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ABSTRACT 

Introduction 

Stress urinary incontinence (SUI), the involuntary urinary leakage associated with  increases 

in intra-abdominal pressure, has a prevalence of 25–50% in U.S. women and the number of 

those who will undergo surgery will increase by half in the next forty years. SUI negatively affects 

the patient’s quality of life and places a great burden to the society. The functional anatomy of the 

continence mechanism remains vaguely understood. Hence my dissertation aims at offering a 

complete description of the pelvic floor muscles (PFM), the key contributor to the continence, 

thorough biomechanical and neurophysiological approaches. 

Methods 

The biomechanical approach involves the development of a subject-specific finite element 

(FE) model of the female pelvic floor region. Subsequent computer simulations are targeted at 

finding the most contributive muscle to the urethral support function and evaluating current 

treatment strategies using a mini-sling. The neurophysiological approach involves the 

implementation of a novel surface electromyography (EMG) probe to acquire bioelectrical 

information of PFMs and the assessment of their innervations in healthy subjects and patients. 

Results 

An FE pelvic floor model was developed which incorporates 40+ anatomical structural in the 

pelvis, representing the most complete model in the field. Simulation results showed that the 

vaginal walls, puborectalis, and pubococcygeus are the most important structures and that mid-

distal post-urethral implantation represents the optimal location. Innervation zones of PFMs have 

been successfully identified and described for multiple PFMs. An high-density surface EMG-

based motor unit number estimation approach was developed, providing a novel tool to evaluate 

the condition of neurologically impaired PFM.  

Conclusions 

The combined information greatly advances our understanding of the physiology of PFM and 

would lay a firm foundation to novel, non-invasive, patient-specific interventional strategies in the 

future.  
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CHAPTER 1 – Introduction 

 

 

1.1 Background 

Urinary incontinence (UI) is defined as the complaint of any involuntary leakage of urine, 

according to the International Conference Society (Abrams et al., 2002). It is a worldwide problem 

that mainly affects women of all ages and across different cultures and races (Minassian, Drutz, & 

Al-Badr, 2003). Stress urinary incontinence (SUI), defined as the complaint of involuntary urinary 

leakage on effort or exertion, or on sneezing or coughing, is the most common subtype of UI. 

Survey data from the U.S. National Health and Nutrition Examination Survey showed that 49.6% 

of women reported UI, with 49.8% reporting pure SUI and 34.4% reporting mixed UI (Dooley et 

al., 2008). This concurs with another report that about 50% of women with UI reported SUI as the 

primary or sole symptom of incontinence (Hunskaar et al., 2005). 

Though not a life-threatening condition, SUI not only places significant financial, social and 

psychological burdens on individual patients and cause a great burden to the health care system. 

A recent study reported an annual direct cost of $12 billion specifically for female incontinence 

annually, with SUI accounting for 82% of the total cost (Chong, Khan, & Anger, 2011). This 

exceeds that on breast cancer ($8.9 billion) and rivals that of osteoporosis ($13.8 billion). 

Major recognized risk factors associated with SUI include mid-age, white race, obesity, 

pregnancy, and vaginal delivery (Imamura et al., 2010; Minassian, Stewart, & Wood, 2008; 

Nygaard & Heit, 2004; Rogers, 2008). Other potential risk factors include smoking, thyroid 

disease, diabetes, stroke, asthma, caffeine intake, and congestive heart failure (Minassian et al., 

2008; Nygaard & Heit, 2004; Peyrat et al., 2002). The cause of SUI is thought to be multifactorial 

(Daneshgari & Moore, 2006). Over the last century, a number of theories have been proposed to 

describe the pathophysiology of SUI and signicantly improved its clinical management. 
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1.2 A Historical Overview of SUI Theories 

A well-summarized historical review of these concepts can be found in recent works of 

Daneshgari and Moore (2006) and DeLancey (2010).  

Early theories about SUI focused on a lack of urethral compression efforts associated with 

altered urethral position. In 1912, Kelly described the open vesical neck and reported successful 

results of an operation to plicate the vesical neck (Kelly & Dumm, 1914). A decade later, Bonney 

observed abnormal displacement of the anterior vaginal wall in incontinent women and proposed 

loss of urethral support as the cause of stress incontinence (Bonney, 1923), crediting the success 

of Kelly’s operation to the improved urethral support instead of an enhanced vesical neck closure. 

These primitive concepts were later popularized in 1962 by Enhorning (Enhorning, 1961), who 

studied the intraurethral and intravesical pressures in continent and incontinent women and 

hypothesized that the urethra must be located above the pelvic floor to allow the pressure 

transmitted to the bladder to be equally transmitted to the urethra, leading to a compensatory 

increase in closure pressure and maintain continence. This pressure transmission theory led to a 

prevailing view that SUI is based on an alteration in urethral angles; however, the underlying 

mechanism responsible for the altered urethral angle remained unclear. The concept of 

“hypermobility”, altered urethral angles caused by paravaginal defects, was introduced by 

Richardson (Richardson, Lyon, & Williams, 1976) and led to later surgical success 

(RICHARDSON, EDMONDS, & WILLIAMS, 1981).  

The integral theory (Petros & Ulmsten, 1990), as illustrated in Figure 1.1, and the hammock 

hypothesis (DeLancey, 1994), as illustrated in Figure 1.2, represented the two most popular 

theories in the modern urology. These two theories are not mutually exclusive and in fact shared 

a lot in common – both supported that supportive structures surrounding the urethral are pivotal in 

persevering urinary continence. The former theory stressed on the role of paravaginal laxity in 

SUI, which may be caused by defects within the vaginal wall itself, or its supporting structures 

including ligaments, muscles, and their connective tissue insertions, while the latter one credited 

the urethral support to the endopelvic fascia and anterior vaginal wall, which are stabilized 

through lateral attachments with the arcus tendineous fascia and levator ani muscle – all together 
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formed a rigid support against which the urethra can be compressed under increased intra-

abdominal pressure to properly close. 

 

 

Figure 1.1 (The hammock theory) Lateral view of the components of the urethral support system. 

Reproduced from ASHTON‐MILLER and DeLANCEY (2007), with permission of John 
Wiley and Sons. 

 

 

Figure 1.2 (The integral theory) Fascial attachments and tensioning mechanism. Reproduced 
from Petros (2011), with permission of Springer. 
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1.3 Current Approaches in SUI Research 

Stress urinary incontinence has a clear definition and can be accurately diagnosed with the 

propose use of patient history, cystometry, urodynamics and pelvic floor examination (Garely & 

Noor, 2014). Although current theories have pointed out that paravaginal defects and intrinsic 

closure system defects are majorly responsible for SUI, there has been a lack of efforts to 

quantitatively assess the roles of relevant structures to the urethral support, possibly because of 

the complexity of female pelvis and thereby a lack of competent tools to non-invasively and 

comprehensively evaluate the interactions of multiple structures inside the female pelvis as well 

as their connection to SUI.      

Traditional medical imaging techniques such as the magnetic resonance (MR) imaging 

(Derpapas, Digesu, Fernando, & Khullar, 2011; Itani et al., 2016) and ultrasonography (Derpapas 

et al., 2011; Hans Peter Dietz, 2010) have played a significant role in the diagnosis and treatment 

of a range of pelvic floor disorders. The strengths of these imaging tools are that they can provide 

a great amount of anatomical information that can be useful for investigating the relation between 

SUI and morphological abnormalities. For example, urethral mobility is often viewed as a useful 

marker for assessing weakened urethral support. When a urethra is well supported, any force 

applied to the urethra and bladder as a result of increased intra-abdominal pressure during 

activities can be effectively balanced by the posterior urethral support structures, leading to an 

effective urethral closure. The amount of mobility can be quantified by a simple cotton-swab test 

(or Q-tip test) with urethral mobility resulting in a straining angle of greater than 30° considered as 

hypermobile; however this test is often disliked by women because of the uncomfortable insertion 

(Garely & Noor, 2014). An alternative approach can be performed with the transperineal 

ultrasonography, which presents the advantage of allowing the visualization of the entire lower 

urogenital tract, including the pelvic floor and of guaranteeing a dynamic assessment of the pelvis 

during muscular contraction. A number of investigators have employed this approach to study the 

relation of urethral mobility to parity status (S. Costantini et al., 2005), reproducibility and the 

urethral mobility between control and SUI patients (Pregazzi et al., 2002), correlation between 

urodynamics and ultrasound (Minardi et al., 2007) and implanted sling performance (Kociszewski 
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et al., 2010; Kociszewski et al., 2008). Magnetic resonance imaging has also been widely used to 

study the relation of morphology of the levator ani muscle, endopelvic fascia and urethra in 

women with SUI (Heilbrun et al., 2010; Tunn et al., 2006). However, when the main limitation of 

medical imaging tools is that, to assess urethral hypermobility caused by isolated impairment of 

each specific urethral support structure and to compare components’ relative contribution to 

urethral support function, it would require the recruitment of patients with only one impairment 

condition, which is clinically challenging to identify. Cross-subject differences in female pelvic 

floor anatomy also affect the objectivity of the comparison. 

Electromyography (EMG) is a technique commonly used in neurophysiologic diagnosis. By 

recording the bioelectrical activities associated with action potentials during muscle fiber 

activation, it provides useful information in many aspects of the neurophysiology of the 

neuromuscular system. However, EMG has seldom been used in the routine assessment of 

pelvic floor muscle functions because of the invasive and painful nature of concentric needle 

EMG (Osman, Marzi, Cornu, & Drake, 2016).  As an alternative, intravaginal or intrarectal surface 

EMG probes have been gaining an increasing popularity in urology practice. However, a recent 

review showed that currently available intravaginal probes had deficiencies in design parameters 

including probe geometry, electrode size, location, and/or configuration and called for the 

development of improved intravaginal EMG probes for research and clinical use (Keshwani & 

McLean, 2015). 

 

1.4 Hypothesis and Specific Aims 

Based on these considerations, the topics presented in this dissertation are majorly novel 

solutions to current research in urology as it relates to SUI. The central hypothesis of this 

dissertation is that the urethrovaginal support can be minimally invasively and quantitatively 

assessed and characterized using a subject-specific pelvic electromechanical modeling 

approach.  

The first hypothesis is that the urethrovaginal support function in women can be non-invasively 

and quantitatively assessed using a subject-specific biomechanical pelvic modeling approach. 
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The second hypothesis is that the neuromuscular functions of pelvic floor muscles in women can 

be minimally invasively and quantitatively assessed using a subject-specific electrophysiological 

pelvic modeling approach. Two specific aims are proposed to test these hypotheses. The first 

specific aim is to develop a subject-specific biomechanical pelvic model based on high resolution 

MR images. Within this specific aim, the relative contribution of multiple urethral supporting 

structures will be assessed and compared and the dynamic behavior of an implanted suburethral 

mini-sling will be evaluated. The second specific aim is to develop a subject-specific 

electrophysiological pelvic model based on high-density surface EMG recordings of pelvic floor 

muscles. Within this aim, novel intravaginal and intrarectal EMG probes will be developed to 

describe the innervation of pelvic floor muscles and characterize their motor unit properties.  

The proposed research is innovative because it represents the first effort to minimally 

invasively and quantitatively assess both urethral function and urethrovaginal support, common 

etiological factors associated with female SUI. With the successful completion of these two 

specific aims, new insights into the etiology of female SUI will be obtained and provide useful 

guidance for future diagnosis and management of this condition. 

 

1.5 Arrangement of Chapters 

Following the proposed hypotheses and specific aims, the rest of this dissertation is arranged 

as follows:  

In the first part of the dissertation, chapter 1-3 describe the development of the subject-specific 

biomechanical pelvic model based on high-resolution MR images (Chapter 1) and its applications 

in single-incision sling treatment (Chapter 2) and young female athletic incontinence (Chapter 3).  

In the second part of the dissertation, chapter 4-5 describe the development of the subject-

specific electrophysiological pelvic model using novel intravaginal and intrarectal high-density 

surface EMG probes (Chapter 4) and the development of a novel motor unit number estimation 

approach (Chapter 5), which lays the foundation to further application to pelvic floor muscles.  

Lastly, in Chapter 6, a summary of this dissertation is provided and suggestions for future 

research directions are made.  
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CHAPTER 2 – Development of a Subject-Specific Biomechanical Pelvic Model 

 

 

2.1 Abstract 

Introduction and Hypothesis: This study aims to assess the role of individual anatomical 

structures and their combinations to urethral support function. Methods: A realistic pelvic model 

was developed from an asymptomatic female subject’s MR images for dynamic biomechanical 

analysis using the finite element method. Validation was performed by comparing simulation 

results with dynamic MR imaging observations. Weaknesses of anatomical support structures 

were simulated by reducing their material stiffness. Urethral mobility was quantified by examining 

the urethral axis excursion from rest to the final state (Intra-abdominal pressure = 100cmH2O). 

Seven individual support structures and five of their combinations were studied. Result: Among 

seven urethral support structures, weakening the vaginal walls, puborectalis muscle and 

pubococcygeus muscle generated the top three largest urethral excursion angles. A linear 

relationship was found between urethral axis excursions and intra-abdominal pressure. 

Weakening all three levator ani components together caused a larger weakening effect than the 

sum of each individually weakened component, indicating a nonlinearly-additive pattern. The 

pelvic floor responded to different weakening conditions distinctly: weakening the vaginal wall 

developed urethral mobility through collapsed vaginal canal while weakening the levator ani 

showed a more uniform pelvic floor deformation. Conclusions: The computational modeling and 

dynamic biomechanical analysis provides a powerful tool to better understand the dynamics of 

the female pelvis under pressure events. The vaginal walls, puborectalis and pubococcygeus are 

the most important individual structures in providing urethral support. The levator ani muscle 

group provides urethral support in a well-coordinated way with a nonlinearly-additive pattern. 

 

2.2 Introduction 

Lack of urethral support due to weakness in various components of the urethral support 

system (USS) has been considered as the main etiologic factor causing stress urinary 
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incontinence (SUI) (DeLancey, 1994). The “hammock hypothesis” describes support of the 

urethra by a coordinated action of fasciae and muscles, which provides a hammock onto which 

the urethra is compressed during increases in intra-abdominal pressure (IAP) (DeLancey, 1994). 

In a broad sense, the USS includes the levator ani muscle, vaginal wall and connective tissues 

that are extrinsic to the urethra, as well as the coccygeus muscle, obturator internus muscle, 

piriformis muscle and pelvic organs such as the rectum and uterus, as all these structures reside 

in the female pelvis and interact intimately during pressure events to support the urethra. 

Many studies have investigated the pathophysiology of SUI through medical imaging 

techniques such as ultrasonography (Sendag et al., 2003), anatomical magnetic resonance (MR) 

imaging (Heilbrun et al., 2010) and dynamic MR imaging (Del Vescovo et al., 2014). To assess 

urethral hypermobility caused by isolated impairment of each specific USS component and to 

compare the components’ relative contribution to urethral support function would require the 

recruitment of patients with only one impairment condition, which is clinically challenging to 

identify. Cross-subject differences in female pelvic floor anatomy also affect the objectivity of the 

comparison. Computer modeling using MR images and simulation using the finite element 

method (FEM) have been widely used in biomedical research (Peng et al., 2014; S. Wang et al., 

2014). This approach is able to conveniently simulate various impairment conditions and keep 

these comparisons based on the same subject (Y. Peng et al., 2015; Y. Zhang, Kim, Erdman, 

Roberts, & Timm, 2009). Several computer models developed from MR images have been 

reported recently in studies of female pelvic floor dysfunctions such as pelvic organ prolapse (Z. 

W. Chen et al., 2015; Luo, Chen, Fenner, Ashton-Miller, & DeLancey, 2015; Ren, Xie, Wang, & 

Rong, 2015), childbirth related levator ani muscle damages (D. Jing, J. A. Ashton-Miller, & J. O. 

DeLancey, 2012a) and ligament impairment (S. Brandao et al., 2015). However, the clinical 

application of these models and their comparisons to the true dynamic response of the pelvis is 

limited due to either 1) missing or simplified important anatomical structures (e.g., the bladder, 

rectum, vaginal canal, uterus are not included (Jing et al., 2012a); buffering fatty tissues are not 

included) or 2) less accurate realization of boundary conditions (e.g., direct inferior displacement 

is applied on the uterus (Z. W. Chen et al., 2015); intra-abdominal pressure is directly applied on 
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the muscle (S. Brandao et al., 2015) or vaginal wall (Luo et al., 2015) that are studied). A 

comprehensive pelvic model, which incorporates 44 anatomical structures in the female pelvis to 

maintain the integrity of the natural pelvic anatomy, was developed in this study to better 

understand the role of individual structures and their combination on urethral support in women.   

 

2.3 Materials and Methods 

A 21-year-old healthy female subject (nulliparous, non-smoker, BMI=22) was recruited 

according to a protocol approved by the Institutional Review Boards (IRBs) of the University of 

Minnesota and the University of Houston, for a high-resolution pelvic MRI scan in the supine 

position at rest with a 3T MRI scanner (Trio Tim, Siemens, Germany) (slice thickness 3mm; 

matrix 320 × 160; field of view 430mm; pixel size 1.344mm). For validation purposes, dynamic 

MR images were acquired in the mid-sagittal plane approximately every 1.5 second while the 

subject performed several Valsalva maneuvers. 

Image segmentation was first performed on the axial MR images for each anatomical pelvic 

structure with the guidance of urologists using Mimics 11.0 (Materialise Group, Leuven, Belgium). 

The closed surfaces were reconstructed for each anatomical structure and exported in STL 

(Stereolithography) format. Those surfaces were imported into MAYA 8.5 (Autodesk, Inc., San 

Rafael, CA) and Rhinoceros 4.0 (McNeel North America, Seattle, WA) for artifact smoothing and 

intersecting surface correction and then converted into solid SAT (Standard ACIS Text) 

geometries. All solid geometries were discretized into finite element meshes with a total number 

of 126,378 tetrahedral elements in ABAQUS 6.12 (SIMULIA, Providence, RI). The final 3D pelvic 

model contains 44 anatomical parts including pelvic muscles, sphincteric muscles, ligaments, 

bones, fat, bladder, urethra, uterus, vagina, deep perineal pouch, colon, rectum and anus. In 

addition, a bodyfill part was created to fill the intra-abdominal space for pressure transmission. A 

stiff Q-tip swab part was placed in the urethra to simulate the Q-tip swab that has been frequently 

used in clinical diagnosis and research for SUI (Crystle, Charme, & Copeland, 1971; Ghoniem et 

al., 2008). Figure 2.1 illustrates the reconstructed 3D pelvic model. The bottom of the model was 

restrained from both translations and rotations. Two uniformly distributed pressures were applied 
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on the front and top surfaces of the bodyfill to simulate Valsalva. The IAP was calculated as the 

averaged contact pressure between the urine and inner bladder wall. 

 

 
 
Figure 2.1 Illustrations of finite element pelvic floor models. Reproduced from Peng, Khavari, 

Nakib, Boone, and Zhang (2016), with permission of Springer. 
 

Although soft tissues show viscoelastic behavior (Dai, Peng, Mansy, Sandler, & Royston, 

2014; Q. Wang et al., 2014; Zhou, Peng, Bai, & Rosandich, 2014), a previous study found quasi-

linear material property of urological soft tissues when the stress level is under 70% of the 

maximal stress value (Y. Zhang, Kim, et al., 2009). As such, soft tissues involved in the pelvic 

model were modeled as linear elastic solids using material properties from Young's moduli of the 

bladder, urethra, uterus, rectum, muscle, ligament and vaginal tissue (0.05, 0.03, 0.05, 0.1, 2.4, 

1.2 and 7.4e-3 MPa) (Y. Peng et al., 2015). A soft material (Young’s modulus of 0.04MPa) was 

assigned to the bodyfill part. Urine was modeled as an elastic liquid with a Young’s modulus of 



11 
 

1.0e-3MPa. All soft tissues were considered incompressible considering that they contain 

abundant water. The bony pelvis was modeled as one rigid and fixed structure considering its 

negligible deformation under normal pelvic functions due to its much higher stiffness compared 

with soft tissues (S. Brandao et al., 2015). A simplifying condition was made to not include the 

voluntary contraction of the pelvic muscles, as it is often the case that, unless the female is 

trained using pelvic floor physical therapy, the female pelvic floor responds to acute increase of 

intra-abdominal pressure without voluntary contractions, such as during coughing or sneezing. 

The general contact algorithm in ABAQUS was applied to mimic the natural interaction 

between parts that are in contact but anatomically independent, such as the bladder and uterus, 

the uterus and rectum, or the pelvic muscles and fatty tissues. Tie constraints in ABAQUS that 

binds two shared surfaces were used to couple motions of parts which are biologically connected 

(e.g., the coccygeus muscle and the coccyx) and to model the connecting effects of fasciae (e.g., 

the tendineous arch of levator ani muscle between the iliococcygeus muscle and the obturator 

internus muscle). Connector elements, with the ability to model connective tissues such ligaments 

(Luo et al., 2015), were employed in this study to model the uterosacral and cardinal ligaments. 

The Abaqus/Explicit solver was used for finite element method implementation. 

A validation study was first performed by comparing the pelvic floor configurations achieved in 

computer simulation results with dynamic MR imaging observations along the mid-sagittal plane 

at both rest and maximal Valsalva maneuver (Figure 2.2). The subject was instructed on how to 

perform a Valsalva maneuver for the dynamic MR imaging and asked to hold each Valsalva 

maneuver for at least 2 seconds. During Valsalva maneuver, the abdominal muscles were 

contracted. Special attention was paid to the motions of the bladder, urethra, uterus and rectum. 

The results showed that the bladder, uterus and rectum slide in a posterior direction under the 

elevated IAP. It was also observed that the increased IAP led to bladder neck descent and 

clockwise rotation of the urethra, both of which are important landmarks commonly used in 

assessing urethral supports. The achieved consistency demonstrated the competence of the 

computer modeling and simulation method in characterizing pelvic floor responses to increased 

IAP. 
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Figure 2.2 Comparison (dynamic MR imaging vs. biomechanical analysis) of the pelvic structures 

of the female subject in the sagittal plane, at resting stage and at Valsalva stage. 
Reproduced from Y. Peng, R. Khavari, et al. (2016), with permission of Springer. 

 

The plan of simulation used in this study is listed in Table 2.1. The first two columns list the 

test numbers and weakened parts with their abbreviations in brackets. The impairment of each 

structure was simulated by reducing the stress-strain response by 90% (S. Brandao et al., 2015). 

Test00 serves as the asymptomatic control test based on the intact model in which no impairment 

was present. In each test from 01 to 07, a single USS component was weakened (hereafter 

referred to as single tests); in each test from 08 to 12, a specific group of USS components was 

weakened (hereafter referred to as group tests. Weakening the levator ani muscle was 

considered as a group test because the levator ani muscle group is composed of three individual 

muscle components. SUI is often associated with urethral hypermobility. Transperineal ultrasound 

reveals that the alpha-angle, defined as the angle between the vertical axis and the urethral axis 

(Sendag et al., 2003), was significantly different on straining (P<0.05) between the study (SUI) 
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and control groups. In this study, the alpha angle was monitored from the onset of the simulation 

to the final status, at which the IAP reached 100cmH2O (Cobb et al., 2005). The urethral 

excursion angle, defined by the corresponding change in the -angle () and mathematically 

equal to the Q-tip excursion in clinical tests (Ghoniem et al., 2008), was also monitored as an 

alternative metric to examine the urethral support function in this study. Since the -angle at rest 

showed no significant difference (P=0.650) between SUI and control groups (Sendag et al., 2003) 

and only the urethral support loss attributed to the weakness of specific anatomical structure(s) is 

considered in this computation study, the static morphologic variation in the -angle between 

asymptomatic and SUI subjects was not accounted for.  

Linear regression analyses were performed for all curves (urethral excursion angles vs. intra-

abdominal pressure) in MATLAB R2014 (Mathworks Inc., Natick, MA) using a linear model (Δα ~ 

k * IAP). The interception of the linear model was set to zero considering that the urethral 

excursion angle should be zero at the onset of simulation (IAP = 0cmH2O). The  achieved in 

the intact test (noted as Intact) indicates the inherent response to the applied IAP of an 

asymptomatic USS. A weakening effect index (WEI = Intact) was also employed to elicit the 

degree of mobility caused solely by the weakened structure in each weakening test.  

 

2.4 Results 

The -angle at the onset of simulation (at rest) was 15.9° for all tests. Table 2.1 shows the -

angles achieved at the final status with the IAP of 100cmH2O for all tests. The final -angles 

ranged from 30.3° (intact test) to 50.7° (weakened levator ani muscle and vaginal wall). The 

corresponding urethral excursion angles () were calculated based on the difference between 

the onset and final -angles (Table 2.1). The Intact reached 14.4° for the particular participant in 

this study. The results further showed that, values were below 20° when only single pelvic 

muscle was weakened (from 15.3° to 19.4°). The vaginal wall, the puborectalis muscle and the 

pubococcygeus muscle were found to be the top three most contributing structures. Weakening 

these parts generated the top three largest urethral excursion angles (20.1°, 19.4° and 
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18.8°, respectively), while weakening other muscles (the iliococcygeus, piriformis, coccygeus and 

obturator internus muscles) generated relatively smaller excursion angles (°). Weakening 

the levator ani muscle alone (test09) or in combination with other pelvic muscles (test10-12) 

raised the value above 30°. The fitted R-square values for the urethral excursion angle-IAP 

curves (see Figure 2.3) fall into the range between 0.95 and 0.99, indicating a strong linear 

relationship between the urethral excursion angle and increased IAP for all the tests.  

A nonlinearly-additive pattern was found among the three levator ani muscle components in 

terms of weakening effect (WEI = Intact). A WEI of 12.0° was achieved when weakening 

the puborectalis and pubococcygeus muscles together (test08), which is larger than the sum of 

WEIs achieved by weakening these two muscles separately (WEI = 5.0° in test05 and WEI = 4.4° 

in test06). The same nonlinear additive pattern was more remarkable by comparing the WEI 

obtained from weakening the entire levator ani muscle (WEI = 18.5°, test09) with the sum of 

WEIs from tests in weakening the three components weakened separately (WEI = 1.4° in test02, 

WEI = 5.0° in test05 and WEI = 4.4° in test06). Such a pattern did not exist for combinations of 

the levator ani muscle with other muscle groups (test10, 11 and 12). This finding suggests that 

the levator ani muscle is a sophisticated structure which provides support to the urethra in a well-

coordinated fashion.  

 

Figure 2.3 Plots of urethral excursion angle against intra-abdominal pressure for (a) single tests 
and (b) group tests. Reproduced from Y. Peng, R. Khavari, et al. (2016), with 
permission of Springer. 
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Table 2.1 Simulation Plan and Results  

Test 
# 

Weakened Part 

(Abbreviation) 

-angle (°) 

at IAP= 

100cmH2O 

Q-tip  

Excursion 

 (°) 

Weakening Effect 

 Index WEI 

intact (°) 

00 None 30.3 
14.4 

(Intact) 
0.0 

Single Tests 

01 Coccygeus Muscle (CM) 31.1 15.3 0.8 

02 Iliococcygeus Muscle (ICM) 31.6 15.8 1.4 

03 Piriformis Muscle (PM) 32.2 16.3 1.9 

04 Obturator Internus Muscle  (OIM) 31.5 15.6 1.2 

05 Puborectalis Muscle  (PRM) 35.3 19.4 5.0 

06 Pubococcygeus Muscle (PCM) 34.7 18.8 4.4 

07 Vaginal Wall  (VW) 36.0 20.1 5.7 

Group Tests 

08 PRM + PCM 42.2 26.4 12.0 

09 
PRM+PCM+ICM  

= Levator Ani Muscle (LAM) 
48.8 32.9 18.5 

10 LAM + CM 49.0 33.2 18.8 

11 LAM + OIM 50.0 34.1 19.7 

12 LAM + VW 50.7 34.9 20.4 

-angle = 15.9° at rest for all tests 

Reproduced from Y. Peng, R. Khavari, et al. (2016), with permission of Springer. 
 

 

Distinct deformation patterns were found in the pelvic floor responses under different 

weakening conditions (see Figure 2.4). When the vaginal tissues were weakened, an observation 

was made that the vaginal canal underwent severe compression and the vaginal wall became 

extremely thin, yielding more space for extra urethral motions, while the shape and position of the 

levator ani muscle did not show evident difference. However, when the levator ani muscle was 

weakened, a different pattern was observed: the vaginal wall remained at its normal thickness, 

while the levator ani muscle showed remarkable backward and downward yielding especially in 

the mid-portion, as the combinational effect of the front and top pressures applied on the bodyfill 

part on the entire pelvic floor is similar to a body force that is oriented in the inferoposterior 

direction and perpendicular to the levator plate. The urethral axis excursion in this case was 

attributed more to the insufficient support by the weakened levator ani muscle rather than the 
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collapsed vaginal canal. When the levator ani muscle and the vaginal wall were both weakened 

simultaneously, both syndromes could be identified. 

 

 

Figure 2.4 Deformation patterns of (a) intact test (b) weakened vaginal wall (c) weakened levator 
ani muscle and (d) weakened levator ani muscle together with vaginal wall. 
Reproduced from Y. Peng, R. Khavari, et al. (2016), with permission of Springer. 

 

2.5 Discussion and Conclusions 

Our female pelvic model consisting of 44 anatomical structures to mimic the dynamic 

response to pressure events represents, to the best of our knowledge, the most comprehensive 

and complete pelvic model in female SUI research. The validation study demonstrated 

consistency between the computer simulation results and the dynamic MR imaging observations 

along the sagittal plane of the pelvis of the same subject. A parametric study was designed and 

performed to investigate the relative importance of individual structures or their combination on 

urethral support in women. The α-angles from our computer simulations are in agreement with 

findings from transperineal ultrasound (Sendag et al., 2003). 

The relationship between the IAP and the induced urethral hypermobility may vary widely 

across subjects due to differences in anatomy and the functional status of the urethral support 

system (F. T. Brandt et al., 2006). However, simultaneous examination of these two metrics may 

provide useful information for a standardized evaluation of the functional status of the female 

pelvis. A significant association (p=0.012) between the ratio of IAP over Q-tip angle (urethral 

mobility index) and the degree of cystourethrocele was reported in a study that involved with 

eighty-four incontinence women (Alafraa & Schick, 2008). The authors proposed this urethral 
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mobility index as a standardized index for crossing-subject comparison. Although it is often 

intuitively assumed that the extent of urethral hypermobility should be positively related to IAP, 

this is the first time that this relationship has shown to be linear. The linear relationship over the 

entire IAP range identified in this study provided a substantialized ground for the application of 

the urethral mobility index as this index could be obtained consistently at any IAP level with less 

vulnerability to IAP variations. Moreover, it could provide a comprehensive functional profile of the 

female pelvic floor to discern urethral mobility indices specific to each weakening condition. Any 

anatomical (such as mid-urethral sling surgery) or functional (e.g., enhanced pelvic muscle 

strength) change in the pelvis could also be simulated in the computational model to provide 

valuable references in pre-surgery planning, training, or other SUI treatment options. 

In our model, the weakening effect is mild when only one single structure is weakened, 

consistent with Crystle et al. who found patients with good urethral support to have a rotation 

angle of less than 20° (Crystle et al., 1971). This finding reveals that the female USS is a stable 

system and could still provide sufficient support to the urethra under mild impairment. Considering 

the Q-tip excursion >30° as a criteria for urethral hypermobility (Crystle et al., 1971; Ghoniem et 

al., 2008), we find that weakening the entire levator ani muscle (comprised of the iliococcygeus, 

puborectalis and pubococcygeus muscles) caused more urethral mobility and could possibly 

result in urethral hypermobility (32.9°). This is consistent with the clinical observation that 

female SUI patients with urethral hypermobility are often associated with damages in the levator 

ani muscle (J. O. L. DeLancey, 2002).  

Medical imaging techniques such as MRI or ultrasound have been widely used for diagnosis of 

SUI characterized by urethral hypermobility, but their application is limited to cases where 

morphologic defects of urethral support structures are main causes. However, the impairment is 

not always morphologically observable. Reduced stiffness in pelvic muscle (Verelst & Leivseth, 

2007), ligament and vaginal wall tissues due to aging or trauma (Chantereau et al., 2014) could 

also be associated with insufficient support. The computational modeling and biomechanical 

approach provides a useful tool for those cases where there is no imaging evidence of 

morphologic abnormalities in the USS. Moreover, with the capability to reproduce the pelvic floor 
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deformation under different weakening scenarios and exporting dynamic or static landmarks of 

interest, our model could be employed to establish a subject-specific SUI profile that manifests 

the deformation pattern uniquely associated with each possible weakening scenario. The 

functional status of the urethral support structure could then be assessed by comparing the 

imaging finding with the established profile. The distinct deformation patterns under different 

weakening conditions provide valuable references for subject-specific SUI diagnosis, which would 

be difficult to obtain from other methods considering the particularly challenging requirement of 

the same patient to develop different weakening syndromes successively as well as the difficulty 

in capturing the extremely instantaneous dynamic deformation.  

The computational modeling and biomechanical analysis approach presented in this study 

could also be employed to develop, design and optimize interventional treatment 

approaches/devices such as mid-urethral slings. The results under different weakening conditions 

provided in our model could be valuable in simulating worst case scenarios and determining the 

safety factor for sling products. Kociszewski et al. (2010) showed that the success and 

complication rates of the sling surgery were highly associated with the implant position. Our 

model could also be used as a pre-surgery planning tool to reduce potential postoperative 

complications and improve treatment success rate on a subject-specific basis. 

Limitations of this study are discussed below. First, this study lacks statistical information as 

our model was built based on one subject-specific anatomy. The subject-specific modeling 

approach provides a tool for personalized diagnosis and treatment outcome prediction for a 

specific patient. Analyses will be performed in the future based on the results from a group of 

patients to provide statistical information. Second, the pelvic model currently relies on the high-

resolution MR images, which remains a relatively expensive procedure (approximately $500/MRI 

scan). The modeling procedure also takes about 1-2 weeks for experienced engineers and 

radiologists. A possible solution to make this approach more accessible is to build a pelvic model 

template based on the features of the patient group and use subject-specific ultrasound images 

for model modification. Another limitation, commonly shared by many other pelvic models, is that 

the voluntary contraction of muscles is not realized in the pelvic model. To do so it would require 
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a non-trivial finite element implementation technique as well as critical physiological calibrations 

for different levels of voluntary pelvic floor muscle contractions. Very recently, an advanced 

voluntary pelvic model was proposed and provides a way to model voluntary muscle contractions 

(F. S. Brandao et al., 2016). Nevertheless, the parameters associated with the voluntary muscle 

model were not obtained from actual voluntary contraction experiments in this study. A specially 

designed transvaginal and a transrectal high-density surface EMG probe, along with the internal 

muscle activity imaging technique (Liu et al., 2014; Liu et al., 2015), were recently developed in 

our group. We are currently using high-density surface EMG measurements to quantitatively 

characterize voluntary contractions of muscles in the female pelvis to further improve our pelvic 

modeling approach.  

In conclusion, a comprehensive computational model of the female pelvis was reconstructed. 

The vaginal wall, puborectalis muscle and pubococcygeus muscle were found as the top three 

most important urethral support structures. Some unique patterns of the female pelvic floor 

deformation were identified, which indicate that the computational modeling and dynamic 

biomechanical analysis approach presents a powerful tool for female SUI research and clinical 

diagnosis. It could be potentially employed for subject-specific SUI evaluation and pre-surgery 

planning. 

We would like to thank Dr. John O. DeLancey from the University of Michigan for his valuable 

consultation and Mr. Thomas Potter for editing the manuscript. 
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CHAPTER 3 – The Single-Incision Sling to Treat Female Stress Urinary Incontinence 

 

 

3.1 Abstract 

Dynamic behaviors of the single incision sling to correct urethral hypermobility are investigated 

via dynamic biomechanical analysis using a computational model of the female pelvis, developed 

from a female subject’s high-resolution MR images. The urethral hypermobility is simulated by 

weakening the levator ani muscle in the pelvic model. Four positions along the posterior urethra 

(proximal, mid-proximal, middle and mid-distal) were considered for sling implantation. The alpha-

angle, urethral excursion angle and sling-urethra interaction force generated during Valsalva 

maneuver were quantitatively characterized to evaluate the effect of the sling implantation 

position on treatment outcomes and potential complications. Results show concern for over-

correction with a sling implanted at the bladder neck, based on a relatively larger sling-urethra 

interaction force of 1.77N at the proximal implantation position (compared with 0.25N at mid-distal 

implantation position). A sling implanted at the mid-distal urethral location provided sufficient 

correction (urethral excursion angle of 23.8° after mid-distal sling implantation vs. 24.4° in the 

intact case ) with minimal risk of over-tightening, and represents the optimal choice for sling 

surgery. This study represents the first effort utilizing a comprehensive pelvic model to investigate 

the performance of an implanted sling to correct urethral hypermobility. The computational 

modeling approach presented in the study can also be used to advance pre-surgery planning, 

sling product design and to enhance our understanding of various surgical risk factors which are 

difficult to obtain in clinical practice.  

 

3.2 Introduction 

Stress urinary incontinence (SUI), the involuntary urinary leakage associated with increases in 

intra-abdominal pressure (IAP), affects about 25%-50% women in the United States with an 

annual treatment cost exceeding $12 billion (Chong et al., 2011). The total number of women who 

will undergo SUI surgery will increase 47.2% from 210,700 in 2010 to 310,050 in 2050 (Wu et al., 
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2011). In recent decades, mid-urethral sling has become the standard treatment for women with 

SUI when conservative treatments have failed. The typical outcome of a successful sling surgery 

corrects urethral hypermobility (Karateke, Haliloglu, Cam, & Sakalli, 2009), which is often 

associated with SUI patients due to insufficient pelvic floor support to the urethra and can be 

clinically assessed by the Q-tip test (Crystle et al., 1971). By providing additional support to the 

urethra, the implanted sling helps restore the continence mechanism. Most recently, the single-

incision sling (SIS) (Molden & Lucente, 2008),  with only one single incision of the anterior vaginal 

wall made for the sling passage, was touted with high expectation. However, the actual clinical 

performance has not been encouraging with many differing conclusions reported regarding its 

effectiveness and safety (Bernasconi et al., 2012; Cornu et al., 2012; Oliveira, Resende, Silva, 

Dinis, & Cruz, 2014; Revicky & Tincello, 2014). Urinary retention is a serious post-operative 

complication of failed sling surgeries and may attribute to excessive sling-urethra interaction 

force, which over-tightens the sling and obstructs the urethra blocking normal urethral opening 

required for voiding (E. Costantini, Lazzeri, & Porena, 2007). Post-operative pain may also be 

associated with excessive sling tension as too much force may cause implant shrinkage, which 

has been reported as a major cause of severe pain after pelvic floor repair surgeries (Feiner & 

Maher, 2010). Currently, there is no agreement regarding which type of sling is the best in terms 

of effective surgical outcome with the lowest complication rate.  Many studies advocate that the 

mid-urethral sling technique should be put under more scrutiny with larger controlled clinical trials. 

A better understanding of the dynamic process required to stabilize the urethra under stress using 

the mid-urethral sling would be useful to advance sling design and proper placement. In spite of a 

large amount of existing clinical trial data, the outcomes are often subjective with no ability to 

objectively study the dynamic process that a sling-tissue interaction represents in a real world 

setting. Medical imaging techniques, such as perineal ultrasonography (Kociszewski et al., 2010) 

or magnetic resonance (MR) imaging (Boyadzhyan, Raman, & Raz, 2008) have been employed 

to study this topic. However, only two-dimensional images can be provided and more importantly, 

the critical biomechanical information such as interaction behaviors between the sling and 

surrounding tissues is still missing, which limits the quantitative analysis of some key aspects of 
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the sling performance. Computational models, based on realistic female pelvic anatomy, offer a 

useful tool for quantitative biomechanical analysis to female pelvic floor dysfunctions (Rostaminia 

& Abramowitch, 2015). Models have been employed to study pelvic organ prolapse (L. Chen, 

Ashton-Miller, & DeLancey, 2009; Z. W. Chen et al., 2015; Luo et al., 2015), childbirth-related 

trauma (D. Jing, J. A. Ashton-Miller, & J. O. L. DeLancey, 2012b; Parente, Jorge, Mascarenhas, 

Fernandes, & Martins, 2008) and ligament impairment (S. Brandao et al., 2015). However, these 

models often missed some necessary anatomical structures that maintain the integrity of the 

natural pelvic anatomy, and efforts have been rarely made to study the interventional treatments. 

In this study, a comprehensive pelvic model was developed with 44 anatomical structures in the 

female pelvis incorporated to study the mid-urethral sling performance on a subject-specific basis. 

A single-incision sling was incorporated in the pelvic model at four different locations along the 

posterior urethra and dynamic biomechanical analysis was performed. The interaction behaviors 

of the mid-urethral sling in the female pelvis were investigated by examining the dynamics of the 

bladder neck, urethra and sling under increased IAP. Analyses of biomechanical parameters 

(alpha-angle (Sendag et al., 2003), Q-tip excursion angle (Crystle et al., 1971) and sling-urethra 

interaction forces) obtained from computer simulation results were performed to investigate the 

effect of implant positions on the treatment outcome (urethral hypermobility) as well as potential 

risk factors (retention and pain). The computational modeling and dynamic biomechanical 

analyses provide insights into underlying mechanics for SUI treatments that are difficult to obtain 

from clinical trials or static imaging tools alone. 

 

3.3 Materials and Methods 

3.3.1 Female Pelvic Model 

The computational model of the female pelvis and the mechanical properties of tissues 

involved in the pelvic model are adopted from a previous study based on subject-specific MR 

images of a 21-year-old asymptomatic female (nulliparous, non-smoker, BMI=22) (Y. Zhang, 

Sweet, et al., 2009) (Figure 3.1). Slight geometric modifications were made to accommodate the 

sling to the established model. Very briefly, axial MR images were acquired in the supine position 
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at rest using a 3.0T MR scanner (Trio Tim, Siemens, Germany) (slice thickness 3mm; matrix 320 

× 160; field of view 430mm; pixel size 1.344mm). Segmentation was performed on axial MR 

images for each anatomical pelvic structure with the guidance of one urologist using Mimics 11.0 

(Materialise Group, Leuven, Belgium). The closed surfaces were then imported into MAYA 8.5 

(Autodesk, Inc., San Rafael, CA) and Rhinoceros 4.0 (McNeel North America, Seattle, WA) for 

artifact smoothing and intersecting surface correction and converted into solid geometries. All 

solid geometries were discretized into a finite element mesh with 126,378 tetrahedral elements 

using Abaqus 6.12 (SIMULIA, Providence, RI). The final 3D pelvic model contains 44 anatomical 

parts including pelvic muscles, ligaments, bones, fat, bladder, urethra, uterus, vagina, colon, 

rectum and anus. ABAQUS general contact function and tie constraints were employed to realize 

the interactions and connections between soft tissues.  

 

 
 
Figure 3.1 Illustration of subject-specific pelvic floor model. Reproduced from Y. Peng et al. 

(2015), with permission of the American Society of Mechanical Engineers 
 

The general contact algorithm in ABAQUS was applied to mimic the natural interaction 

between parts that are in contact but anatomically independent (e.g., the interaction between the 

bladder and the uterus). Tie constraints that binds two shared surfaces were used to couple 

motions of parts which are biologically connected and to model the connecting effects of fasciae 

(e.g., the tendineous arch of levator ani muscle). Connector elements, with the ability to model 

connective tissues such as ligaments (Luo et al., 2015), were employed in this study to model the 

ligaments surrounding the urethra (e.g. the pubourethral ligament). Soft tissues involved in the 

pelvic model were modeled as linear elastic solids using material properties from Young's moduli 
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of the bladder, urethra, uterus, rectum, muscle, ligament and vaginal tissue (0.05, 0.03, 0.05, 0.1, 

2.4, 1.2 and 7.4e-3 MPa) (Y. Zhang, Kim, et al., 2009). The bony pelvis was modeled as one rigid 

and fixed structure considering its negligible deformation under normal pelvic functions due to its 

much higher stiffness compared with soft tissues (Dalstra, Huiskes, Odgaard, & Van Erning, 

1993). Two uniformly distributed pressures were applied on the front and top surface of the pelvic 

model to induce intra-abdominal pressure (Figure 3.1d). A specifically designed bodyfill part, 

which fills the abdominal cavity, was created for the pressure transmission (Figure 3.1d). The 

bottom of the model was constrained from all displacements. The IAP was calculated as the 

averaged contact pressure (Abaqus variable CPRESS) between the urine and inner bladder wall. 

Abaqus Explicit solver was used for the FEM implementation. The intra-abdominal pressure (IAP) 

was calculated as the averaged contact pressure between the inner bladder wall and the urine. 

The IAP achieved at maximal Valsalva was assumed as 100cmH2O, which is within the 

physiological range as SUI patients exhibited an IAP at maximum straining of 99.3 ± 51.8 cmH2O 

(7-193 cmH2O) (Frederico Teixeira Brandt et al., 2006).  

For the validation purpose, dynamic MR images were acquired in the mid-sagittal plane 

approximately every 1.5 seconds while the subject performed several Valsalva maneuvers. High 

consistency was achieved between the simulated pelvic floor deformation and the dynamic MR 

imaging observation. 

3.3.2 Single-Incision Sling Model 

The simulated single-incision sling (SIS) was modeled based on realistic specifications of 

MiniArcTM (American Medical Systems, Minnetonka, MN). The sling was modeled as a strip 

(length × width × thickness: 2.8 inch × 0.42 inch × 0.025 inch) as shown in Figure 3.2a. The sling 

was meshed into 4600 eight-node hexahedral elements, as shown in Figure 3.2b. The 

experimental uniaxial stress-strain data, provided by American Medical Systems, is shown in 

Figure 3.2(c). A 2nd-order polynomial hyperelastic model (Rivlin & Saunders, 1951) was used as 

the constitutive model of the sling. The test data was imported into the Abaqus hyperelastic 

material model and the least-square fit was performed automatically by the solver to obtain the 

optimal parameters (C10 = -0.160, C01 = 0.389, C20 = 6.014, C11 = -9.059 and C02 = 3.808). As the 
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sling was modeled with its ideal shape in the undeformed state, before the Valsalva simulation, a 

separate preparation simulation was performed to move it to the planned implantation positions in 

a shape that is conforming to the surfaces of posterior urethral wall and anterior vaginal wall 

(Figure 3.3). After the preparation simulation, the sling was deformed to the planned implantation 

position and shape and then imported to the Valsalva simulation model as the initial status. The 

sling motion was controlled by three reference points: one at the middle bottom position of the 

sling (mid-bottom point) and two at each end (end points), as shown in Figure 3.2b. 

 

 
 
Figure 3.2 Design of the implanted single-incision sling. Reproduced from Y. Peng et al. (2015), 

with permission of the American Society of Mechanical Engineers. 
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Figure 3.3 Illustration of the preparations of the sling for testA4. Three columns show the relative 

positions of the sling to pelvic organs in different views. Reproduced from Y. Peng et 
al. (2015), with permission of the American Society of Mechanical Engineers. 

 

Step 1: The sling was first placed below the bladder neck (Figure 3.3a), between the anterior 

and posterior urethral walls without touching the anterior vaginal wall. All interactions with the 

sling were excluded except for the vaginal wall. A uniform posterior displacement boundary 

condition was assigned to the center nodes of the sling in order to move the sling off from 

posterior urethral wall and push the sling against the anterior vaginal wall. The sling surface 

adjusted to the anterior vaginal wall due to their interaction. At the end of this step, the sling was 

completely out from touch with the urethra and tightly pressed against the vagina (Figure 3.3b). 
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Step 2: The interaction of the sling with the urethral wall and the pelvic bones was activated in 

this step. A displacement boundary condition was assigned to the mid-bottom point to drag the 

entire sling down along the posterior urethra to the desired implantation position. The amount of 

displacement was directly calculated based on the vector distance from its initial position to the 

desired position on the posterior urethral wall. Another displacement boundary condition was 

assigned to each end point to advance the sling arms into the obturator foramen in each side. 

The displacements were obtained from several preliminary tests so that the sling was advanced 

into the obturator internus muscle and the obturator membrane below the inferior pubic ramus, 

while the maximum principal strain was kept under 10% for the entire sling except a few regions 

around the reference nodes. At the end of this step, the sling reached its desired position, but a 

certain amount of oscillations existed because of the motions in the previous steps (Figure 3.3c). 

Step 3: The sling ends were then fixated in space and the sling was kept at rest to attenuate 

the oscillations. When the equilibrium state was achieved, the deformed sling was in its desired 

implantation state (Figure 3.3d) and exported as an orphan mesh (Abaqus (Systèmes, 2012) 

orphan mesh), which preserved the deformed shape and also released the tension caused during 

the previous boundary conditions as the sling should be implanted in a tension-free manner. The 

orphan mesh sling was then re-imported into the pelvic model for Valsalva maneuver simulation. 

The friction coefficient of the sling with surrounding tissues (bladder, urethra, vagina and pelvic 

bones) was 0.2 as suggested by American Medical Systems. To simulate the fixating effect of the 

obturator internus muscle on the sling, the portion of the nodes on the sling arms that were in 

contact with the obturator internus muscles were constrained with ENCASTRE boundary 

conditions (Abaqus (Systèmes, 2012) ENCASTRE) which prohibited all translation and rotation 

displacements. 

3.3.3 Plan of Simulation 

Table 1 lists all six tests performed in this study. Test C0 serves as the intact control test in 

which no urethral support structures were weakened. Test C1 serves as the SUI control test in 

which the levator ani muscle, the most important urethral support structure, was weakened by 

reducing its stiffness by 95% to simulate the insufficient urethral support in SUI patient. In neither 
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control test was the sling implanted. Ideally, after implantation, a single-incision sling would be 

placed at the junction between the lower and middle urethra and present a flat to a gentle C 

shape at rest. Poorly placed slings may shift upwards or downwards along the posterior urethral 

wall. To compare the effect of different sling implantation positions on the treatment outcome, four 

tests were performed (tests 01-04, sling tests). In each test, the levator ani muscle was weakened 

and the sling was implanted at a different location along the posterior urethral wall using the 

method described previously. The center of the sling was placed at positions from the bladder 

neck by 10% (test A1, proximal), 30% (test A2, mid-proximal), 50% (test A3, middle) and 70% 

(test A4, mid-distal) relative to the urethral length (Figure 3.4). 

3.3.4 Quantitative Analysis of Sling Performance 

SUI is often characterized by urethral hypermobility. Transperineal ultrasound reveals that the 

alpha-angle, a measure of urethral mobility and defined as the angle between the vertical axis 

and the urethral axis, was significantly different on straining (P<0.05) between the study (SUI) 

and control groups (Sendag et al., 2003). In this study we employed the alpha-angle as a key 

biomechanical parameter to evaluate the sling surgery treatment outcome, as the successful sling 

surgery would significantly decrease the urethral hypermobility (P<0.001) (Karateke et al., 2009).  

To measure the alpha-angle in Abaqus, two reference points along the posterior urethra were 

selected to define the urethral axis (Figure 3.4). The static alpha-angle was calculated using the 

initial coordinates of these two points. A history output request was set to monitor the 

displacements of these two points so the change of the alpha-angle during the simulation could 

be calculated. The urethral excursion angle, defined as the change of the alpha-angles at rest 

and at maximal Valsalva (denoted by Δα), was used as an alternative measure to examine the 

urethral mobility, as Δα is mathematically equal to the Q-tip excursion angle that is frequently 

used in clinical Q-tip tests to assess urethral hypermobility (Crystle et al., 1971; Ghoniem et al., 

2008). The sling-urethra interaction force was used to assess potential postoperative over-

correction, considering that too much interaction force (over-tightened sling) might cause urethral 

retention, which is a common complication of failure sling surgery (E. Costantini et al., 2007). A 

history output request was set to monitor the total contact force for the sling-bladder interaction 
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pair. The history output requests were executed once every 1ms throughout the entire Valsalva 

simulation. 

 

 

 
Figure 3.4 Sling implantation positions at rest status. Reproduced from Y. Peng et al. (2015), with 

permission of the American Society of Mechanical Engineers. 
 

3.4 Results 

Table 3.1 summarizes the simulation results obtained from all six tests. The -angle at the rest 

state is 15.9° for all tests, as they shared the same geometric model of the pelvis. An -angle of 

40.3° was achieved in the intact control test and an -angle of 52.5° was achieved in the SUI 
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control test at maximal Valsalva. -angle of 39.7° (Mid-distal, test A4), 36.0° (Middle, test A3), 

29.8° (Mid-proximal, test A2) and 26.5° (Proximal, test A1) were achieved in the 4 sling tests.  

 
 

Table 3.1 Plan of simulations and results 

Test # 
Impaired 
Structure 

Sling 
Implantation 

Position 

α-angle (°) Sling-Urethra 
Interaction 

Force 
F (N) 

Rest 
Maximal 
Valsalva 

Difference 
Δ α 

 
Control tests 

C1 None No Sling 15.9 40.3 24.4  
C2 LAM No Sling 15.9 52.5 36.6  

 
Sling tests 

A1 LAM Proximal 15.9 26.5 10.6 1.77 
A2 LAM Mid-proximal 15.9 29.8 13.9 1.37 
A3 LAM Mid 15.9 36.0 20.1 0.96 
A4 LAM Mid-distal 15.9 39.7 23.8 0.25 

LAM = Levator Ani Muscle 
 
Reproduced from Y. Peng et al. (2015), with permission of the American Society of Mechanical 
Engineers. 
 

 

The increase of IAP with the simulation time for all tests is presented in Figure 3.5a. The 

corresponding urethral excursion angles () were calculated for each test and plotted against 

the IAPs in Figure 3.5b. A urethral excursion angle of 24.4° was achieved from the intact control 

test (test C0) and a urethral excursion angle of 36.6° was achieved from the SUI control test (test 

C1). Urethral excursion angles of 23.8° (Mid-distal, test A4), 20.1° (Middle, test A3), 13.9° (Mid-

proximal, test A2) and 10.6° (Proximal, test A1) were achieved in sling tests respectively. The 

sling intervention demonstrated its efficiency in bringing down all large urethral excursion angles 

achieved in the sling tests to lower levels (reduced by 35.0% in test A4, 45.1% in test A3, 62.0% 

in test A2 and 71.0% in test A1). 

Figure 3.4 shows that all implanted slings present a shape of a flat line in the mid-sagittal view 

at rest. Figure 3.6 shows the deformed bladder, urethra and sling at maximal Valsalva in both 

control tests and four sling tests. Please note that slings implanted at proximal and mid-proximal 

urethra locations resembled a “C”-shape due to the applied pressure, while slings implanted at 

middle and proximal urethra locations still maintained the shape of a flat line. 
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Figure 3.5c shows the development of the sling-urethra interaction forces over the increase of 

intra-abdominal pressures. It can be seen that the interaction force increases as the IAP 

increases in all the tests. Please also note that the magnitude of the interaction force increases 

as the implantation location of the sling approaches the urethrovesical junction. The interaction 

forces of 0.25N (Mid-distal, test A4), 0.96N (Middle, test A3), 1.37N (Mid-proximal, test A2) and 

1.77N (Proximal, test A1) were achieved in the sling tests at maximal Valsalva respectively. 

 

 
 
Figure 3.5 Plots of sling simulation results. Reproduced from Y. Peng et al. (2015), with 

permission of the American Society of Mechanical Engineers. 
 

3.5 Discussion and Conclusions 

Over the last two decades, numerous slings have been invented and made available for SUI 

surgery. The mechanical properties of these slings varied significantly (Afonso et al., 2008) but 

there is no unequivocal agreement regarding the best material (Mangera, Bullock, Chapple, & 

MacNeil, 2012). A number of poor quality slings have been implanted into women with SUI and 

caused severe complications in the past years. A reliable and convenient method to test the sling 

products is lacking. A computational model and dynamic biomechanical analysis approach will 

bridge this gap by providing 3-dimentional dynamic responses of the organs and tissues in the 

pelvis in response to sling implantation. 

In this study, a computational model of the female pelvis, which consists of 44 anatomical 

structures of the female pelvis and represents the most comprehensive model of the female 

pelvis in SUI research, to the best of our knowledge, was developed and utilized to investigate 

the performance of mid-urethral sling surgery in correcting urethral hypermobility.  
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Figure 3.6 Shapes of sling in the mid-sagittal view at maximal Valsalva. Reproduced from Y. 

Peng et al. (2015), with permission of the American Society of Mechanical Engineers. 
 

The pelvic floor deformation in response to increased IAP during the Valsalva maneuver was 

predicted by the computer simulation. Urethral mobility was quantitatively characterized by -

angles and urethral excursion angles (the change in -angle from rest to maximal Valsalva) and 

compared across different scenarios (control tests and sling tests). In addition, the interaction 

behavior of the single-incision sling with urethra was studied. The potential complication of over-

correction or muscle pain was assessed by comparing the sling-urethra interaction forces for four 

sling implantation locations.  

The -angles predicted by the computational model in the control tests are in agreement with 

perineal sonography findings (Sendag et al., 2003) (For intact subjects, 15.9° vs. 15.0° ± 6.7° at 
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rest and 40.3° vs. 31.3° ± 11.7° at maximal Valsalva; for SUI patients, 52.5° vs. 51.0° ± 14.0° at 

maximal Valsalva). The predicted-angles in the sling tests are in agreement with post-sling 

surgery Q-tip tests (Karateke et al., 2009) (26.5° for test A1 with the proximal sling implanted, 

29.8° for test A2 with the mid-proximal sling, 36.0° for test A3 with the middle sling and 39.7° for 

test A4 with the mid-distal sling vs. 30.19° ± 9.37° at maximal Valsalva). The urethral excursion 

angles characterized in the two control tests (24.4° intact control; 36.6° SUI control) are 

qualitatively in agreement with reported Q-tip test using =30° as the criteria for urethral 

hypermobility (Ghoniem et al., 2008). After sling implantation, the urethral excursion angle was 

lowered down from 36.6° to 10.6° (test A1), 13.9° (test A2), 20.1° (test A3) and 23.8° (test A4). 

The simulated sling intervention showed successful corrections of urethral hypermobility. 

Studies show that the single-incision sling with a shorter arm length causes less pain to 

patients in the short term than TOT or TVT slings (Duckett & Baranowski, 2013). Although urinary 

bladder nociceptors respond to the stimuli that cause pains, it remain unclear how they are 

distributed exactly. Nevertheless, our clinical experience shows that many patients got pain relief 

after removing a sling that was too tight. The sling-urethra interaction forces, indicating the force 

which the implanted sling exerts on the urethra during a pressure event, may properly 

characterize the tightness of the sling against the urethra and therefore was chose as a measure 

of potential pains. This study represents the first effort, to the best of our knowledge, to 

investigate the interaction forces during pressure events. Specifically, our computation results 

show that the interaction force was much higher (1.77N in test A1 compared with 0.25N in test 

A4) when the sling was placed in a more proximal position, which may indicate that a sling 

implanted at a more proximal position will more likely lead to pain and urine retention to SUI 

patients.   

Impropriate sling implantation positions may lead to over-tightened slings and cause severe 

complications such as retention and postoperative pain. The maximal sling-urethra interaction 

force developed postoperatively in response to increased IAP can be used to better understand 

and predict those complications. Unfortunately, the sling-urethra interaction force information is 

difficult to obtain in practice due to the lack of appropriate measurement tools. Based on the 
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force-IAP relationship observed from this study, the maximal sling-urethra interaction force can be 

estimated from IAP measurements using the computational modeling and biomechanical analysis 

approach. This provides a way to predict the surgery outcome (through the correction of urethral 

hypermobility) and the potential risks the patient may be exposed to (through the sling-urethral 

interaction forces at maximal Valsalva).  

Biomechanical analysis results indicate that the proximal urethra sling may provide the best 

performance in correcting the urethral hypermobility, as the  (10.8°, test A1) was the lowest 

among all four sling tests. The appearance of the proximal urethra sling in the mid-sagittal view 

(Figure 6, test A1, flat line at rest and “C”-shaped at maximal Valsalva) also fell into the group that 

may represent the best outcome reported in (Kociszewski et al., 2010). However, this  value 

was even less than the intact  (24.4°, test C1), indicating an over-tightened sling that might 

obstruct the urethra. This was also demonstrated by the largest sling-urethra interaction force 

(Table 1). Our results also showed, on the other hand, that a sling implanted at the mid-distal 

position generated a  value of 23.8° (testA4) which is closest to the intact . The interaction 

force in this case was also the lowest. As such, a sling implanted in the mid-urethral location will 

provide sufficient correction with minimal risk of over-tightening and represent the optimal choice 

for sling surgery. This finding is in consistency with the optimal outcome achieved when the sling 

is placed at the junction of the middle and distal thirds (Kociszewski et al., 2010).  

The simulations results showed consistency with clinical findings and suggested that the 

computational model would help us gain a thorough understanding of mechanics of various 

physiological phenomena inside the female pelvis. Preoperative surgery planning could also be 

optimized based on the computational model. 

In conclusion, a computational model of the female pelvis with an implanted single-incision 

sling was developed in this study to examine the effect of different implantation positions on the 

treatment outcome and potential complication factors. Four different locations along the posterior 

urethral wall were examined. Dynamic biomechanical analysis results showed that the mid-distal 

position for sling implantation offered the best overall performance for restoring urethral support 

while keeping the sling-urethral interaction force low. This study represents the first effort in 
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utilizing a comprehensive pelvic model to investigate the performance of mid-urethral surgery in 

correcting urethral hypermobility. The computational modeling and biomechanical analysis 

approach presented in the study can also be used to advance pre-surgery planning, sling product 

design and our understanding of various pathophysiological phenomena which are difficult to 

obtain with currently available technology. 
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CHAPTER 4 – Pelvic Floor Dynamics during High-Impact Athletic Activities  

 

 

4.1 Abstract 

Background - Stress urinary incontinence is a significant problem in young female athletes, but 

the pathophysiology remains unclear because of the limited knowledge of the pelvic floor support 

function and limited capability of currently available assessment tools. The aim of our study is to 

develop an advanced computer modeling tool to better understand the dynamics of the internal 

pelvic floor during highly transient athletic activities.  

Methods – A pelvic model was developed based on high-resolution MRI scans of a healthy 

nulliparous young female. A jump-landing process was simulated using realistic boundary 

conditions captured from jumping experiments. Hypothesized alterations of the function of pelvic 

floor muscles were simulated by weakening or strengthening the levator ani muscle stiffness at 

different levels. Intra-abdominal pressures and corresponding deformations of pelvic floor 

structures were monitored at different levels of weakness or enhancement.  

Findings - Results show that pelvic floor deformations generated during a jump-landing process 

differed greatly from those seen in a Valsalva maneuver which is commonly used for diagnosis in 

clinic. The urethral mobility was only slightly influenced by the alterations of the levator ani muscle 

stiffness. Implications for risk factors and treatment strategies were also discussed.  

Interpretation - Results suggest that clinical diagnosis should make allowances for observed 

differences in pelvic floor deformations between a Valsalva maneuver and a jump-landing 

process to ensure accuracy. Urethral hypermobility may be a less contributing factor than the 

intrinsic sphincteric closure system to the incontinence of young female athletes. 

 

4.2 Introduction 

Stress urinary incontinence (SUI), the involuntary leakage of urine under increased intra-

abdominal pressure (IAP), has an observed prevalence of between 4% and 35% (Luber, 2004). 

Though SUI is a common problem for elderly and parous women, recent studies showed that SUI 
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is a non-negligible problem in nulliparous female athletes, with the prevalence varying from 

12.5% to as high as 80% (Almousa, Moser, & Kitsoulis, 2015). SUI in young athletes often goes 

unreported for fear of embarrassment (Hägglund & Wadensten, 2007). It can result in the 

athlete’s modifying her technique, or even completely abandoning the sport and becoming 

physical inactivity (Salvatore et al., 2009). 

In the “hammock hypothesis” theory, the levator ani muscle (LAM) plays a significant role in 

maintaining urinary continence (DeLancey, 1994). During an IAP increase, the LAM, a stiff 

posterior supportive structure, helps the urethral closure by allowing the urethra and other pelvic 

organs to be tightly compressed against it. Clinical observations found that LAM injuries can lead 

to a reduced urethral support (urethral hypermobility) (J. O. DeLancey, 2002), which is often 

associated with SUI. However, significant differences exist between the physiological conditions 

and environments of young female athletes and those of women in the general population. What 

these factors contribute to the pathophysiology of SUI remains unclear and warrants further 

investigation. 

First, young female athletes often experience significantly greater and more sudden IAP 

increases, especially during high-impact activities such as running and jumping (Goldstick & 

Constantini, 2014). However, existing techniques for SUI diagnosis, including magnetic 

resonance (MR) imaging (Da Roza et al., 2015), perineometry (da Silva Borin, Nunes, & de 

Oliveira Guirro, 2013), and electromyography (H. Luginbuehl et al., 2016), are unable to non-

invasively characterize the highly transient internal mechanics of the pelvic floor during these 

activities. Instead, diagnosis is often made on the basis of observations from Valsalva maneuvers 

(Kruger, Dietz, & Murphy, 2007). Differences in results obtained with this alternative approach 

require investigation, in order to ensure the correctness of the corresponding diagnosis. 

Second, our knowledge of the pelvic floor muscles (PFMs) of young female athletes is limited. 

Two existing hypotheses regarding their PFMs are totally opposite: one suggests that female 

athletes have strong PFMs because of the training stimulus from the co-activation of the 

abdominal muscle, while the other theory postulates that repeated increases in IAP can cause 

fatigue and weaken the pelvic floor (Bø, 2015). To date, no equivocal evidence has been 
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presented to support either one. The effect of neither of these hypothesized alterations in PFM 

functions on the urethral integrity during the sudden IAP increase could be properly tested.  

Computer modeling and simulation provide a potential solution to these challenges in testing. 

Recent advances in medical imaging allowed the reconstruction of computer models based on 

high-resolution subject-specific MR images (Y. Peng, R. Khavari, et al., 2016; Y. Peng et al., 

2015), maximally preserving anatomical integrity and correctness. Computer simulation provides 

a reliable tool for characterizing dynamic biological processes that are otherwise difficult to 

observe through traditional techniques (S. Brandao et al., 2015; Z. W. Chen et al., 2015; Dai et 

al., 2014; Luo et al., 2015; Mayeur et al., 2016; S. Wang et al., 2014; H. Zhang, Nussbaum, & 

Agnew, 2015, 2016; Y. Zhang, Kim, et al., 2009; Y. Zhang, Sweet, et al., 2009). Several computer 

models have been developed to study SUI (S. Brandao et al., 2015) and pelvic organ prolapse (Z. 

W. Chen et al., 2015; Luo et al., 2015), but limited efforts have been made to apply this approach 

to explore the pathophysiology of SUI in young female athletes (Da Roza et al., 2015; Y. Zhang, 

Kim, et al., 2009). 

In this study, we presented a complete pelvic model obtained from high-resolution subject-

specific MR images of a young healthy female. The dynamic pelvic floor deformation during a 

jump-landing process was characterized and compared with the results of a Valsalva maneuver. 

The effect of the hypothesized alterations in the PFM function on urethral mobility was tested. 

 

4.3 Materials and Methods 

4.3.1 3D Female Pelvic Modeling 

The 3D computational model of the female pelvis used in this study was adopted from 

previous modeling works (Y. Peng, R. Khavari, et al., 2016; Y. Peng et al., 2015). Briefly, T2 

weighted MR images of the pelvis of a healthy female (21-year-old, white, Caucasian, nulliparous, 

nonsmoker, non-athletic, body mass index=22) were obtained axially with a 3T MR imaging 

scanner (Trio Tim, Siemens, Germany), with a slice thickness of 3mm, matrix of 320 x 160, field 

of view of 430mm and pixel size of 1.344mm. The images were manually segmented in Mimics 

(Materialise Group, Leuven, Belgium). Closed-surface 3D geometries were calculated from the 
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segmentation results for each pelvic floor component and then smoothed in MAYA 8.5 (Autodesk, 

Inc., San Rafael, CA, USA) and Rhinoceros 4.0 (McNeel North America, Seattle, WA, USA) for 

artifact and intersections removal. The smoothed geometries were then imported into ABAQUS 

6.12 (SIMULIA, Providence, RI, USA) for tetrahedral element discretization. Segmentation and 

smoothing were performed under the guidance of an experienced urologist to minimize errors 

between the reconstructed model and original MR images. The final model consisted of 44 parts 

in 61,867 elements, as shown in Figure 4.1. Essential pelvic floor components including the pelvic 

floor muscles, bladder, vagina, uterus, rectum, ligaments, etc. were included to maximally 

maintain the integrity of the female pelvic anatomy. A specially-designed bodyfill part was used to 

represent the intra-abdominal contents and to allow the transmission of IAP during athletic 

activities. This modeling approach has been validated using dynamic MR imaging in our previous 

study (Y. Peng, R. Khavari, et al., 2016). 

 

 
 
Figure 4.1 Illustration of the pelvic floor model in different views. Reproduced from Dias, Peng, 

Khavari, et al. (2016), with permission of Elsevier. 
 

4.3.2 Contacts, Interactions and Boundary Conditions 

Anatomical connections between soft tissues were imposed using the ABAQUS ‘‘surface-to-

surface’’ tie constraint option, which couples the motion of nodes from two parts that are 

anatomically bound. Interactions between tissues that are not anatomically connected were 

defined using the ABAQUS “general contact” algorithm, which allows parts to interact with each 
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other with a defined interaction behavior and resist unrealistic surface intersections. Pelvic 

ligaments (cardinal, uterosacral and pubourethral ligaments) were modeled using connector 

elements with an axial elastic behavior (Luo et al., 2015). A vertical jump was simulated in this 

study to induce the high-impact effect, as previous studies found a higher prevalence of SUI in 

young female athletes whose activities involve jumping (Jácome, Oliveira, Marques, & Sá-Couto, 

2011). Realistic boundary conditions were set using velocity recordings from accelerometer 

(Crossbow Technology, Inc., San Jose, CA). In the jump experiment, the subject jumped from a 

30 cm box and landed on a hardwood floor. This height can fairly reflect the typical vertical 

jumping heights of collegiate female ball game players (Dalrymple, Davis, Dwyer, & Moir, 2010). 

The accelerometer sensor was placed on the skin directly above the iliac crest, as data captured 

above the approximate location of the iliac crest on the left and right lower back proved to be the 

most reliable (H Luginbuehl et al., 2013). During the jump process, the entire body first falls freely 

in the air, accelerating all body tissues uniformly because of gravity. No relative motions exist 

during this phase. Upon the initiation of landing (when both feet touch the ground), the bony 

pelvis starts to decelerate gradually because of the combined effect of inertia and the buffering 

effect from lower limbs. The sensor placed on the iliac crest most accurately records the motions 

of the bony pelvis during this process. Meanwhile, soft tissues interact with pelvic bones because 

of the difference in velocities and pelvic floor contents start to show deformation because of this 

interaction. Thus, the landing phase provides the most critical information to characterize the 

deformations of pelvic floor structures. The velocity recorded during the landing phase, as shown 

in Figure 4.2, was assigned as boundary conditions to the reference point that controlled the 

motion of the pelvic bones and to the bottom surface of the model, as shown in Figure 4.1c. The 

initial velocity upon the initiation of landing was set to move in vertical direction at 2.81 m/s and in 

the horizontal direction at 0.29 m/s according to the accelerometer readings. 

4.3.3 Material Properties 

Although biological soft tissues demonstrate viscoelastic properties (Dai et al., 2014; Q. Wang 

et al., 2014; J. Zhang, Koo, Subramanian, Liu, & Chattopadhyay, 2015; Zhou et al., 2014), 

previous studies have found a quasi-linear material property of urological soft tissues when the 
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stress level is under 70% of the maximal stress value (Y. Zhang, Sweet, et al., 2009). 

Consequently, elastic material properties were used to represent mechanical behaviors of soft 

tissues. Most soft tissues were modeled as linear elastic materials (Y. Peng, R. Khavari, et al., 

2016; Y. Peng et al., 2015), as it has been found that linear elasticity produces a displacement 

field similar to that produced using nonlinear elasticity, while benefiting the computation efficiency 

(Mayeur et al., 2016). However, to better characterize the behaviors of the bladder and LAM, 

hyperelastic models were adopted (Z. W. Chen et al., 2015; Krcmar et al., 2015). The pelvic bone 

was modeled as a rigid body because of its much greater stiffness than soft tissues (S. Brandao 

et al., 2015). Table 1 summarizes the constitutive models used for soft tissues within this study. 

 

 
 
Figure 4.2 Left - horizontal and vertical velocity boundary conditions recorded from jump 

experiment and right - corresponding acceleration history. Reproduced from Dias, 
Peng, Khavari, et al. (2016), with permission of Elsevier. 

 

Published literature postulates that PFM in athletes could be either strengthened or weakened 

(Bø, 2015). Our model simulated the hypothesized weakness or enhancement of pelvic floor 

muscles by multiplying the uniaxial stress-strain data of the LAM with a scaling coefficient (S. 

Brandao et al., 2015). The resulting stress-strain data was then used as the altered mechanical 

properties of the LAM, as shown in Figure 4.3.  
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Table 4.1 Material properties for the soft tissues included in the model 

Structures Material Constants 
Constitutive 
Models 

Sources 

 
Linear elastic structures 

 
Young’s  
modulus 
(MPa)  

 
Poisson’s ratio  

  

 
 
Vagina and uterus 

 
0.005 

 
0.49 

Hooke 

(Haridas, Hong, 
Minoguchi, 
Owens, and 
Osborn (2006); 
Yamada and 
Evans (1970)) 

 Rectum 0.1 0.49 
 Fat 0.05 0.49 
 Bodyfill 0.05 0.49 

 
 
Muscles 
(excluding LAM) 

 
2.4 

 
0.49 

 Urine 
 
1.0e-3 

 
0.49 

 Y. Peng, R. 
Khavari, et al. 
(2016) 

  
Hyperelastic structures    

 
 
Levator ani muscle 

 
µ1 = 0.0082 MPa 

 
α1 = 0.1803 

 
Ogden  
(N = 2) 

 
Krcmar et al. 
(2015) µ2 = 0.0216 MPa α2 = 15.112 

  
Bladder and urethra 

C10 = 0.071 MPa 
Yeoh 

Z. W. Chen et al. 
(2015) 

 C20 = 0.202 MPa 
 C30 = 0.048 MPa 
  
Others      

  
Pelvic ligaments 

 
Axial elasticity = 0.15 N/mm * 

 
Hooke 

 
(Luo et al., 2015) 

  
Pelvic bones 

 
Rigid 

 
Rigid body 

 
(S. Brandao et al., 
2015) 

 *linearized 
 
Reproduced from Dias, Peng, Khavari, et al. (2016), with permission of Elsevier. 

 

4.3.4 Design of Simulations 

A total of nine tests were performed. Table 4.2 summarizes the plan of simulations conducted 

in this study. In the control test, there was no enhancement or impairment of the LAM. In the 

weakening tests, impairments of 25%, 50%, 75% and 95% were simulated using a scaling 

coefficient of 0.75, 0.5, 0.25, and 0.05, respectively. In the strengthening tests, enhancements of 

25%, 50%, 75% and 100% were simulated using a scaling coefficient of 1.25, 1.50, 1.75 and 

2.00.  
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Table 4.2. Plan of simulations and results 

Test 
# 

Change in 
Material 

Properties 

Scaling 
Coef. 

First Peak 
IAP 

(cmH2O) 

Second 
peak 

IAP  
(cmH2O) 

Maximum 
Bladder neck 
displacement 

(mm) 

Maximum 
urethral 

excursion 
angle (°) 

Control 

C0 0 1.00 191.5 109.6 12.1 22.9 

 
Weakened 

1 25 0.75 
193.5 
(+2.0)* 

112.3 (+2.7) 12.2 (+0.1) 22.9 (+0.0) 

2 50 0.50 
193.2 
(+1.7) 

112.9 (+3.3) 12.6 (+0.5) 23.3 (+0.4) 

3 75 0.25 
193.5 
(+2.0) 

112.4 (+2.8) 13.1 (+1.0) 24.0 (+1.1) 

4 95 0.05 
193.7 
(+2.2) 

112.3 (+2.7) 13.7 (+1.6) 24.9 (+2.0) 

 
Strengthened 

1 25 1.25 
194.6 
(+3.1) 

113.2 (+3.6) 11.9 (−0.2) 22.3 (−0.6) 

2 50 1.50 
193.8 
(+2.3) 

112.7 (+3.1) 11.6 (−0.5) 21.9 (−1.0) 

3 75 1.75 
193.3 
(+1.8) 

112.7 (+3.1) 11.2 (−0.9) 21.1 (−1.8) 

4 100 2.00 
192.8 
(+1.3) 

112.9 (+3.3) 11.1 (−1.0) 20.1 (−2.8) 

* Number in bracket represents the amount of change from the control test, applies to all 

 
Reproduced from Dias, Peng, Khavari, et al. (2016), with permission of Elsevier. 

 

In each test, the bladder neck displacement in the sagittal plane and the urethral excursion 

angle (clinically equivalent with Q-tip rotational angle) were used as metrics to assess the urethral 

hypermobility (Y. Peng, R. Khavari, et al., 2016; Y. Peng et al., 2015). Definitions of these two 

metrics are shown in Figure 4.1. The IAP, calculated as the contact pressure between the inner 

bladder wall and the urine, was also reported. All of these metrics were monitored dynamically 

throughout the simulation time using ABAQUS history and field output request functions. The 

computation was conducted in parallel processing with an AMD Cluster (Maxwell, 8 cores on 2 

CPUs: 16 nodes total, 2GB RAM) in the Center for Advanced Computing and Data Systems at 

the University of Houston. On average, it took about 5 hours for the Maxwell cluster to complete 1 

computation task. 
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Figure 4.3 Stress-strain curves of the intact, impaired and strengthened levator ani muscle. 

Reproduced from Dias, Peng, Khavari, et al. (2016), with permission of Elsevier. 
 

4.4 Results 

The simulation results showed that the pelvic floor deformation during a jump landing process 

demonstrated two stages (Figure 4.4). During stage one, the pelvic floor showed a “leaning 

forward compression”. Compared with the resting state configuration (Figure 4.4a), the bladder 

was compressed against the decelerating pubic bone and stretched anteroposteriorly (Figure 

4.4b). The frontal bladder leaned forward partly because of the compression and partly because 

of the initial horizontal velocity. At the end of stage one, the bladder was maximally compressed 

against the front bodyfill part with all of its kinetic energy converted to the elastic potential energy. 

During stage two, the bladder started to “bounce back” because of the release of the stored 

elastic potential energy and to develop posterior deformations further differing from the resting 
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state, as shown in Figure 4.4c. Supports were provided by the posterior compartments (vaginal 

wall and LAM) to counterbalance the excessive posterior motions (hypermobility). 

 

 
 
Figure 4.4 Pelvic floor configurations at the (a) rest state, (b) maximal IAP and (c) maximal 

posterior deformation. Reproduced from Dias, Peng, Khavari, et al. (2016), with 
permission of Elsevier. 

 

For the control test, the IAP reached a first peak of 194.6 cmH2O at 0.064 seconds. A second 

peak of 114.1 cmH2O was found at 0.136 seconds. A maximum bladder neck displacement of 

12.1 mm and a maximum urethral excursion angle of 22.9° were found in the control test, both 

occurring at a time instance close to the second IAP peak. Table 2 summarizes the results for all 

tests. Altering the LAM stiffness caused only slight differences in the two peak IAPs (all less than 

4%). The differences in the maximum bladder neck displacement ranged from −0.2 mm to +1.6 

mm and in the maximum urethra excursion angles from −2.8° to 2.0°. 
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4.5 Discussion and Conclusions 

In this study, we developed a whole-pelvic model from a healthy nulliparous female subject 

and used it to describe the deformations of pelvic floor structures during the jump-landing process 

and test the effects of altered LAM stiffness on the urethral mobility metrics.  

4.5.1 Comparison with the Valsalva Maneuver 

A separate Valsalva simulation was performed using the method described in a previous 

simulation study (Y. Peng, R. Khavari, et al., 2016; Y. Peng et al., 2015). Our simulation showed 

that the deformations of pelvic floor structures during the jump-landing process differed greatly 

from that produced in the Valsalva maneuver. The obtained IAP history and the deformation of 

pelvic floor structures at the maximal IAP were compared. First, at the maximal IAP, the 

deformation pattern in jump-landing was both anterior and posterior because of the compression 

against the pelvic bone (Figure 4.4b and 4.5a), while in the Valsalva maneuver, the deformations 

were presented more in an inferoposterior direction (Figure 4.5b). This is consistent with our 

preliminary simulation observations (Peng, Khavari, Stewart, Boone, & Zhang, 2015), and can be 

explained by the directions of the efforts applied. In jump-landing, the deformation was largely 

due to the vertical compression of the organs against the pelvic bone, while in straining activities, 

the effort was oriented at 45 degrees with respect to horizontal axis, from anterior to posterior 

direction (Mayeur et al., 2016). Second, there was a distinct difference in the history of the IAP 

development, as seen in Figure 4.5c. Unlike the Valsalva maneuver, which only produced one 

single IAP increase (Y. Peng, R. Khavari, et al., 2016), the jump-landing process produced two 

IAP peaks (Figure 4.6a). The first peak can be explained by the intensifying compression 

between the free falling soft tissues and the decelerating pubic bone during the falling stage, and 

was evidenced by the simultaneous occurrence of the maximum IAP (Figure 4.6a) and the 

maximum deceleration (Figure 4.2b) around 0.07 seconds. The second peak can be explained by 

the “bouncing back” motion of the bladder during stage two. The bladder was compressed 

horizontally against the vaginal wall and the LAM and thus caused the contact pressure between 

the inner bladder wall and the urine to increase. This was evidenced by the simultaneous 

occurrence of the maximal urethral mobility with the second IAP peak around 0.14 seconds. 
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Third, in terms of the IAP magnitude, the maximal IAP observed in the jump landing simulation 

(194.5 cmH2O) was much higher than Valsalva simulation results (Figure 4.5c) or clinical 

recordings (Cobb et al., 2005). This IAP value was consistent with pressure readings obtained 

from previous tests using a transurethral bladder catheter (232 ± 66 cmH2O) (Cobb et al., 2005). 

Because of the challenging nature of performing internal imaging tasks during high-impact  

athletic activities, Valsalva maneuvers are often used alternatively to assess the pelvic floor 

dynamics of young female athletes (Kruger et al., 2007). Our simulation results showed that 

differences exist in terms of IAP development, IAP peak values and pelvic floor deformation 

patterns. Clinical diagnosis should make allowances for these differences to ensure accuracy. 

 

 

Figure 4.5 The comparison of the pelvic floor deformations between (a) jumping and (b) Valsalva 
at maximal IAP. (c) The comparison of the IAP history plots of jumping and Valsalva. 
Reproduced from Dias, Peng, Khavari, et al. (2016), with permission of Elsevier. 
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Figure 4.6 Plots of the evolutions of the (a) Intra-abdominal pressure, (b) urethral excursion angle 

and (c) bladder neck displacement. Reproduced from Dias, Peng, Khavari, et al. 
(2016), with permission of Elsevier. 
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4.5.2 Relation to the Risk Factors for SUI 

We found that the effect of weakened LAM stiffness on the proposed urethral hypermobility 

metrics was minor. The displacement and urethral rotation were increased by only 1.6 mm (13%) 

and 2° (9%). They differed from common clinical observations: Kruger el. al found that athletes 

showed greater bladder neck descent on maximal Valsalva maneuver when compared with the 

control group (Kruger et al., 2007). Previous simulation results showed that LAM impairment 

highly impacts the urethral excursion angle on Valsalva maneuver (Y. Peng, R. Khavari, et al., 

2016). A possible explanation for this difference is that the previous studies focused on the 

Valsalva maneuver, while our model examines the urethral excursion during a jump landing. 

These activities are quite different in nature - Valsalva produces a slow and steady increase in 

intra-abdominal pressure, while a jump landing results in an intra-abdominal pressure that is 

strong but transient. The directions of pressure loads in these two activities on pelvic organs are 

also distinct, as described in Section 4.1. Combined together, these factors made urethral 

hypermobility a noticeable observation in Valsalva but less obvious during landing a jump. These 

differences suggested that, during jump-landing, the female pelvic floor reacts to the sudden IAP 

increase quite differently from the way commonly seen in daily pressure activities. This finding 

downplayed the role of the weakened LAM stiffness as an etiological factor of the weakened 

urethral closure functions in young female athletes. 

What remains unanswered is what puts the young female athlete at risk for developing SUI. 

Ashton-Miller and DeLancey explained the urinary continence mechanism through two systems: 

the intrinsic sphincteric closure system, formed by the urethral sphincteric muscles, and the 

urethral support system, formed by pelvic floor muscles and connective tissues (ASHTON‐

MILLER & DeLANCEY, 2007). Although the pelvic floor can effectively balance the sharp IAP 

increase during athletic activities to avoid urethral hypermobility, this increases may exceed the 

capability of the intrinsic closure system. The intrinsic sphincteric closure system seems to 

contribute more to the maintenance of continence. This may explain why many athletes reported 

leakage only during athletic activities but not in daily life.  
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To further explore the risk factors for weakened urethral closure functions in young female 

athletes, attention should be focused on the characterization of the strength of the urinary 

sphincteric closure system and, for severe cases, on the neurogenic impairment of urinary 

sphincter muscles. Preventative actions should also be directed towards enhancing the urethral 

closure functions. 

4.5.3 Relation to the Pelvic Floor Muscle Training 

Pelvic floor muscle training has been shown to be effective at treating SUI for the general 

population (Bø, 2012). A recent study also evidenced the effect of pelvic floor muscle training on 

incontinence of young nulliparous female athletes (N=7) (Da Roza et al., 2012). As one 

hypothesis was that athletes have strong pelvic floor muscles because of training stimulus, we 

tested the effect of enhanced LAM stiffness on urethral mobility. The results showed that the 

effect of enhanced LAM stiffness on urethral mobility metrics was not remarkable: the maximum 

bladder neck displacement was lowered by 1 mm (8%) and the urethral excursion angle by 2.8° 

(12%). These results suggested that the enhanced stiffness of LAM does not reduce the urethral 

mobility. A possible explanation for weakened urethral closure function in athletes is the repeated 

stretching of the pudendal nerve in response to repeated instances of substantially increased 

intra-abdominal pressure. Previous studies have correlated a state of chronic increased intra-

abdominal pressure in obese patients with a weak urethra and urinary incontinence (Noblett, 

Jensen, & Ostergard, 1997). Considering the broad benefits of pelvic floor muscle training, we 

should not be discouraged by the findings presented in this paper. On one hand, in addition to 

increased muscle stiffness, pelvic floor muscle training also means a conscious pre-contraction of 

PFM during physical stress and a muscle volume increase (Bø, 2004; Brækken, Majida, Engh, & 

Bø, 2010). These changes are found to benefit the maintenance of continence and provide 

opportunities for future computer simulation work. On the other hand, the observed limited impact 

of LAM stiffness on the reduction in urethral mobility would otherwise help redirect the focus of 

physical therapists towards more efficient biometrics in assessing the urethral integrity in young 

female athletes. 
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4.5.4 Limitations and Future Research 

One limitation is that we only studied the effects of altered LAM stiffness. Athletes may also 

demonstrate increased muscle thickness and diameter, and elevated bladder and rectum 

(Brækken et al., 2010; Kruger et al., 2007). These anatomical changes should also be considered 

to ensure the complete characterization of the pelvic floor structures of young female athletes. 

With the convenience in MR imaging and computer modeling, these morphological factors can be 

included in future studies. Another limitation of this study is the lack of statistical power, as the 

results reported in the study are achieved based on one single pelvic model constructed from one 

particular subject’s MRI data. Efforts will be taken in the future to perform this study based on 

multiple subjects’ pelvic models to take into account the effects of the pelvic anatomy variations 

on simulation results. 

4.5.5 Conclusions 

The computational modeling and simulation approach is a useful tool for studying the highly-

transient pelvic floor dynamics. We found that pelvic floor deformed distinctly during jump-landing 

and Valsalva. Clinical diagnosis should make allowances for differences between the pelvic floor 

deformations in a Valsalva maneuver and those in a jump-landing process to ensure accuracy. 

We also found that altered LAM stiffness caused only slight changes in urethral mobility, 

suggesting that urethral hypermobility may be less dominant than expected as a factor causing 

weakened urethral functions and SUI in young female athletes. Future studies are encouraged to 

investigate the function of the intrinsic urethral closure system. 
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CHAPTER 5 – Development of a Subject-Specific Electrophysiological Pelvic Model 

 

 

5.1 Abstract 

Introduction and Hypothesis: Knowledge of the innervation of pelvic floor and sphincter muscles 

is of great importance to understanding the pathophysiology of female pelvic floor dysfunctions. 

This study aims to present our high-density intravaginal and intrarectal electromyography (EMG) 

probes and a comprehensive innervation zone (IZ) imaging technique based on high-density 

EMG readings to characterize the IZ distribution. Methods: Both intravaginal and intrarectal 

probes are covered with a high-density surface electromyography electrode grid (8 X 8). Surface 

EMG signals were acquired in 10 healthy female subjects during maximum voluntary contractions 

of their pelvic floor. EMG decomposition was performed to separate the motor unit action 

potentials (MUAPs) and then localize their IZs. Results: High-density surface EMG signals were 

successfully acquired over the vaginal and rectal surfaces. The propagation patterns of muscle 

activity were clearly visualized for multiple muscle groups of the pelvic floor and anal sphincter. 

Up to 218 repetitions of vaginal motor units and 456 repetitions of rectal motor units were 

detected during each contraction. MUAPs were separated with their IZs identified at various 

orientations and depths. Conclusions: The proposed probes are capable of providing a 

comprehensive mapping of the innervation zones of the pelvic floor and sphincter muscles. They 

can be employed as diagnostic and preventative tools in clinical practices. 

 

5.2 Introduction 

Pelvic floor muscles (PFMs) are intimately involved in normal pelvic floor functions. 

Neuromuscular injury to PFMs may cause pelvic floor dysfunctions such as incontinence or 

prolapse. Electromyography (EMG) has been widely used to assess the neuromuscular function 

of PFMs in clinical and research environments (Enck & Vodusek, 2006). Needle EMG is known 

for its high selectivity and has been used to investigate the neuronal control of the external anal 

sphincter (EAS) in patients with incontinence (Enck, Hinninghofen, Wietek, & Becker, 2004). 
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However, this technique is not only invasive but also lacks the ability to provide global information 

of the muscle activation. Perineal EMG, in which the electrode is attached to the perineal skin 

surface, is not selective because of high risk of crosstalk (Keshwani & McLean, 2015). 

Consequently, efforts have been made to develop intravaginal probes and intrarectal probes with 

mounted electrodes as a minimally-invasive alternative (Enck & Vodusek, 2006; Keshwani & 

McLean, 2015). 

In order to provide a comprehensive functional map of PFMs through EMG, an ideal EMG 

probe should have two characteristics: 1) sufficient electrodes longitudinally to detect and 

differentiate superficial and deep muscles (Voorham-van der Zalm et al., 2013), and 2) sufficient 

electrodes circumferentially aligned parallel to the muscle fiber to perform motor unit action 

potential (MUAP) detection and to study the muscle innervation (Enck, Franz, et al., 2004; R. 

Merletti et al., 2004). These two characteristics require that an ideal probe has high-density 

electrodes in both longitudinal and circumferential dimensions. A recent state-of-art review 

showed that current commercially available intravaginal probes are limited by their probe 

geometry, large detection surfaces and inappropriate electrode configurations (Keshwani & 

McLean, 2015). The lack of a sufficient number of channels also prevented them from being used 

for MUAP detection. Recently, a high-density anal EMG probe (three circumferential arrays with 

48 electrodes) has shed new light on the investigation of the innervation of EAS muscles (Cescon 

et al., 2014; Enck, Franz, et al., 2004; R. Merletti et al., 2004). However, its application is limited 

in assessing deep PFMs, such as the pubococcygeus muscle because of insufficient longitudinal 

electrodes. In another recently reported study, a multiple-electrode probe (with a measurement 

range of 50mm longitudinally) demonstrated the capability of differentiating deep and superficial 

muscles (Voorham-van der Zalm et al., 2013), but the low spatial circumferential resolution made 

it inappropriate for MUAP detections. A recent study showed the possibility of mounting EMG 

electrodes on a urethral catheter surface  to measure the activity of urethral sphincter muscles 

(Stafford, Sapsford, Ashton-Miller, & Hodges, 2010). However, compared with the urethra, the 

vaginal and rectal spaces have greater volumes and are more distensible. These characteristics 

challenge the intravaginal or intrarectal catheter probe designs because high-density electrodes 
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require accommodation on highly-stretchable probe surfaces. Although a few attempts have been 

made to design compressible electrodes (Boyd, Gregson, & Herbert, 2015; Sim et al., 2015), 

published results are scarce in the existing literature. 

In this study, we present our newly developed high-density, two-dimensional intravaginal and 

intrarectal surface EMG probes  to feature the desired characteristics (Peng, He, Khavari, Boone, 

& Zhang, 2015). The probes are equipped with an 8X8 high-density electrode grid which allows 

the MUAP detection and innervation zone (IZ) mapping from the entire vaginal and anorectal 

canal surface. It is expected that our new probes will provide a comprehensive functional 

mapping of the female PFM/EAS and meet the imperative need for neurogenic PFM/EAS 

disorder characterization (Whitehead et al., 2015). 

 

5.3 Materials and Methods 

5.3.1 Subjects 

Ten healthy young female subjects (age [mean ± S.D.]: 29.1 ± 7.1 years) participated in the 

study. Enrollment was limited to normal, healthy female volunteers with no history of pelvic 

injuries or neuromuscular diseases. The EMG studies were carried out at the Houston Methodist 

Hospital with the protocol approved by both the University of Houston and Houston Methodist 

Hospital Institutional Review Boards. All participants gave informed consents.  

5.3.2 Probe Design 

The intravaginal and intrarectal probes were designed at the University of Houston and 

manufactured by the Twente Medical Systems International (Enschede, The Netherlands). Both 

probes are cylindrical in shape with a total length of 175 mm. A high-density electrode grid (8 X 8) 

is coated on the surface of each probe (see Figure 5.1a). The intravaginal probe is 22.7 mm in 

diameter. The electrode surface is circular with a diameter of 4.0 mm. The inter-electrode spacing 

(center to center) is 8.8 mm both longitudinally and circumferentially. The intrarectal probe is 14.4 

mm in diameter. The electrode surface is rectangular with a length of 4.0 mm and a width of 2.4 

mm. The inter-electrode spacing (center to center) is 8.0 mm longitudinally and 5.7 mm 

circumferentially. The top of both probes is spherical. The application of a proper amount of gel is 
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advised for ease of insertion. Compared with existing probes (Cescon et al., 2014; Enck, Franz, 

et al., 2004; R. Merletti et al., 2004), our probes have more channels that are in favor of advanced 

EMG analysis techniques and a better longitudinal coverage that enables the access to deep 

PFMs. Our intravaginal probe is the first high-density intravaginal probe.  

For a convenient reference to the electrode locations on the probe surface, we adopted a row 

and column numbering convention (see Figure 5.1a). Hereinafter, the circumferential rows are 

numbered from 1 (superficial) to 8 (deep). The longitudinal columns are numbered in a counter-

clockwise way in the caudal view and divided into four quadrants: ventral (8, 1), right (2, 3), dorsal 

(4, 5) and left (6, 7).  

5.3.3 Experimental Protocol 

All tests were performed at the Houston Methodist Hospital guided by an experienced 

urologist (R.K). All subjects were instructed by the urologist to contract their pelvic floor muscles 

prior to the insertion of the probes. The individuals were re-examined for appropriate pelvic floor 

contractions following the insertion of the probes. The subjects were tested in the lithotomy 

position leaning their backs on a tilted exam table (about 30° from horizontal). The probes were 

inserted with the help of the urologist to maintain the correct orientation and depth, as shown in 

Figure 5.1b. A correct insertion was described as having the trademarks faced dorsally and the 

edge of the electrode grid aligned with the urogenital orifices. After probe placement, a few trial 

PFM contractions were attempted while the signals were visually inspected in real time for quality 

check.  

Subjects were involved in two test sessions. Ten short contractions were performed in session 

one to give as hard as possible contraction forces, and ten sustained long contractions were 

performed in session two. The subjects were allowed sufficient resting time between two 

continuous contractions and rested fully to relax their PFMs between two sessions. The ground 

electrode was placed at the wrist of the subject connecting to a fully-soaked wristband in 

accordance to the manufacturer’s recommendation. The wrist area was slightly abraded and 

cleaned using alcohol patches to lower the surface impedance. 
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Figure 5.1 Illustration of intravaginal and intrarectal probes, the description of the channel 

numbering convention and insertion positions. Reproduced from Peng, He, Khavari, 
Boone, and Zhang (2016), with permission of Springer. 

 

5.3.4 Data Collection and Processing 

Myoelectric signals were acquired with a 136 channel Refa amplifier (Twente Medical Systems 

International, The Netherlands) at a sample rate of 2048 Hz and stored in a personal computer. 

During offline process, the signals were digitally filtered in MATLAB R2015 (Mathworks Inc., 

Natick, MA) with a 4th-order band-pass Butterworth filter (15-400 Hz band) without phase 

distortions. The root mean squares of the EMG recordings from a window of 0.1s (205 samples) 

were calculated for three muscles (the external anal sphincter, the puborectalis muscle and the 

pubococcygeus muscle) from the rectal recordings for each contraction of each subject, following 

the method used in (Voorham-van der Zalm et al., 2013). To test the reliability of the probes, the 

intraclass correlations between two sessions (ICCs) for these three muscles were calculated to 
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determine different sources of EMG measurement variation (between subjects and within subject) 

following the method previously used in assessing an intravaginal probe (Grape, Dedering, & 

Jonasson, 2009).  

EMG decomposition based on the convolution kernel compensation (CKC) has been shown to 

be an effective tool for identifying the single MUAP from interferential surface EMG signals (A. 

Holobar & D. Zazula, 2007). This technique has been validated extensively with both simulated 

and experimental signals (A. Holobar & D. Zazula, 2007; X. Li et al., 2015). Our newly developed 

K-means clustering and convolution kernel compensation (KmCKC) approach was utilized to 

decompose the high-density rectal and vaginal EMG signals into their constituent MUAP trains 

(Liu et al., 2015; Ning, Zhu, Zhu, & Zhang, 2015). Briefly, the K-mean clustering method was first 

adopted to cluster firing times of the same motor unit (MU). The initial innervation pulse train can 

be estimated during this process by choosing an appropriate number of clustered groups and 

time instants so that the time instants fired by a single MU can be gathered into one group as 

completely as possible. Then an improved multi-step iterative CKC method was employed to 

update the estimated innervation pulse trains to improve the decomposition accuracy in a noisy 

environment. 

The IZ is the region of a MU including the neuromuscular junction where the MUAPs are 

generated and propagate in two opposing directions along the muscle fibers (Enck, Franz, et al., 

2004). The EMG signals propagating in opposite directions appear with opposite phases in the 

bipolar MUAP maps (Liu et al., 2015). Therefore, the position of the IZ of a particular MU can be 

localized from the bipolar map of the decomposed high-density MUAPs by checking the phases 

of the propagating signals. 

 

5.4 Results 

Ten healthy female subjects (age<40) were enrolled in this study. EMG recordings from two of 

them (1009 and 1010) were excluded because of large movement artifacts during contractions 

and bad electrode-mucosa contacts. The ICCs between two sessions were calculated (EAS 0.95, 
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puborectalis 0.88 and pubococcygeus 0.90), demonstrating a good (0.80<ICC<0.89) to high 

(ICC>0.90) reliability (Grape et al., 2009). Figure 5.2 shows an example of acquired EMG signals. 

MUAPs were detected at different depths of the EMG grid. Figure 5.3 shows an example of 

MUAP propagation patterns obtained from circumferential electrodes. EMG decomposition was 

successfully performed. IZs were visually inspected for each MUAP of each subject. The 

propagations of each MUAP were estimated from the high-density surface EMG signals. Figure 

5.4 shows an example of the identified IZs at different depths of the rectal probe. Up to 10 (5 ± 

3) vaginal motor units with 107 ± 80 repetitions of the MUAPs and up to 15 (9 ± 3) rectal motor 

units with 263 ± 111 repetitions of MUAPs were detected during each contraction. Figure 5.5 

shows an example of the IZ distributions obtained from the vaginal and rectal readings.  

 

 
 
Figure 5.2 Examples consecutive short contractions and sustained contractions. Reproduced 

from Y. Peng, J. He, R. Khavari, et al. (2016), with permission of Springer. 
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Figure 5.3 Example of MUAP propagation patterns. Reproduced from Y. Peng, J. He, R. Khavari, 

et al. (2016), with permission of Springer. 
 

 
 
Figure 5.4 Examples of the MUAP distributions among the entire grid surface of three MUs at the 

(a) superficial, (b) intermediate and (c) deep levels of the rectal probe. Reproduced 
from Y. Peng, J. He, R. Khavari, et al. (2016), with permission of Springer. 
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Figure 5.5 An example of the mapped IZ distributions and MUAP propagations of one subject. 

Reproduced from Y. Peng, J. He, R. Khavari, et al. (2016), with permission of 
Springer. 

 

5.5 Discussion and Conclusions 

In this study, we report development and testing of minimally-invasive intravaginal and 

intrarectal probes for simultaneous EMG acquisition of the PFM/EAS in women. EMG 

decomposition was performed using the KmCKC algorithm. MUAPs from different MUs separated 

and their IZs identified. A global IZ distribution map was provided for each probe of each subject. 
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For the vaginal signals, an average number of 5.1 ± 3.3 IZs were identified. To the best of our 

knowledge, this is the first effort made to perform MUAP detection using EMG readings recorded 

with an intravaginal probe. This may have important implications for prolapse studies. Cystocele 

and uterine prolapse have been found to be associated with levator avulsion injuries, in which the 

levator ani muscle may be disconnected from the side of the vaginal wall (H. P. Dietz & Simpson, 

2008). The MUAP and IZ information revealed from vaginal recordings may provide useful 

information in assessing the vaginal wall support from the lateral levator ani muscle attachment if 

the disrupted attachment creates a denervation-based injury. For the rectal signals, an average 

number of 9.3 ± 2.8 IZs were identified. This was qualitatively in agreement with number of IZs in 

reported studies (Cescon, Bottin, Fernandez Fraga, Azpiroz, & Merletti, 2008; Cescon et al., 

2014). We found that the IZ distributions obtained from both probes were not strictly left-right 

symmetric (Figure 5.5). This may be due to the unique innervation that each side of each 

PFM/EAS receives and this asymmetric innervation may exist in healthy females (Enck, 

Hinninghofen, et al., 2004; Enck & Vodusek, 2006). These results provide valuable information 

towards a better understanding of the synergistic activation of the PFM/EAS musculature. Though 

synergistic activations are found between the abdominal muscles and PFMs in women (Madill & 

McLean, 2008), it has never been investigated between muscles within the pelvic girdle 

musculature. Such information, available through concurrently monitoring EMG activity of 

different muscles with the developed EMG probes, would provide insights into the physiology of 

continence maintenance and compensation mechanism with functional defects. 

We also found that the anorectal MUAPs encircled the lumen more extensively compared with 

vaginal MUAPs. This may be due to the fact that the vaginal canal is only bilaterally attached to 

the PFM, while the anorectum is more fully surrounded by the PFM/EAS musculature. This 

finding may provide valuable information for clinical practice and pelvic floor physiotherapy. For 

example, mediolateral episiotomy is often preferred over midline episiotomy due to lower rates of 

obstetric injuries when episiotomy is deemed necessary, however, the selection of the incision 

angle and side, which should aim to minimize potential trauma, was often subjectively (Cescon et 

al., 2014). The map of the IZ distribution and muscle fiber extensions may help surgeons 
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objectively determine the incision location in order to minimize the obstetric trauma and the 

likelihood of postpartum pelvic floor disorders.  

Our probes could be employed to estimate the EMG signal crosstalk, defined as undesirable 

EMG signals from other muscles arising from volume-propagation (De Luca, Kuznetsov, Gilmore, 

& Roy, 2012). Crosstalk has been a persistent problem in the community and can severely 

misdirect the interpretation of results (Bo & Sherburn, 2005). The complexity of the female pelvic 

floor musculature is a confounding factor. The MUAP propagation mapped on the high-density 

electrode grid surface, as shown in Figure 5.4, showed the possibility of quantifying the volume-

propagation of one MU’s activity. The superficial muscle MU (Figure 5.4a, potentially from the 

EAS) and intermediate muscle MU (Figure 5.4b, likely from the puborectalis muscle) caused 

crosstalk only to the neighboring two rows, with about half of the original strength; however, the 

deep muscle MU (Figure 5.4c, likely from the pubococcygeus muscle) caused a more severe 

crosstalk, evidenced by the MUAPs seen in two rows away from the row in which the IZ was 

located with less attenuated magnitudes. Localizations and quantifications of these surface 

interference patterns would provide references for the crosstalk estimation and signal restoration.   

The EMG probes may help advance pelvic biomechanical modeling and muscle imaging 

research (Y. Peng, R. Khavari, et al., 2016). Many computational pelvic floor models have been 

developed recently to investigate the biomechanics of incontinence and prolapse (Chanda, 

Unnikrishnan, Roy, & Richter, 2015). Unfortunately, voluntary contraction of PFM/EAS has not 

been objectively considered in previously reported pelvic models because of the lack of 

appropriate techniques which can be used to quantitatively characterize pelvic muscle 

contractions. As a consequence, the performance of current pelvic modeling and biomechanical 

analysis approaches is limited. Incorporating the EMG measurements of different PFMs with the 

proposed probes in this study makes it possible to objectively quantify pelvic muscle contractions. 

This in turn will allow a more realistic characterization of the dynamic deformation of the female 

pelvic floor.   

One difficulty in this study was establishing the electrode-mucosa contact, a common 

challenge in such studies (Cescon et al., 2014; Enck & Vodusek, 2006; Keshwani & McLean, 



63 
 

2015). The signal quality was affected by the subject’s cooperation with the task and by the 

operator’s experience and ability to use a proper amount of gel, relieve the subject’s anxiety 

through communication and maintain correct probe placement. From these preliminary studies, 

we are gaining more experience and preparing for future tests in patients with incontinence. 

Another limitation is related to the MUAP detection technique. This technique provides 

information on only a representative MU pool because of factors such as the decomposition 

algorithm used and MU recruitment (R. Merletti, Holobar, & Farina, 2008). Alternatively, the 

complete quantification of MUs can be achieved by characterizing the number of functioning 

motor units (Gooch et al., 2014), which suggests another direction for future research. 

In this study, we describe and discuss minimally invasive intravaginal and intrarectal probes 

that were successfully developed and applied in MUAP detection and analysis. Preliminary 

results of a study of ten healthy female subjects are reported. The main findings of this study are 

that the muscle activity from different muscle groups can be simultaneously captured and that the 

distributions of the innervation zones of the pelvic floor muscle and extremal anal sphincters can 

be mapped with the high-density intravaginal and intrarectal surface EMG probes. The 

innervation zone distribution information obtained using our probes will be valuable in helping 

physicians better diagnose neuromuscular injuries that lead to alterations of the innervation zone 

distributions in PFM and EAS.  
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CHAPTER 6 – Surface EMG Decomposition Based Motor Unit Number Estimation  

 

 

6.1 Abstract 

Objective: To advance the motor unit number estimation (MUNE) technique using high density 

surface electromyography (EMG) decomposition. 

Methods: The K-means clustering convolution kernel compensation algorithm was employed to 

detect the single motor unit potentials (SMUPs) from high-density surface EMG recordings of the 

biceps brachii muscles in eight healthy subjects. Contraction forces were controlled at 10%, 20% 

and 30% of the maximal voluntary contraction (MVC). Achieved MUNE results and the 

representativeness of the SMUP pools were evaluated using a high-density weighted-average 

method. 

Results: Mean numbers of motor units were estimated as 288 ± 132, 155 ± 87, 107 ± 99 and 132 

± 61 by using the developed new MUNE at 10%, 20%, 30% and 10-30% MVCs, respectively. 

Over 20 SMUPs were obtained at each contraction level, and the mean residual variances were 

lower than 10%.  

Conclusions: The new MUNE method allows a convenient and non-invasive collection of a large 

size of SMUP pool with great representativeness. It provides a useful tool for estimating the motor 

unit number of proximal muscles. 

Significance: The present new MUNE method successfully avoids the use of intramuscular 

electrodes or multiple electrical stimuli which is required in currently available MUNE techniques; 

as such the new MUNE method can minimize patient discomfort for MUNE tests. 

 

6.2 Introduction 

Motor unit number estimation (MUNE) techniques are clinically useful by estimating the 

number of functioning motor units in a muscle, which can serve as a biomarker for the 

progression of motor neuron diseases or neuromuscular disorders. Various  MUNE methods 

have been developed since the incremental counting technique was introduced in 1971 



65 
 

(McComas, Fawcett, Campbell, & Sica, 1971). The main limitation with the incremental counting 

technique is the problem known as “alternation”, which leads to an erroneous overestimation of 

the MUNE. This problem attributes to the procedure that all stimuli are applied at a single site of 

the nerve, which results in possible alternative activations of two or more motor neurons at an 

incremental stimulus and complicates the separation of single motor neurons.  

The multiple-point stimulation (MPS) method was then developed to solve this problem by 

activating different single axons at different sites along nerves (Doherty & Brown, 1993; Kadrie, 

Yates, Milner-Brown, & Brown, 1976). However, the MPS MUNE is not applicable to proximal 

muscles, as it is difficult to stimulate a proximal nerve at enough sites to obtain a sufficient 

amount of  single motor unit potentials (SMUPs) (Gooch et al., 2014). This limitation also 

challenges the statistical method (Gooch et al., 2014), possibly because of the difficulty in steadily 

sustaining a large number of stimuli at several levels of intensity at proximal nerves that are often 

with a poor accessibility. Alternatively, the spike-triggered average (STA) method and its 

variation, the decomposition enhanced spike-triggered average (DE-STA) method, were 

developed to overcome this limitation (Boe, Stashuk, Brown, & Doherty, 2005; Boe, Stashuk, & 

Doherty, 2004; Doherty & Stashuk, 2003). The STA and DE-STA methods can be performed on 

both distal and proximal muscles, as SMUPs are obtained from voluntary contractions rather than 

multiple-points stimulation along nerve courses. However, the need of using intramuscular needle 

electromyography (EMG) electrodes to obtain the triggers for the construction of the SMUP pool 

in the STA or DE-STA methods makes them an invasive approach and demands much patient 

tolerance. A more advanced MUNE technique that is non-invasive and not limited to distal 

muscles will greatly help extend the applicability of current MUNE methods. 

High density (HD) surface EMG techniques have become a powerful tool for clinical 

neurophysiology (X. Li et al., 2015; Roberto Merletti, Botter, Troiano, Merlo, & Minetto, 2009; Van 

Dijk Johannes, 2012; Yao et al., 2015). Non-invasive HD surface EMG recordings can be 

decomposed into constituent motor unit action potential trains which can be further employed to 

extract SMUPs in a non-invasive manner for MUNE studies. Many surface EMG decomposition 

algorithms have been developed over the last decade (M. Chen & Zhou, 2016; Aleš Holobar & 
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Damjan Zazula, 2007; A. Holobar & D. Zazula, 2007; Kleine, van Dijk, Lapatki, Zwarts, & 

Stegeman, 2007; Ning et al., 2015) and undergone extensive investigations and validations 

(Almousa et al., 2015; Holobar, Minetto, Botter, Negro, & Farina, 2010; Liu et al., 2015; Marateb 

et al., 2011) in human. However, these algorithms have yet been applied to MUNE for the 

extraction of SMUP samples. Van Dijk and coworkers recently pioneered the application of the 

HD surface EMG in MUNE (J. Van Dijk et al., 2010; J. P. van Dijk et al., 2008; J. P. van Dijk et al., 

2010). This method offered a comprehensive way to calculate MUNE and evaluate the 

representativeness of SMUP samples based on the HD information. However, this HD MUNE 

was essentially based on the multiple-points stimulation and therefore the applicability to proximal 

muscles remains unmet. 

In this study, we present a new MUNE method that combines our earlier experience in HD 

surface EMG decomposition (Liu et al., 2015; Ning et al., 2015) and advantages offered by 

existing HD MUNE methods (J. P. van Dijk et al., 2008). This new method is non-invasive in 

nature and not limited by the locations of muscle.  

 

6.3 Materials and Methods 

6.3.1 Subjects 

A total of 8 healthy and physically active male subjects (mean age: 29 ± 4) participated in this 

study, and none of them has a history of peripheral nerve disease. The research protocol was 

approved by the local ethic committee and all subjects were fully informed of the purpose and 

goal of the study and gave informed consents. The biceps brachii muscles of the dominant hand 

were investigated.  

6.3.2 Stimulating and Recording Systems 

The musculocutaneous nerve was stimulated using the DS7 current stimulator (Digitimer Ltd, 

Welwyn Garden City, United Kingdom) with a bipolar stimulating electrode by an experienced 

physician (S.L.). High-density surface EMG signals of the biceps brachii muscles were recorded 

using two 2 flexible 8 × 8 arrays (TMSi, Enschede, The Netherlands) with an electrode diameter 

of 4.5 mm, and a center-to-center electrode distance of 8.5 mm, as shown in Figure 6.1a. This 
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HD EMG grid showed great competency in our previous EMG analysis including EMG 

decomposition (Liu et al., 2015). The EMG signals were acquired by a 136 channel Refa amplifier 

(TMSi, Enschede, The Netherlands) at a sampling rate of 2048 Hz per channel and stored in a 

personal laptop for offline analysis. 

 

 
 
Figure 6.1 Illustration of the experimental setup. Reproduced from Y. Peng, J. He, B. Yao, et al. 

(2016), with permission of Elsevier. 
 

6.3.3 Experimental Protocol 

An earlier study demonstrated that the force level is an important factor to consider when 

utilizing voluntary contractions to provide SMUPs (Boe et al., 2005). Therefore, contraction force 

levels were rigorously controlled in our study. Each subject was seated upright in a mobile Biodex 

chair (Biodex, Shirley, NY) with a standard 6 degrees-of-freedom load cell (ATI Inc, Apex, NC) 

setup used to accurately record the isometric contraction force of the biceps brachii during 
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flexion. The forearm and wrist were mounted on a plastic platform inside a fiberglass cast (Figure 

6.1b). A ring-mount interface was used to strap the wrist in a partial pronation position. This 

standard position served to minimize spurious force contributions from unrecorded muscles. The 

skin above the biceps brachii muscle was slightly abraded and cleaned. Two EMG grids were 

placed adjacently over the muscle belly and longitudinally along the muscle fiber direction. 

Double-sided tapes with electrode-matched holes were used to stick the grid surface to the skin 

to enhance the electrode-tissue contact with the help of conductive gels. The reference electrode 

was placed on the skin above the elbow of the arm on the same side of the EMG grids. A strap 

ground electrode was wrapped around the wrist on the contrary side.  Monopolar surface EMG 

signals were obtained at each channel relative to the reference electrode. 

The protocol to obtain the compound muscle action potential (CMAP) was adopted from our 

previous study (S. Li, Liu, Bhadane, Zhou, & Rymer, 2014). Briefly, trial electrical stimulation was 

first performed in an attempt to determine the optimal stimulation position that produced the 

maximal evoked CMAP. After the optimal stimulation position was localized and fixed, a series of 

stimuli was delivered with the stimulus strength increasing manually from 5 mA (in increments of 

5 mA) to the strength when a supramaximal response was reached. Each stimulus was a 

rectangular pulse with a width of 200µs. The supramaximal stimulation was repeated for three 

times and the largest one was chosen as the source for the CMAP signal. After the stimulation, 

participants were asked to perform maximal voluntary contractions (MVC) for three times with the 

contraction force vector in the x and z direction measured, as shown in Figure 6.1. The averaged 

force vector was taken as the effective MVC. Subsequently, the participants were asked to 

perform a series of voluntary contractions at different percentage levels of MVC with visual 

feedback displayed on the computer screen controlled by a load cell (Figure 6.1d). For each 

subject, voluntary contractions were performed at three levels (10%, 20% and 30% MVC) and 

repeated for 3 times at each level. Each repetition lasted approximately 8 seconds. Subjects were 

given sufficient recovery time between any two consecutive contractions to minimize fatigue. The 

order of the contraction levels were randomized by the operator prior to each session (Boe, 

Stashuk, & Doherty, 2006). 



69 
 

6.3.4 Data Analysis 

All data analysis was performed offline using Matlab (The Mathworks, Natick, MA). The 

surface EMG recordings were digitally bandpass filtered (10–500 Hz). Channels with poor signal 

qualities due to bad contacts were visually identified and removed from analysis. 

A number of signal decomposition methods such as the wavelet-based decomposition and 

blind source decomposition can be employed to decompose the surface EMG signals into their 

constituent motor unit action potential trains. The wavelet-based algorithms are challenged by the 

high superimposition of the motor unit action potentials (Gazzoni, Farina, & Merletti, 2004), which 

are frequently encountered in EMG signals at moderate contraction levels.  

Our recently developed K-mean clustering convolution kernel compensation (KmCKC) 

algorithm provides a suitable candidate for this purpose and was employed in this study to 

decompose the high-density surface EMG signals into SMUPs (Ning et al., 2015).  

In the first step, the correlation matrix between the interferential measurements of all channels 

was calculated (Aleš Holobar & Damjan Zazula, 2007; A. Holobar & D. Zazula, 2007; Ning et al., 

2015). This correlation matrix implicitly describes the firing patterns of all motor units (global pulse 

train) and can be further decomposed to extract the initial pulse trains (or trigger points) of 

different motor units through an appropriate selection of time instants to estimate the activity 

index of the global pulse train.  

The K-means clustering technique was then employed to cluster the firing instants of individual 

motor units via evaluating a distance function (Ning et al., 2015). During this process, the initial 

pulse train can be estimated by choosing an appropriate number of clustered groups and time 

instants so that the firing instants of a single motor unit can be gathered into one group as 

completely as possible.  

Then an improved multi-step iterative convolution kernel compensation method was employed 

to update the estimated initial pulse train to improve the decomposition accuracy. The final results 

of the decomposition method provide the intelligent trigger points of each identified motor unit and 

their waveforms can be constructed using the spike-triggered averaging (STA) method. It should 

be noted that our method is essentially different from STA or DE-STA MUNE methods, as the 
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spatiotemporal information from high-density EMG recordings was utilized to obtain intelligent 

triggers, avoiding the need of an invasive intramuscular needle electrode as used in DE-STA 

methods.  

Each decomposed SMUP was stored as an array with a window size of 205 samples (~ 0.1 

seconds) at each of the 128 channels. For simplicity, we use SMUPi(k; t) to represent the signals 

of the k-th channel of the i-th SMUP as a function of time sample t, where 1≤k≤128, 1≤t ≤205. 

First, all SMUPs obtained from the same repetition were compared by checking their firing 

sequences and waveforms. SMUPs with close firing sequences (difference < 1ms) or with similar 

waveforms were considered to originate from the same motor unit. This step was performed by 

the operator right after the decomposition results from each repetition were obtained. Then the 

entire SMUP pool, containing SMUPs from all repetitions of all MVCs, was systematically 

checked by calculating a modified channel-weighted correlation coefficient between any pair of 

SMUPs, as defined in Eq.(6.1): 

      , 
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Eq.(6.1) 

where Wi,j(k) is the weight assigned to the k-th channel (k = 1,2,…,128), Corri,j(k) and Ampi,j(k) 

measure the similarity in the waveform and amplitude between the k-th channels of the i-th SMUP 

and the j-th SMUP, respectively. Their definitions are provided in Eq. (6.2-6.4): 
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Eq.(6.2) 

where Ai(k) is the negative peak amplitude of k-th channel of the i-th SMUP and m is the dummy 

index used to calculate the sum of the negative peak amplitude product over all channels,  

      tkSMUPtkSMUPcorrcoefkCorr jiji ;,;, 
, 

Eq.(6.3) 

where corrcoef calculates the correlation coefficient between these two channels. Before the 

calculation, the two SMUPs were aligned by their onset time, defined as the time of instants of the 

largest negative peak among all channels, and 
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          .100  ,100/1, VkAkAifVkAkAkAmp jijiji       Eq.(6.4-a) 

       .,0,   elsekAmp ji      Eq.(6.4-b) 

The introduction of this modified correlation coefficient was inspired by the work of J. P. van 

Dijk et al. (2008), who proposed the weighted-average method for the calculation of MUNE from 

high-density surface EMG signals. In addition to using correlation as a means to check multiples, 

we also introduced the criteria based on the SMUP size, which is defined as the largest negative 

peak amplitude among all channels throughout this study, given that correlation alone does not 

tell the differences in amplitudes.  

SMUPs obtained from higher MVC levels may have high correlations but differ greatly in 

SMUP sizes. In our study, we employed an empirical value of 100µV to design the criteria in 

Eq.(6.4). The preliminary results suggested that two SMUPs are likely the same if the modified 

correlation coefficient is over 0.9 and less likely if it is less than 0.8. All SMUPs with a modified 

correlation coefficient larger than 0.8 were visually judged by the operator by comparing their 

waveforms and residuals (J. P. van Dijk et al., 2008). 

The MUNE and residual variance (RV) were calculated following a similar approach 

introduced in (J. P. van Dijk et al., 2008). First, all SMUPs in the pool were aligned by their onset 

instants. The mean SMUP was then obtained by averaging all SMUPs, yielding a high-density 

mean SMUP that is representative for the entire SMUP pool. This mean SMUP was later aligned 

with the CMAP at their onset instants. The calculation of the MUNE was described in Eq. (6.5):  
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Eq.(6.5) 

where ACMAP(k) and AmeanSMUP(k) are the negative peak amplitudes of k-th channels of the CMAP 

signal and the mean SMUP signal, respectively; the weight function w(k) for calculating the 

MUNE, as described in Eq. (6.6), can be interpreted as the particular case of Eq. (6.2), when the 

i-th and j-th SMUPs are both replaced by the mean SMUP:  
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Eq.(6.6) 

To evaluate the representativeness, the RV was calculated using Eq. (6.7): 
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Eq.(6.7) 

MUNE and RV were calculated separately at each MVC level as well as all MVCs. The 

CMAP was kept the same for all MUNE calculations. 

 

6.4 Results 

Main results achieved in this study are summarized in Table 6.1. The average CMAP across 

the eight subjects was 17.5 ± 3.3 mV. Initially, 1338 SMUPs were obtained from EMG 

decomposition results using the KmCKC algorithm, and 557 non-repeated SMUPs were kept 

after removing multiples for further analysis.  

For all eight subjects, at 10%, 20% and 30% MVCs, the mean number of SMUPs obtained 

from three repetitions was 23 ± 5, 23 ± 6 and 26 ± 7, with a mean SMUP size (measured as the 

amplitude of the largest negative peak among all channels) of 91.3 ± 42.6 µV, 192.5 ± 96.0 µV 

and 350.8 ± 208.6 µV, respectively. Figure 6.2 shows the distribution of the SMUP sizes after 

removing multiples from all MVC levels of all eight subjects. Figure 6.3 shows the overlapping plot 

of the SMUPs obtained from three contraction levels for one exemplary subject.  

The mean MUNE values obtained at three contraction levels for all subjects were 288 ± 132, 

155 ± 87 and 107 ± 99, respectively. When SMUPs from all MVC levels were used, the mean 

SMUP size and MUNE were 214.0 ± 124.2 µV and 132 ± 61. 

The mean RVs of 9.3% ± 5.9%, 10.1% ± 7.0% and 9.1% ± 5.8% were achieved at 10%, 20% 

and 30% MVCs, respectively, with an accumulative mean RV of 9.6% ± 6.0% for all MVC levels. 

Figure 6.4 shows the overlapping plot of the mean SMUP and the CMAP for exemplary subjects. 
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Figure 6.2 Histogram of all SMUP sizes for all eight subjects. The SMUP size was represented by 

the largest negative peak amplitude among all channels. Reproduced from Y. Peng, J. 
He, B. Yao, et al. (2016), with permission of Elsevier. 

 

 
 
Figure 6.3 Overlapping plot of SMUPs obtained at three contraction levels for subject 6 (with 

multiples removed) in one channel. Reproduced from Y. Peng, J. He, B. Yao, et al. 
(2016), with permission of Elsevier. 
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Figure 6.4 Spatiotemporal profiles of the mean SMUP (blue) and CMAP (red) for three subjects. 

Reproduced from Y. Peng, J. He, B. Yao, et al. (2016), with permission of Elsevier. 
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Table 6.1. CMAP, SMUP sizes, RV, MUNE at 10%, 20%, 30% and all levels for the biceps brachii 

ID CMAP 
10% MVC 20% MVC 30% MVC All MVCs (10% - 30%) 

SMUP 
(No.) 

RV 
(%) 

MUNE 
SMUP 
(No.) 

RV 
(%) 

MUNE 
SMUP 
(No.) 

RV 
(%) 

MUNE 
SMUP 
(No.) 

RV 
(%) 

MUNE 

1 20.0 
65.4 
(19) 

2 358 
115.6 
(20) 

6 230 
131.2 
(21) 

3 194 
104.1 
(60) 

4 246 

2 16.3 
88.5 
(28) 

14 178 
189.6 
(30) 

24 106 
443.1 
(34) 

22 45 
251.0 
(92) 

23 78 

3 19.9 
52.7 
(18) 

18 442 
116.9 
(30) 

13 177 
196.8 
(35) 

14 112 
135.3 
(83) 

14 159 

4 10.7 
30.8 
(20) 

16 522 
83.7 
(13) 

12 194 
148.5 
(25) 

9 90 
90.2 
(58) 

11 153 

5 15.3 
89.3 
(35) 

11 227 
181.3 
(25) 

15 124 
193.2 
(12) 

6 100 
111.6 
(47) 

8 177 

6 17.9 
145.7 
(22) 

5 168 
275.6 
(16) 

6 90 
556.7 
(21) 

7 45 
327.0 
(59) 

6 76 

7 17.6 
166.8 
(22) 

6 129 
400.0 
(29) 

7 56 
748.2 
(31) 

7 31 
469.1 
(82) 

7 49 

8 22.0 
91.0 
(22) 

2 279 
177.5 
(24) 

2 137 
388.7 
(29) 

6 77 
226.9 
(75) 

4 120 

Ave 17.5 
91.3 
(23) 

9.3 288 
192.5 
(23) 

10.1 155 
350.8 
(26) 

9.1 107 
214.0 
(70) 

9.6 132 

SD 3.3 42.6 (5) 5.9 132 
96.0 
(6) 

7.0 87 
208.6 

(7) 
5.8 99 

124.2 
(15) 

6.0 61 

* CMAP in mV, SMUP in µV 
* CMAP and SMUP sizes are represented by the largest negative peak among all channels 
Reproduced from Y. Peng, J. He, B. Yao, et al. (2016), with permission of Elsevier. 

 

6.5 Discussion and Conclusions 

In this study, we developed a novel MUNE method based on non-invasive high-density 

surface EMG decomposition and evaluated its performance on the biceps brachii muscles in eight 

healthy subjects. 

6.5.1 Decomposition and Representativeness 

A large pool of SMUPs (mean number > 20) was collected at each MVC level, with a high 

representativeness (mean RV < 10%). The uniformly low RV values in all MVC levels suggest 

that a representative SMUP pool can be well constructed under a fixed MVC below 30%, as long 

as a sufficiently large SMUP pool size is feasible. When all MVC levels were considered, more 

than 60 non-repeating SMUPs were available to provide a reliable estimation of the mean SMUP. 

This is reflected in the overlapping plot of the CMAP and the scaled mean SMUP using SMUPs 

from all MVCs, as shown in Figure 6.4, where great matches in waveforms are observed. The 

distribution of SMUP sizes across all subjects, as shown in Figure 6.2, is in accordance with 
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previously reported studies (Galea, Fehlings, Kirsch, & McComas, 2001; J. P. van Dijk et al., 

2008). 

It should be noted that the SMUP detection with the KmCKC algorithm is not exhaustive. This 

is actually a common challenge to all surface EMG decomposition methods (M. Chen & Zhou, 

2016; Aleš Holobar & Damjan Zazula, 2007; A. Holobar & D. Zazula, 2007; X. Li et al., 2015; Ning 

et al., 2015). We found that in our decomposition results, SMUPs detected at higher contraction 

levels were larger in amplitude than those detected at lower contraction levels, as shown in 

Figure 6.3. This is consistent with the findings in previous studies that undetected motor unit 

action potential usually comes from smaller motor units (Holobar et al., 2010).  

6.5.2 MUNE 

As the actual number of motor units in human biceps brachii muscles remains unavailable 

because of the difficulty in performing non-invasive anatomical count, we compared our results 

with previous MUNE studies on the same muscle. At the 10% MVC level, our MUNE is similar 

with the results reported in the literature  (288 ± 132 vs. 272 ± 124) (Boe et al., 2006), in which 

the DE-STA MUNE was employed at the same MVC level. The MUNE value achieved in this 

study when all MVC levels are considered is close to the report of Galea et al. (2001) (132.3 ± 

60.5 vs. 135.5 ± 64.6), in which an incremental stimulation method was employed. This similarity 

suggests that the SMUP pool obtained from an incremental stimulation may resemble the one 

constructed using SMUPs from voluntary contractions up to 30% MVC. By separating the SMUPs 

from different MVC levels, our results may explain the existing variations among reports 

employing different MUNE approaches when the same muscle group was studied (Gooch et al., 

2014). 

A decreasing trend of MUNEs against MVC levels was found, which is similar with the report 

of Boe et al. (2005), although a quantitative comparison was not available because different 

muscles were studied. We also find that the CMAP sizes established in our study (negative peak 

amplitude: 17.5 ± 3.3 mV) are much greater than reports of Boe et al. (2006) (negative peak 

amplitude: 11.9 ± 2.4 mV)  and Calder, Hall, Lester, Inglis, and Gabriel (2005) (peak to peak 

amplitude: 13.5 ± 4.1 mV). However, we tend to believe that this increase was more reliable 
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because of the employment of the high-density surface EMG grid, which allowed the recording 

site with the largest evoked response to be detected. The small electrode size, which helped 

reduce the effect of action potential averaging over the skin surface (J. Van Dijk, Lowery, Lapatki, 

& Stegeman, 2009), is also believed to be a factor leading to a higher amplitude. Besides, cross-

subject variations and sample size might play a role in causing this difference. 

6.5.3 Significance 

Although decomposition-based MUNE has been reported previously in DE-STA MUNEs (Boe 

et al., 2005; Boe et al., 2004; Doherty & Stashuk, 2003; Ives & Doherty, 2014), one distinguishing 

feature of our new MUNE approach is that it avoids using invasive intramuscular needle 

electrodes to obtain the triggers of SMUPs (Gooch et al., 2014). The SMUPs are rather obtained 

from the spatiotemporal information provided by non-invasive HD surface EMG recordings using 

the KmCKC algorithm (Ning et al., 2015). Previous high-density MUNE methods (J. P. van Dijk et 

al., 2008; J. P. van Dijk et al., 2010) are inherently based on the multiple-points stimulation 

technique. This technique is limited to distal muscles, as the stimulation needs to be performed at 

multiple points along the course of the nerve, allowing the collection of multiple SMUPs and 

reducing the problem of “alternation” (Gooch et al., 2014). For proximal muscles, a very limited 

portion of the nerve is accessible for electrical stimulation, making multiple site stimulation 

unavailable and results susceptible to “alternation”. Our method extends the application of the 

high-density MUNE method to proximal muscles, as the collection of SMUPs does not rely on 

multiple point stimulation along the course of the nerve, but rather on the high-density surface 

EMG signals during voluntary contractions. The MUNE can be estimated for both the distal and 

the proximal muscles, as the high-density surface electrode grid can be placed flexibly on both 

muscles. 

It is worth mentioning that the motor unit number index (MUNIX) approach has gained 

increasing popularity for its convenience in implementation (Nandedkar, Barkhaus, & StÅlberg, 

2010; Neuwirth, Nandedkar, StåLberg, & Weber, 2010) and its good reliability (Neuwirth et al., 

2011). However, its performance is limited when a muscle has server atrophy, as it cannot 

properly determine whether the decrease in MUNIX is accompanied with a reduction of the motor 
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unit action potential amplitude (loss of muscle fibers) or an actual loss of motor units (X. Li, 

Nandedkar, & Zhou, 2016; X. Y. Li, Rymer, & Zhou, 2012). Compared with MUNIX, MUNE 

approaches have the advantage that the MUNE results reflect the actual motor unit size and 

number, but they are less convenient in implementation. The HD-MUNE method proposed in our 

study can greatly improve the efficiency of MUNE implementation. Compared with traditional 

MUNE approaches, e.g., the MPS MUNE in which multiple-points stimulations are required or the 

DE-STA MUNE in which multiple needle insertions are needed, the proposed HD-MUNE method 

only requires a few voluntary contractions each of which lasts less than 10 seconds while still 

maintaining a high yield of SMUPs. The duration of the entire procedure could be further 

significantly reduced if contractions are only performed at one fixed MVC level, as long as the 

fixed MVC level is kept the same for the purpose of consistently tracking of the disease 

progression. In addition, with promising decomposition results achieved (Yun Peng, Jinbao He, et 

al., 2015; Y. Peng, J. He, R. Khavari, et al., 2016), we expect to apply this new MUNE method on 

pelvic floor muscles, the motor unit number of which plays an important role in the 

pathophysiology of pelvic floor disorders but has never been estimated. 

6.5.4 Limitations 

One limitation of this study is the lack of an assessment of the test-retest reliability. On one 

hand, it remains our next step to assess the reproducibility of this new approach for its further 

applications in clinical practices. On the other hand, the fact that the surface EMG decomposition 

algorithm has been extensively validated (Holobar et al., 2010; Marateb et al., 2011; Martinez-

Valdes, Laine, Falla, Mayer, & Farina, 2016; Ning et al., 2015) provides a solid basis to the 

accuracy and reliability of this new MUNE method. A remaining question is at which force level 

the MUNE should be performed. Answer to this question would be of great clinical significance, 

as it allows the selection of the optimal force level that makes the MUNE results most sensitive to 

the disease progression. Nevertheless, the large variation in the MUNE with force levels revealed 

in this study provides insights into the physiology of MUNE, and thus we recommend MUNE to be 

performed in a consistent testing condition.  
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6.5.5 Conclusions 

In conclusion, we presented a new MUNE method based on the high-density surface EMG 

decomposition that can non-invasively assess both distal and proximal muscles with a high yield 

of representative SMUPs. It is expected to extend the applicability of MUNE methods to more 

challenging clinical applications. 
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CHAPTER 7 – Conclusions and Suggestions for Future Research 

 

 

7.1 Summary of this Dissertation 

In summary, specific aims stated in Section 1.4 have been successfully achieved. 

 

Specific Aim # 1: to develop a subject-specific biomechanical pelvic model  

 First, a subject-specific biomechanical pelvic model has been successfully developed 

based on high-resolution MR images. 

 

 Next, this model was utilized to study and compare the relative importance of multiple 

pelvic floor structures to the urethral supporting function. Our results showed that the 

vaginal wall, the puborectalis muscle and the pubococcygeus muscle are the most 

important structures. 

 

 Next, this model was utilized to study the dynamic biomechanics of an implanted 

suburethral sling at different implantation locations. The simulation results suggested that 

the mid-distal location represented the optimal location as it best restored the urethral 

support with a minimal cost of interactional force. 

 

 Last, this model was utilized to study the situation for female athletic SUI, which occurs to 

young female athletes. By assigning proper boundary conditions, the model can 

accurately reflect the dynamics during a jump landing process. Our results suggested 

that urethral hypermobility may not be the major concern for urine leakage, compared 

with the elevated intravesical pressure. 
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Specific Aim # 2: to develop a subject-specific electrophysiological pelvic model 

 First, a subject-specific electrophysiological pelvic model has been successfully 

developed based on our novel intra-vaginal and intra-rectal high-density surface EMG 

probes. 

 

 Next, EMG signals were acquired from ten healthy subjects from both probes. Our 

advanced KmCKC decomposition algorithm was used to separate the single MUs from 

the raw EMG signals, with the IZ distribution described in a subject-specific manner. 

 

 Additionally, we have successfully developed a novel motor unit number estimation 

algorithm. This MUNE method is based on the KmCKC decomposition and therefore is 

non-invasive and patient-friendly. Pilot results were reported based on EMG signals of 

the bicep brachii muscles of eight healthy subjects.  This method is directly applicable to 

pelvic floor muscles when used in combination with our novel EMG probes. 

 

7.2 Suggestions for Future Research 

A number of new research areas can be explored based on the preliminary results 

summarized in this dissertation.  

First, the biomechanical models can be improved by properly describing the active contraction 

component of the muscle. Doing so will allow us to investigate not only passive pressure activities 

such as coughing, but also active process such as lifting the pelvic floor muscle to preserve 

continence.  

Second, as the urine is the current model is simplified as elastic solids, its fluid behavior can 

be realized in future efforts. Through the fluid-structure interaction analysis, the true urodynamics 

inside the bladder can be better characterized. Besides, the modeling method can also be applied 

to study male incontinence which is considered as one main complication after radical 

prostatectomy (Dias, Peng, Miles, et al., 2016). 
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Third, based on the electrophysiological model findings, more physiological factors can be 

included such as aging or childbirth. These factors are believed to affect the peripheral and/or 

central nerve systems that may alter the motor functions of pelvic floor muscles. It would be 

meaningful to look into these aspects in new studies with a larger population size. 

Finally, the subject-specific biomechanical and electrophysiological modeling approaches can 

be applied to the new research area of fecal incontinence, which shared a lot in common with 

urinary incontinence (Neshatian et al., 2016; Peng, Neshatian, Khavari, Boone, & Zhang, 2016; 

Peng, Neshatian, Quigley, & Zhang, 2016). The biomechanics and electrophysiology of the 

external anal sphincter muscle as well levator ani muscle can be characterized with our modeling 

approaches. These would provide new insights into the mechanism of fecal continence and may 

provide useful objective measures for better clinical application.  
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