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Abstract

A major challenge in numerical simulation of most natural phenomena is the presence

of disparate temporal and spatial scales. Capturing all the fine features can be com-

putationally prohibitive. Hence, development of efficient and accurate multi-scale

numerical algorithms has gained immense attention from engineers and scientists.

Typically, a single numerical method cannot efficiently capture all the aforemen-

tioned features. Due to the assumptions made in construction of numerical methods

and mathematical models, the range of applicability to various length and time-scales

is often limited. A direction in resolving this issue is to apply different numerical

methods in different regions of the computational domain. This strategy enables

computation of necessary details as desired by the user. In this work, we propose nu-

merical methodologies based on domain partitioning techniques that allow different

time-steps and time-integrators in different regions of the computational domain.

The first problem of interest is elastodynamics, which can pose various temporal

scales in impact, contact and wave propagation problems. A monolithic (strong)

coupling algorithm based on non-overlapping domain partitioning is proposed. The

proposed algorithm is based on the theory of differential/algebraic equations and its

numerical stability, energy conservation and accuracy is studied in detail. Following

these findings, we extend this algorithm to advection-diffusion-reaction problems.

The proposed algorithm proves useful especially in cases where the relative strength

of the involved processes changes dramatically with respect to spatial coordinates.

Numerical stability and accuracy of this method is studied and its application to fast

v



bimolecular chemical reactions is showcased. Further on, we confine our attention

to single and multiple-relaxation-time lattice Boltzmann methods for the advection-

diffusion equation and study their performance in preserving the maximum principle

and the non-negative constraint. Finally, a computational framework based on over-

lapping domain decomposition methods is proposed. This framework is designed for

advection-diffusion problems and allows coupling of the finite element method and

lattice Boltzmann methods with different time-steps and grid sizes. Additionally, a

new method for enforcing the Dirichlet and Neumann boundary conditions on the

numerical solution from the lattice Boltzmann method is proposed. This method is

based on maximization of entropy and ensures non-negativity of the discrete distri-

butions on the boundary of the domain. We study the performance of this framework

through numerical experiments and showcase its application to fast and equilibrium

chemical reactions.
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Chapter 1

INTRODUCTION AND MOTIVATION

One of the persisting challenges in computational sciences is the presence of dis-

parate mathematical scales in the domain of computation [3]. Examples of these

mathematical scales can be found in a variety of practical problems from solid and

fluid mechanics; for instance, solute and contaminant transport in porous media,

contact problems, dynamic crack propagation and wave propagation. Furthermore,

in interaction-type (multi-physics) problems such as fluid-structure interaction, soil-

structure interaction and thermal-structure interaction this disparity in mathemati-

cal scales is even more accentuated. Some, but not all, of the difficulties in numerical

simulation of multi-scale problems are as follows:

(i) The physical response of the system of interest can change dramatically through-

out the domain. For instance, material properties and the physical/chemical

processes can be quite different from one point to another. For instance, in

impact problems changes in dynamic and kinematic variables of the system oc-

cur at a much higher pace near the point of impact and are slower or damped

away from it. Another well-known example is the advection-diffusion-reaction

processes that can exhibit steep gradients (interior or interior layers) depending

on the relative strength of the involved terms.

(ii) The mathematical model in use may be incapable of including all the impor-
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tant physical/chemical features. Usually, the underlying mathematical models

for engineering and scientific problems are based on simplifying assumptions.

However, these assumptions may result in inaccuracy in the numerical approx-

imation.

(iii) The numerical method in use may not be able to capture all features of the

physical or chemical processes accurately or efficiently enough. In other words,

very fine discretization in the spatial or temporal domains might be needed, or

artificial numerical effects could be a hurdle toward a reliable estimate. As an

example, simulation of deformation of tall buildings under wind load, such as in

aeroelasticity, cannot be performed using one numerical technique for the fluid

and the solid mechanic problem. A reason is that predicting the response of

a structure to wind loading involves spatial and temporal scales that are very

different to the one used for predicting the response of the fluid (air in this

example).

Because of the mentioned reasons, and possibly many more, developing mathematical

and numerical frameworks for simulation of multi-scale and multi-physics problems

has become a major topic of interest. Over the past few years, multitude of numerical

methods have been developed to tackle the challenge of disparate time and length-

scales. Some of the most popular approaches towards resolving the multiple length

and time-scales are the Variational Multi-Scale (VMS) method [4], the Generalized

Finite Element Methods (GFEM) [5], Multi-Scale Finite Element Methods (MSFEM)

[6] and the Domain Decomposition Methods [7] in general. The main objective of
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this work is to present new methods based on domain decomposition techniques

that allow different time-steps, time-integrators and finite element formulations in

different subdomains. Hence, one can resolve multiple time-scales in the a variety of

time-dependent problems.

The rest of this work is organized as follows. In Chapter 2, a monolithic (strong)

and multi-time-step coupling method for elastodynamics is presented. In Chapter

3, this coupling method is extended to first-order time-dependent problem arising

from advection-diffusion-reaction equations. In Chapter 4, performance of single and

multiple-relaxation-time lattice Boltzmann methods in preserving maximum princi-

ple and the non-negative constraints is studied. In Chapter 5, a coupling strategy

for hybrid integration of advection-diffusion problems using lattice Boltzmann and

finite element methods is provided. Conclusions and possible directions for future

research are in Chapter 6.
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Chapter 2

MONOLITHICMULTI-TIME-STEP COUPLING METHOD

FOR ELASTODYNAMICS

2.1 Introduction and Motivation

Coupled problems (such as fluid-structure interaction, structure-structure inter-

action and thermal-structure interaction) have been the subject of intense research

in recent years in both computational mechanics and applied mathematics. The

report compiled by the Blue Ribbon Panel on Simulation-Based Engineering Sci-

ence emphasizes that the ability to solve coupled problems will be vital to accelerate

the advances in engineering and science through simulation [3]. Developing stable

and accurate numerical strategies for coupled problems can be challenging due to

several reasons. These problems may involve multiple temporal scales and different

spatial scales. One may have to deal with different types of equations for different

aspects of physics, which could be coupled nonlinear equations. It is noteworthy that

there exists neither a complete mathematical theory (for existence, uniqueness, and

sharp estimates) nor a comprehensive computational framework to solve any given

coupled problem. Some of the current research efforts are targeted towards resolv-

ing the aforementioned issues. Other research efforts are towards developing linear

and nonlinear solvers, parallel frameworks, and tools for heterogeneous computing

environments (including GPU-based computing) for coupled problems.
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Herein, we shall present a numerical approach that can handle moderate disparity

in temporal scales. We shall take elastodynamics as the benchmark problem, as

it serves two purposes. This problem is important in its own right. In addition,

the problem serves as a model problem to develop numerical algorithms for fluid-

structure interaction problems, which can be much more involved than a problem

typically encountered in elastodynamics. In a fluid-structure interaction simulation,

in addition to a coupling algorithm, robust mesh motion algorithms, data transfer

algorithms to interpolate data across mismatching meshes, and stable solvers for

fluids and solids are needed.

It is now well-recognized that neither implicit nor explicit time-stepping schemes

will be totally advantageous to meet all the desired features in a numerical simulation

(e.g., see the discussion in references [8, 9]). Many factors (which include mesh,

physical properties of the subdomain, accuracy, stability, total time of interest) affect

the choice of the time-stepping scheme(s) [10]. It is sometimes much more economical

to adopt different time-steps and/or time-stepping schemes in different subdomains.

To this end mixed methods and multi-time-step methods have been developed.

Multi-time-step and mixed methods

Mixed methods refer to a class of algorithms that employ different time-stepping

schemes in different subdomains. Some early efforts on mixed methods are [11–17].

The use of different time-steps in different subdomains is referred to as multi-time-

stepping or subcycling. Some representative works in this direction are [18–20]. But
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many of the prior efforts on mixed methods and multi-time-stepping suffer from

one or more of the following deficiencies: (i) The method cannot handle multiple

subdomains. (ii) The method may not be accurate for disparate material properties,

and for highly graded meshes. (iii) The method may suffer from very stringent

stability limits, which may not be practical to meet realistic problems. (iv) The

accuracy and stability depend on the preferential treatment of certain subdomains.

For example, in the application of the conventional staggered coupling method, one

domain is made to advance before another. The accuracy and stability depends on

the choice of the subdomain that has to advance first [21].

We conjecture that the main source of the aforementioned numerical deficien-

cies is due to the fact that the prior works tried to develop coupling methods for

transient problems by extending the strategies that were successful in developing

partitioned schemes for static problems. However, it should be emphasized that de-

signing coupling algorithms or partitioned schemes for transient problems require

special attention compared to static problems. The governing equations for both un-

decomposed and decomposed static problems are algebraic equations. In the case of

transient problems, the governing equations of an undecomposed problem are ordi-

nary differential equations (ODEs) whereas the governing equations of a decomposed

problem are differential-algebraic equations (DAEs).

Many of the prior works just employed the time-stepping schemes that are primar-

ily developed for ODEs to construct partitioned schemes. However, it is well-known

in the numerical analysis literature that care should be taken in applying popular

time integrating schemes developed for ODEs to solve DAEs. The title of Petzold’s
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seminal work [22] – “Differential/algebraic equations are not ODEs” – succinctly

summarizes this fact. This viewpoint was also taken in references [9, 23] to develop

coupling methods for first-order transient systems.

This chapter aims to develop a coupling method that allows different time-steps

and different time integrators in different parts of the computational domain, which

will be achieved using the results from the theory of differential-algebraic equations

(e.g., Ascher and Petzold [24]). In recent years, the trend is to use dual Schur

approach to develop multi-time-step coupling algorithms for second-order transient

systems. A notable work in this direction is by Gravouil and Combescure (e.g., Ref-

erence [8]), which we shall refer to as the GC method. Based on the GC method,

Pegon and Magonette developed a parallel inter-field method (the PM method), ref-

erence [25] is devoted to analysis of this method. Bursi et al. extended the PM

method by employing the generalized α-method in [26]. Real time partitioned time-

integration using the LSRT methods has been of interest recently in [27]. Mahjoubi

and Krenk proposed a multi-time-step coupling method using state-pace time inte-

gration in [28], a more general presentation of which appears in [29]. Another work

that is relevant to the current chapter is by Prakash and Hjelmstad [30], which we

shall refer to as the PH method. It is worth to critically review the GC and PH

methods.

A critical analysis of the GC and PH methods

The GC method is a multi-time-step coupling method for structural problems

based on Newmark family of time integrators. The GC coupling method is built
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based on the following assumptions:

(GC1) Enforcing the continuity of velocity on the interface at the fine time-steps.

(GC2) Linear interpolation of interface velocities.

(GC3) Linear interpolation of Lagrange multiplier within the coarsest time-step.

The GC method is shown to exhibit excessive numerical damping (for example, see

reference [30] and the numerical results presented in Section 2.6 of this chapter). The

PH method is based on a modification to the GC method, and is constructed based

on the following assumptions:

(PH1) Employed continuity of velocities along the subdomain interface at coarse

time-steps.

(PH2) Linear interpolation of all kinematic variables (displacements, velocities, ac-

celerations of the nodes on the subdomain interface and in the interior of the

subdomains) within a coarse time-step.

(PH3) The method as it is presented in reference [30] is valid only for two subdo-

mains.

(PH4) The subdomain that has the largest time-step has a more significant role in

formulating the algorithm.

In Section 2.4, we shall show that Assumption (PH2) is not consistent with the

underlying physics and need not be consistent with the underlying numerical time-

stepping scheme. It is also claimed that the PH method is energy preserving implying
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that the coupling does not affect the total physical energy of the system. In a sub-

sequent section, we shall present various notions of energy preserving by a coupling

algorithm, and show that the PH method is not energy preserving (on the contrary

to what has been claimed in Reference [30]).

Main contributions of this chapter

The proposed coupling method is developed by selecting the ideal combination

from the assumptions of the GC and PH methods, and thereby eliminating all the

deficiencies that these two methods suffer from. This chapter has made several

advancements in multi-time-step coupling of second-order transient systems, and

some of the main ones are as follows:

(i) Developing a coupling method that can handle multiple subdomains, allows dif-

ferent time-steps in different subdomains, allows different time-stepping schemes

under the Newmark family in different subdomains, and is stable and accurate.

(ii) A stability proof using the energy method to obtain sufficient conditions for

multi-time-step coupling is presented. Unlike many of the earlier works, the

contribution of interface and subdomains is taken into account to derive the

stability criteria. Unlike the prior works on multi-time-step coupling [8, 30],

the proof is constructed by taking into account the contributions from all the

subdomains and the interface, which is the correct form.

(iii) Documented the deficiencies of backward difference formulae (BDF) and im-

plicit Runge-Kutta (IRK) schemes (which are popular for solving differential-

9



algebraic equations) for solving second-order transient systems with invariants

(e.g., conservation of energy).

(iv) New notions of energy preservation are introduced and conditions under which

the proposed method satisfies any of those notions are also derived.

(v) A systematic study (both on the theoretical and numerical fronts) on the effect

of subcycling and system time-step on the accuracy is presented. Specifically,

we have shown that subcycling need not always improve accuracy. A criterion is

devised to guide whether subcycling will improve accuracy or not. An attractive

feature is that this criterion can be calculated on the fly during a numerical

simulation.

An outline of the chapter

The remainder of this chapter is organized as follows. Section 2.2 briefly out-

lines Newmark family of time stepping schemes. Section 2.3 presents the governing

equations for multiple subdomains with a discussion on the numerical treatment

of interface constraints. Section 2.4 presents the proposed multi-time-step coupling

method. A systematic theoretical analysis of the proposed coupling method (which

includes stability analysis based on the energy method, influence of perturbations,

bounds on interface drifts) is presented in Section 2.5. In Section 2.6, some of the

theoretical predictions are verified using a simple lumped parameter system. Section

2.7 is devoted to numerical energy dissipation properties of the proposed coupling

method. Some deficiencies of employing backward difference formulae and implicit
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Runge-Kutta schemes for developing coupling algorithms for elastodynamics are dis-

cussed in Section 2.8. Several representative numerical examples are presented in

Section 2.9 to illustrate the performance of the proposed coupling method. Conclu-

sions are drawn in Section 2.10.

2.2 Newmark Family of Time-Stepping Schemes

Consider a system of second-order ordinary differential equations as

Mü(t) +Ku(t) = f(t) t ∈ (0, T ], (2.1)

where t denotes time, T denotes the time interval of interest, M is a symmetric posi-

tive definite matrix, K is a symmetric positive semidefinite matrix, and a superposed

dot denotes derivative with respect to the time. The above system of equations can

arise from a semi-discrete finite element discretization of the governing equations in

linear elastodynamics [31]. In this case, M is referred to as the mass matrix, K

is the stiffness matrix, and u(t) is the nodal displacement vector. Of course, one

has to augment the above equation with initial conditions, which, in the context of

elastodynamics, will be the prescription of the initial displacement vector and the

initial velocity vector. One popular approach for solving equation (2.1) numerically

is to employ a time-stepping scheme from the Newmark family [32]. We now present

the Newmark time-stepping schemes in the context of undecomposed problem (i.e.,

the computational domain is not decomposed into subdomains). In the subsequent

sections, we shall extend the presentation to multiple subdomains with the possi-
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bility of using different time-steps and/or different time integrators under Newmark

family in different subdomains.

Let the time interval of interest T be divided into N sub-intervals such that

[0, T ] = N⋃
n=1

[tn−1, tn], (2.2)

where 0 = t0 < t1 < ⋯ < tN = T are referred to as time levels. To make the presentation

simple, we shall assume that the sub-intervals are uniform, in other words

∆t = tn − tn−1 ∀n = 1,⋯,N, (2.3)

where ∆t is commonly referred to as the time-step. It should be, however, noted

that the presentation can be easily extended to incorporate variable time-steps.

Remark 1 In our development of the proposed multi-time-step coupling method,

we shall use different kinds of time-steps (e.g., subdomain time-step, system time-

step). These time-steps will be introduced in a subsequent section. For the present

discussion, such a distinction is not required, as for single subdomain there is only

one time-step.

We shall employ the following notation to denote displacement, velocity and accel-

eration nodal vectors at discrete time levels as

d(n) = u(t = tn), v(n) = du

dt
∣
t=tn

and a(n) = d2u

dt2
∣
t=tn

. (2.4)

Newmark family of time stepping schemes, which is a two-parameter family of time
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integrators written as

d(n+1) = d(n) +∆t v(n) + ∆t2

2
((1 − 2β)a(n) + 2βa(n+1)) and (2.5a)

v(n+1) = v(n) +∆t ((1 − γ)a(n) + γa(n+1)) , (2.5b)

where β and γ are user-specified parameters. A numerical solution at (n + 1)-th
time level can be obtained by simultaneously solving equations (2.5a)–(2.5b) with

the equation

Ma(n+1) +Kd(n+1) = f (n+1), (2.6)

where

f (n+1) ∶= f(t = tn+1). (2.7)

It is well-known that one needs to choose γ ≥ 1/2 for numerical stability [33].

The time-stepping scheme will be unconditionally stable if 2β ≥ γ, and will be con-

ditionally stable if 2β < γ. Some popular time-stepping schemes under the Newmark

family are the central difference scheme (γ = 1/2,β = 0), the average acceleration

scheme (γ = 1/2,β = 1/4), and the linear acceleration scheme (γ = 1/2,β = 1/6). The
central difference scheme is also referred to as the velocity Verlet scheme, which is

the case in the molecular dynamics literature (e.g., see reference [34]). The central

difference scheme is explicit, second-order accurate, and conditionally stable. The

average acceleration scheme is implicit, second-order accurate, and unconditionally

stable. The linear acceleration scheme is implicit, second-order accurate, and condi-

tionally stable. For further details on Newmark family of time-stepping schemes in

the context of undecomposed problem, see references [31, 33, 35].
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2.3 Governing Equations for Multiple Subdomains

We now write governing equations for multiple subdomains. We will also outline

various ways to write subdomain interface conditions, and discuss their pros and

cons. To this end, let us divide the domain Ω into S non-overlapping subdomains,

which will be denoted by Ω1,⋯,ΩS . That is,

Ω =
S⋃
i=1

Ωi and Ωi ∩Ωj = ∅ for i ≠ j. (2.8)

We shall assume that the meshes in the subdomains are conforming along the sub-

domain interface, as shown in Figure 2.1. There are several ways to enforce the

continuity along the interface, and hence, several ways to write the governing equa-

tions for multiple subdomains. Herein, we shall employ the dual Schur approach [36],

which is also employed in the references that are relevant to this chapter (i.e., refer-

ences [8, 30]).

We shall denote the number of displacement degrees-of-freedom in the i-th sub-

domain by Ni. The size of the velocity and acceleration nodal vectors in the i-th

subdomain will also be Ni ×1. The interface continuity conditions can be compactly

written using signed Boolean matrices. A signed Boolean matrix is a matrix with

entries either 0, −1, or +1 such that each row has at most one non-zero entry. Let us

denote the total number of interface constraints by NC . The size of the matrix C i

will be NC ×Ni.

The governing equations for constrained multiple subdomains in a (time) contin-
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uous setting to be

M iüi(t) +Kiui(t) = f i(t) +CT
i λ(t) ∀i = 1,⋯, S,and (2.9a)

S∑
i=1

Ciui (t) = 0 (2.9b)

where the displacement vector of the i-th subdomain is denoted by ui (t), and the

external force applied to the i-th subdomain is denoted by f i(t). The mass and

stiffness matrices of the i-th subdomain are denoted by M i and K i respectively.

In this chapter, we shall assume that the matrices M i are symmetric and positive

definite, and the matrices K i to be symmetric and positive semi-definite. Equa-

tion (2.9b) is an algebraic constraint enforcing kinematic continuity of displacements

along the subdomain interface. The vector λ is the vector of Lagrange multipliers

arising due to the enforcement of constraints. The above equations should be aug-

mented with appropriate initial conditions. A brief discussion on the derivation of

the above equations can be found in Appendix. Equation (2.9) form a system of

differential-algebraic equations. For the benefit of broader audience, we now briefly

discuss differential-algebraic equations.

Remark 2 If one wants to including physical damping, equation (2.9a) should be

replaced with

M iüi(t) +Diu̇i +K iui(t) = f i(t) +CT
i λ(t) ∀i = 1,⋯, S, (2.10)

where Di is the damping matrix for the i-th subdomain. One can then easily extend

the proposed multi-time-step coupling method to include contribution from physical

damping. However, a more challenging task is to characterize the performance of the
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Interface interaction forces

Figure 2.1: A pictorial description of multiple subdomains: The domain Ω is decom-
posed into S subdomains, which are denoted by Ω1,⋯,ΩS . The subdo-
main interface is indicated using dashed curves. The mesh is assumed to
be conforming along the subdomain interface.

coupling method due to damping. This will depend on several issues like: whether

the damping is due to viscoelasticity, plasticity, viscoplasticity or frictional contact?

Whether the damping matrix be modeled as Rayleigh damping (which basically as-

sumes that the damping matrix is a linear combination of the mass matrix and the

stiffness matrix)? A systematic treatment of these issues are beyond the scope of this

chapter, and will be addressed in our future works.

Differential-algebraic equations

A differential-algebraic equation (DAE) is defined as an equation involving un-

known functions and their derivatives. A DAE, in its most general form, can be

written as

g (ẋ(t),x(t), t) = 0 t ∈ (0, T ], (2.11)

where the unknown function is denoted by x(t). A DAE of the form given by

equation (2.11) is commonly referred to as an implicit DAE. A quantity that is useful
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in the study of (smooth) differential-algebraic equations is the so-called differential

index, which was first introduced by Gear [37] and further popularized by Petzold

and Campbell [24, 38]. For a DAE of the form given by equation (2.11), differential

index is the minimum number of times one has to differentiate with respect to the

independent variable t to be able to rewrite equation (2.11) in the form

ẋ(t) = h(x(t), t), (2.12)

using only algebraic manipulations. It is commonly believed that the higher the

differential index the greater will be the difficulty in obtaining stable numerical solu-

tions. An important subclass of DAEs is titled as semi-explicit DAEs of Hessenberg

form, which can be written as

ẋ(t) = p(x(t),y(t), t), and (2.13a)

0 = q(x(t)). (2.13b)

From the above discussion, it is evident that the DAE given by equations (2.9)

is a semi-explicit DAE with differential index 3. One way of solving a higher index

DAE is to employ the standard index reduction technique to obtain a mathematically

equivalent DAE with lower differential index. It is noteworthy that index reduction

can have deleterious effect on the stability and accuracy of numerical solutions (e.g.,

drift in the constraint). We now explore several mathematically equivalent forms of

governing equations, which will have differential index ranging from 0 to 3.
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Subdomain interface constraints

As stated earlier, dual Schur techniques for domain decomposition are of inter-

est throughout this chapter. One may write several types of continuity constraints

resulting in semi-explicit DAEs of different differential indices. Note that in a con-

tinuous setting all these versions are mathematically equivalent. However, from a

numerical point of view, their performance can be dramatically different. In fact,

some may even exhibit instabilities. Some ways of constructing dual Schur methods

are discussed below, which guide future research on constructing new multi-time-step

coupling methods.

d-continuity method: This method considers the original set of equations given by

equations (2.9). The method obtains (u1 (t) ,⋯,uS (t) ,λ(t)) for t ∈ (0, T ] by solving

M iüi(t) +K iui(t) = f i(t) +CT
i λ (t) ∀i = 1,⋯, S, and (2.14a)

S∑
i=1

Ciui(t) = 0. (2.14b)

The above equations (2.14a)–(2.14b) form a system of DAEs of differential index

three. It has been discussed in the literature that the numerical solutions based on

this method are prone to instabilities [35, 39].

v-continuity method: This method obtains (u1 (t) ,⋯,uS (t) ,λ(t)) for t ∈ (0, T ]
by solving the equations

M iüi(t) +K iui(t) = f i(t) +CT
i λ (t) ∀i = 1,⋯, S, and (2.15a)

S∑
i=1

Ciu̇i(t) = 0. (2.15b)
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The above equations form a system of DAEs of differential index two. The v-

continuity method is of interest in this chapter and in the previous works by Gravouil

and Combescure [8], and Prakash and Hjelmstad [30]. This form of equations pro-

vides a simple but stable framework for seeking numerical solutions, and will form

the basis for the proposed multi-time-step coupling method.

a-continuity method: This method obtains (u1 (t) ,⋯,uS (t) ,λ (t)) for t ∈ (0, T ]
by solving the equations

M iüi(t) +K iui(t) = f i(t) +CT
i λ (t) ∀i = 1,⋯, S, and (2.16a)

S∑
i=1

Ciüi(t) = 0. (2.16b)

The differential index of the above DAE is unity. A drawback of this method is that

there can be significant irrecoverable drift in the displacements without employing

constraint stabilization or projection methods. The drift can be attributed to the

fact that there is no explicit constraint on the continuity of displacements along the

subdomain interface. We, therefore, do not employ this method in this chapter.

Baumgarte stabilization method: Under this method, kinematic constraint ap-

pears as a linear combination of the kinematic constraints under the d-continuity,

v-continuity and a-continuity methods. This method obtains (u1(t),⋯,uS(t),λ(t))
for t ∈ (0, T ] by solving the equations

M iüi(t) +K iui(t) = f i(t) +CT
i λ (t) ∀i = 1,⋯, S, and (2.17a)

S∑
i=1

Ciüi(t) + α

∆t

S∑
i=1

C iu̇i(t) + β

∆t2

S∑
i=1

C iui(t) = 0, (2.17b)

where α and β are non-dimensional user-specified parameters. One can achieve

damping in the drift displacements by choosing parameters satisfying the condition
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α2−4β < 0. This method was first proposed by Baumgarte in [40] for constrained me-

chanical systems. Note that in [40], the coefficients α and β have dimensions of [T ]−1
and [T ]−2 respectively, but in (2.17), those coefficients are non-dimensionalized. In

Reference [23], the Baumgarte stabilization method has been extended to first-order

differential-algebraic equations, and the authors were able to derive sufficient condi-

tions for stability using the energy method. To the best of the authors’ knowledge

deriving sufficient conditions for stability under the Baumgarte method for second-

order differential-algebraic equations is still an open problem. Some notable efforts

in this direction are [41–43].

Rewriting as a system of ordinary differential equations: One can differentiate fur-

ther, and rewrite the a-continuity method as a system of ordinary differential equa-

tions. From the definition of differential index, it is obvious that the differential

index of the resulting governing equations will be zero. The governing equations for

this method take the form

u̇i = vi , (2.18a)

v̇i =M
−1
i (f i +C

T
i λ −K iui) , and (2.18b)

λ = ( S∑
i=1

C iM
−1
i CT

i )
−1 [ S∑

i=1

CiM
−1
i (K iui − f i)] . (2.18c)

The main drawback of the above method is that there will be significant irrecover-

able drift in the continuity of subdomain interface displacements and velocities. As

advocated by Petzold in her famous chapter [22], solving DAEs is much harder than

solving systems of ODEs. Many of the popular integrators that are used for solving

ODEs are not stable and accurate for solving DAEs.
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Rewriting as a system of first-order differential-algebraic equations: Yet another

approach is to rewrite the governing equations in first-order form, and then employ

appropriate time-stepping schemes for solving first-order DAEs (e.g., backward differ-

ence formulae, implicit Runge-Kutta schemes). The first-order form can be achieved

by introducing an auxiliary variable. The governing equations take the form

u̇(t) = v(t) , (2.19a)

M iv̇i +Kiui = f i(t) +CT
i λ, and (2.19b)

S∑
i=1

Ciui = 0. (2.19c)

The differential index for the above system is three. If one replaces the interface

constraint equation (2.19c) with either

S∑
i=1

C iu̇i = 0 or
S∑
i=1

Civi = 0, (2.20)

then the differential index of the resulting differential-algebraic equations will be two.

If the interface constraint equation (2.19c) is replaced wih

S∑
i=1

C iv̇i = 0, (2.21)

then the resulting first-order DAEs will have index one.

In a subsequent section we shall show that the approach of rewriting the governing

equations as first-order DAEs and then employing time-stepping schemes that are

typically used for first-order transient systems is not accurate for elastodynamics.

Hence, we do not employ such an approach to develop a multi-time-step coupling

method. Instead, we consider the governing equations in second-order form and
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modify Newmark time-stepping schemes to be able to obtain stable and accurate

results for resulting DAEs. In the next section, we shall extend the v-continuity to

be able to employ different time-steps in different subdomains, and to couple explicit

and implicit time-stepping schemes.

2.4 Proposed Multi-Time-Step Coupling Method

The aim of this chapter is to solve equations (2.15a)–(2.15b) numerically by

allowing each subdomain to have its own time-step and its own time integrator from

the Newmark family of time stepping schemes. We first introduce notation that

will help in presenting the proposed multi-time-step coupling method in a concise

manner.

Notation for multi-time-step coupling

Both the GC and PH methods are devised by introducing the coarsest time-step,

which is the maximum of all the subdomain time-steps. This creates bias, at least in

the mathematical setting, towards the subdomain that has the maximum time-step.

Herein, we alleviate this drawback by introducing the notion of system time-step,

which is greater than or equal to the coarsest time-step. Moreover, this approach

allows for the possibility of all subdomains to subcycle, which is illustrated in a

subsequent section. Figure 3.2 gives a pictorial description of subdomain time-steps,

system time-step, and the concept of subcycling. We shall define ηi to be the ratio
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Figure 2.2: Multi-time-step time integration: A pictorial description of time levels (tn),
system time-step (∆t), subdomain time-step (∆ti), and subcycling. Note
that ηi = ∆t/∆ti. In this figure i = A or B.

between system time-step (∆t) and the i-th subdomain time-step (∆ti). That is

ηi ∶=
∆t

∆ti
⋅ (2.22)

For simplicity, we shall assume that ηi is a (positive) integer.

We shall use the following notation to represent the value of a quantity of interest

at subdomain time levels, e.g.,

◻(n+
j
ηi
)

i ≈ ◻i (t = n∆t + j∆ti) ⋅ (2.23)

We shall employ the following notation to group the kinematic quantities

X
(n+ j

ηi
)

i ∶=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a
(n+ j

ηi
)

i

v
(n+ j

ηi
)

i

d
(n+ j

ηi
)

i

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, X

(n+1)
i ∶=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

X
(n+ 1

ηi
)

i

X
(n+ 2

ηi
)

i

⋮
X
(n+1)
i

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and X(n+1) ∶=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

X
(n+1)
1

X
(n+1)
2

⋮
X
(n+1)
S

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⋅ (2.24)

The vector X
(n+ j

ηi
)

i contains all the kinematic unknowns for i-th subdomain over its

subdomain time-step, X(n+1)i contains all the kinematic unknowns for i-th subdomain
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over a system time-step, and the vector X(n+1) contains the kinematic unknowns of all

subdomains over a system time-step. We define the following augmented subdomain

signed Boolean matrices

Ci ∶=
⎡⎢⎢⎢⎢⎣
Oi Oi Oi122222222222222222222222222232222222222222222222222222224

1

Oi Oi Oi122222222222222222222222222232222222222222222222222222224
2

⋯ ⋯ ⋯ Oi Oi Oi122222222222222222222222222232222222222222222222222222224
ηi−1

Oi C i Oi12222222222222222222222222222322222222222222222222222222224
ηi

⎤⎥⎥⎥⎥⎦ , (2.25)

where the matrix Oi contains zeros of the same size as C i (which is NC ×Ni). It is

evident that the size of Ci is NC × 3ηiNi. The augmented signed Boolean matrix for

the entire system is defined as

C ∶= [ C1 C2 ⋯ CS
] ⋅ (2.26)

The size of C is NC×(∑S
i=1 3ηiNi). The following augmented signed Boolean matrices

will be useful in taking into account the effect of interface forces using

BT
i ∶= [ − 1

ηi
Ci Oi Oi − 2

ηi
Ci Oi Oi ⋯ ⋯ ⋯ −ηi

ηi
Ci Oi Oi

] ⋅ (2.27)

The corresponding signed Boolean matrix for the entire system can be written as

B ∶=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

B1

B2

⋮
BS

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⋅ (2.28)

We shall define the following augmented matrices for each subdomain as

Li ∶=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

M i Oi K i

−γi∆tiI i I i Oi

−βi∆t2i I i Oi I i

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, Ri ∶=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Oi Oi Oi

(1 − γi)∆tiI i I i Oi

(1
2 − βi)∆t2i I i ∆tiIi I i

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (2.29)

where Oi denotes a matrix containing zeros of size Ni ×Ni, and Ii is the identity

matrix of size Ni ×Ni.
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Multi-time-step coupling

The proposed multi-time-step coupling method is developed based on the follow-

ing assumptions:

(A) Enforce the continuity of interface velocities at system time-steps.

(B) The corresponding Lagrange multipliers (which will be the interface reactions)

are calculated at system time-steps. (It should be noted that the Lagrange

multipliers are unknowns, and will be a part of the solution.)

(C) The Lagrange multipliers are interpolated linearly within system time-steps to

approximate their values at subdomain time-steps.

(D) The equilibrium equations in each subdomain are enforced at their correspond-

ing subdomain time levels in such a way that the coupling method can handle

arbitrary number of subdomains.

Assumptions (B) and (C) take the mathematical form

λ
(n+ j

ηi
) = (1 − j

ηi
)λ(n) + ( j

ηi
)λ(n+1), (2.30)

where λ(n) and λ(n+1) are Lagrange multipliers at system time levels. Using equation

(2.30), Assumption (D) takes the form

M ia
(n+ j+1

ηi
)

i +K id
(n+ j+1

ηi
)

i − j + 1
ηi

CT
i (λ(n+1) −λ(n)) = f (n+ j+1

ηi
)

i +CT
i λ
(n), (2.31)
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and the relations for the time-stepping schemes for the i-th subdomain take the form

d
(n+ j+1

ηi
)

i = d
(n+ j

ηi
)

i +∆tiv
(n+ j

ηi
)

i + (∆ti)2
2
((1 − 2βi)a(n+ j

ηi
)

i + 2βia(n+
j+1
ηi
)

i ) , (2.32a)

v
(n+ j+1

ηi
)

i = v
(n+ j

ηi
)

i +∆ti ((1 − γi)a(n+ j
ηi
)

i + γia(n+
j+1
ηi
)

i ) , (2.32b)

where βi and γi are the Newmark parameters for the i-th subdomain. Assumption

(A) takes the mathematical form

S∑
i=1

CiX
(n+1)
i = 0⋅ (2.33)

Or, more compactly,

CX(n+1) = 0⋅ (2.34)

Advance a subdomain over its subdomain time-step

Using the above notation, the governing equations to advance the state of i-th

subdomain over its time-step can be compactly written as

LiX
(n+ j+1

ηi
)

i − (j + 1
ηi
) C̃T

i (λ(n+1) −λ(n)) = P(n+ j+1
ηi
)

i + C̃T
i λ
(n) +RiX

(n+ j
ηi
)

i , (2.35)

where we used the notations

C̃i ∶= [ C i Oi Oi
]and P

(n+ j
ηi
)

i ∶=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f
(n+ j

ηi
)

i

0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⋅ (2.36)
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Advance a subdomain over a system time-step

The governing equations to advance a subdomain over a system time-step can be

compactly written as

QiX
(n+1)
i +Bi (λ(n+1) −λ(n)) = F(n+1)i , (2.37)

where the matrix Qi is defined as

Qi ∶=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Li

−Ri Li

⋱ ⋱
−Ri Li

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⋅ (2.38)

Advance all subdomains over a system time-step

We now write the governing equations to advance all the subdomains from (sys-

tem) time level tn to tn+1 (i.e., advance all subdomains by a system time-step) in a

compact form. The mathematical statement takes the following form: Find X(n+1)

and λ(n+1) by solving the system of linear equations

⎡⎢⎢⎢⎢⎢⎢⎢⎣
A B

C O

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣
X(n+1)

λ(n+1) −λ(n)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣
F(n+1)

0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (2.39)

where the matrix A is defined as

A ∶=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Q1

Q2

⋱
QS

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (2.40)
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with the notation

F(n+1) ∶=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

F
(n+1)
1

F
(n+1)
2

⋮
F
(n+1)
S

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and F
(n+1)
i ∶=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

P
(n+ 1

ηi
)

i + C̃T
i λ
(n) +RiX

(n)
i

P
(n+ 2

ηi
)

i + C̃T
i λ
(n)

⋮
P
(n+1)
i + C̃T

i λ
(n)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⋅ (2.41)

Comments on the derivation of the PH method in

Reference [30]

One main assumption in deriving the PH method is that the acceleration, ve-

locity and displacement all vary linearly with time within a system time-step. It

should be emphasized that such an assumption is not self-consistent. Moreover, this

assumption need not be consistent with the underlying time stepping scheme. To

wit, the assumption made in deriving the PH method takes the mathematical form

a
(n+ j

ηi
)

i = (1 − j

ηi
)a(n)i + j

ηi
a
(n+1)
i , (2.42a)

v
(n+ j

ηi
)

i = (1 − j

ηi
)v(n)i + j

ηi
v
(n+1)
i ,and (2.42b)

d
(n+ j

ηi
)

i = (1 − j

ηi
)d(n)i + j

ηi
d
(n+1)
i ⋅ (2.42c)

Let us consider equation (2.42a), which can be interpreted as

ai(t) = a(n)i + (t − tn)(tn+1 − tn) (a(n+1)i − a(n)i ) tn ≤ t ≤ tn+1. (2.43)

If the acceleration varies linearly with the time, the velocity should vary quadrati-

cally with the time, and the displacement should vary cubic with the time. Hence,

equations (2.42a)–(2.42c) are not inherently consistent.
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In addition, this assumption need not be consistent with the underlying time

stepping scheme, which is typically derived by assuming an ansatz functional form

for the variation of the acceleration, velocity or displacement with respect to the time.

For example, Newmark average acceleration scheme (γ = 1/2,β = 1/4) is constructed
by assuming that the acceleration is constant within a time-step [33]. The assumption

made in deriving the PH method that the acceleration varies linearly with time

within a system time step (i.e., equation (2.42a) or (2.43)) will not be consistent if,

say, one employs the Newmark average acceleration scheme under the multi-time-

step coupling method. More importantly, as shown in the previous section, such a

mathematically inconsistent assumption is not warranted to develop a multi-time-

step coupling method. Also, the multi-time-step coupling method as presented in

Reference [30] is restricted to two subdomains. There is no restriction on the number

of subdomains in the proposed multi-time-step coupling method.

Remark 3 As mentioned earlier, the PH method (as presented in Reference [30])

can handle only two subdomains. Preference is given to the subdomain that has the

coarsest time-step. For example, in the final form of the PH method (see [30, equation

(43)]), the forcing function to advance subdomain B uses Si, which is based on the

quantities of subdomain A. But the forcing function to advance subdomain A does

not employ any quantities of subdomain B. Recently, a tree-based approach has

been proposed in Reference [44] that combines two subdomains at a time to solve

multiple subdomains, which will be computationally intensive. In the case of two

subdomains (i.e., S = 2), the proposed coupling method will be same as the PH method
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if the applied external forces on the subdomain with the coarse time-step is affine

with respect to time. The proposed coupling method, however, can handle multiple

subdomains, and does not give preference to any subdomain. It should be emphasized

that if one wants to implement in a recursive manner using a tree-based approach,

the proposed method is amenable.

2.5 A Theoretical Analysis of the Proposed Coupling Method

Stability analysis using the energy method

We shall employ the energy method to show the stability of the proposed multi-

time-step coupling method. The energy method is a popular strategy employed in

Mathematical Analysis to derive estimates and to perform stability analysis. The

method is widely employed in the theory of partial differential equations [45], and

numerical analysis [31, 46]. The basic idea behind the energy method is to choose

an appropriate norm (which is referred to as the energy norm) and show that the

solution is bounded under this norm. It should be noted that the energy norm may

not correspond to the physical energy.

We shall now introduce the notation that is needed to apply the energy method.

The jump and average operators over the system time-step are, respectively, denoted

by !⋅" and ⟪⋅⟫. That is,
#
x(n)

$ ∶= x(n+1) −x(n) and (2.44a)

⟪x(n)⟫ ∶= 1
2
(x(n) +x(n+1)) ⋅ (2.44b)
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The jump and average operators over the subdomain time-step of the i-th subdomain

are, respectively, denoted by [⋅]i and ⟨⋅⟩i. That is,

[x(n+ j
ηi
)]

i

∶= x(n+ j+1
ηi
) −x(n+ j

ηi
)
and (2.45a)

⟨x(n+ j
ηi
)⟩

i

∶= 1
2
(x(n+ j

ηi
) +x(n+ j+1

ηi
)) ⋅ (2.45b)

It is easy to show that, for any symmetric matrix S, the jump and average operators

obey the relationship

#
x(n)

$T
S ⟪x(n)⟫ = 1

2

%
x(n)TSx(n)

&
⋅ (2.46)

A similar relation holds for [⋅]i and ⟨⋅⟩i. It is important to note that the jump and

average operators are linear. That is, for any α,β ∈ R we have

!αx + βy" = α!x" + β!y" and (2.47a)

⟪αx + βy⟫ = α⟪x⟫ + β⟪y⟫⋅ (2.47b)

We shall call a sequence of vectors {x(n)}∞n=0 to be bounded ∀n if there exists a real

number 0 <M < +∞ such that

∥x(n)∥ <M ∀n ⋅ (2.48)

For convenience, we shall use Ai to denote

Ai ∶=M i + (∆ti)2 (βi − γi
2
)K i⋅ (2.49)

The critical time-step ∆tcriti ≥ 0 in the i-th subdomain is the maximum time-step

for which the matrix Ai is positive definite. It should be emphasized that ∆tcriti is
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the critical subdomain time-step assuming that there is no coupling between subdo-

mains, which can be easily calculated. Let ωmax
i be the maximum eigenvalue of the

generalized eigenvalue problem for the i-th subdomain. That is,

ω2
iM ixi =Kixi, (2.50)

where xi is the corresponding eigenvector. Then the critical time-step for the i-th

subdomain can be written as

∆tcriti =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
+∞ for 2βi ≥ γi ≥ 1/2

1

ωmax
i

√
γi/2−βi

for γi ≥ 1/2 and βi < γi/2
⋅ (2.51)

We shall choose the subdomain time-step to be smaller than the corresponding crit-

ical time-step for the subdomain. That is,

∆ti <∆tcriti ⋅ (2.52)

A detailed discussion on the critical time-steps for Newmark family of time inte-

grators can be found in references [31, 33]. For Newmark family of time stepping

schemes, it is easy to check that

[v(n+ j
ηi
)

i ]
i

=∆ti (⟨a(n+ j
ηi
)

i ⟩
i

+ (γi − 1
2
)[a(n+ j

ηi
)

i ]
i

) and (2.53a)

[d(n+ j
ηi
)

i ]
i

= ∆ti ⟨v(n+ j
ηi
)

i ⟩
i

+∆t2i (βi − γi2 )[a
(n+ j

ηi
)

i ]
i

⋅ (2.53b)

Theorem 1 If ∆ti <∆tcriti in all subdomains, then the velocity and acceleration vec-

tors for all subdomains are bounded ∀n under the proposed multi-time-step coupling

method.
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Proof 1 Using the governing equation for the i-th subdomain, and the linear inter-

polation of the Lagrange multiplier, we obtain the equation

M i [a(n+ j
ηi
)

i ]
i

+K i [d(n+ j
ηi
)

i ]
i

=
1

ηi
CT

i

%
λ(n)

&
⋅ (2.54)

Using equation (2.53b), the above equation can be rewritten as

Ai [a(n+ j
ηi
)

i ]
i

+∆tiKi ⟨v(n+ j
ηi
)

i ⟩
i

=
1

ηi
CT

i

%
λ(n)

&
⋅ (2.55)

Premultiplying both sides by [v(n+ j
ηi
)

i ]
i

and using equation (2.53a), we obtain

∆ti ⟨a(n+ j
ηi
)

i ⟩T
i

Ai [a(n+ j
ηi
)

i ]
i

+∆ti (γi − 1
2
)[a(n+ j

ηi
)

i ]T
i

Ai [a(n+ j
ηi
)

i ]
i

(2.56)

+∆ti [v(n+ j
ηi
)

i ]T
i

Ki ⟨v(n+ j
ηi
)

i ⟩
i

=
1

ηi

%
λ(n)

&T

C i [v(n+ j
ηi
)

i ]
i

⋅

Since γ ≥ 1
2
and Ai is positive definite (as ∆ti <∆tcriti ), we can conclude that

∆ti ⟨a(n+ j
ηi
)

i ⟩T
i

Ai [a(n+ j
ηi
)

i ]
i

+∆ti [v(n+ j
ηi
)

i ]T
i

Ki ⟨v(n+ j
ηi
)

i ⟩
i

≤
1

ηi

%
λ(n)

&T

C i [v(n+ j
ηi
)

i ]
i

⋅

(2.57)

Noting that ∆t = ηi∆ti, and the matrices Ai and K i are symmetric, we obtain

∆t

2

⎡⎢⎢⎢⎢⎣a
(n+ j

ηi
)

i

T

Aia
(n+ j

ηi
)

i

⎤⎥⎥⎥⎥⎦i +
∆t

2

⎡⎢⎢⎢⎢⎣v
(n+ j

ηi
)

i

T

K iv
(n+ j

ηi
)

i

⎤⎥⎥⎥⎥⎦i ≤
%
λ(n)

&T

Ci [v(n+ j
ηi
)

i ]
i

⋅

(2.58)

By summing over j (j = 1,⋯,ηi) we obtain

∆t

2

%
a
(n)
i

T
Aia

(n)
i + v(n)i

T
K iv

(n)
i

&
≤

#
λ(n)

$T
S∑
i=1

Ci

%
v
(n)
i

&
⋅ (2.59)

Summing over i (i = 1,⋯, S) and using the continuity of velocities at system time-

steps, we obtain the inequality

S∑
i=1

%
a
(n)
i

T
Aia

(n)
i + v(n)i

T
K iv

(n)
i

&
≤ 0⋅ (2.60)
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This further implies that

S∑
i=1

(a(n+1)i

T
Aia

(n+1)
i + v(n+1)i

T
K iv

(n+1)
i ) ≤ S∑

i=1

(a(n)i

T
Aia

(n)
i + v(n)i

T
K iv

(n)
i )

≤ ... ≤
S∑
i=1

(a(0)i

T
Aia

(0)
i + v(0)i

T
K iv

(0)
i ) ⋅
(2.61)

Since the matrices Ai (i = 1,⋯, S) are positive definite, the matrices K i (i = 1,⋯, S)
are positive semidefinite, and the vectors v(0)i and a

(0)
i are bounded, one can conclude

that the vectors a
(n)
i and v

(n)
i are bounded ∀n and for all subdomains.

Remark 4 Strictly speaking, in the above proof, one can only conclude that v(n)i are

bounded except for vectors that have a component in the null space of K i. This is

the case even for the undecomposed case (i.e., no coupling) under the energy method.

Influence of perturbations under the proposed coupling

method

We shall perform the analysis assuming no subcycling. We will follow a procedure

similar to the one presented in [47] for differential-algebraic equations. We shall begin

with the original system of equations over a (system) time-step as

M ia
(n+1)
i +Kid

(n+1)
i = f (n+1)i +CT

i λ
(n+1), (2.62a)

v
(n+1)
i = v(n)i +∆t((1 − γi)a(n)i + γia(n+1)i ) , (2.62b)

d
(n+1)
i = d(n)i +∆tv

(n)
i + ∆t2

2
((1 − 2βi)a(n)i + 2βia(n+1)i ) and (2.62c)

S∑
i=1

Civ
(n+1)
i = 0⋅ (2.62d)
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Now consider the perturbed system

M iâ
(n+1)
i +Kid̂i

(n+1)
= f (n+1)i +CT

i λ̂
(n+1)

, (2.63a)

v̂
(n+1)
i = v̂(n)i +∆t((1 − γi) â(n)i + γiâ(n+1)i ) +∆tεvi , (2.63b)

d̂
(n+1)
i = d̂

(n)
i +∆tv̂

(n)
i + ∆t2

2
((1 − 2βi) â(n)i + 2βiâ(n+1)i ) +∆t2εdi and (2.63c)

S∑
i=1

Civ̂
(n+1)
i = ελ⋅ (2.63d)

where εvi , εdi and ελ are, respectively, the perturbations to the original system of

equations (2.62a)–(2.62d). The solution to this perturbed system of equations will

be â
(n+1)
i , v̂(n+1)i , d̂

(n+1)
i and λ̂

(n+1)
. For convenience, we shall define the quantities

δa
(n+1)
i ∶= â(n+1)i −a(n+1)i , (2.64a)

δv
(n+1)
i ∶= v̂(n+1)i − v(n+1)i , (2.64b)

δd
(n+1)
i ∶= d̂(n+1)i − d(n+1)i and (2.64c)

δλ(n+1) ∶= λ̂(n+1) −λ(n+1). (2.64d)

By subtracting equation (2.62a) from equation (2.63a) we obtain

M iδa
(n+1)
i +Kiδd

(n+1)
i = CT

i δλ
(n+1)⋅ (2.65)

Using equations (2.62c) and (2.63c), the above equation can be written as

δa
(n+1)
i +B−1i Ki (δd(n)i +∆tδv

(n)
i +∆t2(1/2 − βi)δa(n)i ) =B−1i CT

i δλ
(n+1) −∆t2B−1i K iεdi ,

(2.66)

where the matrix Bi has been defined as

Bi ∶=M i + βi∆t2K i⋅ (2.67)
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The operation B−1i in equation (2.66) is justified as the matrix is positive definite

and hence invertible. By multiplying both sides of equation (2.66) by γi∆t and using

equations (2.62b) and (2.63b), one can arrive at the equation

δv
(n+1)
i − δv(n)i − (1 − γi)∆tδa

(n)
i −∆tεvi + γi∆tB−1i K i (δd(n)i +∆tδv

(n)
i +∆t2(1/2 − βi)δa(n)i )

= γi∆tB−1i CT
i δλ

(n+1) − γi∆t3B−1i K iεdi ⋅ (2.68)

We shall assume that ∑S
i=1Ciδv

(n)
i = 0. That is, the constraint is exactly satisfied

at the n-th time level. Premultiplying both sides by Ci, summing over i (i.e., the

number of subdomains), and using equations (2.62d) and (2.63d); one can arrive at

the equation

ελ −∆t
S∑
i=1

(1 − γi)C iδa
(n)
i −∆t

S∑
i=1

Ciεvi

+∆t
S∑
i=1

γiCiB
−1
i K i (δd(n)i +∆tδv

(n)
i +∆t2(1/2 − βi)δa(n)i )

=∆t( S∑
i=1

γiCiB
−1
i CT

i ) δλ(n+1) −∆t3
S∑
i=1

γiCiB
−1
i Kiεdi ⋅

(2.69)

By taking norm on both sides and invoking triangle inequality, one can arrive at the

following estimate for δλ(n+1) as

∥δλ(n+1)∥ ≤ Cλ ( 1

∆t
∥ελ∥ + S∑

i=1

(∥εvi∥ +∆t2∥εdi∥ + ∥δa(n)i ∥ +∆t∥δv(n)i ∥ + ∥δd(n)i ∥)) ,
(2.70)
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where Cλ is a constant. Following a similar procedure for displacements, velocities,

and accelerations we obtain

∥δd(n+1)i ∥ ≤ Cd (∥δd(n)i ∥ +∆t∥δv(n)i ∥ +∆t2∥εdi∥ +∆t∥ελ∥ + S∑
i=1

(∆t2∥δa(n)i ∥ +∆t∥εvi∥)) ,
(2.71)

∥δv(n+1)i ∥ ≤ Cv (∥δv(n)i ∥ + ∥ελ∥ + S∑
i=1

(∆t∥δa(n)i ∥ +∆t∥δd(n)i ∥ +∆t3∥εdi∥ +∆t∥εvi∥)) and

(2.72)

∥δa(n+1)i ∥ ≤ Ca ( 1

∆t
∥ελ∥ +∆t∥δv(n)i ∥ + S∑

i=1

(∥δa(n)i ∥ + ∥δd(n)i ∥ +∆t2∥εdi∥ + ∥εvi∥)) ,
(2.73)

where Cd, Cv and Ca are constants. From the above estimate (2.70), one can see

that a perturbation in the constraint, ελ, leads to an amplification by 1/∆t in the

Lagrange multiplier. On the other hand, the perturbations in the variables di and

vi lead to (at most) linear growth in the Lagrange multiplier. Clearly, the estimate

for the proposed coupling method under no subcycling follows the typical behavior

of differential-algebraic equations. An extension of this study to include subcycling

will require a more involved and careful analysis, and is beyond the scope of this

chapter.

On drifts in interface displacement and acceleration vectors

In a time continuous setting, enforcing the continuity of either displacements,

velocities or accelerations are all mathematically equivalent. However, in a numerical

setting this equivalence will not hold, and the numerical performance will depend

on the type of the constraint that is being enforced. As mentioned in the previous
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sections, we employ the continuity of velocities at the subdomain interface at every

system time-step (which we referred to as the v-continuity). This may lead to drift

in the displacements and the accelerations along the subdomain interface. We now

derive bounds on these drifts, which could serve as a valuable check for the correctness

of a numerical implementation.

For the present study, we shall assume that there is no subcycling (i.e., ηi = 1),

and no mixed methods are employed (i.e., βi = β, γi = γ). The errors due to finite

precision arithmetic and their numerical propagation are ignored. For convenience,

let us denote the drift in the displacements and the drift in the accelerations along

the subdomain interface as

a
(n)
drift ∶=

S∑
i=1

Cia
(n)
i and (2.74a)

d
(n)
drift ∶=

S∑
i=1

Cid
(n)
i ⋅ (2.74b)

Basically, the drift in displacements (or accelerations) is the measure of error in meet-

ing the continuity of displacements (or accelerations) across the subdomain interface.

The drifts satisfy the relations

a
(n+1)
drift = (1 − 1

γ
)a(n)drift and (2.75a)

d
(n+1)
drift = d

(n)
drift + (12 −

β

γ
)∆t2a

(n)
drift⋅ (2.75b)

Thus, one can draw the conclusions about the drifts:

(i) For numerical stability of a time-stepping scheme under Newmark family, γ ≥

1/2. Therefore,
∥a(n+1)drift ∥ ≤ ∥a(n)drift∥⋅ (2.76)
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One has the equality only when γ = 1/2 (e.g., Newmark average acceleration

scheme, central difference scheme, Newmark linear acceleration scheme).

(ii) For any time stepping scheme with γ = 2β (e.g., Newmark average acceleration

scheme) we have

d
(n+1)
drift = d

(n)
drift n = 1,2,⋯ (2.77)

The above claims will be numerically substantiated in a subsequent section using the

test problem outlined in subsection 2.9.

2.6 Split Degree-Of-Freedom Lumped Parameter System

Consider a split agree of freedom whose motion can be described by the following

system of ordinary differential/algebraic equations

mAüA(t) + kAuA(t) = fA(t) + λ(t), (2.78a)

mBüB(t) + kBuB(t) = fB(t) − λ(t), and (2.78b)

u̇A(t) − u̇B(t) = 0⋅ (2.78c)

The following parameters are used: mA = 0.1, mB = 0.005, and the stiffness of springs

are kA = 2.5 and kB = 50. The subdomain time-steps are taken as ∆tA = 0.02 and

∆tB = 0.005. The system time-step is taken as ∆t = 0.02. The values of the external

forces are taken to be zero, that is fA = 0 and fB = 0. The initial conditions are

d0 = 0.1 and v0 = 1.0. The problem is solved over a time interval of [0,0.5]. In all

the cases, Newmark average acceleration scheme is used in all the subdomains. The
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mA mB

kA

fA fB

kB

Figure 2.3: A pictorial description of the split degree-of-freedom (SDOF) lumped pa-
rameter system: The masses A and B slide on a frictionless surface.

resulting numerical results for kinematic variables are shown in Figure 2.4. Since the

external forces applied are constant (fA = fB = 0) the PH method and the proposed

coupling methods yield the same results. The GC method suffers from excessive

damping and fails to match the exact results. Similar observation can be made

about the interface force as well as total physical energy of the system, as shown in

Figure 2.5.

2.7 On Energy Conserving vs. Energy Preserving Coupling

In this section we address the energy preserving and energy conserving properties

of the proposed multi-time-step coupling method. Two different notions of energy

preserving will be considered. In particular, the following questions will be answered:

(a) Does the coupling method add or extract energy from the system of subdomains

in comparison with the case of no coupling?

(b) Do the interface forces perform net work?

(c) Under what conditions does the coupling method conserve the total energy of

the system of subdomains?
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Figure 2.4: SDOF lumped parameter system: This figure compares the performance
of the proposed coupling method with that of the GC and PH methods.
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Figure 2.5: SDOF lumped parameter system: The top and bottom subfigures, respec-
tively, show the interface force and total energy of the system. The nu-
merical results under the GC method do not match with the analytical
solution.

To this end, the kinetic energy and the potential energy of the i-th subdomain are,

respectively, defined as

Ti (vi) ∶= 1
2
vT
i M ivi and Vi (di) ∶= 1

2
dT
i K idi⋅ (2.79)

The total energy of the i-th subdomain is given by

Ei (di,vi) ∶= Ti (vi) + Vi (di) ⋅ (2.80)
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The total energy of all the subdomains at the n-th (system) time level can be written

as

E(n) ≡ E (d(n)1 ,⋯,d(n)S ,v
(n)
1 ,⋯,v(n)S ) ∶= S∑

i=1

Ei (d(n)i ,v
(n)
i ) ⋅ (2.81)

In the remainder of this section, we shall assume that the external forces are zero

(i.e., f i(t) = 0 ∀i). For the proposed multi-time-step method, one can derive the

relation

E(n+1) − E(n) = E(n→n+1)
algorithm + E(n→n+1)

interface , (2.82)

where E(n→n+1)
algorithm and E(n→n+1)

interface are, respectively, defined as

E(n→n+1)
algorithm ∶= −2

S∑
i=1

ηi−1∑
j=0

(γi − 1
2
)Vi ([d(n+ j

ηi
)

i ]
i

) −∆t2
S∑
i=1

1

η2i
(βi − γi

2
)%Ti (a(n)i )

&

−∆t2
S∑
i=1

1

η2i
(βi − γi

2
) (2γi − 1)(ηi−1∑

j=0

Ti ([a(n+ j
ηi
)

i ]
i

)) and (2.83)

E(n→n+1)
interface ∶=

S∑
i=1

ηi−1∑
j=0

((1 − γi)λ(n+ j
ηi
) + γiλ(n+

j+1
ηi
))TCi [d(n+ j

ηi
)

i ]
i

⋅ (2.84)

If there is no subcycling in all the subdomains (i.e., ηi = 1 ∀i), the above relationship
can be simplified as

E(n+1) − E(n) = −2
S∑
i=1

(γi − 1

2
)Vi (%d(n)i

&) −∆t2
S∑
i=1

γi (2βi − γi)Ti (%a(n)i

&)
122222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222232222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222224

E
(n→n+1)
algorithmic

+
S∑
i=1

((1 − γi)λ(n) + γiλ(n+1))TCi

%
d
(n)
i

&

122222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222232222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222224
E
(n→n+1)
interface

⋅ (2.85)

Energy preserving in the first sense

We shall call that the coupling method preserves energy in the first sense if the

coupling neither adds nor extracts energy over a system time-step in comparison to
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that of no coupling. By no coupling, we mean that the problem (2.15) is solved

without decomposing into subdomains (i.e., S = 1), no subcycling (i.e., ηi = 1), and

no mixed methods (i.e., γi = γ and βi = β ∀i). We denote the total energy at integral

time levels under no coupling as

E(n)
no coupling

∶= T (n)
no coupling

+ V(n)
no coupling

, (2.86)

where

T (n)
no coupling

∶= 1
2
v(n)TMv(n), and (2.87)

V(n)
no coupling

∶= 1
2
d(n)TKd(n)⋅ (2.88)

Mathematically, preserving energy in the first sense implies that

E(n) = E(n)
no coupling

∀n⋅ (2.89)

The numerical solution presented in Figure 2.6 confirms that the proposed multi-

time-step coupling method, in general, does not preserve energy in the first sense.

Remark 5 It should be noted that many stable time stepping schemes under the

Newmark family are dissipative [31]. That is,

E(n+1)
no coupling

< E(n)
no coupling

∀n⋅ (2.90)

Only the Newmark average acceleration scheme (γ = 1/2, β = 1/4) under the New-

mark family conserves energy for linear problems (e.g. linear elastodynamics). That

is,

E(n+1)
no coupling

= E(n)
no coupling

∀n⋅ (2.91)
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Figure 2.6: Energy preservation of multi-time-step methods: For comparison, numeri-
cal solutions for single degree of freedom (i.e., without splitting) are also
presented for two different time-steps ∆t = 0.2 and ∆t = 0.001.

Energy preserving in the second sense

We shall call that the coupling method preserves energy in the second sense if

the interface forces (i.e., the multipliers λ) do not perform net work over a system

time-step. That is,

E(n→n+1)
interface = 0 ∀n⋅ (2.92)

In general, the proposed multi-time-step coupling method does not preserve energy

even in the second sense. However, using equation (2.84), one can show that a

sufficient condition for the coupling method to preserve energy in the second sense is

to have γi = γ ∀i, γi = 2βi, and no subcycling (i.e., ηi = 1 ∀i). This sufficient condition

also guides one to construct a simple example that substantiates the claim that the

proposed coupling method need not preserve the energy in the second sense. By
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choosing Newmark average acceleration scheme (γ = 1/2, β = 1/4) in all subdomains

we will have E(n→n+1)
algorithm = 0 ∀n whether the subcycling is present or not. This implies

that the difference between E(n+1) and E(n) is solely due to E(n→n+1)
interface . If there is

no subcycling then the quantity E(n→n+1)
interface will also be zero. However, if there is

subcycling then one can have

E(n→n+1)
interface ≠ 0⋅ (2.93)

Based on the above reasoning, Figure 2.7 presents the numerical results to substan-

tiates the above claim.
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Figure 2.7: Energy preservation of multi-time-step methods: This figure illustrates that
the proposed coupling method does not conserve energy if there is sub-
cycling. The Newmark average acceleration method (β = 0.25,γ = 0.5) is
employed in both subdomains.

Energy conserving

We shall say that the coupling method conserves energy exactly if

E(n+1) = E(n) ∀n⋅ (2.94)
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Based on equation (2.85), a necessary and sufficient condition for the coupling

method for conserve energy is

E(n→n+1)
algorithm + E(n→n+1)

interface = 0 ∀n, (2.95)

where E(n→n+1)
algorithm and E(n→n+1)

interface are, respectively, defined in equations (2.83) and (2.84).

A sufficient condition can be written as

E(n→n+1)
algorithm = 0 and E(n→n+1)

interface = 0 ∀n⋅ (2.96)

The following theorem provides a way to achieve the above sufficient condition.

Theorem 2 If all the subdomains employ the Newmark average acceleration scheme

(i.e., γi = 1/2 and βi = 1/4), and there is no subcycling (i.e., ηi = 1 ∀i), then the

coupling method exactly conserves energy when f i(t) = 0 ∀i.

Proof 2 This proof is a simple extension of the proof for single domain (i.e., with-

out coupling). For Newmark average acceleration time stepping scheme using the

identities

%
d
(n)
i

&
=∆t⟪v(n)i ⟫ and (2.97a)

%
v
(n)
i

&
=∆t⟪a(n)i ⟫ ⋅ (2.97b)

The governing equation for i-th subdomain implies that

M i⟪a(n)i ⟫ +K i ⟪d(n)i ⟫ =CT
i ⟪λ(n)⟫ ⋅ (2.98)
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Premultiplying by ⟪v(n)i ⟫, using the above relations (2.97a)–(2.97b), summing over

all the subdomains and using the continuity of velocities, we get

S∑
i=1

⟪v(n)i ⟫TM i

%
v
(n)
i

&
+

S∑
i=1

%
d
(n)
i

&T

K i ⟪d(n)i ⟫ = S∑
i=1

⟪v(n)i ⟫TCT
i ⟪λ(n)⟫

= ⟪λ(n)⟫T S∑
i=1

C i⟪v(n)i ⟫ = 0⋅ (2.99)

Using the symmetry of the matrices M i and K i, and noting the linearity of the jump

operator, we have

'
1

2

S∑
i=1

v
(n)
i

T
M iv

(n)
i + 1

2

S∑
i=1

d
(n)
i

T
K id

(n)
i

(
= 0, (2.100)

which shows that the total energy is exactly conserved over a system time-step.

It is noteworthy that if γi = γ > 1/2 and βi = γi/2, and there is no subcycling then we

have

E(n+1) − E(n) = −2(γ − 1
2
) S∑

i=1

Vi (%d(n)i

&) < 0, (2.101)

which implies that the coupling method will be strictly energy decaying. As men-

tioned in Section 2.2, γ < 1/2 is not in the allowable range of values under the

Newmark family of time integrators because of numerical stability.

Is the PH method really energy preserving?

We are now set nicely to examine the claim made in Reference [30] that the PH

method preserves energy. In the absence of external forces, the proposed coupling

method is the same as the PH method. Therefore, based on the earlier discussion

in this section, the PH method is neither energy conserving nor energy preserving in
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both first and second senses. The source of error that led to the false claim is due

to the use of an inappropriate definition for the work done by the interface. Using

the notation introduced in this chapter, the expression considered in [30, equations

(58) and (61)] for work done by the interface can be written as

1

∆tA

%
v
(n)
A

&T

CT
A

%
λ(n)

&
+ 1

∆tB

ηB∑
j=1

⎡⎢⎢⎢⎢⎣v
(n+ j−1

ηB
)

B

⎤⎥⎥⎥⎥⎦
T

B

CT
B [λ(n+ j−1

ηB
)]

B

⋅ (2.102)

But the above expression is not appropriate for the work done by the interface forces.

A comment is also warranted on the numerical results presented in [30, Figures 8

& 11], which have been used to support their claim. For the chosen test problems,

these figures report that Etotal is constant under the PH method where

Etotal ∶= 1
2
a
(n)
A

T
AAa

(n)
A + 1

2
v
(n)
A

T
KAv

(n)
A + 12a

(n)
B

T
ABa

(n)
B + 1

2
v
(n)
B

T
KBv

(n)
B ⋅ (2.103)

Recall that

Ai ∶=M i +∆t2i (βi − γi2 )K i i = A,B⋅ (2.104)

The constant value for Etotal has then been used to support that the PH method is

energy preserving. To remove some misconceptions in the literature on the energy

conserving property under multi-time-step coupling methods and to facilitate future

developments, the following remarks on the nature of Etotal are made:

(i) Etotal is not equal to the physical total energy of the system (i.e., the sum of

kinetic and potential energies). Hence, the preservation of Etotal does not imply

the preservation of the physical total energy of the system.
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(ii) Even this quantity will not be constant under the PH method if the Newmark

parameter γ ≠ 1/2 even in one subdomain. The result shown in reference [30,

Figures 8 & 11] used γ = 1/2 in all the subdomains.

(iii) It should be noted that Etotal can be constant even for a non-zero constant

external force, which will not be the case with the physical total energy.

(iv) If preservation of such a quantity is essential for some reason, it should be

noted that the proposed coupling method will also preserve Etotal under the

same assumptions on the Newmark parameter and the external force.

On the effect of system time-step and subcycling on

accuracy

In absence of external forces, the exact solution satisfies E(n+1) − E(n) = 0. There-
fore, the quantities E(n→n+1)

algorithm and E(n→n+1)
interface can serve as error / accuracy indicators of

a multi-time-stepping scheme. Note that these quantities arise, respectively, due to

time-stepping scheme, and due to decomposing domain into subdomains. Of course,

both these quantities are affected by subcycling.

From equation (2.83), it is easy to check that E(n→n+1)
algorithm is proportional to ∆t2

and inversely proportional to η2i . Therefore, algorithmic error in the subdomains can

always be decreased by employing either of these two strategies:

• decreasing the system time-step by keeping the subcycling ratios fixed (i.e.,

keeping ηi fixed)
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• decreasing the subdomain time-step (i.e., increase the values of ηi) by keeping

the system time-step fixed

Equation (2.84) can be written as follows:

E(n→n+1)
interface = ∆t

S∑
i=1

{ 1
ηi

ηi−1∑
j=0

((1 − γi)λ(n+ j
ηi
) + γiλ(n+

j+1
ηi
))TCiv

(n+ j
ηi
)

i } +O (∆t2

η2i
) ,

(2.105)

where E(n→n+1)
interface is linearly proportional to ∆t, which indicates that the error due to

domain decomposition can always be decreased with lowering the system time-step.

However, for a fixed system time-step, the quantity in the parenthesis can be of O(1)
in magnitude. Therefore, choosing smaller subdomain time-steps while keeping the

system time-step fixed need not improve the accuracy. This quantity may even grow

with increase in the subcycling ratios. Hence, an appropriate quantity that can

indicate the improvement or worsening of accuracy by subcycling is E(n→n+1)
interface , which

can be calculated on the fly during a numerical simulation. Larger values of E(n→n+1)
interface

in magnitude implies that subcycling is adversely affecting the accuracy.

Summarizing, the accuracy of the numerical results under the proposed multi-

time-step method can always be improved by decreasing the system time-step. The

overall accuracy need not always improve with subcycling for a fixed system time-

step. These theoretical observations are numerically verified in Section 2.9.
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2.8 On Performance of Backward Difference and Runge-

Kutta Schemes

In the numerical analysis literature, backward difference formulae (BDF) and

implicit Runge-Kutta (IRK) schemes have been the schemes of choice for solving

DAEs [24, 47, 48]. The following quote by Petzold has been a popular catch-phrase

for promoting BDF schemes: “BDF is so beautiful that it is hard to imagine some-

thing else could be better” [47, p. 481]. This statement may be true for first-order

DAEs that arise from modeling of physical systems involving dissipation. But these

two families of schemes may not be the best choices for second-order DAEs that

posses important physical invariants (e.g., conservation of energy). In the context of

second-order DAEs, the time-stepping schemes from the Newmark family can per-

form really well, especially, with respect to invariants like the total energy. Therefore,

the Newmark family of time-stepping schemes can be considered as strong alterna-

tives to BDFs and IRKs for second-order transient systems. The Newmark family

of time stepping schemes (which have been popular in Civil Engineering for solving

ODEs arising in structural dynamics and earthquake engineering) did not get as

much attention as they deserve to solve DAEs in both numerical analysis and engi-

neering communities. The algebraic constraints in a DAE introduce high frequency

modes, and fully implicit schemes such as Newmark family of time stepping schemes

are particularly suited to avoid instabilities due to high frequency modes without

introducing excessive damping.
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We now show that there will be excessive numerical damping if the proposed

coupling method is based on BDF or IRK schemes instead of the Newmark family

of time stepping schemes. It may be argued that numerical damping is good for

numerical stability, but excessive damping fails to preserve the important invariants

(e.g., conservation of energy). Newmark family of time stepping schemes provide

much better results under the same system time-step, especially, in the prediction of

important physical invariants.

The simplest scheme under both BDF and IRK families is the backward Euler

scheme (which is also referred to as the implicit Euler scheme). We rewrite the

governing equations as first-order DAEs of form

M iv̇i(t) +K idi(t) = f i(t) +CT
i λ ∀i = 1,⋯, S, (2.106a)

ḋi(t) = vi(t) and (2.106b)

S∑
i=1

C ivi(t) = 0⋅ (2.106c)

Under the backward Euler scheme, the velocities and accelerations are approximated

as

v
(n+1)
i =

d
(n+1)
i − d(n)i

∆t
, and a

(n+1)
i =

v
(n+1)
i − v(n)i

∆t
⋅ (2.107)

In the absence of subcycling, following a similar procedure presented in the previous

sections, one can arrive at the following equation for the coupling method based on

the backward Euler scheme

#
E(n)

$
= −

S∑
i=1

(Ti (!v(n)i ") + Vi (!d(n)i ")) ∀n, (2.108)
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which is strictly negative for any non-trivial motion of the subdomains. Figure 2.8

nicely summarizes the above discussion using the split degree-of-freedom problem.

The system shown in Figure 2.3 was solved with the parameters: mA = 0.1, mB =

0.005, kA = 2.5 and kB = 50. The initial values are set to be as follows: v0 = 1.0

and d0 = 0.1. External forces are set to be zero. The proposed coupling method

presented in this chapter is employed to solve the coupled system using Newmark

average acceleration and central difference methods, with no subcycling. In addition

to the aforementioned excessive numerical dissipation, the following factors make

BDF and IRK schemes not particularly suitable for developing a multi-time-step

coupling:

(a) High-order BDF and IRK schemes are non-self-starting.

(b) BDF and IRK schemes are developed for first-order DAEs. To solve a second-

order DAE (which is the case in this chapter), auxiliary variables need to be

introduced, which will increase the number of unknowns and the computational

cost.

(c) IRK schemes involve multiple stages, and are generally considered difficult to

implement.

2.9 Representative Numerical Results

Using several canonical problems, we illustrate that the proposed multi-time-step

coupling method possesses the following desirable properties:
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Figure 2.8: Coupling using the backward Euler scheme: The second-order differential-
algebraic equations is converted to first-order differential-algebraic equa-
tions, and the resulting system is solved using the backward Euler
scheme, which is the simplest member of backward difference formulae
(BDF) and implicit Runge-Kutta (IRK) schemes.

(I) All subdomains can subcycle simultaneously. That is, ∆ti <∆t ∀i = 1,⋯, S.

(II) The method can handle multiple subdomains.

(III) Drift in displacements along the subdomain interface is not significant.

(IV) Under fixed subdomain time-steps, the accuracy of numerical solutions can be

improved by decreasing the system time-step.

(V) For a fixed system time-step, accuracy of the solutions may be improved using

subcycling. We also show that monitoring E(n→n+1)
interface at every system time-step

can serve as a simple criterion to decide whether or not subcycling will improve

the accuracy. This criterion can be calculated on the fly during a numerical

simulation.
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Split degree-of-freedom with three subdomains

An attractive feature of the proposed coupling method is that it can handle

multiple subdomains, which is illustrated in this test problem. The single degree-

of-freedom is split into three subdomains A, B and C, as shown in Figure 2.9. The

problem parameters are taken as follows: mA = 5, mB = 0.1, mC = 0.01, kA = 5,

kB = 2.5 and kC = 4. Subdomain time-steps are taken as ∆tA = 0.01, ∆tB = 0.005

and ∆tC = 0.0025. The system time-step is taken as ∆t = 0.01. Newmark average

acceleration scheme is employed in all the subdomains. The subdomain external

forces are taken as fA = fC = 0 and fB = 1. The system is subject to the initial

conditions d0 = 1.0 and v0 = 0.0. Figure 2.10 compares analytical solution with

the numerical results for the kinematic quantities. Figure 2.11 shows the Lagrange

multipliers (i.e., interface forces) and the total energy of the system. The proposed

coupling method performed well.

One-dimensional problem with homogeneous properties

Consider the vibration of a homogeneous one-dimensional elastic axial bar with

the left end of the bar fixed and a constant tip load is applied at the right end of the
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Figure 2.9: Split degree-of-freedom with three subdomains: The problem is solved
using the proposed multi-time-step coupling method.
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Figure 2.10: Split degree-of-freedom with three subdomains: Numerical and analytical
results for displacement in problem 2 is shown in this figure. As seen
here, the numerical results under the proposed coupling method matches
well with the exact values.
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Figure 2.11: Split degree-of-freedom with three subdomains: The top figure shows
the interface reaction forces λAB and λBC with respect to time. This
bottom figure shows the total energy of the system with respect to time.

bar. The governing equations take the following form:

ρA
∂2u

∂t2
− ∂

∂x
(EA

∂u

∂x
) = P δ(x = L)H(t = 0) ∀x ∈ (0,L), ∀t ∈ (0, T ], (2.109a)

u(x = 0, t) = 0 ∀t ∈ (0, T ], (2.109b)

E
∂u

∂x
(x = L, t) = 0 ∀t ∈ (0, T ], (2.109c)

u(x, t = 0) = 0 ∀x ∈ (0,L) and (2.109d)

∂u

∂t
(x, t = 0) = 0 ∀x ∈ (0,L), (2.109e)

where δ(⋅) is the Dirac-delta distribution, H(⋅) is the Heaviside function, and P is a

constant tip loading. The analytical solution for the displacement can be written as

u(x, t) = Px

EA
+ 8PL

π2EA
∑

n=1,3,⋯
(−1)n+12 1

n2
sin(βnx) cos(ωnt), (2.110)

where

βn =
nπ

2L
, ωn = βn

√
E

ρ
=
nπ

2L

√
E

ρ
⋅ (2.111)

This test problem is the same as the one considered in Reference [30] but with

different parameters. Herein, we shall use this test problem to illustrate that the
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proposed coupling method can handle multiple subdomains simultaneously, which is

not the case with the PH method as presented in [30].

The computational domain is divided into three subdomains of equal lengths, as

shown in Figure 2.12. Each subdomain is uniformly meshed using five two-node line

elements. The Young’s modulus is taken as E = 104, the density ρ = 0.1, the area of

cross section A = 1, the total length of the bar L = 1, and the tip loading is taken as

P = 10. Newmark average acceleration scheme is employed in subdomains A and C

(βA = βC = 1/4 and γA = γC = 1/2), and the central difference scheme is employed in

subdomain B (βB = 0 and γB = 1/2). The critical time-step is 1.217×10−4. The system
time-step is taken as ∆t = 10−3. The subdomain time-steps for A and C are taken as

∆tA =∆tC = 10−3. The problem is solved using three different subdomain time-steps

for B, which are defined through ηB = ∆t/∆tB = 10, 100, 1000. Figure 2.13 shows the

tip displacement and the total energy obtained using the proposed coupling method.

Figures 2.14 and 2.15, respectively, show drift in displacements and the interface

Lagrange multipliers. These figure clearly illustrate that, under a fixed system time-

step, the accuracy can be improved by employing subcycling in the subdomains under

the proposed coupling method. This implies that the time-step required for the explicit

scheme need not limit the time-step in the entire computational domain under the

proposed multi-time-step coupling method.

The problem is solved again with subdomain B divided into 10 two-node linear

elements. In this case the critical time-step is approximately 6.085 × 10−5. We took

the subdomain time-steps to be fixed at 10−5 and altered the system time-step to

illustrate the effect of subcycling. The results are presented in figures 2.16, 2.17
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subdomain A subdomain B subdomain C

P (t)

LA = 1/3 LB = 1/3 LC = 1/3
Figure 2.12: One-dimensional problem with homogeneous properties: Consider an axial

elastic bar of unit length. The left end of the bar is fixed, and a constant
load of P (t) = 10 is applied to the right end of the bar.

and 2.18. These figures illustrate that, under the proposed multi-time-step coupling

method with fixed subdomain time-steps (i.e., fixed ∆ti), the accuracy can be improved

by employing smaller system time-steps.
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Figure 2.13: One-dimensional problem with homogeneous properties: The top and bot-
tom figures, respectively, show the tip displacement and total energy as
a function of time.

Square plate subjected to a corner force

A bi-unit square of homogeneous elastic material is fixed at the left end and a

constant force with components fx = fy = 1 is applied at the right bottom corner.

The Lamé parameters are taken as λ = 100 and µ = 100, and the mass density is

taken as ρ = 100. The computational domain is decomposed into four equally sized
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Figure 2.14: One-dimensional problem with homogeneous properties: The top figure
shows the drift in the displacement at the interface of subdomains A and
B. The bottom figure shows the drift in displacement at the interface
of subdomains B and C.
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Figure 2.15: One-dimensional problem with homogeneous properties: The top figure
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Figure 2.16: One-dimensional problem with homogeneous properties: The top and bot-
tom figures, respectively show the tip displacement and the total energy
as a function of time.
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Figure 2.17: One-dimensional problem with homogeneous properties: The top figure
shows the drift in the displacement at the interface of subdomains A and
B. The bottom figure shows the drift in displacement at the interface
of subdomains B and C.
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figure shows the interface force between subdomains B and C.
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square subdomains. Four node quadrilateral elements are used to form a 5-element

by 5-element mesh for each subdomain. Figure 2.19 provides a pictorial description

of the problem. A similar problem is also considered in Reference [28], which also

addressed multi-time-step coupling method for structural dynamics.

The central difference scheme (β = 0,γ = 1/2) is employed for subdomains 1, 2

and 3, and Newmark average acceleration scheme (β = 1/4,γ = 1/2) is employed for

subdomain 4. Figure 2.20 illustrates that the accuracy can be improved by decreas-

ing the system time-step. Figure 2.21 illustrates that the accuracy need not always

improve by decreasing subdomain time-steps for a fixed system time-step. This is

completely in accordance with the theoretical predictions. The numerical results

shown in Figure 2.21 also illustrate that the proposed coupling method allows sub-

cycling in all the subdomains. This is evident from the fact that all the chosen values

for ηi (i = 1,⋯, S) are greater than unity. As it can be seen in Figure 2.22, subcycling

can result in increase in drift. Figure 2.23 shows that there is no appreciable drift

in displacements along the subdomain interface, and there is no drift in the veloci-

ties along the subdomain interface, as the proposed method imposes constraints on

the continuity of velocities at every system time-step. Figure 2.24 shows that the

theoretical bounds on the drifts in equations (2.75a)–(2.75b) match well with the nu-

merical results. In all the numerical results, the proposed multi-time-step coupling

method performed well, and behaved in accordance with the theoretical predictions

derived in this chapter.
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Figure 2.19: Square plate subjected to a corner force: This figure provides a pictorial
description of the test problem. A bi-unit square of homogeneous elastic
material is fixed at the left side, a constant force with components
fx = fy = 1 is applied at Point A.

Two-dimensional wave propagation problem

Consider the transverse motion of a plate subject governed by the equations

1

c20

∂2u

∂t2
− (∂2u

∂x2
+ ∂2u
∂y2
) = f(x, t) ∀ (x, t) ∈ Ω × I , (2.112a)

u(x, t) = up(x, t) (x, t) ∈ ΓD × I , (2.112b)

grad[u] ⋅ n̂(x) = sp(x, t) (x, t) ∈ ΓN × I , (2.112c)

u(x, t = 0) = u0(x) x ∈ Ω, and (2.112d)

u̇(x, t = 0) = v0(x) x ∈ Ω, (2.112e)

where u(x, t) is the transverse displacement, c0 is the wave velocity, f(x, t) is the

forcing function, n̂(x) is the unit outward normal to the boundary, up(x, t) is the pre-
scribed displacement on the boundary, sp(x, t) is the prescribed transverse traction,
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Figure 2.20: Square plate subjected to a corner force: The subdomain time-step in all
subdomains is taken as 0.02.
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Figure 2.21: Square plate subjected to a corner force: The system time-step is taken
as 0.1. The bottom figure shows the total energy of the system for
values of ηi.
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Figure 2.22: Square plate subjected to a corner force: The system time-step is taken as
0.1. The value of E(n→n+1)

interface for the problem presented in 2.21 is plotted.
As seen above, sub-cycling can increase the discretization error at the
interface.

and u0(x) and v0(x) are, respectively, the initial displacement and initial velocity.

Computational domain is denoted by Ω. The part of the boundary on which Neu-

mann boundary condition is denoted by ΓN, and ΓD is the part of the boundary

on which Dirichlet boundary condition is prescribed. As usual, we assume that

ΓD ∩ ΓN = ∅, and ΓD ∪ ΓN = ∂Ω. The time interval of interest is I .

We consider the computational domain to be a rectangle with Lx = 2 and Ly = 1.

The boundary is fixed on three sides, and is excited by a sinusoidal force of the

following form on the other side as

f(x, t) =
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

f0 sin ( 2π
τload

t) t ∈ [0, τload]
0 t > τload

and x ∈ {0} × [2Ly/5,3Ly/5]⋅ (2.113)

A pictorial description of the problem is shown in Figure 2.25. The domain is de-

composed into two subdomain, as shown in Figure 2.26. In this numerical example,

we have taken u0 = 0, v0 = 0, c0 = 1, f0 = 5.0 , and τload = 0.1. Figure 2.27 shows the

result for explicit/implicit integration using the proposed coupling method. In this
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Figure 2.23: Square plate subjected to a corner force: The figure compares the numer-
ical solutions under the proposed coupling method with that obtained
without decomposing into subdomains.
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Figure 2.24: Bounds on drifts: The results in this figure substantiate the discussion
presented in subsection 2.5. The L2-norm of the drift in acceleration
and and the drift in displacement at the subdomain interface are shown.

case, (γ1,β1) = (1/2,0), and (γ2,β2) = (1/2,1/4). The system time-step is ∆t = 10−4,

subdomain time-steps are ∆t1 = 10−5 and ∆t2 = 10−4. As one can see from this

figure, the proposed coupling method performed well. In particular, there are no

spurious reflections at the subdomain interface, and there is no noticeable drift in

the transverse displacement along the subdomain interface.

This problem also clearly demonstrates that the proposed multi-time-step cou-
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pling method can be attractive for wave propagation problems. The coupling method

is more cost effective than mere employing either an explicit scheme or an implicit

scheme in the entire domain. In wave propagation problems involving fast dynamics,

small time-steps are needed, and hence explicit schemes are typically employed. This

will result in taking large number of time-steps to be able to carry out the numerical

simulation to a desired final time. On the other hand, under the proposed coupling

method, one can use explicit methods in the regions with fast dynamics (which typi-

cally occur near the loading), and use an implicit time-stepping scheme with a larger

subdomain time-step in the other regions. For the chosen problem, if one has to em-

ploy an explicit scheme in the entire domain, the time-step should be smaller than

the critical time-step of 1.36 × 10−5. Under the proposed multi-time-step coupling

method, the user can employ an explicit scheme with time-steps smaller than the

critical time-step near the load, and an unconditionally stable, implicit time-stepping

scheme with larger time-steps in the rest of the computational domain.

2.10 Concluding Remarks

We have developed a multi-time-step coupling method that can handle multiple

subdomains with different time-steps in different subdomains. The coupling method

can couple implicit and explicit time-stepping schemes under the Newmark family

even with disparate time-steps of more than two orders of magnitude in different

subdomains. A systematic study on the energy preservation and energy properties

of the proposed coupling method is presented, and the corresponding sufficient con-
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Figure 2.25: Two-dimensional wave propagation problem: A pictorial description. The
elastic body is assumed to be isotropic and homogeneous. The force
is applied over a length of 1/5Ly in the middle of the left side of the
boundary.

Figure 2.26: Two-dimensional wave propagation problem: The computational domain
is divided into two subdomains. Subdomain 1 is shown in blue color,
and subdomain 2 is shown in red color. The mesh consists of 5604
four-node quadrilateral elements.
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(a) t = 0.25, umin = −0.053, umax = 0.133 (b) t = 0.50, umin = −0.044, umax = 0.088

(c) t = 0.75, umin = −0.045, umax = 0.063 (d) t = 1.00, umin = −0.037, umax = 0.053

(e) t = 1.25, umin = −0.034, umax = 0.044 (f) t = 1.50, umin = −0.030, umax = 0.039

Figure 2.27: Two-dimensional wave propagation problem: Here, f0 = 5.0, τload = 0.1,
and c0 = 1. The system time-step is ∆t = 10−4, and the subdomain
time-steps are ∆t1 = 10−5, and ∆t2 = 10−4. The subdomain Newmark
parameters are (γ1,β1) = (1/2,0), and (γ2,β2) = (1/2,1/4).

ditions are also derived. The proposed coupling method, in general, is not energy

preserving. Despite claims in the literature, the quest for energy preserving multi-

time-step coupling method is still on. One of the main conclusions of this chapter

is about the effect of system time-step and subcycling on the accuracy. It has been

shown that accuracy can always be improved by decreasing system time-step. It

is widely believed that lowering subdomain time-step keeping the system time-step

will also improve the accuracy under a multi-time-stepping scheme. Using careful
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mathematical analysis and numerical results, we have shown that this popular belief

is not always the case. To this end, a simple criterion is also proposed, which can pre-

dict whether subcycling will improve accuracy. The criterion is to monitor E(n→n+1)
interface

at every system time-step, which can be calculated on the fly during a numerical

simulation. Subcycling is desirable if this quantity is small.

The proposed multi-time-step coupling (which is a dual Schur domain decompo-

sition technique) is well-suited for parallel computing. Specifically, one can utilize

the advances made on the FETI method, which has shown to be scalable in a par-

allel setting for dual Schur domain decomposition methods [49]. There are several

ways one could make advancements to the research presented in this chapter. On the

theoretical front, a plausible future work is to perform a mathematical analysis on

the numerical characteristics of the proposed multi-time-step coupling method on the

lines of local error, propagation of error, and influence of perturbations. On the com-

putational implementation front, one could implement the proposed coupling method

in a parallel setting and do a systematic study on its parallel performance. On the

algorithmic front, the next logical step is to extend the proposed multi-time-step

coupling method to first-order transient systems, and eventually to fluid-structure

interaction problems.
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Chapter 3

COUPLING METHODS FORADVECTION-DIFFUSION SYS-

TEMS

3.1 Introduction and Motivation

Advection-diffusion-reaction equations can exhibit several mathematical (i.e., tem-

poral and spatial) scales depending on the relative strengths of advection, diffusion

and reaction processes, and on the strength of the volumetric source/sink. The pres-

ence of these mathematical scales is evident from the qualitative richness that the

solutions of advection-diffusion-reaction equations exhibit. For example, it is well-

known that solutions to advection-dominated problems typically exhibit steep gra-

dients near the boundaries [50]. Solutions to diffusion-dominated problems tend to

be diffusive and smooth [51], whereas reaction-dominated solutions typically exhibit

sharp fronts and complex spatial patterns [52]. These scales can be systematically

characterized using the well-known non-dimensional numbers – the Péclet number

and the Damköhler numbers [53]. It needs to be emphasized that these equations,

in general, are not amenable to analytical solutions. Therefore, one has to rely on

predictive numerical simulations for solving problems of any practical relevance. Due

to the presence of disparate mathematical scales in these systems, it is highly de-

sirable to have a stable computational framework that facilitates tailored numerical

formulations in different regions of the computational domain.
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Several advances have been made in developing numerical formulations for advection-

diffusion-reaction equations, especially in the area of stabilized formulations [54,55],

and in the area of discrete maximum principles [56]. However, the main research

challenge that still remains is to develop numerical methodologies for these type of

problems to adequately resolve different mathematical scales in time and in space.

This chapter precisely aims at addressing this issue by developing a stable multi-

time-step coupling framework for first-order transient systems that allows different

time-steps, different time integrators and different numerical formulations in differ-

ent regions of a computational domain.

Most of the prior works on multi-time-step coupling methods have focused on the

second-order transient systems arising in the area of structural dynamics (e.g., see the

discussion in [57], and references therein). Some attempts regarding time integration

of partitioned first-order systems can be found in [9, 23]. In [9], a staggered multi-

time-step coupling method is proposed. This method is considered as a staggered

scheme as the Lagrange multipliers are calculated in an explicit fashion (i.e., based

on the quantities known at prior time-levels). The stability and accuracy (especially,

the control of drift along the subdomain interface) have been improved through the

use of projection methods at appropriate time-levels. Since the method is a staggered

scheme the obvious drawback is that the overall accuracy is first-order. However, it

needs to be emphasized that the method proposed in [9] has better accuracy and

stability properties than the previously proposed staggered schemes (e.g., [58, 59]).

In [23], several monolithic schemes are discussed for first-order transient systems but

the treatment is restricted to transient diffusion equations (i.e., self-adjoint spatial
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operators) and multi-time-stepping was not addressed. Motivated by the work of

Akkasale [21]; in which it has been systematically shown that many popular staggered

schemes (e.g., [58, 59]) suffer from numerical instabilities for both first- and second-

order transient systems; we herein choose a monolithic approach to develop coupling

methods that allow multi-time-steps.

Recently, a multi-time-step monolithic coupling method for linear elastodynam-

ics, which is a second-order transient system, has been proposed in [57]. However,

developing a multi-time-step coupling method for first-order transient systems (e.g.,

unsteady advection-diffusion and advection-diffusion-reaction equations) will bring

unique challenges. To name a few:

(i) As shown in [57], coupling explicit and implicit time-stepping schemes is always

possible in the case of second-order transient systems. We will show later in this

chapter that such coupling is not always possible for first-order transient sys-

tems, and can be achieved only if an appropriate stabilized form of the interface

continuity constraint is employed. We will also show that this explicit/implicit

coupling for first-order transient systems will come at an expense of controlled

drift.

(ii) Spatial operators in advection-diffusion-reaction equations are not self-adjoint.

Symmetry and positive definiteness of the discretized operators should be care-

fully examined to ensure the stability of multi-time-step coupling methods. For

second-order transient systems, the overall stability of the coupling method

can be achieved provided the stability criterion in each subdomain is satisfied
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(which depends on the choice of the time-stepping scheme in the subdomain

and the choice of the subdomain time-step) [57]. We will show in a subsequent

section that ensuring the stability of the time-stepping schemes in subdomains

alone will not guarantee the overall stability of the coupling method. There is

a need to place additional restrictions on the continuity constraints along the

subdomain interface.

(iii) The governing equations of decomposed first-order transient systems form a

system of differential/algebraic equations (DAEs) in Hessenberg form with a

differential index 2. On the other hand, the governing equations for second-

order transient systems form a system of DAEs with differential index 3. For

more details on DAEs and associated terminology, see the brief discussion pro-

vided in subsection 3.3 or consult [47].

The current chapter builds upon the ideas presented in [23, 57]. The central

hypothesis on which the proposed multi-time-step coupling framework has been de-

veloped is two-fold : (i) The governing equations before the domain decomposition

form a system of ordinary differential equations (ODEs). On the other hand, the

governing equations resulting from the decomposition of the domain form a system of

differential/algebraic equations. It needs to be emphasized that many of the popular

time-stepping schemes (which are developed for solving ODEs) are not appropriate

for solving DAEs [60, 61]. At least, the accuracy and the stability properties will

be altered considerably. The title of an influential chapter in the area of numeri-

cal solutions of DAEs by Petzold [22] clearly conveys the aforementioned sentiment:
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“Differential/algebraic equations are not ODEs.” Therefore, we shall take a dif-

ferential/algebraic equations perspective in posing the governing equations of the

decomposed problems, and apply time-stepping strategies that are appropriate to

solve DAEs. (ii) Development and performance of multi-time-step coupling meth-

ods for first-order transient systems is different from that of second-order transient

systems.

The proposed monolithic multi-time-step coupling framework for first-order tran-

sient systems enjoys several attractive features, which will be illustrated in the sub-

sequent sections by both theoretical analysis and numerical results. In the remainder

of this chapter, we shall closely follow the notation introduced for multi-time-step

coupling in [57].

3.2 Transient Advection-Diffusion-Reaction Equation

We shall consider transient advection-diffusion-reaction equation as the continu-

ous model problem. Our choice provides an ideal setting for developing multi-time-

step coupling methods for first-order transient systems, as the governing equations

pose several unique challenges. First, the relative strengths of advection, diffusion,

reaction, and volumetric source introduce multiple temporal scales, which compel a

need for a multi-time-step computational framework. Second, the spatial operator is

not self-adjoint, which adds to the complexity of obtaining stability proofs. It needs

to be emphasized that the current efforts on multi-time-step coupling have focused

on second-order transient systems, and the stability analyses have been restricted
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to the cases in which the coefficient (i.e., “stiffness”) matrix is symmetric and pos-

itive definite. This will not be the case with respect to the advective-diffusive and

advective-diffusive-reactive systems. Third, a numerical method to the chosen model

problem can serve as a template for developing multi-time-step coupling methods

for more complicated and important problems like transport-controlled bimolecular

reactions, which exhibit complex spatial and temporal patterns. None of the prior

works on multi-time-step coupling methods have undertaken such a comprehensive

study, which this chapter strives to achieve.

Consider a chemical species that is transported by both advection and diffusion

processes, and simultaneously undergoes a chemical reaction. Let Ω ⊂ Rnd denote the

spatial domain, where “nd” denotes the number of spatial dimensions. The boundary

is denoted by ∂Ω, which is assumed to be piece-wise smooth. The gradient and

divergence operators with respect to x ∈ Ω are, respectively, denoted by grad[⋅] and
div[⋅]. The time is denoted by t ∈ I ∶= (0, T ], where I is the time interval of interest.

Let c(x, t) denote the concentration of the chemical species. As usual, the boundary

is divided into two parts: ΓD and ΓN such that ΓD ∪ ΓN = ∂Ω and ΓD ∩ ΓN = ∅.
ΓD is the part of the boundary on which concentration is prescribed (i.e., Dirichlet

boundary condition), and ΓN is that part of the boundary on which flux is prescribed

(i.e., Neumann boundary condition). We shall denote the advection velocity vector

field by v(x, t). The diffusivity tensor, which is a second-order tensor, is denoted

by D(x), and is assumed to be symmetric and uniformly elliptic [45]. The initial

boundary value problem for a transient advective-diffusive-reactive system can be
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written as follows:

∂c

∂t
+ div [vc −D (x)grad[c]] + βc = f(x, t) in Ω × I , (3.1a)

c(x, t) = cp(x, t) on ΓD × I , (3.1b)

−n̂(x) ⋅D(x)grad[c] = qp(x, t) on ΓN × I , and (3.1c)

c(x, t = 0) = c0(x) in Ω, (3.1d)

where n̂(x) denotes the unit outward normal to the boundary, c0(x) is the pre-

scribed initial concentration, cp(x, t) is the prescribed concentration on the bound-

ary, qp(x, t) is the prescribed diffusive flux on the boundary, f(x, t) is the prescribed
volumetric source/sink, and β ≥ 0 is the coefficient of decay due to a chemical reac-

tion.

As mentioned earlier, the mathematical scales in advective-diffusive-reactive sys-

tems can be characterized using popular non-dimensional numbers. A non-dimensional

measure to identify the relative dominance of advection is the Péclet number, which

can be defined as

Pe(x, t) ∶= L∥v(x, t)∥
D(x) , (3.2)

where L is the characteristic length, D is the characteristic diffusivity, and ∥ ⋅ ∥
denotes the standard 2-norm. In the case of anisotropic diffusion tensor, D(x) can
be taken as the minimum eigenvalue of the diffusivity tensor at x (i.e., D(x) =
min {κ ∣ det (D(x) − κI) = 0}). Clearly, the higher the Péclet number the greater will

be the relative dominance of advection. A non-dimensional quantity to measure the

relative dominance of the chemical reaction is the Damköhler number, which takes
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the form

Da ∶= βL2

D(x) ⋅ (3.3)

In the context of numerical solutions, the characteristic length is typically associated

with an appropriate measure of the mesh size. A popular choice under the finite

element method is L = he/2, where he is the diameter of the circumscribed circle of

the element and the factor 1/2 is for convenience. This choice gives rise to what is

commonly referred to as the element Péclet number (e.g., see [62])

P h
e =

he∥v(x, t)∥
2D

, (3.4)

which will be used in subsequent sections, especially, in defining stabilized weak

formulations. We shall employ the semi-discrete methodology [63] based on the finite

element method for spatial discretization and the trapezoidal family of time-stepping

schemes for the temporal discretization.

Trapezoidal family of time-stepping schemes

The time interval of interest is divided into N sub-intervals such that

I = (0, T ] = N⋃
n=1

(t(n−1), t(n)] , (3.5)

where t(0) = 0 and t(N ) = T . To make the presentation simple, we shall assume that

the sub-intervals are uniform. That is,

t(n) − t(n−1) =∆t ∀n = 1,⋯,N , (3.6)

where ∆t will be referred to as the time-step. However, it should be noted that the

methods presented in this chapter can be easily extended to variable time-steps. The
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primary variable (which, in our case, will be the concentration) and the corresponding

time derivative at discrete time levels are denoted as

d(n) ≈ c(t = t(n)), v(n) ≈ ∂c
∂t
∣
t=t(n)

⋅ (3.7)

The trapezoidal family of time-stepping schemes can be compactly written as

d(n+1) = d(n) +∆t ((1 − ϑ)v(n) + ϑv(n+1)) , (3.8)

where ϑ ∈ [0,1] is a user-specified parameter. Some popular time-stepping schemes

under the trapezoidal family include the explicit Euler (ϑ = 0, which is also known

as the forward Euler), the midpoint rule (ϑ = 1/2), and the implicit Euler (ϑ = 1,

which is also known as the backward Euler). The forward Euler method is an explicit

scheme, and the midpoint and the backward Euler schemes are implicit. The stability

and accuracy properties of these time-stepping schemes in the context of ordinary

differential equations are well-known (e.g., see [48]).

Weak formulations

We will now present several weak formulations for the initial boundary value

problem given by equations (3.1a)–(5.2b), which will be used in the remainder of the

chapter. Since we address advection-dominated and reaction-dominated problems,

we will present two popular stabilized weak formulations in addition to the Galerkin

weak formulation. Let us introduce the function spaces

Ct ∶= {c(x, ⋅) ∈ H1(Ω) ∣ c(x, t) = cp(x, t) on ΓD} , and (3.9a)

W ∶= {w(x) ∈H1(Ω) ∣ w(x) = 0 on ΓD} , (3.9b)
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where H1(Ω) is a standard Sobolev space [64]. For convenience, we shall denote the

standard L2 inner-product over a set K as

(a; b)K ≡ ∫
K
a ⋅ b dK ⋅ (3.10)

The subscript K will be dropped if the set is the entire spatial domain (i.e., K = Ω).

Galerkin weak formulation

The Galerkin formulation for the initial boundary value problem (3.1a)–(5.2b)

can be written as follows: Find c(x, t) ∈ Ct such that we have

(w;∂c/∂t) + (w;div[vc]) + (grad[w];D(x)grad[c]) + (w;βc − f) = (w; qp)ΓN ∀w(x) ∈W⋅
(3.11)

It is well-known that the Galerkin formulation may exhibit numerical instabilities

(e.g., spurious node-to-node oscillations) for non-self-adjoint spatial operators like

the advective-diffusive and advective-diffusive-reactive systems. The reason can

be attributed to the presence of boundary layers and interior layers in the solu-

tions of these systems when advection is more dominant than the diffusion and

reaction processes. Designing stable numerical formulations for advection-diffusion

and advection-diffusion-reaction problems is still an active area of research (e.g.,

see [50,65,66]). This chapter is not concerned with developing new stabilized formu-

lations.

In order to avoid spurious oscillations and obtain accurate numerical solutions,

it is sufficient to have the element Péclet number to be smaller than unity. To put

it differently, if the element Péclet number is greater than unity, the computational
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mesh may not be adequate to resolve the steep gradients due to boundary layers and

internal layers, which are typical in the solutions of advection dominated problems.

One can always achieve smaller values for the element Péclet number by refining

the computational mesh adequately. However, in some cases, the mesh has to be so

fine that it may be computationally prohibitive to employ such a mesh. In order to

alleviate the deficiencies of the Galerkin formulation for advection-dominated prob-

lems, many alternative methods have been proposed in the literature. For example,

see [55] for a short description and comparison of these methods. In this chapter, we

shall employ the SUPG formulation [67] and the GLS formulation [68], which are two

popular approaches employed to enhance the stability of the Galerkin formulation.

For completeness and future reference, we now briefly outline these two stabilized

formulations.

Streamline Upwind/Petrov-Galerkin (SUPG) weak formulation

The SUPG formulation reads as follows: Find c(x, t) ∈ Ct such that we have

(w;∂c/∂t) + (w;div[vc]) + (grad[w];D(x)grad[c]) + (w;βc),
+

Nele

∑
e=1

(τSUPGv ⋅ grad[w];∂c/∂t + div [vc −D(x)grad[c]] + βc − f)Ωe
, and

= (w;f) + (w; qp)ΓN ∀w(x) ∈W, (3.12)

where Nele is the number of elements, and τSUPG is the stabilization parameter under

the SUPG formulation. We shall use the stabilization parameter proposed in [69],

τSUPG =
he

2∥v∥ξ0 (P h
e ) , ξ0 (χ) = coth (χ) − 1

χ
, (3.13)
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where he is the element length, and ξ0 is known as the upwind function. Recall that

P h
e is the local (element) Péclet number.

Galerkin/least-squares (GLS) weak formulation

The GLS formulation reads as follows: Find c(x, t) ∈ Ct such that we have

(w;∂c/∂t) + (w;div[vc]) + (grad[w];D(x)grad[c]) + (w;βc),
+

Nele

∑
e=1

(w/∆t + div[vw −D(x)grad[w]] + βw; τGLS (∂c/∂t + div [vc −D(x)grad[c]] + βc − f
= (w;f) + (w; qp)ΓN ∀w(x) ∈W, (3.14)

where τGLS is the stabilization parameter under the GLS formulation, and ∆t is the

time-step. In this chapter, we shall take τGLS = τSUPG, which is a common practice. It

should be emphasized that an optimal choice of stabilization parameter for stabilized

formulations in two- and three-dimensions is still an active area of research (e.g.,

see [55]).

3.3 Proposed Multi-Time-Step Computational Framework

The proposed multi-time-step computational framework is built upon the semi-

discrete methodology [63] and the dual Schur domain decomposition method [36].

The semi-discrete methodology converts the partial differential equations into a sys-

tem of ordinary differential equations. For spatial discretization of the problem at

hand, one can use either the Galerkin formulation or a stabilized formulation, which

could depend on the relative strengths of transport processes and the decay coeffi-

cient due to chemical reactions. The dual Schur domain decomposition is an elegant
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Domain decomposition

Enforcing compatibility
using Lagrange multipliers

Figure 3.1: Non-overlapping domain decomposition: A pictorial description of com-
putational domain and its decomposition into subdomains, subdomain
interface, and interface interactions (i.e., Lagrange multipliers).

way to handle decomposition of the computational domain into subdomains through

Lagrange multipliers.

Domain decomposition and the resulting equations

In order to facilitate multi-time-step coupling, we decompose the computational

domain into S non-overlapping subdomains such that

Ω =
S

⋃
i=1

Ωi and Ωi ∩Ωj = ∅ for i ≠ j, (3.15)

where a superposed bar denotes the set closure. The meshes in all subdomains are

assumed to be conforming along the subdomain interface, see Figure 3.1.

We shall use signed Boolean matrices to write the compatibility constraints along

the subdomain interface, as they provide a systematic way to write the interface con-

straints as a system of linearly independent equations. Moreover, the mathematical
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structure of the resulting equations is suitable for a mathematical analysis. The en-

tries of a signed Boolean matrix are either -1, 0, or 1, and each row has at most one

non-zero entry. However, it needs to be emphasized that a signed Boolean matrix is

never constructed explicitly in a computer implementation, as it is computationally

not efficient to store such a matrix. It should also be noted that signed Boolean

matrices can handle constraints arising from cross-points, which are the points on

the subdomain interface that are connected to more than two subdomains. For more

details on signed Boolean matrices see [9].

In a time-continuous setting, the governing equations after spatial discretization

can be written as

M iċi(t) +K ici(t) = f i(t) +CT
i λ (t) i = 1,⋯,S , and (3.16a)

S

∑
i=1

Cici (t) = 0, (3.16b)

where a superposed dot denotes a derivative with respect to time, the subscript i

denotes the subdomain number, the nodal concentration vector of the i-th subdomain

is denoted by ci, the capacity matrix of the i-th subdomain is denoted by M i, the

transport matrix of the i-th subdomain is denoted byK i, f i(t) is the forcing vector of
the i-th subdomain, λ denotes the vector of Lagrange multipliers, andC i denotes the

signed Boolean matrix for the i-th subdomain. Let the number of degrees-of-freedom

in the i-th subdomain be denoted by Ni, and the number of degrees-of-freedom on

the subdomain interface be denoted by Nλ. The size of ci is Ni × 1, and both the

capacity and transport matrices of the i-th subdomain will be of the size Ni ×Ni.

The size of λ will be Nλ × 1, and the size of the signed Boolean matrix C i will be
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Nλ ×Ni.

It is imperative to note that the governing equations (3.16a)–(3.16b), which

arise from domain decomposition, form a system of differential/algebraic equations

(DAEs). For completeness and future reference we now present the necessary details

about differential/algebraic equations.

Differential/algebraic equations

A differential/algebraic equation is an equation involving a set of independent

variables, an unknown function of the independent variables, and derivatives of the

functions with respect to the independent variables. Clearly, ordinary differential

equations, and algebraic equations form subclasses of differential/algebraic equations.

In this chapter, we are concerned with first-order differential/algebraic equations.

Mathematically, a DAE in first-order form takes the form

w (ẋ(t),x (t) , t) = 0 t ∈ I , (3.17)

where t is the independent variable, and x(t) is the unknown function. It is well-

known that solving a system of differential/algebraic equations numerically can be

more difficult than solving a system of ordinary differential equations [22, 47]. A

notion which is popularly employed to measure the difficulty of obtaining numerical

solutions to a particular DAE is the differential index. The differential index of a

DAE is the number of times one has to take derivatives of equation (3.17) in order

to be able to derive an ODE by mere algebraic manipulations. It is obvious that

a system of ODEs will have differential index of zero. A special form of DAEs
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which is of interest to us in this chapter is the Hessenberg index-2 DAE. It has the

mathematical form

ẋ = p(x,y, t), and (3.18a)

0 = q(x), (3.18b)

which consists of a system of ordinary differential equations along with a set of alge-

braic equations (i.e., constraints). This chapter concerns with differential/algebraic

equations of differential index two or lower. Many of the constrained mechanical sys-

tems can be modeled using DAEs (e.g., see [39]). In the case of coupling algorithms,

the compatibility of subdomains along the interfaces will appear as an algebraic con-

straint to the ODEs obtained from a finite element discretization. It is not possible to

solve differential/algebraic equations analytically unless in some very special cases.

Hence, one has to resort to numerical solutions. In this chapter, we shall restrict

to time-stepping schemes from the trapezoidal family. However, the corresponding

properties when applied to differential/algebraic equations can be different. For a

detailed discussion on this topic see [47].

Time discretization

We now construct two multi-time-step coupling methods that can handle multiple

subdomains, and can allow the use of different time-steps, different time-integrators

and/or different numerical formulation in different subdomains. To this end, the

time interval of interest is divided into non-overlapping intervals whose end points

will be referred to as system time-levels. The algebraic compatibility constraints will
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be enforced at the system time-levels. For convenience, we shall assume that the

system time-levels are uniform. The n-th system time-level will be denoted by t(n)

and can be written as

t(n) = n∆t n = 0,1,⋯,N , (3.19)

where ∆t is called the system time-step. The numerical time-integration of each

subdomain will advance by the subdomain time-step. The subdomain time-step of

the i-th subdomain will be denoted by ∆ti. Note that ∆t ≥∆ti ∀i. Furthermore, we

shall assume that the ratio between the system and subdomain time-step is a natural

number, and is denoted by ηi. That is,

ηi =
∆t

∆ti
⋅ (3.20)

Figure 3.2 presents a pictorial description of the system and subdomain time-steps.

In the rest of the chapter, we will use the notation to show the value of a variable at

a time-level

x
(n+ j

ηi
)
= x (t(n) + j∆ti) , and (3.21)

t
(n+ j

ηi
) = t(n) + j∆ti⋅ (3.22)

Note that because of the enforcement of compatibility constraint at system time-

levels only, the Lagrange multipliers can only be calculated at system time-levels. We

shall linearly interpolate the Lagrange multipliers within system time-levels. That

is,

λ
(n+ j+1

ηi
) = (1 − j + 1

ηi
)λ(n) + (j + 1

ηi
)λ(n+1)⋅ (3.23)
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As discussed earlier, coupling explicit and implicit time-stepping schemes is not

straightforward in the case of first-order transient systems as compared with second-

order systems. The proposed computational framework will employ different com-

patibility constraints in order to enforce continuity and to make an explicit/implicit

coupling possible.

Subdomain 1

Subdomain 2

Subdomain S

Information exchange

System time-step ∆t
tn tn+1

∆t1

∆t2

∆tS

⋮ ⋮

enforcement of compatibility conditions at system time-levels

Figure 3.2: Multi-time-step integration: A pictorial description of time levels (tn), sys-
tem time-step (∆t), subdomain time-step (∆ti), and subcycling. By
subcycling in the i-th subdomain we mean that ∆ti <∆t.

Mathematical statements of the proposed coupling methods

The compatibility constraints along the subdomain interface will be enforced at

system time-levels. Mathematically, the time discretization of compatibility con-
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straints reads as

S

∑
i=1

C id
(n+1)
i = 0 ∀n d-continuity method and (3.24)

S

∑
i=1

C i (v(n+1)i + α

∆t
d
(n+1)
i ) = 0 ∀n Baumgarte stabilization, (3.25)

where α > 0 is the Baumgarte stabilization parameter. The proposed coupling

method based on d-continuity will read as follows: Find (v(n+(j+1)/ηi)i ,d
(n+(j+1)/ηi)
i ,λ(n+1))

for n = 1, ...,N ; j = 0, ...,ηi − 1; and i = 1, ...,S such that we have

M iv
(n+ j+1

ηi
)

i +K id
(n+ j+1

ηi
)

i = f
(n+ j+1

ηi
)

i +CT
i λ
(n+ j+1

ηi
)
, (3.26a)

d
(n+ j+1

ηi
)

i = d
(n+ j

ηi
)

i +∆ti ((1 − ϑi)v(n+ j
ηi
)

i + ϑiv(n+
j+1
ηi
)

i ) , (3.26b)

λ
(n+ j+1

ηi
)
= (1 − j + 1

ηi
)λ(n) + (j + 1

ηi
)λ(n+1), and (3.26c)

S

∑
i=1

Cid
(n+1)
i = 0⋅ (3.26d)

The proposed coupling method based on the Baumgarte stabilization will read as

follows: Find (v(n+(j+1)/ηi)i ,d
(n+(j+1)/ηi)
i ,λ(n+1)) for n = 1, ...,N ; j = 0, ...,ηi − 1; and

i = 1, ...,S such that we have

M iv
(n+ j+1

ηi
)

i +K id
(n+ j+1

ηi
)

i = f
(n+ j+1

ηi
)

i +CT
i λ
(n+ j+1

ηi
)
, (3.27a)

d
(n+ j+1

ηi
)

i = d
(n+ j

ηi
)

i +∆ti ((1 − ϑi)v(n+ j
ηi
)

i + ϑiv(n+
j+1
ηi
)

i ) , (3.27b)

λ
(n+ j+1

ηi
) = (1 − j + 1

ηi
)λ(n) + (j + 1

ηi
)λ(n+1), and (3.27c)

S

∑
i=1

Ci (v(n+1)i + α

∆t
d
(n+1)
i ) = 0⋅ (3.27d)

Before we perform a systematic theoretical analysis of the proposed multi-time-

step coupling methods in the next section, it needs to be mentioned that the quantity

97



∂c/∂t in the stabilization terms under the SUPG and GLS stabilized formulations (see

equations (3.13) and (3.14)) will be evaluated at the weighted time-level n+(j+ϑi)/ηi
for the i-th subdomain. This implies that this quantity in the stabilization terms for

the i-th subdomain needs to be calculated as

∂c

∂t
∣
n+(j+ϑi)/ηi

≈ (1 − ϑi)v(n+j/ηi) + ϑiv(n+(j+1)/ηi) = d(n+(j+1)/ηi) − d(n+j/ηi)
∆ti

⋅ (3.28)

This form of discretization will be crucial in proving the stability of the proposed

coupling methods. More details on the implementation of the proposed coupling

methods can be be found in Appendix.

3.4 A Theoretical Study on the Proposed Methods

Notation

The jump and average operators over the i-th subdomain time-step are, respec-

tively, defined as

[x(n+ j
ηi
)]

i

∶= x(n+ j+1
ηi
) − x(n+ j

ηi
)
, and (3.29a)

⟨x(n+ j
ηi
)⟩

i

∶= 1
2
(x(n+ j+1

ηi
) + x(n+ j

ηi
)) ⋅ (3.29b)

One can similarly define the jump and average operators over a system time-step as

#
x(n)

$ ∶= x(n+1) − x(n) =
ηi−1
∑
j=0

[x(n+ j
ηi
)]

i

, and (3.30a)

⟪x(n)⟫ ∶= 1
2
(x(n+1) + x(n)) ⋅ (3.30b)

Let S be a symmetric matrix, then we have

⟪x⟫TS!x" = 1

2
!xTSx"⋅ (3.31)
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The trapezoidal family of time-stepping schemes applied over a subdomain time-step

can be compactly written as

[d(n+ j
ηi
)

i ]
i

=∆ti (⟨v(n+ j
ηi
)

i ⟩
i

+ (ϑi − 1

2
)[v(n+ j

ηi
)

i ]
i

) ⋅ (3.32)

Stability analysis

Consistency of the proposed coupling methods is trivial by construction. Hence,

for convergence, it is necessary and sufficient to show that the proposed coupling

methods are stable. We now show that both the proposed coupling methods are

indeed stable using the energy method [33]. For numerical stability analysis, it is

common to assume that supply function is zero. Therefore, we take f i(t) = 0 in all

the subdomains. Before we can provide stability proofs for the proposed coupling

methods, we need to present an important property that the transport matrices enjoy

under the three weak formulations that were outlined in the previous section. This

property will play a crucial role in the stability analysis. We provide a proof for the

Galerkin weak formulation.

Lemma 1 Consider the Galerkin weak formulation given by equation (3.11). If the

advection velocity satisfies div[v] ≥ 0, and the diffusivity tensor D(x) is symmetric

and positive definite, then the symmetric part of the transport matrix resulting from

the finite element discretization will be positive semi-definite.

Proof 3 Let us denote the spatial operator of the advective-diffusive system as

L[c] ∶= div[vc] − div[D(x)grad[c]]⋅ (3.33)
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It is easy to show that the adjoint of the spatial operator takes the form

L∗[c] = −v ⋅ grad[c] − div [DT(x)grad[c]] ⋅ (3.34)

Noting the symmetry of diffusivity tensor, the symmetric part of the spatial operator

takes the form

L̃[c] = L[c] +L∗[c]
2

=
1

2
div[v]c − div[D(x)grad[c]]⋅ (3.35)

The coefficient (i.e., “stiffness”) matrix corresponding to the operator L̃[c] over a

finite element Ωe can be written as

Ke = ∫
Ωe

1

2
div[v]NT(x)N(x) dΩ + ∫

Ωe

B(x)D(x)BT(x) dΩ, (3.36)

where N (x) is the row vector containing shape functions, and B (x) is the matrix

containing the derivatives of shape functions with respect to x. Since div[v] ≥ 0 and

D(x) is positive definite, the matrix Ke will be positive semi-definite. Since D(x)
is symmetric, the matrix Ke is symmetric. The assembly procedure preserves the

positive semi-definiteness when the local matrices are mapped to a global matrix.

One can similarly show that the symmetric part of the transport matrix under the

GLS formulation is also positive semi-definite. On the other hand, the symmetric

part of the transport matrix under the SUPG formulation will be positive semi-

definite only if the diffusivity tensor is constant, and low-order simplicial elements

(e.g, two-node element, three-node triangle element, four-node tetrahedron element)

are employed.
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Theorem 3 (Stability of the d-continuity coupling method) Under the proposed

multi-time-step method with d-continuity, the rate variables vi will remain bounded

if 1/2 ≤ ϑi ≤ 1 ∀i.

Proof 4 Using the notation introduced earlier, one can write

M i [v(n+ j
ηi
)

i ]
i

+K i [d(n+ j
ηi
)

i ]
i

=
1

ηi
CT

i

%
λ(n)

&
, and (3.37a)

S

∑
i=1

Ci

%
d
(n)
i

&
= 0, (3.37b)

where interpolation of Lagrange multipliers using a first-order polynomial is used.

For convenience, let us denote

Qi ∶=M i + 2(ϑi − 1
2
)∆ti sym [K i] ⋅ (3.38)

Clearly, the matrix Qi is symmetric, as the matrix M i is symmetric. Since the

matrix M i is positive definite, the symmetric part of K i is positive semi-definite,

ϑi ≥ 1/2, and ∆ti > 0; one can conclude that the matrix Qi is positive definite.

Premultiplying both sides of equation (3.37a) by [d(n+ j
ηi
)

i ]
i

and using equation

(3.32), gives the equation

⟨v(n+ j
ηi
)

i ⟩T
i

Qi [v(n+ j
ηi
)

i ]
i

+ (ϑi − 1

2
)[v(n+ j

ηi
)

i ]T
i

(M i + (ϑi − 1
2
)∆ti sym [K i])[v(n+ j

ηi
)

i ]
i

+∆ti ⟨v(n+ j
ηi
)

i ⟩T
i

sym [K i] ⟨v(n+ j
ηi
)

i ⟩
i

=
1

∆t

%
λ(n)

&T

Ci [d(n+ j
ηi
)

i ]
i

⋅

(3.39)

Since the symmetric part of K i is positive semi-definite, and ∆ti > 0, we have the
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inequality

⟨v(n+ j
ηi
)

i ⟩T
i

Qi [v(n+ j
ηi
)

i ]
i

+ (ϑi − 1

2
)[v(n+ j

ηi
)

i ]T
i

(M i + (ϑi − 1
2
)∆ti sym [K i])[v(n+ j

ηi
)

i ]
i

≤
1

∆t

%
λ(n)

&T

Ci [d(n+ j
ηi
)

i ]
i

⋅ (3.40)

The matrices M i and sym [Ki] are positive definite and semidefinite respectively. In

addition to that, if one has ϑi ≥ 1/2 ∀i, then the following inequality can be derived

⟨v(n+ j
ηi
)

i ⟩T
i

Qi [v(n+ j
ηi
)

i ]
i

≤
1

∆t

%
λ(n)

&T

Ci [d(n+ j
ηi
)

i ]
i

⋅ (3.41)

Summing over all the subdomain time levels (i.e., summing over j), subdomains (i.e.,

summing over i), and using equation (3.37b) will give

S

∑
i=1

ηi−1
∑
j=0

⟨v(n+ j
ηi
)

i ⟩T
i

Qi [v(n+ j
ηi
)

i ]
i

≤ 0⋅ (3.42)

Since the matrices Qi are symmetric, the above inequality can be rewritten as

S

∑
i=1

ηi−1
∑
j=0

⎡⎢⎢⎢⎢⎣(v
(n+ j

ηi
)

i )TQiv
(n+ j

ηi
)

i

⎤⎥⎥⎥⎥⎦i ≤ 0⋅ (3.43)

By executing the telescopic summation, we obtain

S

∑
i=1

'
(v(n)i )TQiv

(n)
i

(
≤ 0⋅ (3.44)

This further implies

S

∑
i=1

v
(n)
i

T
Qiv

(n)
i ≤

S

∑
i=1

v
(n−1)
i

T
Qiv

(n−1)
i ≤ ⋯ ≤

S

∑
i=1

v
(0)
i

T
Qiv

(0)
i ⋅ (3.45)

Boundedness of v(0)i and positive definiteness of matrices Qi (i = 1,⋯,S) concludes

the boundedness of v(n)i , in all subdomains and at all time-levels.
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Remark 6 One cannot relax the condition ϑi ≥ 1/2 under the coupling method based

on the d-continuity method. It should be noted that one would obtain numerical

instability if this condition is violated. This will be the case even if one does not

employ subcycling [23]. However, the main advantage of employing the coupling

method based on the d-continuity is that one can choose any system time-step and

subdomain time-step, and still achieve numerical stability.

We now assess the stability of the proposed coupling method based on the Baum-

garte stabilization. We are able to construct a proof only for the case in which the

matrices Ki are symmetric. This means that the proof does not hold for the case in

which advection is present. However, the numerical results presented in a subsequent

section show that the coupling method based on the Baumgarte stabilization provide

stable solutions even in the presence of advection. It is therefore a good research

problem to theoretically assess the stability of the coupling method based on the

Baumgarte stabilization in the presence of advection.

Theorem 4 (Stability of the proposed method with Baumgarte stabilization) Under

the proposed multi-time-step method with Baumgarte stabilization, the rate variables

vi, will remain bounded if one chooses ∆ti ≤∆tcriticali and α ≤ αmax where

∆tcriticali ∶=
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

2(1−2ϑi)ωi
if 0 ≤ ϑi < 1/2

+∞ if 1/2 ≤ ϑi ≤ 1
, (3.46a)

αmax ∶=
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

min{ 2ηi
1−2ϑi

∶ 0 ≤ ϑi < 1/2}
+∞ if 1/2 ≤ ϑi ≤ 1 ∀i

, (3.46b)
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and ωi = max{ω ∶ det (ωIi −M−1
i Ki) = 0} . It is assumed that the matrices K i (i =

1,⋯,S) are symmetric and positive semi-definite.

Proof 5 Consider the equations

M i [v(n+ j
ηi
)

i ]
i

+K i [d(n+ j
ηi
)

i ]
i

=
1

ηi
CT

i

%
λ(n)

&
, and (3.47a)

S

∑
i=1

Ci (%v(n)i

&
+ α

∆t

%
d
(n)
i

&) = 0⋅ (3.47b)

Premultiplying both sides of equation (3.47a) by [v(n+ j
ηi
)

i ]
i

+ α
∆t
[d(n+ j

ηi
)

i ]
i

we obtain

[v(n+ j
ηi
)

i ]T
i

M i [v(n+ j
ηi
)

i ]
i

+ α

∆t
[d(n+ j

ηi
)

i ]T
i

M i [v(n+ j
ηi
)

i ]
i

+ [v(n+ j
ηi
)

i ]T
i

K i [d(n+ j
ηi
)

i ]
i

+ α

∆t
[d(n+ j

ηi
)

i ]T
i

K i [d(n+ j
ηi
)

i ]
i

=
1

ηi

%
λ(n)

&T

C i ([v(n+ j
ηi
)

i ]
i

+ α

∆t
[d(n+ j

ηi
)

i ]
i

)
(3.48)

Employing equation (3.32) yields:

[v(n+ j
ηi
)

i ]T
i

((1 +α(ϑi − 1
2
) ∆ti
∆t
)M i +∆ti (ϑi − 1

2
)(1 + α(ϑi − 1

2
)∆ti
∆t
)K i)[v(n+ j

ηi
)

i ]
i

+ ⟨v(n+ j
ηi
)

i ⟩T
i

(α∆ti
∆t

M i +∆ti (1 + 2α(ϑi − 1

2
)∆ti
∆t
)Ki)[v(n+ j

ηi
)

i ]
i

+α∆t2i
∆t
⟨v(n+ j

ηi
)

i ⟩T
i

K i ⟨v(n+ j
ηi
)

i ⟩
i

=
1

ηi

%
λ(n)

&T

C i ([v(n+ j
ηi
)

i ]
i

+ α

∆t
[d(n+ j

ηi
)

i ]
i

) ⋅ (3.49)

Note that the parameters α, ∆ti, and ∆t are strictly positive. The matrices K i are

assumed to be positive semi-definite. Thus, we have the inequality

[v(n+ j
ηi
)

i ]T
i

P i [v(n+ j
ηi
)

i ]
i

+ ⟨v(n+ j
ηi
)

i ⟩T
i

U i [v(n+ j
ηi
)

i ]
i

≤
%
λ(n)

&T

C i ([v(n+ j
ηi
)

i ]
i

+ α

∆t
[d(n+ j

ηi
)

i ]
i

) , (3.50)
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where

P i ∶= (ηi +α(ϑi − 1
2
))Mi +∆ti (ϑi − 1

2
)(ηi + α(ϑi − 1

2
))K i, and (3.51a)

U i ∶= αM i +∆ti (ηi + 2α(ϑi − 1
2
))K i⋅ (3.51b)

Summing over all the subdomains (i.e., summing over i) and subdomain time-levels

(i.e., summing over j), gives the inequality

S

∑
i=1

ηi−1
∑
j=0

[v(n+ j
ηi
)

i ]T
i

P i [v(n+ j
ηi
)

i ]
i

+
S

∑
i=1

ηi−1
∑
j=0

⟨v(n+ j
ηi
)

i ⟩T
i

U i [v(n+ j
ηi
)

i ]
i

≤
%
λ(n)

&T S

∑
i=1

Ci (%v(n)i

&
+ α

∆t

%
d
(n)
i

&) ⋅ (3.52)

The compatibility condition along the subdomain interface in the form given by equa-

tion (3.52) implies that

S

∑
i=1

ηi−1
∑
j=0

[v(n+ j
ηi
)

i ]T
i

P i [v(n+ j
ηi
)

i ]
i

+
S

∑
i=1

ηi−1
∑
j=0

⟨v(n+ j
ηi
)

i ⟩T
i

U i [v(n+ j
ηi
)

i ]
i

≤ 0⋅ (3.53)

From the hypothesis of the theorem, it is easy to show that the matrix P i is positive

semi-definite. This implies that we have the inequality

S

∑
i=1

ηi−1
∑
j=0

⟨v(n+ j
ηi
)

i ⟩T
i

U i [v(n+ j
ηi
)

i ]
i

≤ 0⋅ (3.54)

It is easy to check that U i is symmetric, which implies

S

∑
i=1

ηi−1
∑
j=0

⟨v(n+ j
ηi
)

i ⟩T
i

U i [v(n+ j
ηi
)

i ]
i

=
S

∑
i=1

ηi−1
∑
j=0

1

2

⎡⎢⎢⎢⎢⎣v
(n+ j

ηi
)

i

T

U iv
(n+ j

ηi
)

i

⎤⎥⎥⎥⎥⎦i
=
1

2

S

∑
i=1

%
v
(n)
i

T
U iv

(n)
i

&
≤ 0 ∀n⋅ (3.55)

This further implies that

S

∑
i=1

v
(n)
i

T
U iv

(n)
i ≤

S

∑
i=1

v
(n−1)
i

T
U iv

(n−1)
i ≤ ⋯ ≤

S

∑
i=1

v
(0)
i

T
U iv

(0)
i ⋅ (3.56)
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Since the matrices U i (i = 1,⋯,S) are positive definite, and the initial rates v
(0)
i

are bounded, one can conclude that the rate variables will remain bounded at all

time-levels.

Bounds on drifts in concentrations and rate variables

A well-known phenomenon appearing in numerical solutions of DAEs is the drift

in the compatibility/constraint equations [47]). In our case, the drift will manifest

as discontinuity in the primary and/or rate variables along the subdomain interface.

The drifts will be different for two proposed coupling methods, as they differ in

handling compatibility conditions along the subdomain interface. Herein, we shall

ignore subcycling (i.e., ηi = 1 ∀i), and assume that ϑi = ϑ ∀i. The following notation

is employed:

d
(n)
drift ∶=

S

∑
i=1

Cid
(n)
i , and v

(n)
drift ∶=

S

∑
i=1

Civ
(n)
i ⋅ (3.57)

Under the d-continuity coupling method, by construction of the method, there is no

drift in the primary variable (i.e., concentration) along the subdomain interface at

all system time levels. The drift in the rate satisfy the recursive relation

v
(n+1)
drift = (1 − 1

ϑ
)v(n)drift ∀n > 1⋅ (3.58)

Note that if the implicit Euler method (i.e., ϑ = 1) is employed then the drifts at

system time-levels will be zero in both concentrations and rate variables.

Under the proposed coupling method with Baumgarte stabilization, the recursive
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relations hold

d
(n+1)
drift =

1

1 +αϑd
(n)
drift + ∆t (1 − ϑ)

1 + αϑ v
(n)
drift ∀n > 1, and (3.59a)

v
(n+1)
drift = − α

∆t (1 + αϑ)d(n)drift − α (1 − ϑ)1 +αϑ v
(n)
drift ∀n > 1, (3.59b)

which imply that choosing larger α will decrease drifts in concentration. It should

be noted that subcycling, and mixed methods can have adverse effects on the drifts.

That is, the drifts can be worse than predictions made by the above bounds. How-

ever, the above relations can be valuable to check a computer implementation, and

can show a general trend of the drifts in the numerical time integration process.

In a subsequent section, some numerical results are presented to corroborate the

aforementioned theoretical predictions.

Influence of perturbations

In this section, we will study the propagation of perturbations over a system time-

step. This analysis will help us to better understand how perturbations in input (in

this case, previous time-level) will affect the solution at the next time-level. In the

following theorem, we will consider application of the proposed method to non-linear

DAEs of the form

M iċi (t) = hi (ci (t) , t) +CT
i λ (t) ∀i, and (3.60)

S

∑
i=1

Cici (t) = 0⋅ (3.61)

Theorem 5 Let (v̂(n+(j+1)/ηi)i , d̂
(n+(j+1)/ηi)
i , λ̂(n+1)) with j = 1,⋯,ηi −1 and i = 1,⋯,S
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be the solution of the following system

v̂
(n+ j+1

ηi
)

i =M−1
i hi (d̂(n+ j+1

ηi
)

i , t
(n+ j+1

ηi
)) +M−1

i CT
i λ̂
(n+ j+1

ηi
)
, (3.62a)

d̂
(n+ j+1

ηi
)

i = d̂
(n+ j+1

ηi
)

i +∆ti (1 − ϑi) v̂(n+ j
ηi
)

i +∆tiϑiv̂
(n+ j+1

ηi
)

i +∆tiεdi , (3.62b)

λ̂
(n+ j+1

ηi
)
= (1 − j + 1

ηi
) λ̂(n) + (j + 1

ηi
) λ̂(n+1) +∆t∆λ, and (3.62c)

S

∑
i=1

C id̂
(n+1)
i = ελ

12222222222222222222222222222222222222222222322222222222222222222222222222222222222222224
d-continuity

or
S

∑
i=1

C i (v̂(n+1)i + α

∆t
d̂
(n+1)
i ) = 1

∆t
ελ

1222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222322222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222224
Baumgarte stabilization

⋅ (3.62d)

in which we have assumed that

∆λ = O(∆t), εdi = O(∆ti), and ελ = O(∆t2)⋅ (3.63)

Furthermore,

v̂
(n)
i − v(n)i = O(∆ti), d̂

(n)
i − d(n)i = O(∆t2i ), λ̂

(n) −λ(n) = O(∆t)⋅ (3.64)

Let the functions M−1
i hi (i = 1,⋯,S) be Lipschitz continuous, then the inequalities

will hold

∥δd(n+1)i ∥ ≤ Cd ( S∑
l=1

(∥δd(n)l ∥ +∆t ∥εdl∥) +∆t ∥δλ(n)∥ + φ ∥ελ∥ +∆t2 ∥∆λ∥) , (3.65a)

∥δv(n+1)i ∥ ≤ Cv ( S∑
l=1

( 1

∆t
∥δd(n)l ∥ + ∥εdl∥) + ∥δλ(n)∥ + φ

∆t
∥ελ∥ +∆t ∥∆λ∥) , and

(3.65b)

∥δλ(n+1)∥ ≤ Cλ ( S∑
l=1

( 1

∆t
∥δd(n)l ∥ + ∥εdl∥) + ∥δλ(n)∥ + φ

∆t
∥ελ∥ +∆t ∥∆λ∥) , (3.65c)

where Cd, Cv, Cλ are constants, δ◻ = ◻̂ − ◻, and

φ =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1 d − continuity method

∆t Baumgarte stabilization method

(3.66)
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Proof 6 From equation (3.62) we can write

δv
(n+ j+1

ηi
)

i =M−1
i (hi (d̂(n+ j+1

ηi
)

i , t
(n+ j+1

ηi
)) −hi (d(n+ j+1

ηi
)

i , t
(n+ j+1

ηi
)))

+M−1
i CT

i ((1 − j + 1
ηi
) δλ(n) + (j + 1

ηi
) δλ(n+1) +∆t∆λ) ∀i⋅ (3.67)

Lipschitz continuity of functions M−1
i hi and M−1

i CT
i can be used to obtain the in-

equalities

∥M−1
i hi (d̂(n+ j+1

ηi
)

i , t
(n+ j+1

ηi
)) −M−1

i hi (d(n+ j+1
ηi
)

i , t
(n+ j+1

ηi
))∥ ≤ Chi ∥δd(n+ j+1

ηi
)

i ∥ , and
(3.68a)

∥M−1
i CT

i (λ̂(n+ j+1
ηi
) −λ(n+ j+1

ηi
))∥ ≤ Cλi ∥δλ(n+ j+1

ηi
)∥ ⋅ (3.68b)

By taking norms of both sides of equation (3.67), and applying the triangle inequality,

we obtain

∥δv(n+ j+1
ηi
)

i ∥ ≤ Chi ∥δd(n+ j+1
ηi
)

i ∥ + (1 − j + 1
ηi
)Cλi ∥δλ(n)∥ + (j + 1ηi )Cλi ∥δλ(n+1)∥ +∆tCλi ∥∆λ∥

≤ Chi ∥δd(n+ j+1
ηi
)

i ∥ + Cλi ∥δλ(n)∥ + Cλi ∥δλ(n+1)∥ +∆tCλi ∥∆λ∥ ⋅ (3.69)

Note that 0 ≤ (j + 1)/ηi ≤ 1 ∀j. Using equation (3.62b) one can obtain the inequality

∥δd(n+ j+1
ηi
)

i ∥ ≤ ∥δd(n+ j
ηi
)

i ∥ +∆ti (1 − ϑi)∥δv(n+ j
ηi
)

i ∥ +∆tiϑi ∥δv(n+ j+1
ηi
)

i ∥ +∆ti ∥εdi∥
≤ ∥δd(n+ j

ηi
)

i ∥ +∆ti ∥δv(n+ j
ηi
)

i ∥ +∆ti ∥δv(n+ j+1
ηi
)

i ∥ +∆ti ∥εdi∥ ⋅ (3.70)

Inequalities (3.69) and (3.70) imply

(1 −∆tiChi ) ∥δd(n+ j+1
ηi
)

i ∥ ≤ (1 +∆tiChi )∥δd(n+ j
ηi
)

i ∥ + 2∆tiCλi ∥δλ(n)∥ + 2∆tiCλi ∥δλ(n+1)∥
+ 2∆ti∆tCλi ∥∆λ∥ +∆ti ∥εdi∥ ⋅ (3.71)
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We shall assume that the subdomain time-steps ∆ti are sufficiently small such that

1 −∆tiChi > 0 holds. Then, the propagation of perturbations over a subdomain time-

step will satisfy the inequality

∥δd(n+ j+1
ηi
)

i ∥ ≤ 1 +∆tiChi
1 −∆tiChi ∥δd

(n+ j
ηi
)

i ∥ + 2∆tiCλi
1 −∆tiChi ∥δλ

(n)∥ + 2∆tiCλi
1 −∆tiChi ∥δλ

(n+1)∥
+ 2∆ti∆tCλi
1 −∆tiChi ∥∆λ∥ + ∆ti

1 −∆tiChi ∥εdi∥ ⋅ (3.72)

Applying the above inequality in a recursive manner, the following inequality can be

obtained over a system time-step gives

∥δd(n+1)i ∥ ≤ (1 +∆tiChi
1 −∆tiChi )

ηi ∥δd(n)i ∥ +
⎧⎪⎪⎨⎪⎪⎩
ηi−1
∑
k=0

(1 +∆tiChi
1 −∆tiChi )

k⎫⎪⎪⎬⎪⎪⎭(
2∆tiCλi
1 −∆tiChi ∥δλ

(n)∥
+ 2∆tiCλi
1 −∆tiChi ∥δλ

(n+1)∥ + 2∆ti∆tCλi
1 −∆tiChi ∥∆λ∥ + ∆ti

1 −∆tiChi ∥εdi∥) ⋅ (3.73)

Similarly, one can derive other inequalities for the rate variables

∥δv(n+1)i ∥ ≤ Chi (1 +∆tiChi
1 −∆tiChi )

ηi ∥δd(n)i ∥
+
⎧⎪⎪⎨⎪⎪⎩C

h
i

⎧⎪⎪⎨⎪⎪⎩
ηi−1
∑
k=0

(1 +∆tiChi
1 −∆tiChi )

k⎫⎪⎪⎬⎪⎪⎭
2∆tiCλi
1 −∆tiChi + C

λ
i

⎫⎪⎪⎬⎪⎪⎭(∥δλ
(n)∥ + ∥δλ(n+1)∥)

+
⎧⎪⎪⎨⎪⎪⎩C

h
i

⎧⎪⎪⎨⎪⎪⎩
ηi−1
∑
k=0

(1 +∆tiChi
1 −∆tiChi )

k⎫⎪⎪⎬⎪⎪⎭
2∆ti∆tCλi
1 −∆tiChi +∆tCλi

⎫⎪⎪⎬⎪⎪⎭∥∆λ∥
+ Chi
⎧⎪⎪⎨⎪⎪⎩
ηi−1
∑
k=0

(1 +∆tiChi
1 −∆tiChi )

k⎫⎪⎪⎬⎪⎪⎭
∆ti

1 −∆tiChi ∥εdi∥ ⋅ (3.74)

From the perturbed constraint equations, we get the following inequality for the d-

continuity method

∥ελ∥ = ∥ S∑
i=1

C id
(n+1)
i ∥ ≤ S∑

i=1

∥d(n+1)i ∥ ⋅ (3.75)
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Similarly, the following inequality can be derived for the coupling method based on

the Baumgarte stabilization

∥ελ∥ = ∥ S∑
i=1

C i (v(n+1)i + α

∆t
d
(n+1)
i )∥ ≤ S∑

i=1

(∥v(n+1)i ∥ + α

∆t
∥d(n+1)i ∥) ⋅ (3.76)

By substituting inequalities (3.73) and (3.74) in the above inequalities, one can obtain

the desired inequality for ∥δλ(n+1)∥. By substituting the resulting inequality in (3.73)

and (3.74), one can obtain the desired inequalities for ∥δd(n+1)i ∥ and ∥δv(n+1)i ∥.

Remark 7 The difference in the order of the perturbation in the algebraic constraints

in (3.62) arises due to the difference in the differential index of the governing DAEs.

That is, the d-continuity method form a system of DAEs of index 2, whereas the

coupling method based on the Baumgarte stabilization form a system of DAEs of

index 1. One can also decide on the order of perturbations based on dimensional

analysis and consistency.

3.5 Benchmark Problems for Verification

In this section, several benchmark problems are solved to illustrate the accuracy

of the proposed coupling methods, to verify numerically the theoretical predictions,

and to check the computer implementation.
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Split degree-of-freedom problem

The governing equations of the coupled system that is shown in Figure 3.3 take

the following form:

m1ċ1(t) + k1c1(t) = f1(t) + λ(t) (3.77a)

m2ċ2(t) + k2c2(t) = f2(t) − λ(t), and (3.77b)

c1(t) − c2(t) = 0, (3.77c)

where λ(t) is the Lagrange multiplier. The following parameters have been used in

this numerical simulation:

m1 = 100, m2 = 1, k1 = 1, k2 = 100, f1 = f2 = 0 (3.78)

We shall solve the DAEs given by equations (3.77a)–(3.77c) using the proposed multi-

time-step coupling methods, subject to the initial condition c1(t = 0) = c2(t = 0) = 1.

Performance of the d-continuity method

Figure 3.4 shows the results of numerical solution to (3.77) using the proposed

coupling method with d-continuity. Implicit Euler method (i.e., ϑ1 = 1) is used to

integrate the first subdomain, and the second subdomain is integrated using the

midpoint rule (i.e., ϑ2 = 1/2). The results are shown for several different choices of

system and subdomain time-steps (see Table 3.1). As shown earlier, the proposed

method is stable under d-continuity if ϑi ≥ 1/2 in all subdomains. Enforcing d-

continuity, assures the continuity of primary variable (which will be the concentration
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Table 3.1: Split degree-of-freedom problem: Time-integration parameters for the d-
continuity method.

Case ∆t ∆t1 ∆t2 ϑ1 ϑ2
1 0.5 0.25 0.5 1 1/2
2 0.5 0.05 0.1 1 1/2
3 0.1 0.05 0.1 1 1/2

in this paper) along the interface at all system time-levels. The proposed methods

shows good compatibility with the exact solution.

Performance of the Baumgarte stabilization

Baumgarte stabilization allows coupling explicit and implicit time-integrators in

different subdomains. Midpoint rule is employed in the first subdomain (i.e., ϑ1 =

1/2). In this problem explicit Euler method is used in the second subdomain (i.e.,

ϑ2 = 0). As it can be seen in Figure 3.5, choice of system time-step∆t, and Baumgarte

stabilization parameter α, influence the accuracy of the numerical result (see Table

3.2 for the values of integration parameters). The drift in the primary variables, u1

and u2, is nonzero. One can observe in Figure 3.5, that increasing the Baumgarte

stabilization parameter α, or decreasing the system time-step ∆t can improve the

accuracy. Figure 3.6 shows the absolute error at time t = 1 vs. the system time-

step. These figures show that despite subcycling (and using linear interpolation for

Lagrange multipliers), the convergence rate remains close to that of the midpoint

rule (which was used in all subdomains).
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Table 3.2: Split degree-of-freedom problem: Time-integration parameters for the
Baumgarte stabilization method.

Case ∆t α ∆t1 ∆t2 ϑ1 ϑ2
1 0.5 1.0 0.1 0.02 1/2 0
2 0.1 1.0 0.1 0.02 1/2 0
3 0.5 25.0 0.1 0.02 1/2 0

m1 m2

f1 f2

k1 k2
λ −λ

Figure 3.3: Split degree-of-freedom problem: A pictorial description.

One-dimensional problem

We will consider an unsteady diffusion with decay in one-dimension, which is an

extension of the steady-state version considered in [70]. The governing equations can

be written as follows:

∂c

∂t
+ c − ε2 ∂2c

∂x2
= 1 x ∈ (0,1), t ∈ (0, T ] (3.79a)

c(x = 0, t) = c(x = 1, t) = 0 t ∈ (0, T ], and (3.79b)

c(x, t = 0) = 0 x ∈ (0,1). (3.79c)

It is well-known that the solution of this singularly perturbed problem will exhibit

boundary layers for small values of ε. Herein, we have taken ε = 0.01. We shall

demonstrate the benefits of using the proposed multi-time-step coupling methods

to problems in which the behavior of the solution can be very different in various

regions of the computational domain.
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Figure 3.4: Split degree-of-freedom problem: We have employed the multi-time-step
coupling method based on d-continuity method. The values of concen-
trations, rate variables, Lagrange multipliers, and drifts are compared
with their respective exact solutions.
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Figure 3.5: Split degree-of-freedom problem: The values of concentrations, rate vari-
ables, Lagrange multipliers, and drifts are compared with their respective
exact solutions. In this problem Baumgarte stabilization is used.
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Figure 3.6: Split degree-of-freedom problem: In these figures absolute error vs. sys-
tem time-step at t = 1 is plotted. In all cases, the subdomain time-steps
are ∆ti = 0.01, i = 1,2.
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The domain is decomposed into three subdomains, as shown in Figure 3.7. Sub-

domains 1 and 3 are the regions in which the boundary layers will appear. Note

that these subdomains are meshed using much finer elements than subdomain 2. For

time-integration variables, see tables 3.3 and 3.4. The numerical results obtained us-

ing the proposed multi-time-step coupling methods are shown in Figures 3.8 and 3.9.

Results are in good agreement with the exact solution, and the boundary layers are

captured accurately by the proposed coupling methods. The drifts in concentrations

and rate variables are plotted in figures 3.10 and 3.11. This numerical experiment

illustrates the following attractive features of the proposed coupling methods:

(a) The system time-step can be much larger than subdomain time-steps.

(b) For fixed subdomain time-steps, smaller system time-step will result in better

accuracy.

(c) Under the coupling method based on the Baumgarte stabilization and fixed sub-

domain time-steps, decreasing system time-step and/or increasing the Baum-

garte stabilization parameter will result in improved accuracy.

(d) Utilizing smaller time-steps in individual subdomains improves the accuracy of

results in the respective subdomain.
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Table 3.3: One-dimensional problem: Time-integration parameters for the d-continuity
method.

Case ∆t ∆t1 ∆t2 ∆t3 ϑ1 ϑ2 ϑ3
1 0.25 0.05 0.25 0.05 1/2 1 1/2
2 0.25 0.05 0.01 0.05 1/2 1 1/2
3 0.1 0.1 0.1 0.1 1/2 1/2 1/2

Table 3.4: One-dimensional problem: Time-integration parameters for the Baumgarte
stabilization method.

Case ∆t α ∆t1 ∆t2 ∆t3 ϑ1 ϑ2 ϑ3
1 0.25 1 0.125 0.25 0.125 1/2 0 1/2
2 0.25 5 0.125 0.05 0.125 1/2 0 1/2
3 0.25 5 0.00125 0.25 0.00125 0 1 0
4 0.25 1 0.0025 0.25 0.0025 0 1 0
5 0.1 1 0.1 0.1 0.1 1/2 1/2 1/2

subdomain 2subdomain 1 subdomain 3

L1 L2 L3

Figure 3.7: One-dimensional problem: The computational domain is divided into three
subdomains of lengths L1 = 0.1, L2 = 0.8, and L3 = 0.1. Two-node linear
finite elements are used in all the subdomains.
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Figure 3.8: One-dimensional problem: This figure compares the numerical solution
obtained using the proposed d-continuity method to the exact solution.
Each subdomain is meshed using 100 two-node finite elements.
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Figure 3.9: One-dimensional problem: The numerical solution using the proposed
coupling method with Baumgarte stabilization is shown in this figure.
As it was shown in theorem 4, when conditionally stable trapezoidal
schemes are used, multi-time-stepping can expand the acceptable values
of α without compromising the stability of the coupling method.

Two-dimensional problem

A transient version of the well-known problem proposed by Hemker [71] will be

considered. The governing equations take the following form:

∂c

∂t
+ ∂c
∂x
− εdiv [grad[c]] = 0 in Ω, (3.80a)

c(x,y, t) = 1 on ΓD
1 , (3.80b)

c(x,y, t) = 0 on ΓD
2 , (3.80c)

−εgrad[c] ⋅ n̂(x) = 0 on ΓN, and (3.80d)

c(x,y, t = 0) = 0 in Ω⋅ (3.80e)
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Figure 3.10: One-dimensional problem: This figure shows the 2-norm of the drift in the
rate variable under the d-continuity method. (Note that, by algorithmic
design, there will be no drift in the concentration along the subdomain
interface at all system time levels.)

Computational domain, mesh, and domain decomposition are shown in Figures 3.12

and 3.13. In this problem, the advection velocity is v = (1,0), and ε = 0.01. The

problem at hand is a singularly perturbed equation and is known to exhibit both

boundary and interior layers. Furthermore, the standard Galerkin formulation is

known to produce spurious oscillations for small values of ε [50].

The numerical results obtained using the Galerkin weak formulation are shown

in Figure 3.14. As expected, spurious oscillations occur at the vicinity of the circle.

The minimum value observed in both cases is -0.439. The spurious oscillations and

the violation of the non-negative constraint is because of using the Galerkin weak

formulation, and is not due to the use of proposed multi-time-step coupling meth-

ods. To corroborate this claim, Figure 3.15 shows the results where tailored weak

formulations are employed in different subdomains. The GLS formulation is used in
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Figure 3.11: One-dimensional problem: This figure shows the drifts in the concen-
tration and the rate variable for various cases under the Baumgarte
stabilization method.
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Table 3.5: Two-dimensional transient Hemker problem: Time-integration parameters
for results using the standard Galerkin method.

Compatibility condition ∆t α ∆t1 ∆t2 ∆t3 ϑ1 ϑ2 ϑ3
d-continuity method 0.1 0.001 0.01 0.1 1/2 1 1

Baumgarte stabilization 0.2 1 0.01 0.05 0.02 1/2 1 0

Table 3.6: Two-dimensional transient Hemker problem: Time-integration parameters
for results using the GLS-SUPG-Galerkin formulations.

Compatibility condition ∆t α ∆t1 ∆t2 ∆t3 ϑ1 ϑ2 ϑ3
d-continuity method 0.2 0.001 0.005 0.2 1/2 1 1

Baumgarte stabilization 0.2 1 0.001 0.005 0.02 1 1/2 0

subdomain 1, the SUPG formulation is employed in subdomain 2, and the Galerkin

formulation in subdomain 3. There are no spurious oscillations and the minimum

value observed is -0.062. In Figure 3.16, the ∞-norm of drift of concentrations from

compatibility constraints is shown. There is no noticeable drift and in the case

of Baumgarte stabilization method, the the drifts are controlled. Time integration

parameters are given in tables 3.5 and 3.6. This example demonstrates choice of

disparate time-steps, and different numerical formulations in different spatial regions

of the computational domain.

3.6 Multi-Time-Step Transient Analysis of a Bimolecular

Reaction

In this section, we shall apply the proposed multi-time-step coupling methods to

a transport-controlled bimolecular reaction. This problem is of tremendous practical
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Figure 3.12: Two-dimensional transient Hemker problem: The dimensions of the com-
putational domain are taken as Lx = 14 and Ly = 8. A circular hole is
centered at the origin, and has a radius of unity.

Figure 3.13: Two-dimensional transient Hemker problem: This figure shows the compu-
tational mesh, and the decomposition of the domain into subdomains.
The computational domain is meshed using 11512 triangular finite ele-
ments using GMSH [1], and is partitioned into three subdomains.
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(a) d-continuity method (b) Baumgarte stabilization

Figure 3.14: Two-dimensional transient Hemker problem: The value of concentrations
is shown on the domain of interest at t = 5. In this particular exam-
ple, Galerkin weak formulation is employed. In figure (a), d-continuity
method is employed to enforce continuity at the subdomain interface.
Figure (b) shows the results when Baumgarte stabilization is employed
to enforce continuity at the interface.

(a) d-continuity method (b) Baumgarte stabilization

Figure 3.15: Two-dimensional transient Hemker problem: Concentrations at t = 5 are
shown. GLS formulation is used in subdomain 1, SUPG formulation is
used in subdomain 2, and the standard Galerkin formulation is used in
subdomain 3.
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Figure 3.16: Two-dimensional transient Hemker problem: The maximum drift in con-
centrations is plotted against time. The time integration parameters
are the same as in Figures 3.14 and 3.15.

importance in areas such as transverse mixing-limited chemical reactions in ground-

water and aquifers, and mixing-controlled bioreactive transport in heterogeneous

porous media arising in bioremediation. We shall now document the most impor-

tant equations of the mathematical model. A more detailed discussion about the

model can be found in [72], which however did not address multi-time-step coupling

methods.

Mathematical model

Consider the irreversible chemical reaction

nAA + nBB → nCC, (3.81)
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where A, B and C are the chemical species participating in the reaction, and nA,

nB and nC are their respective (positive) stoichiometry coefficients. The fate of the

reactants and the product are governed by coupled system of transient advection-

diffusion-reaction equations. We shall assume the part of the boundary on which

the Dirichlet boundary condition is enforced to be the same for the reactants and

the product. Likewise is assumed for the Neumann boundary conditions. One can

then find two invariants that are unaffected by the underlying reaction, which can

be obtained via the linear transformations

cF ∶= cA + (nA

nC

) cC , and (3.82a)

cG ∶= cB + (nB

nC

) cC ⋅ (3.82b)

The evolution of these invariants is given by the following uncoupled transient advection-

diffusion equations

∂ci
∂t
+ div [vci −D(x)grad[ci]] = fi(x, t) in Ω × I , (3.83a)

ci(x, t) = cpi (x, t) ∶= cpj (x, t) + ( nj

nC

) cpC(x, t) on ΓD × I , (3.83b)

−n̂(x) ⋅D(x)grad[ci] = hp
i (x, t) ∶= hp

j (x, t) + ( nj

nC

)hp
C(x, t) on ΓN × I , and (3.83c)

ci(x, t = 0) = c0i (x) ∶= c0j(x) + ( nj

nC

) c0C(x) in Ω, (3.83d)

where i = F or G. We shall restrict to fast bimolecular reactions. That is, the time-

scale of the chemical reaction is much smaller than the time-scale of the transport

processes. For such situations, one can assume that the chemical species A and B

cannot coexist at a spatial point and for a given instance of time. This implies

that the concentrations of the reactants and the product can be obtained from the
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concentrations of the invariants through algebraic manipulations. To wit,

cA (x, t) =max{cF (x, t) − (nA

nB

) cG (x, t) ,0} (3.84a)

cB (x, t) = (nB

nA

)max{−cF (x, t) + (nA

nB

) cG (x, t) ,0} , and (3.84b)

cC (x, t) = (nC

nA

) (cF (x, t) − cA (x, t)) ⋅ (3.84c)

Note that the solution procedure is still nonlinear, as the max{⋅, ⋅} operator is non-
linear.

We shall employ the proposed multi-time-step computational framework to solve

equations (3.83a)–(3.83d) to obtain concentrations of the invariants. Using the calcu-

lated values, we then find the concentrations for the reactants and the product using

equations (3.84a)–(3.84c). The Galerkin formulation is employed in all subdomains.

The negative values for the concentration are clipped at every subdomain time-step

in the numerical simulations.

Numerical results for a diffusion-controlled bimolecular

reaction

Consider a reaction chamber with Lx = Ly = 1, as shown in Figure 3.17. The

computational domain is meshed using 5442 four-node quadrilateral elements. As

shown in this figure, the domain is decomposed into four non-contiguous subdomains

using METIS [2]. The diffusivity tensor is taken as

128



D (x,y) =
⎡⎢⎢⎢⎢⎢⎢⎢⎣

γx2 + y2 − (1 − γ)xy
− (1 − γ)xy x2 + γy2

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (3.85)

where γ = 0.001. Baumgarte stabilization is employed to enforce compatibility along

the subdomain interfaces with α = 100. Implicit Euler method is employed in sub-

domains 1 and 3, and midpoint rule is employed in subdomains 2 and 4. The sys-

tem time-step is taken as ∆t = 10−3, and the subdomain time-steps are taken as

∆t1 =∆t3 = 5 × 10−4, and ∆t2 =∆t4 = 10−3.

Numerical results for the concentrations of the invariants, reactants and product

are shown in Figures 3.18 and 3.19. As discussed earlier, Baumgarte stabilized

coupling method can result in drift in the primary variable but it can be controlled

using the stabilization parameter α. Equation (3.59) can serve as a valuable tool

assessing the overall behavior of drifts with respect to system time-step, and the

Baumgarte stabilization parameter α. Drifts for several choices of α and ∆t are

shown in Figure 3.20. Note that equation (3.59) assumes no subcycling, and no

mixed time-integration.

Numerical results for a fast bimolecular reaction with

advection

Consider a reaction chamber with Lx = 4 and Ly = 1, as shown in Figure 3.21(a).

The computational domain is meshed using three-node triangular elements, and

METIS [2] is employed to decomposed the domain into four non-contiguous sub-

domains using , as shown in Figure 3.21(b). There are 4151 interface constraints
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(a) A pictorial description of the problem.
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Figure 3.17: Diffusion-controlled fast bimolecular reaction: The initial condition for the
concentrations of all reactants is taken to be zero. The computational
domain is meshed using 5442 four-node quadrilateral elements, and is
divided into four subdomains using METIS [2].
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(a) Concentration of invariant F at t =
0.01.

(b) Concentration of invariant F at t =
0.1.

(c) Concentration of invariant G at t =
0.01.

(d) Concentration of invariant G at t =
0.1.

Figure 3.18: Diffusion-controlled fast bimolecular reaction: This figure shows the con-
centrations of the invariants F and G at t = 0.01 and t = 0.1.

to ensure continuity of concentration along the subdomain interface. The diffusivity

tensor is taken as

D(x) = αT ∥v∥I + αL − αT∥v∥ v ⊗ v, (3.86)

where I is the second-order identity tensor, ⊗ is the tensor product, ∥⋅∥ is the 2-norm,

v(x) is the velocity, and αL and αT are, respectively, the longitudinal and transverse

diffusivities. This form of diffusivity tensor is commonly employed in subsurface
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(a) Concentration of reactant A at t =
0.01.

(b) Concentration of reactant A at t =
0.1.

(c) Concentration of reactant B at t =
0.01.

(d) Concentration of reactant B at t =
0.1.

(e) Concentration of product C at t =
0.01.

(f) Concentration of product C at t = 0.1.

Figure 3.19: Diffusion-controlled fast bimolecular reaction: Concentrations of the re-
actants and the product are shown at t = 0.01 and t = 0.1.
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Figure 3.20: Diffusion-controlled fast bimolecular reaction: This figure shows the drift
in the concentration of the chemical species C in the ∞-norm along
the subdomain interface under the Baumgarte stabilization coupling
method.

hydrology [73]. We define the velocity through the stream function

ψ(x,y) = −y − 3

∑
k=1

Akcos(pkπx
Lx

− π
2
) sin(qkπy

Ly

) ⋅ (3.87)

The components of the advection velocity can then be calculated as

vx(x,y) = −∂ψ
∂y

, vy(x,y) = +∂ψ
∂x
⋅ (3.88)

The following parameters are used in the numerical simulation

p1 = 4, p2 = 5, p3 = 10, q1 = 1, q2 = 5, q3 = 10, and A1 = 0.08, A2 = 0.02, A3 = 0.01⋅
(3.89)

The diffusivities are taken as αL = 1 and αT = 10−4, and the prescribed concentrations

on the boundary are taken as cpA = 1.0 and cpB = 1.5.

The numerical results for the concentration of the product at various time levels

obtained using the d-continuity coupling method are shown in Figure 3.22, and there

is no drift along the subdomain interface, which is expected under the proposed

d-continuity method.
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(a) A pictorial description of the problem.

(b) Decomposition of the computational domain into subdomains.

Figure 3.21: Fast bimolecular reaction with advection: Chemical species A and B
pumped into the reaction chamber from the left side and produce the
product C as a result of the chemical reaction.

The above numerical examples clearly demonstrate that the proposed multi-time-

step coupling methods can handle any decomposition of the computational domain:

either the subdomains are contiguous or non-contiguous; whether the decomposition

is based on the physics of the problem or based on numerical performance; or whether

the decomposition is done manually by the user or obtained from a graph-partitioning

software package.
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(a) Concentration of the product C at t = 0.5.

(b) Concentration of the product C at t = 1.5.

(c) Concentration of the product C at t = 4.0.

Figure 3.22: Fast bimolecular reaction with advection: This figure shows the concen-
tration of the product C at various instances of time obtained using the
proposed d-continuity multi-time-step coupling method.

3.7 Concluding Remarks

We presented a stable multi-time-step computational framework for transient

advective-diffusive-reactive systems. The computational domain can be divided into

an arbitrary number of subdomains. Different time-stepping schemes under the

trapezoidal family can be used in different subdomains. Different time-steps and

different numerical formulations can be employed in different subdomains. Unlike

many of the prior works on multi-time-step methods (e.g., staggered schemes pro-
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posed in [59]), no preferential treatment is given to the subdomain with the largest

subdomain time-step, and thereby eliminating the associated subdomain-dependent

solutions.

Under the framework, we proposed two different monolithic coupling methods,

which differ in the way compatibility conditions are enforced along the subdomain

interface. Under the first method (i.e., d-continuity method), the continuity of the

primary variable is enforced along the subdomain interface at every system time-step.

An attractive feature of the d-continuity method is that, by construction, there is no

drift in the primary variable along the subdomain interface. However, one cannot

couple explicit and implicit schemes under the d-continuity method. But this method

has good stability characteristics. The second method is based on an extension of the

classical Baumgarte stabilization [23,40] to first-order transient systems. Under this

method one can couple explicit and implicit schemes. However, there can be drift in

the primary variable along the subdomain interface. But this drift is bounded and

small, which we have shown both theoretically and numerically. The other salient

features of the proposed coupling methods are as follows: There is no limitation

on the number of subdomains or on the subcycling ratios ηi. Since no preference

is given to any subdomain, the numerical solutions under the proposed coupling

methods will not be affected by the way the computational domain is decomposed

into subdomains. This is also evident from the numerical results presented in this

paper. The coupling methods are shown to be stable, which has been illustrated

both mathematically and numerically.

Based on the above discussion, we shall make the following two recommendations
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for a multi-time-step analysis of first-order transient systems:

(i) If it is not needed to couple explicit/implicit time integrators, but one just

wants to use different time-steps and different numerical formulations in differ-

ent regions, then it is recommended to use the proposed d-continuity method.

If one wants to couple explicit and implicit schemes, then one has to use the

proposed coupling method based on Baumgarte stabilization.

(ii) Accuracy can be improved by decreasing the system time-step.

A possible research work can be towards the implementation of the proposed multi-

time-step coupling methods in a parallel computing environment and on graphical

processing units (GPUs).
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Chapter 4

ON LATTICE BOLTZMANNMETHOD FORADVECTION-

DIFFUSION SYSTEMS

4.1 Introduction and Motivation

The lattice Boltzmann method (LBM) has gained remarkable popularity as a

versatile numerical method for fluid dynamics simulations [74]. LBM has its roots

in the kinetic theory as opposed to the continuum theory. It needs to be emphasized

that LBM solves the Boltzmann equation instead of solving the continuum field

equations. On the other hand, the finite element method (FEM) and the finite

volume method (FVM) solve the continuum field equations directly. Some attractive

features of LBM are: It can easily handle irregular domains (e.g., unstructured pores

and fractures in porous media applications), easy to implement even for complicated

flow models, and natural to parallelize [75]. Great advances have been made in

extending LBM to simulate multi-phase flows [76], reactive flows [77], non-linear

chemical reactions [78], just to name a few. In this chapter, we limit to LBM-based

formulations for advection-diffusion equations.

In recent years, several key advancements have been made to extend the LBM

to simulate transport phenomena. To name a few: [79–83]. Of these works, Yoshida

and Nagaoka [82], and Huang and Wu [83] have proposed multiple-relaxation-time

lattice Boltzmann methods to solve advection-diffusion equations with anisotropic
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diffusivity tensors.

The governing equations for transient advection-diffusion systems are parabolic

partial differential equations, which possess several important mathematical prop-

erties. These properties include the maximum principle and the comparison princi-

ple [84,85], which have crucial implications in modeling physical phenomena. For ex-

ample, a key consequence of the maximum principle in modeling advection-diffusion

systems is the non-negative constraint of the attendant chemical species. Several

factors such as the physical properties of the medium, topology of the domain, and

the spatial and temporal discretization determine the performance of a numerical so-

lution in preserving the discrete versions of the mentioned mathematical properties.

A discussion on the influence of these factors in the context of the finite element

method can be found in [86]. Violations of these mathematical properties can make

a numerical solution inappropriate for scientific and engineering applications. It has

been shown that many popular finite element and finite volume formulations for

diffusion-type equations violate the maximum principle and the non-negative con-

straint [86, 87]. Recently, numerical methodologies have been proposed under the

finite element method to satisfy the non-negative constraint and the maximum prin-

ciple by utilizing the underlying variational structure. Since the lattice Boltzmann

method does not enjoy such a variational basis, these methodologies developed for

the FEM cannot be extended to the lattice Boltzmann method.

To the best of our knowledge, the performance of LBM-based formulations for un-

steady diffusion and advection-diffusion equations with respect to comparison prin-

ciples, maximum principles, and the non-negative constraint has not received the
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attention it deserves. But such a study is of paramount importance, as LBM-based

formulations are being employed in predictive numerical simulations. We shall, there-

fore, put some popular LBM-based formulations to test, and particularly show that

these formulations could violate all the aforementioned mathematical principles and

physical constraints. The formulations of interest in this chapter are the non-thermal

Single-Relaxation-Time (SRT) LBM for advection with isotropic diffusion, and the

Multiple-Relaxation-Time (MRT) methods for anisotropic diffusion proposed in [82]

and [83].

On the notational front, a quantity in the continuous setting will be denoted by

upright font (e.g., u), and a quantity in the discrete setting will be denoted by italic

font (e.g., u).

4.2 Unsteady Diffusion-Type Equations

Consider a bounded open domain Ω. We shall denote the boundary of the domain

by Γ = Ω − Ω, where Ω is the set closure of Ω. We assume that the boundary Γ

comprises of two parts ΓNand ΓD such that ΓN ∩ΓD = ∅ and Γ = ΓN ∪ΓD. We denote

the part of the boundary on which Dirichlet boundary condition is prescribed by ΓD.

Neumann boundary condition is prescribed on ΓN. A spatial point is denoted by x.

The unit outward normal to the boundary is denoted by n̂(x). The time interval of

interest will be denoted by [0,T ], and the time is denoted by t. The divergence and

gradient operators with respect to x are, respectively, denoted by div[⋅] and grad[⋅].
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For convenience, we introduce notation

q(x, t) ∶= v(x, t)u(x, t) −D(x)grad[u(x, t)], and (4.1)

L [u(x, t)] ∶= ∂u (x, t)
∂t

+ div[q(x, t)], (4.2)

where u (x, t) is the concentration field. The diffusivity tensor is denoted by D (x),
which is assumed to be symmetric, positive definite, and bounded above. The ad-

vection velocity is denoted by v(x, t), which is assumed to be solenoidal. The initial

boundary value problem for a transient advection-diffusion system can be written as

L [u (x, t)] = g (x, t) (x, t) ∈ Ω × (0,T ] , (4.3a)

u (x, t) = up (x, t) (x, t) ∈ ΓD × [0,T ] , (4.3b)

q(x, t) ⋅ n̂ (x) = qp (x, t) (x, t) ∈ ΓN × [0,T ] , and (4.3c)

u (x, t = 0) = u0 (x) x ∈ Ω, (4.3d)

where the source/sink is denoted by g(x, t), up(x, t) is the prescribed concentration,

qp(x, t) is the prescribed flux, and the initial concentration is denoted by u0(x).
Equation (4.3a) is a linear parabolic partial differential equation. The initial bound-

ary value problem given by equations (4.3a)–(4.3d) satisfies several important math-

ematical properties and physical constraints.

Mathematical properties and physical constraints

Let C(Ω × (0,T ]) be the set of all continuous functions on Ω × (0,T ]. We shall

define C2
1 (Ω × (0,T ]) to be the set of all functions in C (Ω × (0,T ]) that have contin-
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uous first- and second-order spatial derivatives in Ω, and continuous first-order time

derivative in (0,T ].
[The maximum principle] Let u(x, t) ∈ C2

1 (Ω × (0,T ])∩C (Ω × [0,T ]) be a solution
of the initial boundary value problem (4.3) with ∂Ω = ΓD. If g(x, t) ≥ 0 then

min
(x,t)∈Ω×[0,T ]

u (x, t) =min [ min
(x,t)∈Γ×[0,T ]u(x, t), min

x∈Ω
u0(x)] ⋅

[The comparison principle] Let u1(x, t) and u2(x, t) belong to C2
1 (Ω × (0,T ]) ∩

C (Ω × [0,T ]). If L [u1] ≥ L [u2] on Ω × (0,T ], and up
1 (x, t) ≥ up

2 (x, t) on Γ × [0,T ]
then u1 (x, t) ≥ u2 (x, t) on Ω × [0,T ]. Mathematical proofs to the maximum

principle and the comparison principle can be found in [45]. One can show that the

non-negative constraint for the concentration can be obtained as a consequence of

the maximum principle under certain assumptions on the input data.

[The non-negative constraint] If g(x, t) ≥ 0 in Ω, up(x, t) ≥ 0 on Γ, and u0(x) ≥ 0
in Ω then u(x, t) ≥ 0 ∀x ∈ Ω and ∀t ∈ [0,T ]. The following integral will be used in

the remainder of this chapter

J2(u;Ω; t) ∶= ∫
Ω
u2(x, t) dΩ⋅ (4.4)

[The decay property] If v(x, t) = 0, up(x, t) = 0 on the entire Γ, and g(x, t) = 0 in

Ω then

d

dt
J2(u;Ω; t) ≤ 0 ∀t⋅ (4.5)

In the subsequent sections we will illustrate the performance of some popular LBM-

based formulations with respect to the aforementioned mathematical properties in
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the discrete setting. We will also compare the performance of the lattice Boltzmann

method with the finite element method in this regard.

4.3 The Lattice Boltzmann Method

The lattice Boltzmann method is a way to numerically solve the Boltzmann

equation [88]

∂f/∂t + v ⋅ grad[f] = (feq. − f) /λ, (4.6)

where f is the distribution of particles in the phase space. The macroscopic velocity

is v. The distribution of particles at thermodynamic equilibrium is denoted by feq.

and the external force term is neglected for simplicity. Obviously, we have adopted

the Bhatnagar-Gross-Krook (BGK) [89] model for the collision term on the right-

hand-side of the equation (5.9). Typically, the velocities are discretized in the way

of DnQm lattice models, where n is the number of spatial dimensions and m is

the number of discrete momenta. The lattice models of interest in this chapter are

shown in Figure 4.1. These discrete velocity/momentum directions will be denoted

by ei, i = 1,⋯,m and the weight associated to them is wi, with ∑m
i=1wi = 1. The time

derivative is then discretized using an explicit Euler method. The resulting lattice

Boltzmann equation is

∣fi⟩ (x + ei∆t, t +∆t) = ∣fi⟩ (x, t)
+S(x, t)( ∣f eq

i ⟩ (x, t) − ∣fi⟩ (x, t)) , (4.7)
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where fi is the discrete distribution of particles with velocity ei and S(x, t) is the

m×m matrix of relaxation times. Also, we have used the notation ∣⋅⟩ to denote m×1
column vector of distributions. The lattice cell size is shown by ∆x and time-step is

∆t. In the case of Single-Relaxation-Time (SRT) LBM, a popular choice of S(x, t)
is

S(x, t) = 1

τ
Im, (4.8)

where Im is the m ×m identity matrix and τ = D(x, t)/c2s∆t + 1/2 is the relaxation

time. The lattice sound velocity is shown by cs. A choice of equilibrium distribution

for advection diffusion equation can be

f eq.
i (x, t) = wiu(x, t)(1 + ei ⋅ v

c2s
) , (4.9)

where u(x, t) is the concentration at a lattice node and wi is the weight associated

with the the i-th distribution. However, SRT LBM does not provide an appropri-

ate framework for advection with anisotropic diffusion equations. For such cases,

MRT LBM creates a much more suitable structure. Some recent methods for LBM

simulation of anisotropic diffusivity are [82, 83], which we will use in the rest of the

chapter. For an in-depth treatment and derivation of Equation (5.12) the reader

should consult references [75, 90, 91] and references therein. The lattice Boltzmann

method can be shown to have a corresponding macroscopic equation as Equation

(4.3) using a Chapman-Enskog expansion or asymptotic analysis. The macroscopic

quantity of interest in this chapter, concentration, can be found as

u(x, t) = m

∑
i=1

fi(x, t)⋅ (4.10)
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One of the main issues in numerical simulations using LBM is the implementation

of boundary conditions. Since the discrete distributions fi have more information

about the state of matter at each lattice node, translating the macroscopic boundary

and initial conditions of Equation (4.3) to mesoscale is not unique. Hence, there

are a multitude of methods for implementing boundary conditions in LBM; e.g. see

References [92–94]. Herein, we will consider the following methods for enforcing

Dirichlet and Neumann boundary conditions:

(a) Weighted splitting method for Dirichlet conditions. In this method, we will

replace all the distributions fi at the lattice node lying near the boundary ΓD.

The distributions will be readjusted according to the weights wi. That is

fi(x, t) = wiu
p(x, t) x ∈ ΓD, (4.11)

where up is the prescribed concentration on the boundary.

(b) Local method for Dirichlet conditions. In this method only the unknown distri-

butions will be replaced. Let UD be the set of unknown distributions and KD be

the set of known distributions at a point x on boundary ΓD. Then, the unknown

distributions will be found as

fi(x, t) = wi

∑j∈UD
wj

(up(x, t) − ∑
k∈KD

fk(x, t)) ⋅ (4.12)

(c) Bounce-back method for Neumann conditions. The unknown distributions will be

replaced by the distribution in the opposite velocity direction. Mathematically,

this can be written as

fi(x, t) = fj(x, t) − 1

cs
qp(x, t) n̂ ⋅ ei

∑k∈UN
n̂ ⋅ ek

, (4.13)
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where ei = −ej, x ∈ ΓN and UN is the set of unknown distributions.

This concludes our overview of lattice Boltzman methods for advection-diffusion

equations. In the following section we will provide ample evidence that current

lattice Boltzmann methods for advection-diffusion equation may lead to violation of

mathematical properties of these equations.

0 0
0

1 1
1
2

2

2

3

3

4 4

56

7 8
lattice node

D1Q3 D2Q9D2Q5

Figure 4.1: Lattice Boltzmann method: Lattice models employed in this chapter.

4.4 Representative Numerical Results

In this section, we employ the single- and multiple-relaxation-time lattice Boltz-

mann methods to solve representative diffusion and advection-diffusion problems.

For brevity, we shall refer to the multiple-relaxation-time method proposed in [82]

as the Y-N method, and to the multiple-relaxation-time method proposed in [83] as

the H-W method. In the rest of this section, we shall use the notations

umin(t) =min
x∈Ω

u(x, t), and umax(t) =max
x∈Ω

u(x, t)⋅ (4.14)

In all the problems that utilize MRT LBM the distributions fi are initialized accord-

ing to the Maxwell-Boltzmann equlibrium distribution. Note that all the quantities

presented hereon are nondimensional.
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One-Dimensional Problems

Advection and diffusion of Gaussian hill

Consider the domain Ω = (−2,2), in which the diffusion coefficient is D = 10−2

and advection velocity is v = −1. The source term is taken to be zero over the entire

domain. The flux is set to be zero at the boundaries of the domain. The initial

concentration is taken to be

u0(x) = e−(x−x0)2/α2

, (4.15)

where x0 = 3/4 and α2 = 10−3 in this problem. We will use a uniform lattice with

D1Q2 model. SRT LBM will be used to find the numerical solution. The lat-

tice cell size is denoted by ∆x and the time-step is ∆t. The time-step is chosen

as ∆t = ∆x2/6D in all cases to maintain stability. The time interval of interest is

T = 1/2. Bounce-back conditions is imposed on the boundaries to satisfy the zero

flux condition. The initial distributions is assigned to be equal to equilibrium dis-

tribution (i.e., fi(x, t = 0) = f eq.
i (x, t = 0), ∀x ∈ Ω). Since the initial concentration

is non-negative throughout the domain, the non-negative constraint implies that the

value of concentrations should never be negative in the course of the simulation.

Herein, we will show that despite stability and convergence, the numerical solution

from LBM may violate the non-negative constraint. We shall use different values of

discretization parameters ∆x and ∆t as given in Table 4.1. The minimum observed

concentration umin(t) and the error in infinite norm E∞(t) are also shown in Table
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Table 4.1: One-dimensional problem: Discretization of time and space domains for the
one-dimensional problem. Minimum observed value for concentration,
umin(t) and the error in infinity norm are also provided. Violation of
non-negative constraint is obvious.

Case ∆x ∆t umin(T ) E∞(T )
1 3.33 × 10−2 1.85 × 10−2 −3.90 × 10−3 6.50 × 10−2
2 2.50 × 10−2 1.04 × 10−2 −3.00 × 10−5 4.06 × 10−2
3 2.00 × 10−2 6.70 × 10−3 0.0 2.05 × 10−2
4 1.25 × 10−2 2.60 × 10−3 0.0 7.67 × 10−3

4.1. The error is defined as

E∞(t) =max
x∈Ω
∣u(x, t) − uexact(x, t)∣⋅ (4.16)

Figures 4.2-4.3 show the numerical results. The violation of the non-negative con-

straint can be observed. Note that by refining the discretization parameters ∆x and

∆t, the violations of the non-negative constraint disappear. However, satisfaction of

the non-negative constraint is not inherent in the LBM in use for this problem and

should not be taken for granted. A computer code for this problem is provided in

the Appendix.

On comparison principle

As stated earlier in this chapter, an important mathematical property of advection-

diffusion equation is the comparison principle. In the case of linear operator L[⋅] in
equation (4.2), maximum principle and comparison principle are mathematically

equivalent. However, a numerical solution might violate one of the two principles

and not the other. Herein, we provide simple numerical examples to demonstrate

this issue.
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Figure 4.2: Advection and diffusion of Gaussian hill: The concentration at time t = T
is shown. Note the negative values of concentration for Cases 1 and 2.
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Figure 4.3: Advection and diffusion of Gaussian hill: Minimum observed concentration
is shown against time.

Consider the domain Ω = (0,1] with prescribed concentration on the boundary:

up(x, t) =
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

uL x = 0

0 x = 1

⋅ (4.17)

The initial concentration is set to be u0(x) = 0, x ∈ Ω. The diffusion coefficient and

the advection velocity are D = 10−3 and v = 1/2 respectively. We use the D1Q2 lattice

model and the time-step is ∆t = ∆x2/6D. Figure 4.4 shows the numerical result for
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Figure 4.4: On comparison principle: This figure shows the maximum concentration
observed against time. In all cases the maximum principle is violated.

different values of uL. The lattice cell size is taken to be ∆x = 10−2. Obviously,

the maximum principle is violated, since the values of concentration exceeds uL.

However, the comparison principle is not violated (the numerical solution in the

entire domain never exceeds the one with larger uL). Hence, one can conclude that in

a discrete setting comparison principle and maximum principle should be accounted

for separately.

On choice of lattice model: D1Q2 vs. D1Q3

Consider the domain Ω = (0,1) in which the diffusion coefficient is D = 10−3 and

the advection velocity is v = 1. We prescribe zero-flux boundary conditions on the

entire boundary. The initial condition is

u0(x) =
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 x ∈ [0.3,0.5]
0 otherwise

(4.18)

The time interval of interest is T = 10−1. Here, we shall compare the performance

of two different choices of lattice models with respect to preservation of maximum
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principle. The lattice models of interest are D1Q2 and D1Q3 lattice models. The

discrete velocities and their associated weights are

D1Q2 ∶
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

e = [1, −1]
w = [1/2, 1/2]

and (4.19a)

D1Q3 ∶
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

e = [0, 1, −1]
w = [4/6, 1/6, 1/6]

⋅ (4.19b)

The lattice cell size is ∆x and the time-step is ∆t. The lattice sound velocity for the

D1Q2 lattice is cs = ∆x/∆t and for the D1Q3 this velocity is cs = ∆x/√3∆t. The

distributions will be initialized according to equilibrium distribution.

Using a lattice cell size of ∆x = 5 × 10−3 and a time-step of ∆t = 4.2 × 10−3, we
obtain the numerical results presented in Figures 4.5-4.6. According to the maximum

principle, the concentration should remain in [0,1]. However, It can be observed

that this requirement is violated by both lattice models. Note that in this numerical

experiment, concentration exceeds unity and also adopts negative values. Note that

the D1Q2 and D1Q3 give different patterns in umin(t) and umax(t). Obviously, the

maximum and minimum values of concentrator form the D1Q3 lattice oscillate more

compared to the D1Q2 lattice. However, the magnitude of violations is comparable.

Similar to the previous cases, these violations can be removed by refining the lattice

cell size and the time-step according to the stability criteria.

Two-Dimensional Problem with Isotropic Diffusion

Consider the domain Ω = (0,2) × (0,1). We will take the diffusion coefficient

as D = 5 × 10−3 and the advection velocity to be vx = 1 and vy = 0. The initial
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Figure 4.5: On choice of lattice model: In this figure, the numerical results using
the D1Q2 lattice are presented. This figure shows that the maximum
principle is violated.
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Figure 4.6: On choice of lattice model: In this figure, the numerical results using the
D1Q3 lattice are presented. The maximum principle is violated.
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concentration is zero. The boundary conditions are as

up(x,y, t) =
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 x = 0, ∀y, ∀t
0 x = 2, ∀y, ∀t

and (4.20a)

qp(x,y, t) = 0 y ∈ {0,1}, ∀x, ∀t⋅ (4.20b)

The source term is set to be zero throughout the domain. We shall employ SRT

LBM with a D2Q4 lattice model for numerical solution. The local method for en-

forcing the Dirichlet boundary condition at x = 0 will be used (see equation (4.12)).

The Dirichlet conditions at x = 2 are enforced by the weighted splitting method

(see Equation (4.11)). Also, bounce-back conditions are posed to enforce zero flux

boundary conditions (see equation (4.13)). The initial distributions are assigned to

be the same as equilibrium distributions using the given initial concentration.

Figure 4.7 shows the concentration at t = 1. In this case, the cell size is ∆x =

3.33×10−2 and time-step is taken to be ∆t = 1.85×10−2. The maximum concentration

in this case is umax(t = 1) = 1.0139, which is greater than the maximum possible

value for concentration in this problem. Hence, the maximum principle is violated.

These violations, however, can be removed by refining the cell size and the time-step

according to a conventional Courant-Friedrichs-Lewy (CFL) [95] condition.

If we change the Dirichlet boundary conditions as

up(x,y, t) =
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0 x = 0, ∀y, ∀t
1 x = 2, ∀y, ∀t

⋅ (4.21)

The spurious oscillations in the concentration profile lead to negative values. This

result is shown in Figure 4.8. The values of ∆x and ∆t are the same as before. The
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Figure 4.7: Two-dimensional problem with isotropic diffusion: This figure shows the
unphysical node-to-node oscillations in the concentration. The maximum
observed concentration in this figure is umax(t = 1) = 1.0139.

Figure 4.8: Two-dimensional problem with isotropic diffusion: This figure shows un-
physical node-to-node oscillations in the concentration from the D2Q4
LBM. In this case, concentration adopts negative values. The minimum
observed in this case is umin(t = 1) = −0.0384.

minimum observed value for concentration is umin(t = 1) = −0.0382. Similar to the

previous case, these oscillations can be removed by refining the lattice cell size and

time-step.
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C. Two-dimensional problem with anisotropic diffusion on a

non-convex domain

We now examine the Y-N multiple-relaxation-time method for anisotropic diffu-

sion tensor. The computational domain is shown in Figure 4.9. We have taken L = 1

and ΓD = Γouter∪Γinner. On the inner boundary, the concentration is prescribed to be

unity (i.e., up (x, t) = 1 for x ∈ Γinner). The flux is prescribed to be zero on the outer

boundary (i.e., qp (x, t) = 0 for x ∈ Γouter). The anisotropic diffusion tensor is taken

as

D(x) =RT
θ D0Rθ, (4.22)

where

D0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
10 0

0 10−3

⎤⎥⎥⎥⎥⎥⎥⎥⎦
⋅ (4.23)

The orthogonal rotation matrix is denoted by Rθ, where θ denotes the angle of

rotation. Herein, we have taken θ = π/4. We employ the D2Q5 lattice model. The

discrete velocity directions are given by

eT
i =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[0,0] i = 0

c [cos ((i − 1)π) , sin ((i − 1)π)] i = 1,2

c [cos ((2i − 5)π/2) , sin ((2i − 5)π/2)] i = 3,4

⋅ (4.24)

where c =∆x/∆t. The respective weights are taken as

wi =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1/3 i = 0

1/6 i = 1,2,3,4

⋅ (4.25)
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The time interval of interest is taken as T = 10−2. We employ the local method of

enforcing Dirichlet boundary conditions (see equation (4.12)). Table 4.2 provides the

discretization parameters employed in this chapter. Figures 4.10–4.11 show that the

Y-N method violates the non-negative constraint. In fact, the obtained minimum

concentration is about −0.4, which is a significant violation given the fact that the

concentration should be between 0 and 1. Another noticeable feature in all the cases

considered, the minimum concentration converged to a negative value as the time

progressed.
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zero
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x ze
ro

fl
u
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zero flux

zero flux

L/10
L/10

Γinner

Γouter

Figure 4.9: Two-dimensional problem with anisotropic diffusion in a non-convex do-
main: This figure provides a pictorial description of the test problem.
A concentration of up = 1 is prescribed on the inner boundary Γinner.
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(a) Case 1 (b) Case 2

(c) Case 3

Figure 4.10: Two-dimensional problem with anisotropic diffusion in a non-convex do-
main: The figure shows the regions where the non-negative constraint is
violated under the Y-N method at t = 0.01.
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Figure 4.11: Two-dimensional problem with anisotropic diffusion in a non-convex do-
main: The figure shows the variation of minimum value of the concen-
tration with respect to time under the Y-N multiple-relaxation-time
lattice Boltzmann method.
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Table 4.2: Two-dimensional problem with anisotropic diffusion tensor on a non-convex
domain: This table provides the minimum concentrations for various dis-
cretization parameters (i.e., ∆x and ∆t). We have taken ∆x2 =∆t.

Case ∆x ∆t umin (T )
1 1.25 × 10−2 1.5625 × 10−4 -0.3781
2 1.00 × 10−2 1.0000 × 10−4 -0.4072
3 5.00 × 10−3 2.5000 × 10−5 -0.4044

D. Two-dimensional problem with anisotropic and

heterogeneous diffusion tensor

Consider the spatial domain to be Ω = (0,1)×(0,1). We have taken the following

anisotropic and heterogeneous diffusivity tensor as

D (x,y) = ϵ′I2 +
⎡⎢⎢⎢⎢⎢⎢⎢⎣

ϵx2 + y2 − (1 − ϵ)xy
− (1 − ϵ)xy x2 + ϵy2

⎤⎥⎥⎥⎥⎥⎥⎥⎦
⋅ (4.26)

where ϵ ≪ 1 and ϵ′ ≪ 1 are arbitrary constants, and I2 denotes the 2 × 2 identity

matrix. For this numerical experiment, we have taken ϵ = 10−3 and ϵ′ = 10−10. The

prescribed concentration on the entire boundary is taken to be zero. The initial

concentration is taken as

u0 (x,y) =
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 (x,y) ∈ [0.4,0.6] × [0.4,0.6]
0 otherwise

⋅ (4.27)

The time interval of interest is taken as T = 2.5 × 10−2. The H-W method based on

the D2Q9 lattice model is employed. The discrete velocities are taken as

eTi =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[0,0] i = 0

c [cos ((i − 1)π/2) , sin ((i − 1)π/2)] i = 1, ...,4

√
2c [cos ((2i − 9)π/4) , sin ((2i − 9)π/4)] i = 5, ...,8
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with the following weights

wi =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

4/9 i = 0

1/9 i = 1,2,3,4

1/36 i = 5,6,7,8

⋅ (4.28)

The problem is solved using different choices of ∆x and ∆t, which are provided in

Table 4.3. This table also provides insight on the performance of the H-W method.

The following conclusions can be drawn from Figures 4.13–4.14 and Table 4.3:

(a) The H-W multiple-relaxation-time method violates the non-negative constraint

when the diffusion is anisotropic.

(b) As discussed earlier, the integral J2 should decrease monotonically with time

for pure diffusion equations. But, the H-W method does not respect the decay

property. However, it has been observed that refining the discretization param-

eters (i.e., ∆x and ∆t) can improve the performance of numerical solutions with

respect to the decay property.

Table 4.3: Two-dimensional problem with anisotropic and heterogeneous diffusion ten-
sor: In this table the values of discretization parameters for different cases
is given. The nonnegative constraint is violated in all cases. Refining dis-
cretization parameters (∆t and ∆x) does not remove the violations of the
non-negative constraint.

Case ∆x ∆t umin(T ) umax(T )
1 5.00 × 10−2 1.00 × 10−3 -0.0133 0.5167
2 2.50 × 10−2 2.50 × 10−4 -0.0077 0.5616
3 1.00 × 10−2 4.00 × 10−5 -0.0020 0.5977
4 5.00 × 10−3 1.00 × 10−5 -0.0001 0.5903
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Figure 4.12: Two-dimensional problem with anisotropic and heterogeneous diffusion ten-
sor: The concentration at time t = 0.025 is shown. The values of dis-
cretization parameters are given in Table 4.3, Case 4.

(a) Case 2 (b) Case 3

Figure 4.13: Two-dimensional problem with anisotropic and heterogeneous diffusion ten-
sor: This figure shows the regions that have negative values for the con-
centration under the H-W method at t = 0.025.
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Figure 4.14: Two-dimensional problem with anisotropic and heterogeneous diffusion ten-
sor: This figure shows the variation of the integral defined in equation
(4.4) with respect to time under the H-W method.

E. Fast bimolecular reaction in an anisotropic and

heterogeneous medium

Consider a simple chemical reaction of the form:

nAA + nBB → nCC, (4.29)

where A, B and C are the participating chemical species; and nA, nB and nC are their

respective stoichiometry coefficients. We are interested in the fate of the product C

when the time-scale of the chemical reaction is much faster than that of the transport

processes (i.e., diffusion and advection). A detailed description of this mathematical

model can be found in [72] and will not be repeated here. However, the mentioned

chapter neglected advection in all their numerical examples and the entire chapter

is devoted to the finite element method.

We will consider the domain given in Figure 4.15. Dimensions of the domain are
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Table 4.4: Fast bimolecular reaction in anisotropic and heterogeneous medium: Different
discretization parameters and violation of the non-negative constraint.

Case ∆x ∆t umin (T ) umax (T )
1 5.00 × 10−2 2.50 × 10−4 -0.0408 0.2612
2 2.50 × 10−2 6.25 × 10−5 -0.0455 0.3174
3 1.25 × 10−2 1.56 × 10−6 -0.0593 0.3217

Lx = 2 and Ly = 1. The advection velocity is derived from the stream function

ψ (x,y) = −y − 3

∑
k=1

αkcos(pkπx
Lx

− π
2
) sin(qkπy

Ly

) ,

where (p1, p2, p3) = (4,5,10), (q1, q2, q3) = (1,5,10), and (α1,α2,α3) = (0.08,0.02,0.01).
The dispersion tensor is taken as

D (x,y) = 10−5I + βT ∥v∥ I + (βL − βT) v ⊗ v∥v∥ , (4.30)

where ⊗ denotes the tensor product, I is the 2 × 2 identity tensor, ∥⋅∥ is the 2-norm,

βT = 10−4 and βL = 1. The prescribed concentrations are up
A = up

B = 1, and the

stoichiometry coefficients are nA = 1, nB = 2 and nC = 1. The time interval of interest

is T = 2.5 × 10−1. We employ the D2Q9 lattice model using the H-W method, and

obtain the numerical solution for the fate of the product C. Discretization parameters

for various cases are given in Table 4.4. Figures 4.16–4.18 clearly show that the

H-W method violates the non-negative constraint, and the violations do not vanish

either with time or with refinement of the discretization parameters.
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Figure 4.15: Fast bimolecular reaction in anisotropic and heterogeneous medium: This
figure provides a pictorial description of the test problem. The reactants
A and B undergo transport (i.e., both advection and diffusion) and
reacts to give product C, which in turn gets transported. We have
taken Lx = 2 and Ly = 1 in the numerical experiment.

Figure 4.16: Fast bimolecular reaction in anisotropic and heterogeneous medium: The
concentration of the chemical species C at time t = 0.1 is shown. Viola-
tion of the nonnegative constraint is obvious.
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Figure 4.18: Fast bimolecular reaction in anisotropic and heterogeneous medium: The
minimum concentration of the product C is plotted against time for
various cases whose simulation parameters are provided in Table 4.4.

(a) Case 1

(b) Case 2

(c) Case 3

Figure 4.17: Fast bimolecular reaction in anisotropic and heterogeneous medium: This
figure shows the regions where the concentration of the product C is
negative at t = T = 0.1 under the H-W method.
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4.5 A Theoretical Analysis

In this section, we will provide a simple criterion in terms of the discretization

parameters to satisfy the non-negative constraint for one-dimensional problems. We

will also limit our scope to pure diffusion equations (i.e., v(x, t) = 0), and ∂Ω = ΓD.

We will restrict the analysis to the D1Q3 lattice model. We initialize the discrete

distributions fi at all lattice nodes as follows:

fi(x, t = 0) = wiu0(x)⋅ (4.31)

Since wi > 0 and u0(x) ≥ 0, we have fi(x,0) ≥ 0. Furthermore, we assume that the

Dirichlet boundary conditions will be discretized using the weighted splitting method

(see equation (4.11)). The weighted splitting method guarantees the non-negativity

of distributions fi for a lattice node on the boundary provided that the prescribed

concentration on ΓD is non-negative. That is,

up(x ∈ ΓD, t) ≥ 0⇒ fi(x ∈ ΓD, t) ≥ 0⋅ (4.32)

So far, we have made sure that all the distributions at the previous time-level are

non-negative, and the discretization of the boundary conditions will not disrupt the

non-negativity of distributions. Since the distributions at time t are non-negative,

equilibrium distributions f eq
i will be non-negative in the calculation of the collision

step at time t +∆t. That is,

fi (x, t) ≥ 0⇒ u (x, t) =∑
i

fi (x, t) ≥ 0
⇒ f eq

i (x, t) = wiu (x, t) ≥ 0⋅ (4.33)
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If all of these conditions are satisfied, restricting the value of the relaxation time τ

can lead to non-negative concentrations at all lattice nodes and for all time-levels.

We require that

1 − 1/τ ≥ 0⋅ (4.34)

Using equation (4.8) and the above inequality, one can obtain the following condition

that ensures non-negativity of populations

∆t ≥
∆x2

6D
⋅ (4.35)

That is, if the discretization parameters, ∆t and ∆x, satisfy inequality (4.35) then all

the distributions fi will be non-negative. Non-negativity of all fi’s implies the non-

negativity of the concentration u(x, t), which stems directly from equation (4.10).

Note that this result is only valid for one-dimensional pure diffusion equation

(i.e., the advection velocity is zero) and for D1Q3 lattice model. Furthermore, the

above condition does not guarantee the preservation of the comparison principles.

Deriving similar conditions for more sophisticated lattice models in two and three

dimensions and for multiple-relaxation-time methods will require a more rigorous

analysis.

Another noteworthy point is that we have put stronger conditions on the values

of distributions fi in order to meet the non-negative constraint for the concentration.

In other words, for nodal concentrations to be non-negative we made sure that all

the distributions are non-negative (i.e., fi(x, t) ≥ 0 ∀i). However, this condition

can be relaxed by allowing some of the fi to be negative, but with an additional
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constraint that ∑m−1
i=0 fi(x, t) ≥ 0. We do not pursue such an approach here, but one

can consider them in future developments of lattice Boltzmann methods.

4.6 Concluding Remarks

The maximum and comparison principles are two important mathematical prop-

erties of diffusion-type equations. The non-negative constraint is an important phys-

ical constraint on the concentration in transport and reactive-transport equations.

There are other properties that the solutions to diffusion-type equations satisfy under

appropriate conditions on the input data; for example, the decay property. A main

challenge in designing a predictive numerical formulation is to satisfy these mathe-

matical principles and physical constraints in the discrete setting. In this chapter,

using representative numerical examples, we have systematically documented that

the current LBM-based formulations do not satisfy the maximum principle, the com-

parison principle, the non-negative constraint, and the decay property. We have also

shown that the discretization of boundary conditions has an effect on the perfor-

mance of the lattice Boltzmann method in meeting these properties. To this end,

we proposed a new way of discretizing Dirichlet boundary conditions – the weighted

splitting method. We then derived a theoretical bound in terms of the time-step and

lattice cell size that guarantees non-negative values for the concentration under the

weighted splitting method for one-dimension problems.

It needs to be emphasized that stability conditions for the lattice Boltzmann

method (i.e., Courant-Fredrichs-Lewy conditions) have been satisfied in all our nu-
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merical experiments. This implies that meeting stability conditions alone does not

guarantee the preservation of the mentioned mathematical principles in the discrete

setting. The main findings of the chapter about LBM-based formulations can be

summarized as follows:

(a) One-dimensional problems: For a given time-step, one can eliminate the violation

of the non-negative constraint and the maximum principle by refining the lattice

cell size. For a given lattice cell size, the violation of the non-negative constraint

and the maximum principle cannot be eliminated by decreasing the time-step.

Both these trends are similar to FEM.

(b) Critical time-step: Based on a simple theoretical analysis, we found that ∆t ≥

∆x2/(6D) in order to meet the non-negative constraint under LBM for 1D prob-

lems. One can obtain exactly the same bound under the single-field Galerkin

finite element method based on the backward Euler time-stepping scheme for

1D problems . This is an interesting result given the fact that the underlying

basis of the lattice Boltzmann method (which solves Boltzmann equation to ob-

tain distributions at lattice nodes) is completely different from that of the finite

element method (which is based on a weak formulation).

(c) Isotropic vs. anisotropic diffusion: The violations of the non-negative constraint

and the maximum principle are smaller in magnitude and smaller in terms of

spatial extent when the diffusion is isotropic. Also, for a given time-step, one can

decrease these violations by refining the lattice cell size in the case of isotropic

diffusion. On the other hand, neither decreasing the time-step nor refining the
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lattice cell size will eliminate the violation of the non-negative constraint for

anisotropic diffusion.

(d) Non-convex domains: The magnitudes of the violation of the non-negative con-

straint are larger for non-convex domains. However, it needs to be emphasized

that one may have violations even on convex domains.

(e) Comparison principle: The comparison and maximum principles should be ac-

counted for separately. Satisfaction of one does not lead to satisfaction of the

other.

(f) Decay property: The LBM-based formulations, in general, violate the decay prop-

erty.

(g) The lattice Boltzmann method does not posses a variational structure similar

to the one possessed by the finite element method. Due to this reason, the

non-negative formulations proposed under the finite element method cannot be

directly extended to the lattice Boltzmann method.

(h) The only procedure that is available to meet the non-negative constraint under

the lattice Boltzmann method for anisotropic diffusion, is the clipping procedure,

which basically chops off the negative values. But, this procedure fixes neither

the violation of the decay property nor the violation of the comparison principle.

Moreover, this method does not have any physical or mathematical basis, and it

is rather ad hoc.
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However, the reader may wonder how important properties such as maximum princi-

ple or the non-negative constraint may be violated when LBM is shown to converge

to Equation (4.3). In the following section we will provide ample evidence that

current LBMs violate the aforementioned properties. Furthermore, convergence in

a Chapman-Enskog analysis may not be the correct tool to study preservation of

discrete maximum principle. Violation of maximum principle and the non-negative

constraint by LBM can be found in a number of References: for instance cf. Figure

9 in [96], and Figures 8-10 in [97]. Even though the methods presented in these

References are stable and converge to the advection-diffusion equation, they do not

preserve maximum principle. A known drawback of the Chapman-Enskog analysis is

that it introduces spurious oscillations. Reference [98] provides a beautiful discussion

on this issue. A recent work that provides thorough mathematical analysis based on

L∞-convergence of the LBM solution and preservation of maximum principle for one-

dimensional diffusion equation is presented in [99]. Another possibility is to equip the

lattice Boltzmann method with the Boltzmann’s H-theorem in order to guarantee the

non-negativity of the discrete distributions [100]. It should be noted that occurrence

of negative distributions, which may lead to violation of non-negative constraint, is

not unique to the solution of advection-diffusion equation, but may also happen in

numerical solution of various flow problems.

One should be wary of violations of the non-negative constraint, and the maxi-

mum and comparison principles in the numerical simulations using LBM. In the case

of isotropic diffusion, the authors suggest investigating the occurrence of the men-

tioned violations, if any of these violations occur, they can be significantly reduced
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by refining the lattice cell size and the time-step in accordance with the CFL condi-

tion. However, in the case of anisotropic diffusion, no clear-cut guideline for reducing

the violations exists. As demonstrated earlier, refining the discretization parameters

may not improve the numerical solution. A future research direction could be devel-

opment of LBM-based formulations for diffusion and advection-diffusion equations

that respect the maximum and comparison principles, and meet the non-negative

constraint. This chapter can also serve as a source of benchmark problems for such

a research endeavor.
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Chapter 5

HYBRID COUPLING FORADVECTION-DIFFUSION EQUA-

TION

5.1 Introduction and Motivation

Transport of chemical species in porous media features a wide variety of time- and

length-scales. Reaction and precipitation at the interface of fluid and solid [101–103],

reactive flow and transport [104], and varied dynamics of (bio-)chemical reactions

[105] are a few of the processes that occur at disparate scales. The three length-

scales that are typically considered in the study on porous media are pore-scale (also

referred to as fine-scale or micro-scale), meso-scale (also referred to as continuum-

length-scale

time-scale

∼ 10−6
− 10−4m ∼ 100 − 105m

∼ 100s

∼ 103s

pore-scale processes

reservoir-scale processes

up
sca

lin
g

Finite Element Method
Finite Volume Method
Finite Difference Method, ...

Lattice Boltzmann Method
Smooth Particle Hydrodynamics
Pore Network Modelling, ...

Figure 5.1: Disparate length and time-scales: This figure illustrates the disparity in
time- and length-scales in porous media simulations.
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scale or coarse-scale) and macro-scale (also referred to as field-scale). The properties

of interest depend on the scale of observation, which implies that different modeling

approaches are needed at different scales. Moreover, a numerical method appropriate

for a particular length- or time-scale need not be a viable approach at a different

scale. Due to this scale disparity, as shown in figure 5.1, the choice of a particular

modeling approach or a particular numerical methodology that is appropriate for all

the scales of observation is severely limited.

Coarse-scale modeling

Finite Element Method (FEM), Finite Volume Method (FVM) and Finite Differ-

ence Method (FDM) are commonly practiced schemes for coarse-scale fluid dynamics

computations. However, fine-scale features may not be immediately included into the

numerical solutions from these methods. Some of the efforts towards improving upon

this shortcoming are the Variational Multi-Scale method in [4], Generalized Finite

Element Method [5], Multi-Scale Finite Element Method [6], which can include some

fine-scale spatial features into the finite element solution via manipulation of inter-

polation functions or the weak formulation. Although coarse-scale models can be

solved in a computationally efficient manner and can include some limited fine-scale

features, these models are not capable of capturing all the important pore-scale pro-

cesses and their impact at the meso-scale and field-scale [106]. The source of this

deficiency is, partly, the dependence of the model parameters on the length-scale.

Furthermore, some processes in reactive-transport (e.g., some pore-scale reactions)
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cannot be upscaled from pore-scale to meso-scale [107].

Pore-scale modeling

Methods such as pore network modeling [108], Smooth Particle Hydrodynamics

(SPH) [109] and the Lattice Boltzmann Method (LBM) [74] are amongst the most

popular methods for fine-scale simulations. In particular, LBM offers great potential

in including kinetic and atomistic details into the computational model. This fact

originates from the main purpose of LBM, which is to numerically solve the Boltz-

mann equation [110]. This equation can describe the distribution of particles of a

system in the phase space at any thermodynamic state. Sophisticated gas-interface

interaction models [111, 112] and kinetic relations can also be included in the so-

lution of the Boltzmann equation [112, 113]. Despite the advantages of LBM over

coarse-scale methods such as FEM or FVM, its application to real-world problems in

subsurface modeling is impractical due to prohibitive computational cost.

Hybrid modeling

It is now becoming evident that a viable approach for simulation of reactive-

transport in porous media should consist of both fine-scale and coarse-scale models;

for example, see the discussion in [114]. The modeling approaches that employ both

fine-scale and coarse-scale models are collectively referred to as hybrid modeling.

The motivation for hybrid modeling is four-fold:

(i) There is a need for increasing local modeling accuracy in certain applications.
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Some examples include flow and transport along thin fractures, and to model

processes in the well-bore cement that may act as escape passages for carbon-

dioxide in geological carbon sequestration.

(ii) The need for hybrid modeling can arise when continuum assumptions locally

break down in critical parts of the domain. For example, reactive-transport

modeling under advection-dominated or reaction-dominated conditions, as de-

scribed in [115].

(iii) The need for incorporating effects of the surrounding media on the subdomain

for accurate predictions of flow and transport [116].

(iv) To achieve a manageable computational cost to solve realistic problems arising

in subsurface applications.

Recently, there is a surge in research activity in hybrid modeling. A non-iterative

coupling method for SPH and coarse-scale averaged SPH was proposed in [117] for

advection-diffusion-reaction equation and precipitation in porous media. Using SPH

for different length-scales allows the mentioned method to avoid predictor-corrector

iterations in each time-step. The multi-scale algorithm proposed in [115] is based

on FVM and uses an iterative approach to resolve the disparate length-scales in

a transport process. In [118] coupling of finite element method and pore network

modeling for flow problems in porous media, using the mortar method was introduced

for the first time. This method was then extended in [119] to couple FDM and pore

network model for simulation of flow and transport of chemical species. It utilizes
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the mortar finite element spaces to transfer information from one subdomain to

another. The unknowns are updated iteratively to satisfy continuity of fluxes at the

interface within a user-defined tolerance. In [120], these mortar-based methods are

used to couple finite difference and cellular automata methods to model the bio-film

development in porous media. Coupling of FDM and LBM for advection-diffusion

equation is studied in [121], but non-matching grids and disparate time-steps are not

considered. A hybrid method that incorporates LBM and FEM for simulation of the

diffusion processes is proposed in [122]. A more recent effort in this direction is given

in [123] that allows different time-steps and grid sizes for FEM and LBM domains.

Multiple temporal scales and multi-time-step methods

Multi-time-step (multi-rate) methods aim at resolving the disparity in time-scales

in a system through use of appropriate time-steps and time-integrators for each

subsystem. In recent years, development of multi-time-step methods has received

much attention among researchers of various fields. These include: multi-rate meth-

ods based on Runge-Kutta schemes [124, 125], adaptive variational integrators for

dynamics [126], multi-time-step methods based on non-overlapping domain decom-

position [57, 127], and symplectic multi-time-step methods for molecular dynamics

simulations [128, 129]. Multi-time-step coupling algorithms based on domain parti-

tioning are often classified as either staggered or monolithic coupling schemes [130].

Staggered coupling methods update the solution in different subdomains through a

predictor-corrector procedure. Hence, there is a time-lag between the solutions at
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different subdomains, which can result in numerical instabilities. However, this type

of algorithms enjoy tremendous popularity because of modularity; one can employ

available solvers and use them (with different time-steps) in a staggered coupling

algorithm without any major modification. Unlike staggered coupling algorithms,

monolithic schemes update the solution in the entire domain using a single itera-

tion. These is no time-lag between the solution of different subdomains. As a result,

monolithic coupling algorithms enjoy much better numerical stability than staggered

coupling methods. However, current numerical solvers for partial differential equa-

tions cannot be immediately included in a monolithic coupling scheme and a major

effort in developing computer codes is required. Also, multi-time-step integration re-

quires careful design of a coupling algorithm [57]. Due to the aforementioned reasons,

we shall employ a staggered coupling approach.

Domain decomposition methods

A natural way to develop a staggered coupling method is to employ domain

decomposition techniques, which also offer an attractive framework for parallel com-

puting. Over the years, a variety of overlapping and non-overlapping domain de-

composition techniques have been developed [7, 131, 132]. These methods have the

potential to employ non-matching computational grids in different subdomains; for

instance, mortar finite element spaces [133, 134] and overlapping methods [135, 136]

are among them. However, having different grid-sizes in different subdomains may

not be enough to account for disparate time-scales that can be present in the model
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problem. In order to achieve computational efficiency for problems involving mul-

tiple temporal scales, one needs to employ tailored numerical time-integrators and

time-steps for each active process. That is, domain decomposition techniques and

multi-time-stepping schemes go hand in hand. Herein, we employ overlapping do-

main decomposition technique whose advantages will be discussed later.

An outline of the chapter

We provide an overview of our approach in Section 5.2. Section 5.3 provides the

governing equations at the continuum-scale and the associated numerical modeling.

Section 5.4 discusses the modeling at the pore-scale using the lattice Boltzmann

method. An overview of overlapping domain decomposition techniques and infor-

mation transfer across non-matching grids is given in Section 5.5. In Section 5.6,

we present a robust hybrid multi-time-step coupling method that allows to couple

pore-scale and continuum-scale subdomains. Section 5.7 presents several numerical

results using the proposed hybrid modeling, and illustrates the robustness and utility

of the proposed computational framework. Finally, conclusions are drawn in Section

5.8 along with a discussion on possible future research endeavors in the area of hybrid

modeling.

5.2 An Overview of Our Approach

In this chapter, we present a hybrid method to couple the advection-diffusion

equation at the continuum-scale with the Boltzmann equation at the pore-scale to
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Step 1: Identify regions
where pore-scale

simulation is needed.

Step 2: Partition the
computational domain

into overlapping subdomains.

Step 3: Generate 
computational grids for FEM 

and LBM analysis in 
respective subdomains.

Step 4: Perform simulation 
using the proposed hybrid 

coupling framework.

Figure 5.2: The main steps under the proposed hybrid framework.

simulate the transport of chemical species. The proposed method can capture fine-

scale features and processes by solving the lattice Boltzmann equation at the pore-

scale. The response at the continuum-scale is captured by solving the advection-

diffusion equation using the finite element method.

We use the domain decomposition technique to partition the computational do-

main into fine-scale and coarse-scale subdomains. For better numerical stability,

we allow the coarse-scale and fine-scale computational subdomains to overlap, and

appropriate boundary conditions are designed at the boundary of the individual

computational subdomains. To capture disparate time-scale, the proposed computa-

tional framework allows different time-steps and different time integration algorithms

in different subdomains. Furthermore, computational grids and different orders of in-

terpolation can be employed in different subdomains. This enables the user to choose

appropriate time-step, mesh and interpolation in each subdomain for stability and

desired accuracy.
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The first step in a hybrid simulation using the proposed framework is to partition

the computational domain into regions for fine-scale and coarse-scale modeling by

identifying the regions where pore-scale analysis is needed. Thanks to the design

of the proposed framework, creating computational meshes for these two types of

subdomains is easy and can be carried out independent of each other. Finally, the

analysis is carried out by using appropriate models in different subdomains. The

overall procedure is summarized in figure 5.2. Some of the salient features of the

proposed framework are as follows:

(i) Various transport processes and reactions can be incorporated into the analysis.

In particular, the user can include complex advection velocity field (which is en-

countered frequently in porous media applications) and cascade of geochemical

reactions without any change in the design of the coupling framework.

(ii) One can divide the computational domain into multiple subdomains, and can

independently employ in each subdomain either pore-scale modeling or continuum-

scale modeling.

(iii) The computational grids in a subdomain need not conform with the compu-

tational grid in another subdomain. In particular, the finite element mesh in

the continuum-scale modeling need not match with the lattice structure in the

lattice Boltzmann method, which is employed in the pore-scale analysis. This

provides a great degree of flexibility for the modelers.

a) One can employ meshes with different degrees of approximation indepen-
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dent of other subdomains. There is no need for compatibility among the

interpolation spaces (e.g., mortar spaces) along the subdomain interfaces.

b) This allows to leverage on the existing computational methods for mod-

eling at pore-scale and continuum-scale. There is no need to design new

methods just to be compatible with the hybrid coupling.

(iv) One can employ different time-steps and different time stepping schemes in dif-

ferent subdomains, which is an attractive feature to possess for solving problems

involving multiple temporal scales.

(v) An accurate transfer of data across non-matching grids has been incorporated

into the proposed computational framework.

(vi) A novel way of implementing boundary conditions has been developed for the

discretization under the lattice Boltzmann method. This enhances the accuracy

at the pore-scale, and hence the overall accuracy of a hybrid coupling.

(vii) No initial guess at the interface of subdomains is needed. Hence, implementa-

tion is easier and the simulation procedure can be fully automated.

In order to achieve aforementioned features, the computational framework is de-

veloped by integrating the following main ingredients:

(a) A solver for continuum-scale modeling, which in our case will be a finite element

formulation for advection-diffusion/dispersion equations.

(b) A solver for pore-scale modeling, which in our case will be the lattice Boltzmann

method with an improved discretization of boundary conditions.
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(c) An overlapping domain decomposition framework.

(d) An accurate algorithm to transfer scalars, vectors and tensors across non-matching

computational grids.

(e) An iterative coupling algorithm to ensure compatibility of solution across the

overlapping region.

A computational framework with the aforementioned features, which is essen-

tial to gain a fundamental understanding of subsurface processes, is currently not

available. We therefore strive to design such a framework in this chapter. The de-

tails of the aforementioned ingredients along with the illustration of the performance

of the proposed hybrid multi-time-step computational framework are provided in

subsequent sections.

5.3 Continuum-Scale Modeling

We shall model the transport at the continuum-scale using unsteady advection-

dispersion equations. To this end, consider a bounded open domain Ωc ⊂ Rnd on

which we seek to perform continuum modeling, where R denotes the set of real

numbers and “nd” is the number of spatial dimensions. We assume that the boundary

of this domain, ∂Ωc, is comprised of ΓN
c and ΓD

c such that we have

∂Ωc = Γ
N
c ∪ ΓD

c , and ΓD
c ∩ ΓN

c = ∅⋅ (5.1)

Dirichlet boundary conditions are enforced on ΓD
c , and Neumann boundary condi-

tions are enforced on ΓN
c . A spatial point in Ωc will be denoted by x. We use div[⋅]
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and grad[⋅], respectively, to denote the spatial divergence and gradient operators.

The time interval of interest is denoted by I = (0,T], and the time is denoted by t.

The initial boundary value problem at the continuum-scale can be written as follows:

∂u

∂t
+ div [vu −Dgrad [u]] = s (x, t) ∈ Ωc × I , (5.2a)

u(x, t = 0) = u0(x) x ∈ Ωc, (5.2b)

u(x, t) = up(x, t) (x, t) ∈ ΓD
c × I , and (5.2c)

n̂ ⋅ (vu −Dgrad[u]) = qp (x, t) ∈ ΓN
c × I , (5.2d)

where u is the concentration, v is the divergence-free advection velocity (i.e., div[v] =
0 in Ωc), D is the dispersion coefficient, and s is the source/sink term. Although the

dependence is not explicitly indicated, all of the mentioned quantities depend on the

spatial coordinates and time. The dispersion coefficient D is positive and can be

spatially heterogeneous. The initial concentration in Ωc is denoted by u0, and up is

the prescribed concentration on ΓD
c . The outward unit normal to ∂Ωc is denoted by

n̂, and qp is the prescribed flux on ΓN
c .

The solution to the above equations can exhibit disparate spatial and temporal

scales, which depend on the relative strengths of advection, dispersion and reaction

processes, and volumetric source [137, 138]. We employ the finite element method

for the numerical modeling at the continuum-scale.
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The finite element method

We shall introduce the following function spaces:

C ∶= {u ∶ Ωc × I → R ∣ u(x, t) ∈H1(Ωc) and u(x ∈ ΓD
c , t) = up ∀t ∈ I} , and (5.3a)

W ∶= {w ∶ Ωc → R ∣ w(x) ∈H1(Ωc) and w(x ∈ ΓD
c ) = 0} , (5.3b)

where H1(Ωc) is a Sobolev space defined on Ωc [45]. We shall denote the standard

L2 inner product over a set K as follows:

(w,u)K ≡ ∫
K
w ⋅ u dK⋅ (5.4)

For convenience, we shall drop the subscript K if K = Ωc. We shall employ the

semi-discrete methodology to decouple the spatial and temporal discretizations [139].

There are a multitude of ways to construct a weak formulation for equations (5.2a)–

(5.2d). In this chapter, we shall limit to the Galerkin formulation and the Streamline

Upwind/Petrov-Galerkin formulation [140]. However, it should be noted that any

other finite element (or even a finite volume) formulation can also be employed in

the modeling at the coarse-scale.
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The Galerkin formulation.

Find u(x, t) ∈ C such that we have

(w,∂u/∂t) + (w,v ⋅ grad[u]) + (grad[w],Dgrad[u]) = (w, s) + (w,qp)ΓN
c
∀w ∈W,

(5.5a)

u = u0 ∀x ∈ Ωc, t = 0, and (5.5b)

u = up ∀(x, t) ∈ ΓD
c × I ⋅ (5.5c)

Note that the Dirichlet boundary conditions are enforced strongly. We shall employ

the Galerkin formulation only for dispersion-dominated problems, as this formulation

is known to perform poorly for advection-dominated problems. This shortcoming can

be partly alleviated by employing a stabilized formulation instead.

The Streamline Upwind/Petrov-Galerkin (SUPG) formulation

The SUPG formulation is a popular stabilized formulation, and it reads as follows:

Find u(x, t) ∈ C such that we have

(w,∂u/∂t) + (w,v ⋅ grad[u]) + (grad[w],Dgrad[u])
+

NFEM

∑
e=1

(v ⋅ grad[w], τeR[u])Ωe
c
= (w, s) + (w,qp)ΓN

c
∀w ∈W (5.6)

where NFEM is the total number of finite elements and τe is the stabilization param-

eter for element e. The spatial domain contained in element e is shown by Ωe
c. The

residual R[u] is defined as follows:

R[u] = ∂u
∂t
+ div [vu −Dgrad [u]] − s⋅ (5.7)

186



The Dirichlet boundary condition and initial condition will remain as in equation

(5.5). We employ the stabilization parameter τe as given in [141]. That is,

τe =
he

2p ∥v∥χ (P h
e ) , and P h

e =
∥v∥he

2pD
, χ(α) = coth(α) − 1/α, (5.8)

where p is the order of finite element interpolation functions and D is the isotropic

coefficient of dispersion. The element size is denoted by he, and P h
e is the element

Péclet number.

5.4 Pore-Scale Modeling: The Lattice Boltzmann Method

We shall use Ωf to denote the region in which one seeks to perform pore-scale

modeling. We use the Boltzmann equation to describe the transport processes at the

pore-scale. The Boltzmann equation provides a statistical description of the state of

matter away from the thermodynamic equilibrium [112]. This equation describes the

evolution of the distribution of particles in the phase space, from which macroscopic

variables can be easily computed by taking appropriate moments. If one neglects the

external force term, the Boltzmann equation can be written as

∂f

∂t
+ v ⋅ grad[f] = Q [f, f eq] in Ωf , (5.9)

where f is the distribution function, v is the macroscopic (or background) velocity,

and Q is the collision term. Herein, we will consider the Bhatnagar-Gross-Krook

(BGK) collision model [89], which can be written as

Q [f, f eq] = 1

λ
(f eq − f), (5.10)
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where f eq is the distribution of particles in the phase space at the thermodynamics

equilibrium. The parameter λ is called the relaxation time. In this chapter, we will

use the Maxwell-Boltzmann distribution for the equilibrium distribution f eq. That

is,

f eq(x,ζ;v,u) = u√
2πRT

exp[−(ζ − v) ⋅ (ζ − v)/2RT], (5.11)

where u(x, t) is the concentration, R is the ideal gas constant, and T is the temper-

ature. The velocity of particles is indicated by ζ.

In order to provide a complete description of the Boltzmann equation for a phys-

ical problem, appropriate boundary conditions have to be included. Fortunately,

the mathematical theory of boundary conditions for Boltzmann equation is rather

well-developed; for example, see [111–113]. However, to use the existing theories to

their full extent, one has to incorporate detailed dynamics for interaction between

the particle and the surrounding surface of the domain. Obviously, the continuum

model problem given in equation (5.2) lacks such information. Hence, the Boltzmann

equation provides a much more powerful framework to account for detailed dynamics

of gas-surface interaction that the continuum model is incapable of. In this chapter,

we will assume that the user merely intends to replicate the behavior of the macro-

scopic solution of equation (5.2) and an in-depth treatment of gas-surface interaction

is of no interest. In the following, we will provide an overview of discretization of

Boltzmann equation.
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The lattice Boltzmann method

The lattice Boltzmann method is a popular numerical method to solve the Boltz-

mann equation (5.9). This method offers great potential for parallelization [142]

and simulation in domains with complex spatial features [75]. We will employ stan-

dard lattice model DnQm to discretize the velocity space. These discrete velocities

are identified by vectors ei, i = 1,⋯,m. The discrete population corresponding to

the lattice velocity ei is denoted by fi. Considering the lattice cell size of h and a

time-step ∆t, the discrete form of Boltzmann equation can be written as

∣fi⟩ (x + ei∆t, t +∆t) = ∣fi⟩ (x, t) + ∣Qi⟩ (x, t), (5.12)

where the column vector of discrete populations is denoted using the Dirac notation

∣⋅⟩ [143]. Location of a lattice node is shown by x and t is a discrete time-level. The

discrete collision operator Qi is defined as

∣Qi⟩ (x, t) = 1

τ
(∣f eq

i ⟩ (x, t) − ∣fi⟩ (x, t)) ⋅ (5.13)

The non-dimensional relaxation-time is denoted by τ and is defined as

τ =
1

2
+ D

c2s∆t
, (5.14)

with cs being the lattice sound velocity (e.g., in the case of D2Q9 lattice model cs =

∆x/√3∆t). For the equilibrium distribution in equation (5.13), we will employ the

following approximation to the Maxwell-Boltzmann distribution in equation (5.11)

as

f eq
i (x, t;u) = wiu(1 + ei ⋅ v

c2s
+ 1
2

(ei ⋅ v)2
c4s

− v ⋅ v
c2s
) , (5.15)
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where wi is the weight associated with ei and v is the advection velocity. Concen-

tration is denoted by u. In the rest of the chapter, we will assume that ∥v∥ /cs ≪ 1

(low Mach number assumption). Macroscopic quantities of interest, in this case

concentration and flux, can be obtained by the following relations

u(x, t) = m

∑
i=1

fi(x, t) and (5.16a)

q(x, t) = m

∑
i=1

fi(x, t)ei⋅ (5.16b)

Despite ever-growing popularity of lattice Boltzmann methods for computational

fluid dynamics assumptions, these methods are prone to produce unphysical values

for populations fi; for example, see [144]. Obviously, for equation (5.9) to be mean-

ingful, the value of population f needs to be non-negative. Some of the approaches

toward resolving this issue can be found in [145–147]. Herein, we will propose a

simple condition on the LBM discretization that guarantees non-negative values for

discrete populations. We assume that the initial values for populations are also non-

negative; for instance, this can be achieved if one takes fi(x, t = 0) = f eq
i (x, t = 0).

From equations (5.12) and (5.13) we can conclude that if 1−1/τ ≥ 0, then the discrete

populations at time-level t +∆t will also be non-negative. Note that the streaming

process does not contribute to negativity (an appropriate treatment of boundary

conditions comes later). This condition leads to the following result

∆t ≤
2D

c2s
⋅ (5.17)

For instance, in the case of a D2Q9 lattice model, one should have

h2 ≤ 6∆tD⋅ (5.18)
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The advantage of this method compared to methods such as entropic lattice Boltz-

mann method is that one does not need to solve a non-linear equation at each lattice

node. Hence, it is much easier to code and computationally more efficient. Further-

more, the standard collision and streaming steps in the lattice Boltzmann method

have remained untouched and no further modification is necessary.

To complete the description of lattice Boltzmann method for advection-diffusion

equation, we need to demonstrate how to apply boundary conditions so that the

resulting discrete populations are non-negative. In the following we will provide new

methods for enforcing Dirichlet- and Neumann-type boundary conditions in equation

(5.2).

Boundary conditions for the lattice Boltzmann method

Over the past few decades, a multitude of methods for enforcing macroscopic

boundary conditions in the context of lattice Boltzmann methods for flow and trans-

port equations have been proposed. For example, see [92, 94, 148]. However, note

that the boundary conditions typically considered for flow or transport problems in

a macroscopic framework do not imply a unique configuration of particles in phase

space. Another drawback of these methods can be that they may result in nega-

tive values for discrete populations. Other physical properties of the solution, such

as monotonicity of entropy production may also be lost following enforcement of

boundary conditions. Designing a numerical method to enforce boundary conditions

appropriately, is indeed a challenging topic. Herein, to partially rectify the aforemen-

tioned problems, we propose a new framework for enforcing Dirichlet and Neumann
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boundary conditions for lattice Boltzmann method. These methods are based on

the assumption that the system encompassed in domain Ω is connected to a bath of

particles that reside in a specific state of thermodynamics equilibrium. This ther-

modynamic state can be identified by maximizing the entropy function, subject to a

hydrodynamic constraint.

In this chapter, we will utilize the Boltzmann’s H function to find the state of

equilibrium. Obviously, the entropy S is related to the H function via the relation

S = −H⋅ (5.19)

Hence, maximization of entropy S is mathematically equivalent to minimizing H.

The H function at each point is defined as

H(∣fi⟩)∣(x,t) =
m

∑
i=1

fi(x, t) log [fi(x, t)
wi

] ⋅ (5.20)

For brevity, we will use the notation

M−(x) ∶= {i∣ ei ⋅ n̂(x) < 0, i = 1,⋯,m and x ∈ ∂Ω} , (5.21)

where n̂(x) is the unit outward normal to ∂Ω. Obviously, the unknown populations

near the boundary are fi with ei ∈ M−(x) for every point x on ∂Ω. The rest of

the discrete populations are known from the collision and streaming steps prior to

enforcement of boundary conditions.

(a) Dirichlet boundary condition: Let x ∈ ΓD and up(x, t) be the prescribed concen-

tration at that point. The unknown populations are calculated by solving the
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following constrained optimization problem as

min
fj , j∈M−(x)

H (∣fi⟩) ∣(x,t), (5.22a)

subject to
m

∑
i=1

fi(x, t) = up(x, t), (5.22b)

where the function H is defined in equation (5.20). This minimization problem

will result in relation

fi(x, t) = wi

∑j∈M−(x)wj

⎛
⎝up(x, t) − ∑

k∉M−(x)

fk(x, t)⎞⎠ i ∈M−(x)
fi(x, t) ≥ 0 ∀i = 1,⋯,m⋅ (5.23)

Note that the function H is only defined for non-negative arguments.

(b) Neumann boundary condition: Let x ∈ ΓN and qp(x, t) be the prescribed flux at

that point. The unknown populations are governed by the following constrained

optimization problem

min
fj , j∈M−(x)

H( ∣fi⟩)∣(x,t), (5.24a)

subject to
m

∑
i=1

fi(x, t)ei ⋅ n̂(x) = qp(x, t), (5.24b)

with n̂(x) being the unit outward normal defined earlier. This minimization

problem will result in a non-linear equation in terms of Lagrange multiplier for

the hydrodynamic constraint

∑
i∈M−(x)

wi(ei ⋅ n̂(x))exp [−1 − γei ⋅ n̂(x)] = qp(x, t) − ∑
j∉M−(x)

(ej ⋅ n̂(x))fj(x, t),
(5.25)
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where γ is the Lagrange multiplier. Once the value of γ is known, the populations

can be found using the relation

fi(x, t) = wiexp [−1 − γei ⋅ n̂(x)] i ∈M−(x), (5.26)

which guarantees non-negative values for fi. In the case of one-dimensional

lattice models (e.g. the D1Q2 lattice) and the D2Q4 or D2Q5 models, this

method reduces to the conventional bounce-back method. But, in general this

method is different than bounce-back or specular reflection methods.

Through this method of enforcing boundary conditions, which is based on max-

imization of entropy, we ensure monotonic increase in entropy. The physical inter-

pretation of this method is that the system in Ω is connected to systems in thermo-

dynamic equilibrium. The adjacent systems connected to Ω through ΓD and ΓN are

in different states of thermodynamic equilibrium. Minimization of the function H

ensures that the equilibrium condition for particles near the boundary is respected.

The constraints in equations (5.22a) and (5.24a) are the macroscopic hydrodynamic

conditions of the system at the respective points of the domain.

A numerical example

We now assess the accuracy of the proposed methods for boundary conditions

under LBM. Consider the domain Ω = (0,1) × (0,1), with the diffusion coefficient

D = 4
5π2 and advection velocity being v = 0. The source term is also zero throughout

the domain. The initial concentration is taken as

u0(x,y) = sin(πy) cos(πx/2), (5.27)
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Table 5.1: Numerical results for LBM: In this table, numerical values for discretization
parameters and the calculated error at time-level t = 0.25 are shown.

Case h ∆t E(t = 0.25)
1 4 × 10−2 3.3 × 10−3 2.5 × 10−3
2 2 × 10−2 8.2 × 10−4 6.2 × 10−4
3 10−2 2.1 × 10−4 1.4 × 10−4
4 5 × 10−3 5.2 × 10−5 1.7 × 10−5

and the boundary conditions are

−Dgrad[u] ⋅ n̂ = 0 on ΓN and (5.28a)

u = 0 on ΓD, (5.28b)

where ΓN = {0} × (0,1) and ΓD = ∂Ω − ΓN. We will employ the D2Q9 lattice model

with grid spacing of h. The time-step will be chosen according to equation (5.17) to

avoid negative values for discrete distributions. This problem is solved using several

choices of discretization parameters as given in Table 5.1. We will use the following

definition for calculation of error

E(t) =max
i
{∣u(xi, t) − uexact(xi, t)∣} , (5.29)

where u(xi, t) is the computed numerical value at i-th node and time-level t. The

exact solution is denoted by uexact. Numerical results from LBM with the proposed

methods for boundary conditions are shown in figure 5.3. The variation of error with

respect to the cell-size has been documented in Table 5.1 and figure 5.4, which show

a second-order convergence.
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Comparison with other methods

Consider the domain Ω = (0,1) × (0,1) with zero-flux boundary conditions en-

forced on ∂Ω. The initial condition is taken as:

u0(x) =
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 x ∈ [a, b] × [a, b]
0 otherwise

, (5.30)

where we take a = 0.4 and b = 0.6. The diffusion coefficient is D = 10−2 and the

advection velocity is zero. The D2Q9 lattice model is used. Figure 5.5 shows the nu-

merical result from the lattice Boltzmann method, along with the proposed methods

for enforcing boundary conditions. The bound given by equation (5.17) for cell-size

and time-step is respected. Hence, all discrete populations, and consequently, con-

centration at all nodes are non-negative. The change in the Boltzmann H function

is monotonic, which means that the H-theorem is satisfied.

Note that a zero-flux boundary (or any other macroscopic boundary condition)

can lead to various interpretations in the context of kinetic theory. For instance,

a rigid and impermeable wall can lead to a zero-flux condition. Also, zero-flux

can mean that there is a bath of particles at a Maxwell-Boltzmann equilibrium

state with background velocity v = 0. These interpretations are all valid in their

own right. One needs to account for more physical details and choose the right

method for enforcing those conditions. To show the difference in the numerical

results due to different treatment of boundaries under lattice Boltzmann method,

the given numerical example is solved using bounce-back and specular reflection

methods [149, 150]. The difference in the solution is shown in figure 5.6. This
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(a) concentration at t = 0.25 (b) difference between the numerical and ex-
act solutions at t = 0.25

Figure 5.3: Numerical results for LBM: Concentration and error in concentration are
shown over the computational domain. These results correspond to Case
4 in Table 5.1.

8×10-3 4×10-2

10-5

10-4

10-3

h

E
(t=

0.
25
)

slope=2

Figure 5.4: Numerical results for LBM: In this figure, the error in the numerical solu-
tion is shown against the lattice cell size.

difference should not be taken as a drawback of lattice Boltzmann method. It is in

fact one of the advantages of kinetics-based methods over continuum-based methods.

Extra information on the nature of interaction of particles with the boundary can

be included in the numerical model. A continuum-based method may not be able to

account for such details.
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(a) Concentration at t = 0.5
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H
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(b) Boltzmann’s H function

Figure 5.5: Numerical results for LBM: This figure presents sample numerical results
under the lattice Boltzmann method with the new boundary conditions.

5.5 An Overlapping Domain Decomposition Method

Domain decomposition methods are powerful methods for obtaining numerical

solutions for partial differential equations [7, 131]. These methods are particularly

effective in a parallel computing setting. The basic idea is to split the computa-

tional domain into an arbitrary number of subdomains and seek the numerical so-

lution in different subdomains separately. These subdomains can be overlapping or

non-overlapping. In a non-overlapping domain decomposition scheme, one needs to

account for an interface equation to enforce compatibility of numerical solutions near

the interface between subdomains. Two of the more popular methods for construct-

ing interface compatibility conditions are Lagrange multiplier framework, Steklov-

Poincaré framework [131]. Introduction of such an interface condition may lead to

higher complexity in the algorithm design but is also shown to give accurate nu-
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(a) proposed boundary condition vs. bounce-back method

(b) proposed boundary condition vs. specular reflection
method

Figure 5.6: Numerical results for LBM: In this figure, the difference between the
numerical solution due to different treatment of zero-flux boundary is
shown.
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merical solutions. Overlapping domain decomposition do not require addition of a

new interface constraint equation. In the proposed hybrid coupling method, we shall

employ the overlapping domain decomposition approach. We now describe the iter-

ative Schwartz method for numerical solution of a partial differential equation in an

overlapping domain decomposition scheme.

Consider a domain Ω with boundary Γ = ∂Ω. Consider the following equation

defined on this domain as

L[u] = f in Ω and (5.31a)

u = up on Γ⋅ (5.31b)

For simplicity, we assume that the boundary condition is purely Dirichlet, and employ

two overlapping subdomains Ω1 and Ω2 (i.e., Ω1 ∩ Ω2 ≠ ∅ and Ω1 ∪ Ω2 = Ω). The

governing partial differential equations in each subdomain will be as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

L[u1] = f1 in Ω1

u1 = u2 on Γ1 ∩Ω2

u1 = up on Γ1 ∩ Γ

, and

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

L[u2] = f2 in Ω2

u2 = u1 on Γ2 ∩Ω1

u2 = up on Γ2 ∩ Γ

, (5.32)

where the subindex is used to show the restriction of that quantity to the respective

subdomain. The numerical solution to the system given in (5.32) can be found to be

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

L̃[uk
1] = f1 in Ω1

uk
1 = u

k−1
2 on Γ1 ∩Ω2

uk
1 = u

p on Γ1 ∩ Γ

, and

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

L̃[uk+1
2 ] = f2 in Ω2

uk+1
2 = uk

1 on Γ2 ∩Ω1

uk+1
2 = up on Γ2 ∩ Γ

, (5.33)

where L̃ is the discrete differential operator and super-indices k − 1, k and k + 1 are

used to show consecutive iterations. The numerical solution in one subdomain, from
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the previous iteration, is used to determine the Dirichlet condition on the boundary

of other subdomain. This approach can be extended to the case were more than two

subdomains are involved.

The advantages of overlapping domain decomposition methods compared to non-

overlapping methods are simpler algorithm design, increased flexibility in choice of

numerical solver in different subdomains, and easy incorporation of non-matching

grids and multi-time-stepping. In the following section, we will further scrutinize the

methods for projecting data from a coarse mesh to a fine grid, and vice versa.

Transfer of information across non-matching grids

Typically, the grid-size for a coarse-scale simulation is much larger than the grid-

size for a fine-scale simulation. Under lattice Boltzmann method, small cell-size can

help accounting for complex spatial features of the computational domain in a fine-

scale simulation. Upscaled (averaged) models for flow and transport in porous media

such as Darcy’s model do not need any such details of the pore structure, hence, the

computational mesh for numerical solution of these models can be coarse. Under the

proposed hybrid coupling method and the domain decomposition schemes introduced

above, interaction among different subdomains occurs through the interface between

any two subdomains. Transfer of information, consequently, needs to be done be-

tween non-matching grids that are disparate in size. This issue has been an active

area of study in recent years. For instance, in simulation of fluid-structure interaction

problems, traction at the interface of fluid and solid needs to be interpolated between
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LBM node

FEM node
x̃ x̃

′

Surrounding nodes

Transfer from FEM to LBM Transfer from LBM to FEM

Figure 5.7: Transfer of information across non-matching grids: A pictorial description
for interpolation across non-matching grids is provided.

non-matching grids [151–153]. In the context of overlapping domain decomposition

schemes, numerical methods for flow and transport simulation on overlapping grids

in [154, 155] and a study of stability of interpolation at the interface of subdomains

in [156] can be mentioned. However, in this chapter, since we intend to use different

numerical methods in different subdomains (i.e., FEM or LBM), the interpolation

for concentration is not alike. Our approach to transfer the values of concentration

at the interface and across non-matching grids is described next.

Consider a two-dimensional domain and let x̃ be the coordinates of a cell lying

on the boundary of a subdomain of LBM discretization. Then, the values of the

concentration at this point can be approximated via the finite element interpolation

on the element that contains the point x̃. To approximate concentration at a point

x̃′ that lies on the boundary of the subdomain with FEM discretization, one needs

to locate the surrounding cells (of the LBM solution). Hence, the point x̃′ is inside

the square patch with the surrounding LBM nodes at the corners. Concentration at

this finite element node can be approximated using the values of concentration at
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the surrounding points of the square patch. For instance, one can use a four-node

quadrilateral finite element interpolation (figure 5.7 provides a pictorial description).

Obviously, three-dimensional cases can be handled similarly, however, the choice of

interpolation function can be more varied (e.g., one can use interpolation functions

over hexagonal or tetrahedral elements identified with surrounding LBM nodes).

To demonstrate this technique, consider the following function defined over do-

main Ω = (0,1) × (0,1):
g(x,y) = sin(2πx) sin(2πy)⋅ (5.34)

The coarse grid size will be denoted by h (linear three-node triangular elements used)

and the fine grid size is shown by h′. The maximum error in the domain is denoted

by Emax and is defined by:

Emax = max
(x,y)
∣g(x, y) − g(x, y)∣ , (5.35)

where (x, y) is a point on grid and g(x, y) is the approximation of function g on a

computational grid (either coarse or fine). Numerical results for transferring informa-

tion across non-matching grids is given in Tables 5.2 and 5.3. From Table 5.2, we can

conclude that the accuracy on the fine grid changes as O(h2), which is expected, as it

complies with the convergence rate of finite element approximation [157]. However,

the error on the coarse grid, with information transferred to it from the fine domain,

is O(h′). Figures 5.8 and 5.9 show some demonstrative numerical results and out-

line the process given above. From this numerical experiment we conclude that, a

bottleneck in convergence of the proposed coupling method can be the accuracy of

fine to coarse grid information transfer.
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Table 5.2: Transfer of information across non-matching grids: The numerical result for
transfer of information from coarse grid to fine grid is given. The error is
O(h2), as expected.

Case h h′ Emax

1 10−1 10−2 9.55 × 10−2
2 4.0 × 10−2 10−2 1.57 × 10−2
3 2.0 × 10−2 10−2 3.94 × 10−3

Table 5.3: Transfer of information across non-matching grids: In this table, numerical
values for transferring information from fine grid to coarse grid is pre-
sented. The error in the values of the coarse-grid approximation behaves
as O(h′).

Case h h′ Emax

1 4.0 × 10−2 2.0 × 10−2 1.13 × 10−1
2 4.0 × 10−2 10−2 5.75 × 10−2
3 4.0 × 10−2 5.0 × 10−3 2.90 × 10−2

5.6 A New Hybrid Multi-Time-Step Coupling

In this section, we shall present a robust coupling method that allows hybrid

modeling to be able to couple pore- and continuum-scale subdomains with disparate

time-scales for solute transport in porous media. The spatial domain of interest Ω is

partitioned into overlapping subdomains. The subdomains where fine-scale features

of the solution are sought are denoted by Ωf . Subdomains in which coarse-scale fea-

tures are solved for are shown by Ωc. Figure 5.10 provides a pictorial description of

this partitioning scheme. In this chapter, we will employ a finite element discretiza-

tion in subdomain Ωc. This finite element method is applied to the equation (5.2).

The fine-scale features in subdomain Ωf are solved for using the lattice Boltzmann
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(a) approximation of g(x,y) on coarse
grid: g(x,y)→ gc(x,y)

(b) transfer of information from coarse
grid to fine grid: gc(x,y)→ gf(x,y)

(c) error on the fine grid: ∣gf(x,y) −
g(x,y)∣

Figure 5.8: Transfer of information across non-matching grids: The function g(x,y) is
first approximated on a coarse grid. The data corresponds to Case 2 in
Table 5.2.

method, which solves the Boltzmann’s transport equation in equation (5.9) in the

mentioned region. Compatibility of the solutions is enforced using a Dirichlet condi-

tion at Γf→c and Γc→f . The time- and space-continuous partial differential equations
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(a) approximation of g(x,y) on fine grid:
g(x,y)→ gf(x,y)

(b) transfer of information from fine grid
to coarse grid: gf(x,y) → gc(x,y)

(c) error on coarse grid: ∣gc(x,y)−g(x,y)∣

Figure 5.9: Transfer of information across non-matching grids: The function g(x,y) is
first approximated on a fine grid. Then, it is mapped onto a coarse grid
using the method described in figure 5.7. The data corresponds to Case
2 in Table 5.3.

in each subdomain, along with their respective boundary conditions, are as

in Ωc ∶

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u/∂t + div [vu −Dgrad [u]] = s (x, t) ∈ Ωc × I
u(x, t = 0) = u0(x) x ∈ Ωc

u(x, t) = up(x, t) (x, t) ∈ ΓD × I
(vu −Dgrad [u]) ⋅ n̂(x) = qp(x, t) (x, t) ∈ ΓN × I
coupling condition ∶ u(x, t) = ũf→c(x, t) (x, t) ∈ Γf→c × I

, (5.36)
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and the governing equations in the fine-scale subdomain are

in Ωf ∶

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂f/∂t + v ⋅ grad[f] = (f eq. − f) /λ (x,ζ, t) ∈ Ωf ×Rn × I
f(x,ζ, t = 0) = f eq(x,ζ, t = 0; u0(x),v) (x,ζ) ∈ Ωf ×Rn

∫ fdζ = up(x, t) (x, t) ∈ ΓD × I
(∫ fζdζ) ⋅ n̂(x) = qp(x, t) (x, t) ∈ ΓN × I
coupling condition ∶ ∫ fdζ = ũc→f(x, t) (x, t) ∈ Γc→f × I

⋅ (5.37)

This set of equations provides a basis to employ numerical methods of different origins

in the same computational domain. The advection-diffusion equation is rooted in the

continuum theory. The Boltzmann’s equation however, is based on the kinetic theory.

Using equation (5.36), one can solve for physical features at different temporal and

spatial scales (macroscopic vs. mesoscopic), in a single computational framework.

In the following, we will provide the temporal and spatial discretization of equation

(5.36).

Space and time discretization

Coarse-scale problem

The coarse-scale problem is defined by equation (5.2), over domain Ωc in Figure

5.10. We will use the semi-discrete methodology [139] , which gives the following

time-continuous equation for the coarse-scale problem

Mu̇ +Ku = s, (5.38)

where M is the capacity matrix, K is the transport matrix and u is the nodal

concentration. The superposed dot denotes the time derivative. The discretized

207



right-hand-side of the finite element weak formulation is shown by s. For time

discretization, we will use the following notation

t(n) = n∆tc, u(t(n)) ≈ d(n), and u̇(t(n)) ≈ v(n), (5.39)

where ∆tc is the time-step used for integrating the coarse-scale problem. Using the

trapezoidal method for time integration yields the following system of equations

Mv(n+1) +Kd(n+1) = s(n+1) and (5.40a)

d(n+1) = d(n) +∆tc(1 − ϑ)v(n) +∆tcϑv
(n+1), (5.40b)

where ϑ ∈ [0,1] is the time-integration parameter [158]. In this chapter, we will

use ϑ = 1/2, which gives a second-order accurate and unconditionally stable time-

integrator (the midpoint rule). Once the the value of flux ũc→f is known, the values

for nodal concentrations d(n+1) and the rate variable v(n+1) can be found. In the

following section we will briefly overview the discretization of the fine-scale problem.

Fine-scale problem

Our objective is to solve for the distribution of particles in the phase space defined

by Ωf × Rn. This goal can be achieved by solving the Boltzmann equation (5.9)

numerically. The lattice Boltzmann method, introduced in Section 5.4, can provide

relevant numerical results for simulation of the advection-diffusion process.

Consider a uniform grid, with the spacing between the cells equal to hf , defined

over the domain Ωf . We will denote the time-step for the fine-scale problem by ∆tf ,

and the ratio η =∆tc/∆tf . The procedure for updating the discrete populations over
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a time-step is the same as what was outlined earlier in Section 5.4. In the following

section, we will describe the new computational framework in detail and point out

the transfer of data from fine-scale to coarse-scale domain.

The proposed hybrid computational framework

Before providing a step-by-step procedure for a numerical simulation using the

proposed framework, we need to introduce a set of tools that will be useful. These

tools will enable multi-time-step integration and information transfer across non-

matching grids. The details are as below:

(i) Initializing the discrete unknowns: In Ωc we utilize a finite element discretization.

The nodal concentrations d can be simply initialized according to u0(x). In

Ωf however, we assume that for the given initial concentration, the discrete

populations fi are given as

fi(x, t = 0) = f eq
i (x, t = 0; u0(x))⋅ (5.41)

Other methods for initializing the discrete populations can also be considered.

(ii) Information transfer across the interface: To identify values of prescribed concen-

tration on interfaces Γf→c and Γc→f , we need to approximate the concentration

at nodes lying on these boundaries. Figure 5.11 is an illustrative example of

lattice and finite elements at the boundary of each subdomain. We will denote

the coordinates of the point j, numbered in figure 5.11, as (xj , yj) and the

concentration at that node as ui. For given concentrations at nodes 1 to 4,
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the concentration at node 5, which belongs to a finite element in Ωc, can be

approximated as

u5 ≈ u1(1 − γx)(1 − γy) + u2γx(1 − γy) + u3γxγy + u4(1 − γx)γy, (5.42)

where γx = (x5 −x1)/hf and γy = (y5 −y1)/hf . This method is obviously synony-

mous to approximation via a four-node quadrilateral element with its vertices

lying on nodes 1 to 4. To transfer information from Ωc to Ωf , for instance at

node number 1, one can use the finite element approximation in the element

that includes the coordinates of node 1 (element i shown in figure 5.11). This

value will serve as a Dirichlet-type condition on Γc→f and can be enforced using

equation 5.22a. Three-dimensional cases can be handled similarly.

(iii) Multi-time-step integration: The solution in Ωc advances in time with a time-

step of ∆tc. This time-step is typically much larger than the time-step needed

for fine-scale problem in subdomain Ωf . However, to perform time-integration in

Ωf , we need to know the concentration on Γc→f , which can only be determined

by the numerical values in Ωc. To approximate the concentration on Γc→f

at intermediate time-level ȷ, between t and t +∆tc, we will use the following

interpolation in time:

uc(x, t + ȷ
η
∆tc) ≈ ( ȷ

η
)uc(x, t +∆tc) + (1 − ȷ

η
)uc(x, t) x ∈ Γc→f , (5.43)

where uc is the concentration in subdomain Ωc. Here, we have assumed that

the rate of change in concentration remains constant in a time-step ∆tc. This

value for uc(x, t+ ȷ
η∆tc) will be enforces as a Dirichlet condition on the solution

in Ωf .
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(iv) Sub-iterations at each time-step: In order to ensure convergence of the pro-

posed algorithm, one needs to transfer information between the subdomains

iteratively. Compatibility of the numerical solutions from the pore and fine-

scale problems at the overlap region Ωf ∩Ωc has a vital role in accuracy of the

numerical solution in the entire domain Ω. Figure 5.12 illustrates one iteration

in a time-step ∆tc. The solution of the coarse-scale problem advances by ∆tc

in step 1. Using the updated values of solution in Ωc, boundary conditions onto

subdomain Ωf at intermediate time-levels is determined. The solution of the

fine-scale domain advances by time-step ∆tf successively. The new numerical

values are then used to find the concentrations on boundary Γf→c, which is used

to update the solution in the coarse-scale domain in the next iteration. This

procedure is repeated an arbitrary number of times in order to satisfy accuracy

requirements defined by the user.

Given the tools described above, one can implement the proposed coupling method

in a systematic manner. A step-by-step procedure is given in Algorithm 1. In the

following section, we will provide numerical examples to showcase the performance

of this framework.

The case of many subdomains

Thus far, the proposed coupling algorithm is presented for the case of only two

subdomains, a coarse-scale subdomain Ωc and a fine-scale domain Ωf . However, in

practical applications decomposition into multiple subdomains may be required. In
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Algorithm 1 Hybrid multi-time-step coupling framework: Outline of the algorithm
for proposed framework.

1: Initialize u in Ωc and fi in Ωf for t = 0.
2: Set t← 0
3: while t < T do
4: Set t← t +∆t
5: Set Iter ← 0.
6: while Iter ≤MaxIter do
7: Set Iter ← Iter + 1.
8: Find ũf→c defined on Γf→c.
9: Advance the solution in Ωc by ∆tc.
10: Find ũc→f defined on Γc→f at time-levels t −∆tc and t.
11: Set ȷ← 0
12: while ȷ ≤ η do
13: Set ȷ← ȷ + 1
14: Advance the solution in Ωf by ∆tf to find fi(x, t + ȷ∆tf) (stream and

collide).
15: Impose Dirichlet boundary condition on Γc→f with

ũc→f(x, t + ȷ∆tf) = (1 − ȷ/η)ũc→f(x, t −∆tc) + (ȷ/η)ũc→f(x, t).
16: end while
17: From the new numerical values in Ωf find ũf→c.
18: end while
19: end while

Ω

Ωf

Ωc

Γc→f

Γf→c

Ωc ∩Ωf ≠ ∅
Figure 5.10: Overlapping domain partitioning: The proposed coupling method employs

overlapping domain partitioning. This figure illustrates the decomposi-
tion of the computational domain Ω into the subdomains where coarse-
scale and fine-scale features are sought after.
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Ωf

Ωc

Γc→f

Γf→c

1 2

34

5Ωi

Figure 5.11: Information transfer across non-matching grids: In this figure, transfer
of information at the interface of subdomains is depicted.
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Figure 5.12: Proposed coupling method: In this figure, use of multiple time-steps
for time-integration under the proposed coupling framework is demon-
strated.
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this section, we will present the proposed coupling method for cases where there are

multiple coarse and fine-scale subdomains.

Suppose that the domain Ω ⊂ Rn is partitioned into coarse and fine-scale subdo-

mains, given as

Ω = (Nc

⋃
i=1

Ωc,i)
122222222222222232222222222222224

coarse−scale subdomains

⋃ (Nf⋃
j=1

Ωf,j)
12222222222222222322222222222222224

fine−scale subdomains

, (5.44)

where all coarse and fine-scale subdomains are overlapping. The number of coarse-

scale subdomains is shown by Nc and Nf is the number of fine-scale subdomains.

Each subdomain Ωf,j (for j = 1,⋯,Nf) is a fine-scale subdomain and will be integrated

using the lattice Boltzmann method with grid size hf,j and time-step ∆tj . Coarse-

scale subdomains Ωf,i (for i = 1,⋯,Nc) are solved using the finite element method with

mesh-size hc,i and ∆tc,i. The details regarding multi-time-stepping and transferring

data from coarse-scale grid to fine-scale grid (and vise versa) remains the same as

before. Since discretization parameters for coarse-scale domains are much larger

than the ones used in the fine-scale subdomains, the solution in coarse-scale domains

advances first, then the updated values near the interface of coarse-scale/fine-scale

subdomains are used for multi-time-step integration. Obviously, even coarse-scale

subdomains can be integrated with different time-steps. Multi-time-step integration

for the coarse-scale subdomains can be done in the same spirit as for the coarse-

scale subdomains presented earlier. However, an alternative approach would be to

use the method presented in [127] to solve the coarse-scale subdomains (that share

an interface), and then use the updated solution to transfer to fine-scale domains.

We will not follow this procedure here, but it can be explored in future research
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endeavors. We will denote the system time-step, the same definition used in [127],

by ∆t. The proposed coupling framework for the case of multiple subdomains is

given in Algorithm 2.

Algorithm 2 Hybrid multi-time-step coupling framework for many subdomains: The
algorithmic procedure for the proposed framework is outlined.

1: Set t← 0
2:

3: while t +∆t < T do
4:

5: for Iter = 1,⋯ do
6:

7: for i = 1,⋯,Nc do
8:

9: Advance the solution in subdomain Ωc,i by one system time-step, sub-
ject to boundary values from the solutions from previous iteration.

10:

11: end for
12: for j = 1,⋯,Nf do
13:

14: Advance the solution in subdomain Ωf,j by one system time-step, sub-
ject to boundary values approximated by equation (5.43).

15: end for
16: end for
17: end while

5.7 Representative Numerical Results

In this section, we will apply the proposed coupling algorithm to one- and two-

dimensional problems. The performance of the new method with respect to dis-

cretization parameters will be studied. Computer implementation is done using

NumPy [159] and FEniCS [160] software packages.
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Advection and diffusion of one-dimensional Gaussian hill

Consider Ω = (0,1) with zero-flux condition imposed on both ends. The initial

concentration is given as

u0(x) = φ√
2πσ2

0

e−(x−x0)2/2σ2
0 , (5.45)

where φ = 10−1 and σ0 = 10−2. The initial location of the tip of the Gaussian hill is

at x0 and is set to be 3 × 10−1. The advection velocity in the entire domain is taken

to be v = 1 and the diffusion coefficient is D = 10−2. The source term is taken to be

zero and the time-interval of interest is T = 4×10−2. We will use the proposed hybrid

coupling method to numerically solve this problem. We will use the finite element

method with the Galerkin formulation in Ωc and the lattice Boltzmann method in

Ωf . To showcase the performance of the proposed method, we will use the following

definition for error (error in ∞-norm)

E(t) = max
i=1,⋯,N ∣u(xi, t) − uexact(xi, t)∣, (5.46)

where N is the number of nodes for numerical solution, u(x, t) is the approximate

solution at point xi and time t. The exact solution is represented by uexact. Following

the definition given in (5.46), the error in Ωc and Ωf will be denoted by Ec and Ef

respectively. We will denote the length of the overlap region Ωf ∩Ωc by Loverlap. The

domain partitioning is as

Ωc = (0, 1
2
+ Loverlap

2
) , and Ωf = (1

2
− Loverlap

2
,1) ⋅ (5.47)

We will employ two-node linear finite elements of equal lengths hc to discretize Ωc.

The time-step is set to be ∆tc = h2
c/2D. Subdomain Ωf is discretized using a uniform
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grid with spacing hf and a time-step of ∆tf = h2
f /2D. The D1Q2 lattice model will

be used in Ωf . The number of sub-iterations in each time-step is shown by MaxIter.

Figure 5.13 shows a comparison between the numerical solution from the hybrid

coupling framework and the exact solution. The concentration profile is shown when

the front is passing through the overlap region and afterwards. In both cases, the

numerical solution is in accordance with the exact solution.

The numerical experiments discussed here show that the proposed hybrid cou-

pling framework gives an accurate solution to the advection-diffusion equation and

is indeed a converging scheme (see figures 5.14 and 5.15). From these numerical

experiments, we conclude that the convergence of the numerical solution under the

proposed framework is O(h). In the following, the effect of discretization in coarse

and fine-scale subdomains, effect of length of overlap region and the number of sub-

iterations on the accuracy of the numerical solution are described.

(1) Discretization in fine-scale domain: Our numerical experiments indicate that for

a given discretization in the coarse-scale domain (i.e., hc and ∆tc), refinement of

parameters hf and ∆tf improves the overall accuracy of numerical solution. The

results presented in Table 5.4 show that the mentioned refinement reduces the

error in both fine-scale and coarse-scale subdomains.

(2) Discretization in coarse-scale domain: Considering the numerical results pre-

sented in Table 5.5, one can conclude that for a given discretization in fine-scale

domain (i.e., hf and ∆tf), refinement of respective parameters in the coarse-scale

domain does not necessarily improve accuracy. This behavior can be attributed
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to the fact that the lower accuracy in the fine-scale domain (due to use of lattice

Boltzmann method), results in a less accurate estimation of the concentration

on Γf→c. Hence, the numerical solution in the coarse-scale region converges to a

solution other than the exact solution.

(3) Length of overlap region: For a given discretization in subdomains Ωf and Ωc,

increase in the length of the overlap region results in reduction of overall accu-

racy. This conclusion can be drawn from the numerical experiments presented

in Table 5.6. However, if the grid-size and time-step in both subdomains change

simultaneously, convergence rate of the numerical solution to the exact solution

may slow down. Following the numerical results given in Tables 5.7, 5.8 and 5.9,

as well as figures 5.15, 5.16 and 5.17 shows that convergence under simultane-

ous refinement in both subdomains has an inverse relation to the length of the

overlap region.

(4) Number of sub-iterations in each time-step: In the numerical experiments per-

formed, increasing the maximum number of sub-iterations to values greater than

4 did not result in a significant improvement in accuracy. However, compatibil-

ity, especially near the overlap region, can be improved by increasing the number

of sub-iterations.

(5) Order of interpolation in the coarse-scale subdomain: Figure 5.18 shows the

point-wise error in the coarse-scale subdomain, for different orders of interpola-

tion in finite elements and under multi-time-stepping. For different cases, the

error in the fine-scale subdomain remains largely unchanged from one case to
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another. Error in the coarse-scale subdomain decreases by increasing the order

of interpolation, however, the error near the overlap region remains unchanged.

The figure the error accumulates near the overlapping region under both multi-

time-stepping and under single time-step in all the subdomains.

These observations regarding the effect of number of sub-iterations and length of the

overlap region are in accordance with the theory of overlapping domain decomposi-

tion methods [161, 162]. It seems that, generally, decrease in the size of the overlap

region reduces the rate of convergence and the error decreases proportional to the

inverse of square root of number of sub-iterations. One key observation from these

numerical experiments is that majority of error in the numerical solution accumu-

lates near the overlap region. This error can be much higher than the error in the

rest of the domain and refinement in either of the subdomains may not improve it.

Hence, a topic for future research can be designing efficient methods for removing

the accumulated error in the overlap region under the proposed coupling framework.

Here, we showed that one can use highly disparate mesh-size and time-steps in

different subdomains. Furthermore, we showed that to improve accuracy throughout

the computational domain, grid refinement in the fine-scale domain is sufficient. We

also demonstrated that mesh refinement only in the coarse-scale domain may not

lead to a more accurate numerical solution.
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Table 5.4: Advection and diffusion of one-dimensional Gaussian hill: In this table, the
accuracy of the numerical solution using the proposed coupling framework
is shown. Here, only cell size and time-step in the fine-scale domain are
refined. Note that despite the refinement in the fine-scale domain only, the
accuracy of the solution in the entire computational domain is improving.

hc ∆tc hf ∆tf Ec(T) Ef(T)
10−2 5.00 × 10−3 5.00 × 10−3 1.25 × 10−3 3.67 × 10−3 1.70 × 10−2
10−2 5.00 × 10−3 2.50 × 10−3 3.13 × 10−4 1.94 × 10−3 7.42 × 10−3
10−2 5.00 × 10−3 1.25 × 10−3 7.81 × 10−5 1.02 × 10−3 3.48 × 10−3
10−2 5.00 × 10−3 6.25 × 10−4 1.95 × 10−5 5.50 × 10−4 1.80 × 10−3

Table 5.5: Advection and diffusion of one-dimensional Gaussian hill: In this table,
performance of the proposed method for numerical solution of the one-
dimensional problem is shown. In this case, element size and time-step
refinement are done only in the coarse-scale domain. The discretization
parameters in the fine-scale domain remain unchanged in the fine-scale
domain. It can be observed that refinement, merely in the coarse-scale
domain, has adverse effect on the accuracy of numerical solution. This
experiment shows that the numerical method with the slowest convergence
has the dominant role in overall accuracy.

hc ∆tc hf ∆tf Ec(T) Ef(T)
10−2 5.00 × 10−3 1.25 × 10−3 7.81 × 10−5 1.02 × 10−3 3.48 × 10−3

5.00 × 10−3 1.25 × 10−3 1.25 × 10−3 7.81 × 10−5 1.65 × 10−3 3.71 × 10−3
2.50 × 10−3 3.13 × 10−4 1.25 × 10−3 7.81 × 10−5 2.01 × 10−3 3.74 × 10−3
1.25 × 10−3 7.81 × 10−5 1.25 × 10−3 7.81 × 10−5 2.22 × 10−3 3.74 × 10−3

Table 5.6: Advection and diffusion of one-dimensional Gaussian hill: This numerical
experiment indicates that increasing the length of the overlapping region
could have adverse effect on the accuracy of the numerical solution.

hc ∆tc hf ∆tf Loverlap Ec(T) Ef(T)
10−2 5.00 × 10−3 1.25 × 10−3 7.81 × 10−5 2.00 × 10−2 5.78 × 10−4 3.08 × 10−3
10−2 5.00 × 10−3 1.25 × 10−3 7.81 × 10−5 4.00 × 10−2 5.85 × 10−4 3.43 × 10−3
10−2 5.00 × 10−3 1.25 × 10−3 7.81 × 10−5 8.00 × 10−2 8.63 × 10−4 3.47 × 10−3
10−2 5.00 × 10−3 1.25 × 10−3 7.81 × 10−5 10−1 1.02 × 10−3 3.48 × 10−3
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Table 5.7: Advection and diffusion of one-dimensional Gaussian hill: In this table, values
of discretization parameters and errors in each subdomain are provided.
In all the cases, η = 4 and Loverlap = 4×10−2. The number of sub-iterations
in each time-step is 10.

hc ∆tc hf ∆tf Ec(T) Ef(T)
1.00 × 10−2 5.00 × 10−3 5.00 × 10−3 1.25 × 10−3 2.55 × 10−3 1.64 × 10−2
5.00 × 10−3 1.25 × 10−3 2.50 × 10−3 3.13 × 10−4 2.22 × 10−3 7.54 × 10−3
2.50 × 10−3 3.13 × 10−4 1.25 × 10−3 7.81 × 10−5 1.40 × 10−3 3.70 × 10−3
1.25 × 10−3 7.81 × 10−5 6.25 × 10−4 1.95 × 10−5 7.79 × 10−4 1.85 × 10−3
6.25 × 10−4 1.95 × 10−5 3.13 × 10−4 4.88 × 10−6 4.11 × 10−4 1.75 × 10−3
3.13 × 10−4 4.88 × 10−6 1.56 × 10−4 1.22 × 10−6 2.11 × 10−4 1.73 × 10−3

Table 5.8: Advection and diffusion of one-dimensional Gaussian hill: Values for the
discretization parameters and errors in fine and coarse-scale subdomains
are given. In all cases, η = 4, Loverlap = 10−2 and the number of sub-
iterations is 10.

hc ∆tc hf ∆tf Ec(T) Ef(T)
5.00 × 10−3 1.25 × 10−2 2.50 × 10−3 3.13 × 10−4 3.32 × 10−3 4.09 × 10−3
2.50 × 10−3 3.13 × 10−4 1.25 × 10−3 7.81 × 10−5 2.07 × 10−3 2.12 × 10−3
1.25 × 10−3 7.81 × 10−5 6.25 × 10−4 1.95 × 10−5 1.14 × 10−3 1.72 × 10−3
6.25 × 10−4 1.95 × 10−5 3.13 × 10−4 4.88 × 10−6 6.00 × 10−4 1.72 × 10−3

Table 5.9: Advection and diffusion of one-dimensional Gaussian hill: Discretization and
errors in fine-scale and coarse-scale domains are given in this table. The
number of sub-iterations in each time-step is 10. In all the cases, η = 4
and Loverlap = 10−1.

hc ∆tc hf ∆tf Ec(T) Ef(T)
1.00 × 10−2 5.00 × 10−3 5.00 × 10−3 1.25 × 10−3 3.67 × 10−3 1.70 × 10−2
5.00 × 10−3 1.25 × 10−3 2.50 × 10−3 3.13 × 10−4 3.16 × 10−3 7.67 × 10−3
2.50 × 10−3 3.13 × 10−4 1.25 × 10−3 7.81 × 10−5 2.01 × 10−3 3.74 × 10−3
1.25 × 10−3 7.81 × 10−5 6.25 × 10−4 1.95 × 10−5 1.13 × 10−3 1.86 × 10−3
6.25 × 10−4 1.95 × 10−5 3.13 × 10−4 4.88 × 10−6 6.02 × 10−4 1.73 × 10−3
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(a) Concentration at t = 0.2.
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(b) Concentration at t = 0.4.

Figure 5.13: Advection and diffusion of one-dimensional Gaussian hill: This figure shows
the exact and numerical concentration profiles at two different time-
levels. At t = 0.2, the front passes through the overlap region. The
numerical solution shows good agreement with the exact solution.
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Figure 5.14: Advection and diffusion of one-dimensional Gaussian hill: This figure shows
the error in the coarse-scale and fine-scale subdomains against refine-
ment in the fine-scale region. Table 5.4 provides the numerical values
employed in this numerical simulation.
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Figure 5.15: Advection and diffusion of one-dimensional Gaussian hill: The error in
the fine and coarse-scale subdomains is plotted against grid-size. In all
cases hc = 2hf .
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Figure 5.16: Advection and diffusion of one-dimensional Gaussian hill: In this figure,
the error in the coarse- and fine-scale subdomains is shown. In this case
the length of the overlap region is Loverlap = 10−2.
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Figure 5.17: Advection and diffusion of one-dimensional Gaussian hill: Error in the fine
and coarse-scale domains with respect to mesh size in each subdomain
is shown. Here, the length of the overlap region is Loverlap = 10−1.

Simulation of fast bimolecular reaction using multiple

subdomains

This example will be used to demonstrate the application of the proposed hybrid

framework for bimolecular fast reactions and its ability to handle multiple subdo-

mains. To this end, we simulate the evolution of the concentrations of the partici-

pating chemical species in the following bimolecular reaction

nAA + nBB→ nCC, (5.48)

where nA, nB and nC are the stoichiometry coefficients. Here, we have chosen nA = 1,

nB = 2 and nC = 1. The computational domain Ω = (0,1) is partitioned into the

following two coarse-scale and one fine-scale subdomains:

Ωc,1 = (0,0.40), Ωf = (0.39,0.61) and Ωc,2 = (0.6,1.0)⋅
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(a) hc = 10−2, hf = 5 × 10−3, ∆tc = 5 × 10−3, ∆tf =
1.25 × 10−3 (subcycling)
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Figure 5.18: Advection and diffusion of one-dimensional Gaussian hill: In this figure,
point-wise error in the coarse-scale domain at time t = T is shown. Dif-
ferent orders of interpolation (denoted by p here) in the finite elements
are used.

The time-interval of interest is T = 0.5. The coefficient of diffusion is D = 10−2

and the advection velocity is zero throughout the domain. We will enforce zero-flux

boundary conditions at x = 0 and x = 1. The initial values for each of the species is

as

u0,i(x) = φ0,i√
2πσ2

exp [−(x − x0,i)2/2σ2] i = A,B,C, (5.49)
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where σ = 0.1, φ0,A = 0.1, x0,A = 0.3, φ0,B = 0.05 and x0,B = 0.7. The initial concentra-

tion of the species C is zero in the entire domain. To solve the problem numerically,

it is convenient to introduce the invariants

α = uA + nA

nC

uC and β = uB + nB

nC

uC, (5.50)

where uA, uB and uC are the concentrations of the chemical species A, B and C,

respectively. Once numerical values for α and β are found, the concentrations of the

participating chemical species can be calculated as

uA = max{α − nA

nB

β, 0} , (5.51a)

uB =
nB

nA

max{−α + nA

nB

β, 0} , and (5.51b)

uC =
nC

nA

(α − uA) ⋅ (5.51c)

Subdomains Ωc,1 and Ωc,2 are discretized using the finite element method, with a

mesh size of hc,1 = hc,2 = 10−2 and time-step of ∆tc,1 = ∆tc,2 = 5×10−3. Subdomain Ωf

is solved using the lattice Boltzmann method with cell size of hf = 10−3 and time-step

∆tf = 2 × 10−5. The number of sub-iterations at each time-level is set to 10.

Numerical results at various time-levels are presented in figures 5.19–5.21, which

show the concentrations of all the participating chemical species from the coarse-

scale subdomains (which are denoted by uc,1 and uc,2) and the fine-scale subdomain

(which is denoted by uf). As evident from these figures, the numerical solution is

compatible near and in the overlap region, and the proposed hybrid framework has

performed well.
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Figure 5.19: Fast bimolecular reaction in a one-dimensional domain: Concentration of
chemical species A at different time-levels is shown.

Advection and diffusion in a homogeneous medium

Consider Ω = (0,2) × (0,1/4) with ΓD = {0} × [0,1/4] and ΓN = ∂Ω − ΓD corre-

sponding to the following boundary conditions

up(x, t) = 1 x ∈ ΓD, t ∈ I and (5.52)

qp(x, t) = 0 x ∈ ΓN, t ∈ I , (5.53)

where I = (0, T ] is the time interval of interest. The initial concentration in the entire

domain is taken to be u0(x) = 0. The isotropic diffusion coefficient is D = 5 × 10−3.
Here, we shall use the proposed framework to numerically solve this problem for
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Figure 5.20: Fast bimolecular reaction in a one-dimensional domain: In this figure,
concentration of species B is shown.

different Péclet numbers. We will define the coarse-scale domain Ωc and the fine-

scale domain Ωf as

Ωc = (0,1 + Loverlap

2
) × (0,1/4), and Ωf = (0,1 − Loverlap

2
) × (0,1/4), (5.54)

where we pick Loverlap = 4/100. The SUPG formulation (5.6) with linear three-node

triangular elements will be used in Ωc. Numerical solution in Ωf will be sought

for using lattice Boltzmann method with the D2Q4 lattice model. In figure 5.22

non-matching grid sized for finite element and lattice Boltzmann methods in the

given domain is illustrated. We shall solve the problem for two different choices of

advection velocity:
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Figure 5.21: Fast bimolecular reaction in a one-dimensional domain: Concentration of
species C is shown. The fine-scale subdomain is located near the region
where majority of production occurs.

(i) Case 1 : Considering the uniform advection velocity of vx = 5 × 10−2 and vy = 0

over domain Ω, we find the Péclet number as P = 20. The element-size in the

coarse-scale domain is hf ≈ 7 × 10−2, and the grid spacing for LBM is hf = 10−2.

The time-steps in the coarse-scale and fine-scale subdomains are ∆tc = 5.1×10−1

and ∆tf = 10−2 respectively. Note that the ratio between the coarse and fine

time-steps is η = 51. The number of iterations is MaxIter = 5. The result

is shown in figure 5.23. The numerical solution from FEM and LBM retained

good compatibility while the concentration front passed through the subdomain

interfaces. The coupling of the two methods did not result in any disruptions
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on the propagation of the chemical species in the domain.

(ii) Case 2 : Here, we will take vx = 5 × 10−1 and vy = 0. In this case the advection

velocity is much higher than the previous case, hence, the Péclet number is

P = 200. In this case, the gradient of concentration near the front is steep. We

take hc ≈ 2.5×10−2, hf = 2×10−3 in coarse and fine-scale subdomains respectively.

The time-steps are ∆tc = 10−1 and ∆tf = 4 × 10−4. The ratio between the time-

steps is η = 250. Similar to the previous case, the number of sub-iterations

is MaxIter = 5. The numerical results are shown in figure 5.24. One of the

numerical difficulties that can occur in this case is the spurious oscillations in

the concentration. It can be observed that the numerical solution in the coarse-

scale domain experiences some of this oscillations (see figure 5.24(a)), however,

it should be noted that this weak instability is not due to the hybrid coupling

and is an artifact of the finite element formulation. With mesh refinement, these

instabilities can be removed. Note that when the front is reaching the interface

of the subdomains, some minor incompatibility between the numerical solution

of different subdomains in the overlap region is seen (see figure 5.24(b)). This

incompatibility can be alleviated by increasing the number of sub-iterations

in each time-step. As expected, once the front leaves the coarse-scale domain

completely, no node-to-node oscillations remain. In figure 5.25, the numerical

solution using smaller time-steps and mesh size is shown. The time-step in the

coarse-scale domain is ∆tc = 2×10−2 and ∆tf = 4×10−4 in the fine-scale domain.

The element-size in the coarse-scale subdomain is hc ≈ 1.8 × 10−2 and in the
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Figure 5.22: Advection and diffusion in a homogeneous medium: This figure illustrates
the overlapping domain decomposition as well as the non-matching grids
for coarse- and fine-scale domains. The length of the overlap region is
Loverlap = 4 × 10−2.

fine-scale subdomain is hf = 2 × 10−3. The number of sub-iterations in each

time-step is increased to 10. Hence, spurious oscillations and incompatibility in

the overlap region (while the front is passing through the interface) are largely

reduced.

In this numerical experiment we conclude that in order to capture interior/boundary

layers more accurately, mere mesh or time-step refinement is not enough. One needs

to increase the number of sub-iterations in each time-step.

Hybrid simulation of dissolution of calcium carbonate in

porous media

Calcium carbonate CaCO3 is a common chemical compound found in the subsur-

face. The dissolution of calcium carbonate is an important geochemical equilibrium
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(a) t = 20∆tc (b) t = 40∆tc

(c) t = 60∆tc

Figure 5.23: Advection and diffusion in a homogeneous medium: In this figure the
concentration at different time-levels is shown. In this case Péclet num-
ber is P = 20. In each time-step, we have employed 5 sub-iterations to
ensure the compatibility of the solution in the overlap region.

reaction, which arises in a wide variety of subsurface applications [163]. The chemical

reaction takes the form

CaCO3 ⇌ Ca2+ +CO2−
3 ⋅ (5.55)

For convenience, we shall use u1, u2 and u3 to denote the concentrations of CaCO3,

Ca2+ and CO2−
3 , respectively. This chemical reaction is known to have a product

solubility constant Ksp of about 3.36×10−9 at room temperature [164]. The product

solubility for this chemical reaction can be written as

Ksp =
u2u3

u1

⋅ (5.56)
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(a) t = 10∆tc (b) t = 20∆tc

(c) t = 30∆tc (d) t = 40∆tc

Figure 5.24: Advection and diffusion in a homogeneous medium: Concentration at
different time-levels is shown. In this case Péclet number is P = 200. In
each time-step we use 5 sub-iterations.

We introduce the two reaction invariants

ψ1 = u1 − u2 and (5.57a)

ψ2 = u3 − u2⋅ (5.57b)

It should be emphasized that ψ1 and ψ2 are not the concentrations of any real

chemical species. These invariants are introduced to simplify the problem, as they

decouple the governed equations and hence can be solved for separately; for example,

see [165]. Once the values of ψ1 and ψ2 are found, the concentration of the species

Ca2+ can be determined using the relation

u2 =
1

2
(− (ψ2 +Ksp) +√(ψ2 +Ksp)2 + 4Kspψ1) , (5.58)
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(a) t = 50∆tc (b) t = 100∆tc

(c) t = 150∆tc (d) t = 200∆tc

Figure 5.25: Advection and diffusion in a homogeneous medium: In this figure, con-
centration at different time-levels is shown.

which is obtained by solving equations (5.56)–(5.57) for u2. The values of u1 and

u3 can then be determined using equations (5.57a)–(5.57b). Here, we are interested

in determining the fate of the chemical species due to the chemical reaction and

transport. We employ the LBM to simulate the transport problem at the pore-scale

(fine-scale) and the FEM at the continuum-scale.

The computational domain is shown in figure 5.26 where in Lx = 2 and Ly = 1.

The radius of the solid obstacles in Ωf (the fine-scale problem) is taken as r = 10−1.

The length of the overlap region is set to Loverlap = 10−1. Obviously, because of the

geometry of Ωf , a more detailed description of the flow is required. We used LBM

with a D2Q9 lattice model to solve the Navier-Stokes equations in the fine-scale

subdomain Ωf [75, 150].
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Figure 5.26: Dissolution of calcite problem: Computational domain and its decomposi-
tion into fine and coarse-scale subdomains are shown. The black circles
represent the solid phase in the porous medium.

The prescribed components on the inlet velocity on the boundary x = 0 are vx = 1

and vy = 0. The pressure on Γf→c is set to be zero and periodic boundary conditions

are enforced on the boundaries located at y = 0 and y = 1 for 0 < x < (Lx +Loverlap)/2.
The resulting velocity field is shown in figure 5.27 and will be used as the advection

velocity for the fine-scale problem. In the overlap region, the average velocity in the

x-direction is close to 1 and the average velocity in the y-direction is close to 0. Hence,

the advection velocity in the coarse-scale domain is taken to be vx = 1 and vy = 0.

The values of concentrations on the boundary of the domain are shown in figure 5.28

and the diffusion coefficient is taken to be D = 10−1. For numerical simulation of

the advection-diffusion problem, we will use hc = 5.0 × 10−2 and hf = 4.0 × 10−3. The
time-steps are ∆tc = 10−1 and ∆tf = 4.0 × 10−5 (the ratio between the time-steps is

η = 2500). Furthermore, we will use the D2Q9 lattice model in the fine-scale domain

(solved using LBM). The non-matching grid near the overlap region is shown in figure

5.29. Obviously, one of the advantages of the proposed coupling algorithm is that
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(a) velocity in the x-direction

(b) velocity in the y-direction

Figure 5.27: Two-dimensional problem: The velocity field shown in this figure is
obtained using a lattice Boltzmann simulation of incompressible New-
tonian fluid. The black circles represent the solid obstacles in the porous
medium.

236



u
p 1
=

0

u
p
1 = 0

u
p
1 = 0

u
p1
=

0u
p
1 = 1

u
p 3
=

1

u
p
3 = 0

u
p
3 = 0

u
p3
=

0u
p
3 = 0

Figure 5.28: Dissolution of calcite: The boundary conditions for the simulation of
dissolution of calcite in the porous medium are shown.

fine-scale features (such as advection velocity within the pores) can be accounted for

without a noticeable overhead in the computational cost. In this problem, fine-scale

features are sought after only in Ωf , and a coarse estimate in Ωc is deemed enough.

The concentrations of the participating chemical species are shown in figures

5.30–5.32. The numerical simulation reveals that the concentrations of CaCO3 and

CO2−
3 inside the domain increase with time. However, the evolution of Ca2+ cations

is completely different from that of the other two chemical species. At earlier time-

levels, when the concentrations of CaCO3 and CO2−
3 are low within the domain,

Ca2+ has a more noticeable presence throughout the domain. At later time-levels,
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Figure 5.29: Dissolution of calcite: This figure shows the finite element mesh (which
is indicated using triangular elements) and the lattice for LBM analysis
(which is indicated by square cells) near the overlapping interface.

as a consequence of increasing concentration of CO2−
3 anions, Ca2+ disappears from

much of the domain and gathers in the regions where the concentration of CO2−
3

is low. Figure 5.33 further corroborates this finding, in which the normalized total

concentrations of chemical species are plotted against time. The total concentration

in the entire domain, Ctotal, is defined as

Ctotal(t) = ∫
Ω
ui(x, t) dΩ, i = 1,2,3⋅ (5.59)

The normalization for each chemical species is done with respect to the corresponding

maximum in the time interval of interest. That is,

max
t
Ctotal(t)⋅ (5.60)

In this example, we have demonstrated how to use the proposed multi-time-step

hybrid coupling framework for the analysis of geochemical processes by simultane-

ously incorporating both pore and continuum models. A detailed pore geometry and

complex transport processes can be accounted for in the fine-scale domain, whereas

a rough approximation can be sought in the coarse-scale domain.
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(a) t =∆tc

(b) t = 5∆tc

(c) t = 10∆tc

Figure 5.30: Dissolution of calcite: In this figure, concentration of calcite at different
time-levels is shown. Initially, calcite is concentrated near the solid
obstacles and is transported throughout the domain at later times.
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(a) t =∆tc

(b) t = 2∆tc

(c) t = 3∆tc

Figure 5.31: Dissolution of calcite: In this figure, concentration of Ca2+ is shown.
It can be observed that in the first time-steps, concentration of this
chemical species is more spread out in the spatial domain.
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(a) t =∆tc

(b) t = 5∆tc

(c) t = 10∆tc

Figure 5.32: Dissolution of calcite: Concentration of the CO2−
3 is shown at different

time-levels. This chemical species is often in solute form.
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Figure 5.33: Dissolution of calcite: This figure shows the variation of the total con-
centration in the entire domain of each participating chemical species
with respect to time.

5.8 Concluding Remarks

Simulation of transport of chemical species in porous media poses several chal-

lenges. These include disparate mathematical scales in space and time, not all the

essential physical and chemical processes can be upscaled from the pore-scale to the

meso-scale, high computational cost to solve realistic problem; just to name a few.

In this chapter, we have presented a computational framework that can make multi-

scale simulation of transport in porous media feasible even for realistic problems. The

framework allows to take into account the features and processes at the pore-scale

and still be able to solve problems at the field-scale with manageable computational

cost. The findings and advances made in this chapter can be listed as follows:

(i) Simulation of advection and diffusion using LBM: The lattice Boltzmann method

for simulation of transport is outlined. A drawback of LBM in such simulations

can be the possibility of discrete distributions attaining unphysical (negative)
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values. To rectify this issue, we presented a bound on discretization parameters

under LBM that guarantees non-negativity of discrete populations. Further-

more, new methods for enforcing macroscopic boundary values, in the form

of Neumann or Dirichlet conditions, on the numerical solution from the LBM

are proposed. These methods are based on entropy principles and warrant

non-negative values for discrete populations.

(ii) Information transfer across non-matching grids: Methods for transferring infor-

mation from one computational grid to another non-matching grid were doc-

umented. Accuracy of these methods with respect to grid size in different

domains is also explored.

(iii) Governing equations for hybrid simulation: Time and space continuous partial

differential equations for coupled analysis are presented. These equations pro-

vide a precise mathematical framework for further developments in this area of

research.

(iv) Hybrid coupling computational framework: A numerical framework, based on do-

main decomposition, was presented that can employ different numerical meth-

ods (e.g., finite element method and lattice Boltzmann method) in different

subdomains. This framework can account for pore-scale processes as well as

continuum scale models. Also, disparate spatial and temporal discretization

can be incorporated. Hence, the primary factor in choosing grid size and time-

steps in each subdomain is the accuracy in that subdomain. The hybrid cou-

pling framework poses no restriction on the discretization parameters in differ-
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ent subdomains. Furthermore, various chemical reaction dynamics among the

present chemical species can be included using LBM and other approximations

of the same phenomena in the finite element solver. In all of the numerical ex-

periments, this framework was numerically stable and accurate. Interior layers

can be captured accurately and typical weak instabilities in the solution can be

suppressed using appropriate numerical techniques (such as stabilized finite el-

ement formulations) in those subdomains. We also demonstrated application of

this framework in assessing the fate of chemical species in a sample geochemical

reaction problem. As a courtesy of its domain decomposition basis, this frame-

work provides the user with great flexibility in distributing the computational

workload onto different processors and possibly in a heterogeneous GPU-CPU

computing setup. For instance, the subdomains solved using the lattice Boltz-

mann method can be transferred to a GPU, while other subdomains where the

finite element method is used can be solved for using a different processing

environment. This computational framework can handle multiple subdomains

using the multiplicative Schwartz methods.

We shall conclude the chapter by outlining some possible future research direc-

tions.

(R1) A good research endeavor can be towards a comprehensive mathematical anal-

ysis (i.e., stability, accuracy and convergence properties) of the proposed com-

putational framework.

(R2) One can implement the proposed computational framework in a combined
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GPU-CPU computing environment, and study the numerical performance of

such an implementation.

(R3) Substantial progress in development of hybrid methods can result from ex-

tension of the proposed computational framework to fully coupled thermal-

flow-transport processes, including precipitation at the solid-fluid interface (in

pore-scale) and application of such methods to simulation of viscous fingering

and other physical instabilities.
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Chapter 6

CONCLUDING REMARKS AND FUTURE WORK

The findings and achievements of this research endeavor can be summarized as

follows:

(1) Development of monolithic and multi-time-step coupling method for elastodynam-

ics: Based on domain decomposition methods for partial differential equations,

we proposed a coupling method that allows different time-integrators and time-

steps in different regions of the computational domain. The governing time-

dependent equations in the case of elastodynamics form a system of differen-

tial/algebraic equations with differential index 3. We considered the Newmark

family of time-integration methods, and derived numerical stability conditions

under the proposed coupling algorithm. Under this method, the transfer of in-

formation among subdomains is done in one iteration (at each time-level), hence,

the proposed method can be regarded as a monolithic coupling algorithm. We

studied the stability of this method using the method of influence of perturba-

tions and derived bounds on the drift in the primary variables at the interface

of subdomains. Furthermore, physical energy conservation under this method

was carefully studied and as a result new classification of energy conservation

properties for coupling algorithms was developed. Based on these findings, ac-

curacy of the proposed method with respect to time-step ratios was studied and
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a criteria for assessing the effect of multi-time-stepping on numerical accuracy

was derived. Several numerical examples demonstrated the performance and the

theoretical findings regarding the proposed method. The results of this research

effort are available in reference [57].

(2) Development of monolithic and multi-time-step coupling method for advection-diffusion-

reaction equations: Non-overlapping domain decomposition method was used to

construct a computational framework for strong coupling of different time-steps

and time-integrators in different subdomains. The proposed methods use two

different methods of enforcing interface compatibility constraints. One is based

on compatibility of concentrations at the interface and the other based on Baum-

garte’s stabilization technique. Numerical stability of both methods was studied

using the energy method. We showed that under the continuity of concentrations,

mixed implicit/explicit integration results in numerical stability. However, the

second method based on Baumgarte stabilization allows implicit/explicit time-

integration. We further studied the stability of these coupling methods using the

method of influence of perturbations. We also derived bounds on the drift at the

interface of subdomains. Several numerical examples were used to demonstrate

performance of the proposed methods and the theoretical findings. The results

are published in [127].

(3) Studying the preservation of maximum principle and the non-negative constraint

under the lattice Boltzmann method: Lattice Boltzmann methods have gained

much traction in the past few years as robust computational alternatives to con-
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ventional computational fluid dynamics tools. Some of the recent efforts have

been toward developing single and multiple-relaxation-time methods to simulate

advection-diffusion processes. Considering the importance of maximum principle

and the non-negative constraint in generating reliable and physically meaning-

ful results, performance of these methods in preserving these properties needs

to be studied. We implemented some popular lattice Boltzmann techniques for

a variety of test problems. We observed that preservation of the mentioned

properties under current lattice Boltzmann methods is not guaranteed. We dis-

cussed possible sources of these violations and proposed a criteria for time and

space discretization that ensures non-negativity of the numerical solution in the

case of the isotropic diffusion. The results of this research effort is available in

reference [144].

(4) Development of a hybrid and multi-time-step coupling algorithm for solute trans-

port in porous media: Obtaining reliable estimates for the transport processes

in porous media is not possible without relying on different numerical models

for different length or time-scales. Presence of pore-scale reactions, solid-fluid

interface chemistry and the complex geometry of pores vastly effects the out-

come of the model in field-scale simulations. In this research endeavor, we took

the challenge of developing a computational framework based on overlapping

domain partitioning for multi-scale simulation of transport process. For pore-

scale simulation we used the lattice Boltzmann method and for continuum-scale

simulation we used the finite element method. We developed new entropic meth-
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ods for transferring information form the continuum-scale problem to the lattice

Boltzmann method. Hence, the proposed framework allows different grid-sizes

and time-steps in different subdomains. We applied the proposed method to a

variety of benchmark and also chemical reaction problems to showcase its per-

formance. The results are available in reference [166].

Based on these findings and developments, the following research directions for future

work are suggested:

(1) Implementation of the proposed monolithic coupling algorithms in a parallel

computing setup and studying its performance. For instance, how the num-

ber of subdomains and their time-step ratios can help us to reduce the overall

computational cost.

(2) Further study of the numerical accuracy of the proposed monolithic coupling

methods using more precise mathematical tools.

(3) Extending the proposed monolithic coupling methods to incorporate non-matching

finite element grids in different subdomains.

(4) Developing adaptive domain partitioning techniques and applying the proposed

monolithic coupling methods to crack propagation problems in solid mechanics.

(5) Developing multiple-relaxation-time lattice Boltzmann methods that preserve

the maximum principle and the non-negative constraint.

(6) Devising numerical methodologies to improve the convergence rate of the pro-

posed hybrid coupling method for transport problems.
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(7) Extending the proposed hybrid coupling algorithm for coupled flow and transport

problems in porous media.
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