 235 with vacuum level set at 10−2 mbar. All the samples were 

inserted at the same time in the furnace, independently by the manufacturing route and progressively 

removed after each heat treatment step in order to assess any alteration brought by solution, first 

ageing and second ageing, respectively. The microstructure of as-produced and three chosen heat 

treated IN718 specimens were observed after the standard metallography of specimens. For this 

reason, the samples produced by AM technologies were cut parallel to the building direction and then 

ground and polished down to 1 μm using SiC waterproof abrasive paper and Dimond paste following 

by etching using Kalling’s No.2 solution (5 g CuCl2 in 100 ml HCl and 100 ml CH3CH2OH) for 30 s. 

Thereafter, the microstructures were revealed using an optical microscope (OM Leica DMI 5000M) 

and scanning electron microscope (SEM, Phenom).  
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Figure 1 Core Temperature vs time measured in a dummy sample placed among the samples which were 
actually heat treated. 

3. Results and discussion: 

The microstructure of as-cast, as-built LPBF and DED samples are shown in Figure 1 (a-c). As it can 

be seen, the as-cast microstructure is characterized by equiaxed grains with austenite dendrites 

consist of some brittle intermetallic compounds (Laves eutectic phase) and Nb-rich carbides in the 

interdendritic regions (yellow arrows in Insert in Figure1(a)). Whereas, the cross-section of as-built 

LPBF and DED samples are characterized by columnar dendrite grains growing along the building 

direction and arc-shape melt pools that formed due to the Gaussian distribution of laser beam energy 

and wetting properties of the liquid, solid interface. Some fine secondary dendrite structures with 

identical growth orientation stretched over some adjacent layers can also be observed in AM samples. 

In contrast to the dark austenite matrix, small white phases can be seen along the interdendritic 

boundaries. They are identified as the laves phase, some minor Nb-rich carbides as well as 

segregated elements formed during the rapid solidification. In fact, rapid solidification of each thin 

layer results in the directional grain growth, microsegregation of high concentration refractory 

elements such as Nb and Mo and formation of non-equilibrium phases, including carbides, Laves 

phases or sub-micrometric segregation and consequently the precipitation of the strengthening γ′ and 

γ″ phases is inhibited [14].  

 

Figure 2 OM micrograph of IN718 alloy in (a) as-cast, (b) as-built LPBF, (c) as-built DED conditions. 

Moreover, it seems that the size of Laves phase in LPBF and DED samples is much smaller than that 

of conventional casting IN718, which makes the phase easily to be dissolved into the matrix. This 

different behaviour in the segregation can be related to the solidification rate so that in AM processes, 

this phenomena can be prevented completely. In comparison to the LPBF, the size of laves phase in 

the DED sample seems coarser which is directly correlated to its lower solidification rate. 

https://www.sciencedirect.com/topics/materials-science/intermetallics
https://www.sciencedirect.com/topics/materials-science/grain-growth
https://www.sciencedirect.com/topics/materials-science/refractory-material
https://www.sciencedirect.com/topics/materials-science/carbide
https://www.sciencedirect.com/topics/physics-and-astronomy/laves-phases
https://www.sciencedirect.com/topics/physics-and-astronomy/laves-phases
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Figure 3 shows the as-solutionized microstructure of IN718 alloy produced by casting, LPBF and DED. 

In general, as mentioned earlier the goal of solution treatment is to homogenize the chemical elements 

dissolving segregations and possible phases in order to prepare the material for the double ageing 

which is going to precipitate the different sizes/shapes of fine γ' and γ'' phases. As can be seen in 

Figure 3, a fraction of the Laves phase were dissolved in the matrix, and a lower quantity of this phase 

can be seen in all samples. However, Laves phase seems to be richer and larger in the cast samples. 

Nonetheless, the microstructures imply that the solution temperature was not high enough to dissolve 

completely all the Laves phase and also to start the recrystallization in the AM samples. 

 

Figure 3 OM/SEM micrograph of IN718 alloy produced by (a) casting, (b) LPBF, (c) DED, after solution treatment. 

Figure 4 shows the OM microstructure of IN718 produced by casting, LPBF and DED after solution 

and double ageing heat treatment. As can be seen in this figure, in the casted specimens there is still 

an high level of Laves phase and δ phase with needle-like structure at the interdendritic areas. Since 

the δ phase needs less Nb with respect to the Laves phase, the transformation indicates that the as-

deposited high concentration of Nb at interdendritic regions has been partially dissolved into the 

matrix. Moreover, it is found that there is some trace of the Laves phase, even after solution-ageing 

heat treatment, that confirms again that 980°C as the solution treatment is not high enough to dissolve 

the Laves phase completely. Moreover, in the case of AM samples, the layer interface regions can still 

be revealed after the solution-ageing heat treatment. According to literature, this microstructural 

feature can be eliminated through the homogenization treatment at a higher temperature (typically 

1065 °C for 1 h), which results in the recrystallization of grains and consequently, more isotropic 

appearance [13].  

 

Figure 4 OM/SEM micrograph of IN718 alloy produced by (a) casting, (b) LPBF, (c) DED, after Aging 2. 

Figure 5 (a-f) compares the microstructure of samples produced via casting, LPBF and DED, after 

solution treatment followed by double ageing. It is apparent from this Figure that the size of 

precipitates is very fine compared to the casted sample. The majority of the phases are δ phases as 

evident by their acicular shapes and increment of Nb in the EDS maps. Furthermore, the majority of 
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the precipitates are located at the grain boundary so that in the SLM sample it seems the grain 

boundaries are decorated with the precipitates, mainly Laves and δ phases. The high concentration of 

intergranular precipitates derived from the presence of segregated elements within the grain 

boundaries. In this Figure, the EDS analysis corresponding to the points (I) and (II) are shown.  

 
Figure 5 SEM/EDS analysis of (a-b) LPBF, (c-d) DED samples after solution-double ageing heat treatment (EDS (I) and (II) are 

corresponding EDS analysis to the points of (I) and (II)) 

However, it should be noted that, according to literature, even if the precipitation γ′ and γ″ phases 

starts during the ageing step, owing to their dimensions that would be in the nanoscale needs more 

deep characterization via FESEM and TEM [14]. 

Conclusion: 

In this work, the correlation between the starting microstructure and the solution and double ageing 

treatment of the IN718 superalloy were investigated. The main findings can be summarized as follows: 

• The as-built AM IN718 samples have columnar grains with a dendritic structure including 

numbers of fine Laves phases or segregation of Nb and Mo in the interdendritic region.  

• Driven by ultra-high temperature gradient and ultra-fast cooling rate during AM process compared 

with the conventional casting process, the fine, nearly directional solidified grain including very 

fine Laves phase /Nb-rich carbide is formed that change the kinetics of solution treatment. 

• 980°C as the solution treatment is not high enough to dissolve the harmful Laves and Carbide 

phases, but starts an initial chemical homogenization. 

• In the case of AM samples, the solution-double ageing process does not result in recrystallization, 

and thus, the layer interface regions still present after the heat treatment. 

https://www.sciencedirect.com/topics/materials-science/gradients
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