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Abstract

Person re-identification (Re-ID) is a fundamental task in automated video surveil-

lance and has been an area of intense research in the past few years. Given an image

or video of a person taken from one camera, re-identification is the process of identi-

fying the person from images or videos taken from a different camera. Re-ID is indis-

pensable in establishing consistent labeling across multiple cameras or even within

the same camera to re-establish disconnected or lost tracks. Apart from surveillance

it has applications in robotics, multimedia, and forensics. Person re-identification

is a difficult problem because of the visual ambiguity and spatio-temporal uncer-

tainty in a person’s appearance across different cameras. However, the problem has

received significant attention from the computer-vision-research community due to

its wide applicability and utility. In this work, we explore the problem of person

re-identification for multi-camera tracking, to understand the nature of Re-ID, con-

straints and conditions under which it is to be addressed and possible solutions to

each aspect. We show that Re-ID for multi-camera tracking is inherently an open

set Re-ID problem with dynamically evolving gallery and open probe set. We pro-

pose multi-feature person models for both single and multi-shot Re-ID with a focus

on incorporating unique features suitable for short as well as long period Re-ID.

Finally, we adapt a novelty detection technique to address the problem of open set

Re-ID. In conclusion we identify the open issues in Re-ID like, long-period Re-ID

and scalability along with a discussion on potential directions for further research.
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Chapter 1

Introduction

1.1 Motivation

In the past two decades, increased terrorist activity has sparked heightened focus

on safety and security in and around public and private facilities worldwide. This

has led to significant changes in security techniques and technologies adopted by

law enforcement agencies to discourage future attacks and avoid undesirable events.

Governments and businesses increasingly employ surveillance cameras. In Britain,

for example, there are up to 4.2 million surveillance cameras - about one for every 14

people [2]. The US homeland Security Agency supports millions of dollars in funding

for local, state and federal agencies to install modern video surveillance systems [121].

Law enforcement agencies have come to rely heavily on high-tech surveillance of wide

areas like airports, train stations and office buildings using network of large number

of cameras [59]. These cameras are usually connected to a recording device and video
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is monitored by a human operator.

Cameras and recording equipment used to be relatively expensive to install but

infrastructure advances in terms of cameras, network capabilities and storage space

provide the ability to capture, store and distribute huge amounts of video data at af-

fordable costs. Traditional surveillance systems are limited in their effectiveness not

by technological capabilities but by the attention span and vigilance of the person

monitoring the surveillance videos. Human monitoring of large amounts of surveil-

lance video is extremely inefficient. It is not just labor-intensive, expensive and

time consuming but also error prone due to lapses of attention. A US National In-

stitute of Justice study found that even a dedicated and well-intentioned person’s

attention will degrade below acceptable levels within just 20 minutes of monitoring

surveillance video [58]. Most of the video collected is archived and stored for forensic

or data mining applications leaving the huge potential of camera networks unreal-

ized. Traditional surveillance systems are essentially passive monitoring systems and

hence there is a need for continuous active warning capability that can alert security

officials during or even before a crime occurs.

Automated video surveillance (AVS) provides an effective means of detecting

and preventing incidents, making the system proactive. An extensive study [102]

conducted in Europe in 2007 demonstrated that AVS could effectively perform a

variety of functions like detecting unusual events to help reduce operator overload.

It reduces the manpower burden for monitoring and searching through surveillance

videos [51] by automatic detection of events and situations that require the atten-

tion of security personnel [125]. The Defense Advanced Research Projects Agency
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(DARPA) was among the first to realize the potential of AVS and facilitated the

initial research and development of automated surveillance systems through their

Visual Surveillance And Monitoring (VSAM) program [1].

AVS can provide the level of information that can change the security paradigm

from investigative to preemptive [61] and has several other advantages over traditional

surveillance systems like:

• Ability to prevent incidents by setting off alarms in response to abnormal be-

havior.

• Enhanced forensic capabilities through content based video retrieval.

• Situation Awareness through knowledge about location, identity and activity

of objects in the monitored space.

One of the fundamental enablers to realizing the benefits of AVS is the ability

to track people across a scene under surveillance. The tasks of people detection and

tracking are extremely difficult to achieve even within the field-of-view (FOV) of a

single camera. Although there has been considerable amount of work in the past

decade to accomplish these tasks, they remain far from solved [40, 47, 48, 29, 4, 105,

108, 138, 144]. Typically, wide-area surveillance systems employ multiple cameras

as it is not possible to observe the complete area of interest with a single camera

due to the limited FOV of individual cameras. Thus, tracking needs to be performed

across multiple cameras and with the capability to handle non-overlapping camera

views. Consistent tracking over multiple cameras requires the ability to re-identify
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people as the leave the FOV of one camera and enter the FOV of another camera.

Re-identification is a fundamental task in wide-area tracking and is challenging to

accomplish due to drastic changes in a person’s appearance between cameras. Hence,

there is a need to develop more robust and reliable algorithms for wide-area tracking

to enable automated surveillance.

1.2 Person Re-ID: Problem Definition

Understanding of a surveillance scene through computer vision requires the ability to

track people across multiple cameras, perform crowd movement analysis and activity

detection. Tracking people across multiple cameras is essential for wide area scene

analytics and person Re-ID is a fundamental aspect of multi-camera tracking. Re-

identification (Re-ID) is defined as a process of establishing correspondence between

images of a person taken from different cameras. It is used to determine whether

instances captured by different cameras belong to the same person, in other words,

assign a stable ID to different instances of the person. Fig. 1.1 shows a typical

surveillance area monitored by multiple cameras with non-overlapping FOVs. The

figure shows the top view of a building floor plan and the relative placement of

the cameras with respect to the building. Colored dots depict different people and

numbers besides the dots are the IDs assigned to the people. The dotted arrows

represent the directions in which certain people move through the camera network.

As a person moves from one camera’s FOV into another camera’s FOV, Re-ID is

used to establish correspondence between disconnected tracks to accomplish multiple

4



Figure 1.1: Multi-camera surveillance network illustration of Re-ID, colored dots
depict different people and numbers besides the dots are the IDs assigned to them.

camera tracking. Thus, single camera tracking along with Re-ID across cameras

allows for the reconstruction of the trajectory of a person across the larger scene.

Person Re-ID is a non-trivial task, but is critical in improving the semantic coherence

of analysis. Re-ID is relevant for surveillance applications with a single camera as

well. For example, to determine if a person visits a particular location multiple times

or if the same or different person picks up an unattended package/bag. Beyond

surveillance it has applications in robotics, multimedia, and more popular utilities

like automated photo tagging or photo browsing [124].

Person Re-ID as a task is quite simple to understand. As humans, we do it all

the time without much effort. Our eyes and brains are trained to detect, localize,

identify and later re-identify objects and people in the real world. Re-ID implies that

a person that has been previously seen is identified in their next appearance using
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a unique descriptor of the person. Humans are able to extract such a descriptor

based on the person’s face, height and built, clothing, hair color, hair style, walking

pattern, etc. A person’s face is the most unique and reliable feature that humans use

to identify people. Automation of person Re-ID on the other hand is quite difficult

to accomplish without human intervention.

1.3 Research Contributions

Re-ID has been a topic of intense research in the past five years [33, 20, 19, 54, 133]. In

almost all of the research, the problem of Re-ID has been widely treated as a retrieval

or recognition problem. Given an image or multiple images of an unknown person

(probe) and a gallery set that consists of a number of known people, the objective is

to produce a ranked list of all the people in gallery based on their similarity with the

unknown person. The expectation is that the highest ranked match in the gallery

will provide an ID for the unknown person, thereby identifying the probe. Here the

assumption is that the probe ID is a subset of the gallery of known individuals, i.e.,

closed-set Re-ID. Current state-of-the-art methods attempt to solve the closed set

Re-ID problem.

Most of the current approaches rely on appearance-based similarity between im-

ages to establish correspondences. The typical features used to quantify appearance

are low-level color and texture extracted from clothing. A review of appearance de-

scriptors for Re-ID is presented in [115]. However, such appearance features are only

stable over short time intervals as people dress differently on different days. Thus,
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appearance based models are only suited for short-period Re-ID. All of the state-

of-the-art approaches attempt solutions to short period Re-ID. Earlier research on

Re-ID focused on combining inter-camera relationships with the matching process,

but more recent efforts have focused on developing discriminative features, learning

distance models, or both, for robust matching.

The assumption of short-period Re-ID is unrealistic, hence clothing-based features

need to be augmented by discriminative descriptions not based on clothing. In this

work, our focus is to develop person models that combine clothing features with

non-clothing based features. This not only helps boost the Re-ID accuracy for short-

period Re-ID but also gives us insight into features that can be leveraged for long-

period Re-ID. Typically, in a multi-camera scenario video data is available so we

leverage features that are extracted over multiple frames.

Further, person Re-ID in the context of tracking across multiple cameras is an

open-set matching problem where the gallery evolves over time, the probe set dy-

namically changes for each camera FOV, and all the probes within a set are not

necessarily a subset of the gallery. Thus, effective Re-ID requires the ability to de-

tect probe IDs that are not a part of the gallery. This is termed as novelty detection.

Additionally, there might be several subjects that co-exist in time and need to be re-

identified simultaneously. Thus, Re-ID is not a single-person but a multiple-person

matching problem.

In addressing the Re-ID problem, the specific contributions of this work are fol-

lowing:
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1. Developed non-clothing based features like face and gait that combined with

clothing-based features generates a person model that can both boost short-

period Re-ID as well as provide performance estimates for long-period Re-ID.

2. Developed a strategy for multiple person Re-ID problem, we achieve ID assign-

ment under one-to-one correspondence constraint.

3. Proposed person-model-similarity-based false acceptance reduction for par-

tially addressing open set Re-ID.

4. Proposed a principled framework for novelty detection applicable for open set

Re-ID.

1.4 Dissertation outline

The organization of the remainder of this dissertation is as follows. We begin in

Chapter 2 by a discussion of the general problem of person Re-ID and its broader

challenges. However, person Re-ID can be constrained by the context in which it is

applied. We will also explore the context specific nature of the problem. Chapter

3, will provide an overview of the current research work in the field. We adopt a

methodology based taxonomy to classify the methods and better understand the cur-

rent trends. Further, we discuss the evaluation techniques and present the datasets

currently used to conduct Re-ID experiments. Chapter 4 describes the proposed color

and facial features based model and presents results of the proposed multiple per-

son Re-ID technique. Chapter 5 details the proposed color-and-gait-features-based
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model and presents results under a closed-set scenario with applicability of gait to

long-period Re-ID. Chapter 6 introduces the proposed novelty detection technique

designed for open-set Re-ID. Finally, the last chapter highlights the deficiencies of

current Re-ID models, and more importantly, points out the un-addressed issues in

person Re-ID. It further summarizes the dissertation, and its contributions with the

future perspective of this work.
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Chapter 2

Person Re-identification:

Challenges and Scenarios

2.1 Task and its challenges

In general, person Re-ID is difficult to automate for a number of reasons, which we

will discuss later in this section, but the main challenge to Re-ID comes from the

variation in a person’s appearance across different cameras. Figure 2.1 shows images

of a person taken by different cameras on the same and different days, highlighting

the variations in appearance. The top row illustrates the changes in appearance of

a person across different cameras. It is also interesting to note that the appearance

changes significantly within the same camera view as well.

A typical Re-ID system has two basic components: capturing a unique person

10



Figure 2.1: Images of the same person taken from different cameras to illustrate the
appearance changes. The top row images were captured on the same day, bottom
row images were captured on different days.

descriptor or model and then comparing two models to infer either a match or a

non-match. In order to learn a unique person descriptor, the ability to automat-

ically detect and track people in images or videos is required. Figure 2.2 shows

a schematic representation of a Re-ID system, its two components and the sub-

components within each component. To automate each component, a series of tasks

need to be accomplished, which present their own challenges and contribute to the

complexity of Re-ID.
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Figure 2.2: Re-ID System Diagram.

2.1.1 System-level Challenges

A typical Re-ID system may have an image (single-shot) or a video (multi-shot)

as input for feature extraction and descriptor generation. For an image input the

person must be reliably detected and localized for accurate feature extraction. If

multiple images are available, in order to ensure that the features extracted belong

to the person of interest, we need the ability to establish correspondence between

detected subjects across frames. This process is also called tracking and it provides

a consistent label to each subject in multiple frames. Thus, multiple instances of a

person can be used for feature extraction and subsequent descriptor generation to

be used for Re-ID.

Person detection and multiple-person tracking are difficult problems with their

own hurdles. Significant amount of work has gone into the problem of person de-

tection over the years [40, 47, 48, 29]. Multiple Object Tracking (MOT) within a
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single camera’s FOV has also been widely researched and many algorithms have been

proposed [4, 105, 108, 138, 144] over the past two decades, but sustained tracking

under varying observation environments remains an open problem.

2.1.2 Component-level Challenges: Descriptor Issues

Assuming that accurate person detection and single camera tracking is possible, the

first step in Re-ID is to learn a person’s visual descriptor. Robust and discriminative

visual descriptors need to be extracted from data that is captured in unconstrained

environments where people may not be co-operative and the environments are un-

controlled. Besides, people can be partially or completely occluded due to crowds or

clutter. It is difficult to ensure high quality of visual data as factors like resolution,

frame rate, imaging conditions and imaging angles vary widely and cannot always

be controlled. Thus, extracting a reliable descriptor is dependent upon availability

of good quality observations. Incorrect detections and faulty trajectory estimation

introduce errors in the descriptor extraction and generation process that directly

affect the quality of Re-ID.

The simplest and most obvious descriptor of a person that can be easily ob-

tained from video data is appearance, characterized by features like color and tex-

ture. Shape is another descriptor that is extractable. However, these descriptors are

hardly unique and prone to variations. Color/texture descriptors are not sufficiently

descriptive and vary drastically due to cross view illumination variations, pose vari-

ations or view angle or scale changes inherent in a multi-camera setting. Articulated

13



nature of human body leads to deformable shapes of silhouettes and different camera

geometries make shape descriptors less discriminative.

Since the person descriptors come from different cameras, the nature of separation

between the cameras dictates the difficulty in Re-ID. For example, if the two images

are taken only a few minutes or hours apart then appearance based descriptors

could prove reasonable to use in Re-ID. The assumption being that people will most

probably be in the same clothes, as clothing is a major contributor to appearance.

This does not mean that clothing is the best descriptor in this scenario but is a

reasonable one. We will refer to this type of Re-ID scenario as short-period Re-

ID . Whereas, if the images/video are taken days or months apart, the Re-ID is

called long-period Re-ID . In figure 2.1, the images shown in the bottom row

are of the same person captured from different camera on different days. This figure

perfectly illustrates the fragile nature of appearance based descriptors. The temporal

separation between the images is a factor in the complexity of Re-ID. Thus, person

Re-ID requires robust, yet unique descriptors, which are extremely difficult to extract

automatically.

2.1.3 Component-level Challenges: Correspondence Issues

Comparing person descriptors is challenging due to the uncertainty attributed to the

possible lack of prior known spatio-temporal relationships between cameras. Ap-

pearance of the same person can change dramatically due to other objects like bags,

unzipped jackets across front and back views, etc. At the same time appearance of
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different people might be rather similar. This implies that within-class variations

can be large where as inter-class variations may be relatively smaller. Moreover,

even if the person’s descriptors can be captured effectively, matching them across

cameras in the presence of large number of people observed is non-trivial. Compar-

ing person descriptors across large number of potential candidates is a hard task as

the descriptors are captured in different locations, time instants, and over different

durations. Complexity of the matching process further increases, as increase in the

number of candidates leads to loss of descriptor specificity, increasing the possibility

of matching errors. It is also a compute- and memory-intensive process.

2.2 Person Re-ID Scenarios

In the previous section, we presented the general definition of person Re-ID and

discussed the implementation pipeline and associated challenges. However, the Re-ID

problem can be split into two scenarios: open set Re-ID and closed set Re-ID.

A Re-ID system is similar to a recognition system, which comprises of a gallery set

(set of known people) and the probe (unknown person) on which the recognition has

to be performed. Figure 2.3 depicts the Re-ID system setup as a recognition system.

Let the gallery set be represented as G = (g1, g2, ..., gN). Thus, the set of known IDs

are given by id(G) = (id(g1), id(g2), ..., id(gN)), where the function id(.) specifies the

ID assigned to its argument. Let P = (p1, p2, ..., pM) represent the probe set, which

means that the set of unknown IDs is given by id(P ) = (id(p1), id(p2), ..., id(pM)).

Typically in a recognition framework, when the probe is presented to the system,
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Figure 2.3: Re-ID as a recognition system.

it is compared to each gallery and similarity measures are computed. The gallery

is ranked using the similarity in order to determine the probe ID. The same setup

applies to the problem of Re-ID. Closed set Re-ID is the scenario where the probe is

a subset of the gallery, i.e. the probe ID exists in the gallery and the objective is to

determine the true ID of the probe. Thus, given that id(P ) ⊆ id(G), the true probe

ID for a given probe pj is id(pj) = id(gi∗), such that,

i∗ = argmax
i∈1,..,N

p(gi|pj) (2.1)

where, p(gi|pj) is the likelihood that id(pj) = id(gi) and is most often represented by

a similarity measure. This implies that the top-ranked gallery ID is assigned to the

probe. In open-set Re-ID on the other hand, the probe may or may not be a subset

of the gallery. This implies the open-set Re-ID objective is to first establish if the
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probe ID is a part of the gallery, and if so, determine the true probe ID. Thus, in

order to find the true ID, in addition to ranking the gallery elements and determining

i∗ using equation 2.1, the following condition also needs to be satisfied,

p(gi∗|pj) > τ. (2.2)

In equation 2.2, τ is the acceptable level of certainty above which we can be rea-

sonably assured that id(pj) ⊆ id(G). If this condition is not satisfied, then it is

determined that the probe is not a part of the gallery. If so, the probe ID is then

to be enrolled into the gallery. The process of determining a previously unknown

ID is called novelty detection. Similar to identification tasks, the closed set Re-ID is

a constrained form of open set Re-ID. The Re-ID application dictates the matching

scenario. For instance, to achieve consistent tracking over multiple cameras for global

trajectory of a person over a camera network requires open set Re-ID. On the other

hand, identity based retrieval (for forensic applications), i.e., the ability to identify

multiple observations of a particular person is a closed set Re-ID problem.

2.2.1 Open-set Re-ID

Person Re-ID in the context of tracking across multiple cameras is an open set

matching problem where the gallery evolves over time, the probe set dynamically

changes for each camera FOV, and all the probes within a set are not necessarily a

subset of the gallery. Additionally, there might be several subjects that co-exist in

time and need to be re-identified simultaneously. Thus, it is not a single person but

a multiple person Re-ID problem. We will explore the open set Re-ID problem by
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Figure 2.4: Multi-camera tracking scenario based on open set Re-ID, colored dots
depict different people and numbers besides the dots are the IDs assigned to them.

illustrating Re-ID in multiple camera tracking. Figure 2.4 shows a schematic of a

camera network (with 4 cameras) and the evolution of the gallery, where the Re-ID is

done across each camera pair. For ease of illustration, let us assume that all subjects

in the figure are moving in the direction depicted by the red arrow and the tracking

across the network starts at t = 0 from camera A. In other words, there is no prior

gallery set and tracking (Re-ID) progresses from camera A through D. Additionally,

the subjects appear in the FOV of camera C before they appear in the FOV of camera

D. The first time a person is seen in camera A, his/her appearance model is learned,

and the subject is enrolled in the gallery set. Thus, all people observed in the camera

B form the probe set. After Re-ID, all the people observed in the camera B who

were previously unseen are enrolled into the gallery. As the Re-ID moves to the next

camera pair (camera B and C), the gallery set is extended. The open set Re-ID can
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be summarized as a many-to-many matching problem. In tracking scenario, Re-ID

provides a means of connecting subjects’ tracks that were disconnected due to the

subject entering an area not in the FOV of the camera network.

2.2.2 Closed-set Re-ID

Person Re-ID in the context of identity retrieval is closer to the classic closed set

matching problem, where a single probe is presented and the gallery size is fixed. In

a typical multi-camera identity retrieval scenario, the person whose multiple obser-

vations throughout the network are to be detected is the probe subject and his/her

appearance model is assumed to be available. The gallery set is a set of people IDs

seen in selected or all the cameras over a specified period of time. The time interval

specified can be different for different cameras. In other words, the gallery is com-

prised of subjects seen in many different cameras constrained by time and space.

Additionally, the probe can simultaneously match to gallery subjects coming from

different cameras, i.e., multiple instances of the probe can be detected within the

gallery. After Re-ID, multiple observations of the probe subject across the gallery

cameras are detected. As the probe subject to be re-identified changes, the cameras

and time intervals to be searched change and so does the gallery. However, for Re-

ID of a particular probe the gallery remains fixed. Thus, the closed set Re-ID is a

one-to-many matching problem.
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Chapter 3

Related Work

In general, recent approaches have focused on two aspects of the solution: 1) design

of discriminative, descriptive and robust visual descriptors to characterize a person’s

appearance; and 2) learning suitable distance metrics that maximize the chance of

a correct correspondence. Overall the methods for Re-ID can be broadly classified

into Contextual and Non-contextual methods. Figure 3.1 provides a methodology

based taxonomy that summarizes the state-of-the-art research in person Re-ID.

3.1 Contextual Methods

These methods rely on external contextual information either for pruning correspon-

dences or extracting features for Re-ID. They can be further classified as those that

utilize camera geometry information or those that incorporate camera calibration as

the context.
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Figure 3.1: Method-based taxonomy of Re-ID approaches.

3.1.1 Camera Geometry as Context

The early work in person Re-ID focused on leveraging spatial and temporal relation-

ships between cameras to reduce the Re-ID errors by limiting the size of the gallery

set. Space-time cues are exploited in [71] to learn inter-camera relationships that are

in turn used to constrain correspondences across cameras. These relationships are

modeled as a probability density function of space-time parameters like entry and

exit locations, velocities, and transition times between cameras. Entry-exit points

of each camera and transition times between cameras are learned in [96], in order to

calibrate all the cameras in the network. The calibrated cameras are used to learn

the topology of the camera network as a bipartite graph. The topology is further

augmented with temporal information to achieve a tempo-topographical model of

the camera network. A similar approach is used to calibrate the camera network

and estimate trajectory of targets in the network using MAP estimation in [113].
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Propagation of people trajectories are used in [99] to identify areas of interest in the

unobserved regions within cameras. These areas are further used to choose potential

paths people might take, limiting the reappearance areas in the subsequent camera’s

FOV to constrain Re-ID.

The topology of cameras is determined by correlating activities across cameras

with disjoint FOVs in [90, 91] and hence do not rely on tracking information. The

FOVs of the cameras are segmented into regions within which activity patterns are

similar. Spatial and temporally causal relationships across these regions in different

cameras are modeled using canonical correlation analysis [68]. Affinity matrices are

used to infer camera spatio-temporal camera topologies to aid Re-ID. A similar idea

is built on in [92]. Here the relationships between activities are learned using MAP

estimate that is continually updated at each time instant. A comprehensive review of

camera topology estimation methods is presented in [132] and a study of scalability

of topology estimation is performed in [42].

3.1.2 Camera Calibration as Context

In these methods, camera calibration or homography is exploited to extract unique

and discriminative features to augment the visual descriptors used for Re-ID. The

height of a person is determined using homography based 3D position estimation

in [81]. The human silhouette is divided into three parts from top to bottom at spec-

ified proportions to the blob height. Each region is then represented with dominant
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color and edge energy texture descriptors. Integrated region matching is used for hu-

man silhouette similarity computations to achieve Re-ID. Similar height extraction

method is used in [107]. The height along with clothing color and body build are

used as features to establish a match.

A panoramic appearance map (PAM) proposed in [53] extracts and combines

information from all the cameras that view the object to generate a single object

signature. Multiple camera triangulation is used to determine the position of the

object and a cylindrical surface model is placed at its location. A parametric surface

grid is projected onto all cameras where the object is visible and corresponding image

patches are extracted. The features or pixel colors from these extracted patches are

integrated to form the PAM, which is used for Re-ID. Maps from different tracks are

compared using weighted sum of a squared distance metric. However, to generate

the appearance signature, the object needs to be visible in at least 3 cameras with

overlapping views simultaneously. Camera calibration and accurate 3D positioning

is needed to accomplish Re-ID. The principal axis of each person, i.e. the axis of

symmetry of the human body is detected in [70] to match people across camera

views. Landmarks on the ground plane shared by two cameras are used to estimate

homography. The intersection of the principal axis of a person in one view and

transformed principal axis of a person in another view using homography is used to

compute a degree of match between people from different cameras. The degree of

match is used to compute correspondence likelihood to establish Re-ID. However,

the accuracy of the detected principal axis depends on the accurate segmentation of

the human silhouette from the foreground and hence is prone to errors in crowded
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scenes and cluttered backgrounds.

A 3D point process model is used for detection and representation for person

matching in [14]. The placement and orientation of the 3D model is determined

using camera calibration and tracking information. Each model vertex is represented

by a number of appearance features, namely, HSV histogram, mean color, direction

of normal to vertex, optical reliability of vertex and vertex uniqueness. Re-ID score

is a product of distances between HSV histograms weighted by vertex reliabilities

and vertex saliency distances. As is evident, the main drawback of these methods is

their reliance on camera calibration. With large camera networks, calibration of all

cameras is not feasible.

3.2 Non-Contextual Methods

Several approaches have been proposed that rely entirely on the analysis of visual

descriptors and no external contextual information is incorporated to assist the cor-

respondence process. These methods can be further classified as active and passive

methods. Most of the recent research is focused on non-contextual methods. A

popular classification within this class is based on whether single image (single-shot)

or multiple images (multi-shot) are used to generate and compare the appearance

descriptors. There are many different non-contextual techniques for Re-ID and in

order to provide an overview of some of the more prominent approaches, a tabular

summary is presented in table 3.1. The approaches are distinguished based on the

type of features used, single/multi-shot incorporation and the incorporation of false
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Approach Approaches Structural Images used for Features False match
Type Information Descriptor Rejection

Passive

Spatiotemporal Model [54] X Multiple Color,Edges ×
SDALF [19] × Single/Multiple Color,Texture ×
SCR [10] X Single Position,Color,Gradients ×
Multi-feature Model [22] X Multiple Color,Face X
BiCov [94] X Multiple Color,Texture ×
CPS [36] X Single/Multiple Color ×

Descriptor Learning

ELF [57] X Single Position,Color,Gradients ×
PLS [122] × Single Color,Texture,HOG ×
Shape Context [133] X Single Shape,Color,Texture,HOG ×
Group Context [149] × Single Color,Texture,HOG ×
Boosted Re-ID [11] X Multiple Position,Color,Gradient ×
Re-ID with Attributes [83] X Single Color,Texture ×
Correlation Space Re-ID [8] X Multiple Position,Color,Gradient ×
Re-ID by Saliency [147] X Single Position,Color,Texture ×

Metric Learning

LMNN-R [43] × Single Color X
PRDC [151] × Single Color,Texture ×
RankSVM [112] × Single Color,Texture ×
Impostor Learning [66] X Single Color,Texture X
Fisher Vector [95] X Multiple Position,Color,Texture ×

Table 3.1: Summary of recent non-contextual person Re-ID approaches, X and ×
indicate whether the method incorporates the indicated function or not, respectively.

match rejection (novelty detection) in the matching framework.

3.2.1 Passive Methods

These methods deal with design of descriptive visual descriptors to characterize the

person’s appearance and compare these by computing similarity measures to achieve

Re-ID. These methods are termed as passive as they do not reply on learning tech-

niques, supervised or unsupervised, for descriptor extraction and matching.

A color and shape features-based appearance model from the detected blob is

proposed in [77]. The blob is segmented into multiple polar bins and the color Gaus-

sian model and edge pixels counts from each bin form the descriptor. A match is

established using three similarity measures and the optimal match is the one that
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maximises all the similarity measures. A spatiotemporal segmentation algorithm

based on watershed segmentation and graph partitioning is used in [54] to detect

stable spatiotemporal edges called edgels. The appearance of a person is a com-

bination of color (hue and saturation) and edgel histograms and the intersection

histogram is used to establish a match between observations. A non-surveillance

application of person Re-ID was explored in [124], where the objective was to find

all occurrences of person in a sequence of photographs taken over a short period of

time. A two step approach is adopted, where the first step, identifies different people

that exists in the photographs by clustering frontal face detections. The clustering

is based on 16-bin RGB histograms extracted from clothing. In the second step,

color features based pictorial structures are used to find each person identified in the

previous step, even in photographs where their frontal faces cannot be seen. Each

part identified by the pictorial structure is represented by 5 component Gaussian

mixture model. This approach assumes that each person is facing the camera in at

least one photograph in the sequence and that people are distinguishable by their

clothing color.

The human silhouette is represented by two complementary appearance features

in [20]. The first feature is an HSV histogram that encodes the global appearance

while the local appearance is encoded using a set of recurrent local patches using

epitomic analysis. The appearance matching is based on a weighted sum of fea-

ture similarities. The features are extracted over multiple images of a person and

is termed as Histogram Plus Epitome (HPE). The human silhouette is divided into
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head, torso and legs regions by detecting 2 horizontal axes of asymmetry and one ver-

tical axis of symmetry in [19]. Each part is then described using 3 features, weighted

HSV histogram, maximally stable color regions (MSCR) [50] and recurrent highly

textured local patches. Again, the appearance matching is based on a weighted sum

of feature similarities. The features extracted are combined over multiple images of

a person to form an appearance model called SDALF. The Re-ID performance of

the features proposed in [20] and augmented by applying it as a human part descrip-

tor adopting the asymmetry driven part detection proposed in [19], thus defining a

structure feature named Asymmetry-based HPE [21]. Pictorial structures model [5]

was employed in [36] for part based human detection and each part is used to extract

HSV histograms and MSCRs. The part-based representation is then used for Re-ID.

They proposed a slight modification of pictorial structures to better localize body

parts using multiple images of a person to guide the MAP estimates of the body

configuration. This approach is known as Custom Pictorial Structures (CPS). This

aids the extraction of more reliable visual features to improve Re-ID.

Spatial covariance regions (SCR) are extracted from human body parts in [10]

and spatial pyramid matching is used to design a dissimilarity measure. HOG based

body part detector is used to detect 4 parts: torso, left arm, right arm and legs.

Each detected body part is characterized by a covariance descriptors based on region

colors, gradient magnitudes and orientations. These descriptors encode variances in

region features, their covariances, and spatial layout. Covariance matrix distance

is used to compute dissimilarity between descriptors. Covariance matrices are also
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adopted in [94] but the underlying features are Gabor filter response magnitude im-

ages extracted from different spatial scales (BiCov). Neighboring scale responses are

grouped to form a single band and magnitude images are computed using the MAX

operator within each band. The appearance model is not the covariance matrices

but differences between matrices between consecutive bands.

A multiple component matching approach inspired by multiple component learn-

ing concept in object recognition is proposed in [118]. Multiple frames of a person

are treated as multiple instances of the person. Thus, the descriptor is basically

a collection of features extracted from multiple frames. Each image feature set is

treated as an instance and gallery and probe are considered a match if at least a

few pairs of instances match. The body is represented by randomly selected rect-

angular patches whose appearance is captured by HSV histograms. This framework

is extended in [116] where person descriptors are formed by a vector of dissimilarity

values to a set of predefined visual prototypes.

Interest-point-based descriptors collected over a number of images of a person

are utilized in [60] to characterize the person’s appearance. Hessian based interest

points are detected using efficient integral image implementation. A histogram of

Haar wavelet responses in a 4x4 region centered around the interest points are used

as the descriptors. The descriptors are matched using sum of absolute differences

metric and Re-ID is established using a best bin first (BBF) search on a KD-tree

containing all gallery models. The Re-ID model is generated from tracking data

in [75]. The model is generated by encoding SIFT features extracted during tracking

by Implicit Shape Model [84] codebook learned offline. The spatial distance between
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the SIFT points also contributes towards the model. Matching high dimensional

models is computationally very expensive and the major drawback of this approach.

A comparative study of local features for the task of Re-ID was reported in [18] and

concluded that GLOH [100] and SIFT features outperform other local features.

FisherFaces [23] based facial features and dense sampling of colors in luminance-

chrominance space (LCC) along with horizontal and vertical edges from clothing

are combined for Re-ID in [52]. Person recognition is based on a nearest neighbor

classifier. Color position histogram is constructed in [37] by splitting the silhouette

into fixed number of horizontal bands and characterizing each band with its mean

color. Sparsified representation [141] is utilized for Re-ID. A person is represented

as a graph in [32] with color features representing the nodes and region proximity

dictating the graph edges. Graph edit distances based graph kernel is used for clas-

sification and hence Re-ID. Covariance descriptors based on color, Gabor and LBP

features is used to characterize appearance in [145]. Fuzzy color quantization in the

Lab color space is used to extract probabilistic histograms in [41]. Re-ID is based

on a k-nearest neighbor classifier. Color-position histogram is used to character-

ize silhouettes in [38] and are subsequently subjected to non-linear dimensionality

reduction to form the descriptor vector.

3.3 Active Methods

These methods are termed as active as they employ supervised or unsupervised learn-

ing techniques for descriptor extraction or matching. Such learning based methods
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can be further classified into color calibration methods, descriptor learning and dis-

tance metric learning methods. The last two sub-categories depend on whether learn-

ing is employed to learn optimal appearance features or to learn optimal distance

metrics for Re-ID.

3.3.1 Color Calibration

These methods attempt to model the color relationships between a given camera

pair using color calibration techniques and they need a learning stage to develop

the calibration model that needs to be updated frequently to capture all desired

relationships. In order to model the changes in appearance of objects between two

cameras a brightness transfer function (BTF) between each pair of cameras is learned

from training data in [72]. The BTF is used as a cue in establishing appearance

correspondence. Learning the brightness transfer function between a pair of cameras

was first proposed in [109]. Once such a mapping between cameras is learned, the Re-

ID problem is reduced to one of matching transformed appearance models. However,

such a mapping is not unique and it changes from frame to frame depending on

varying factors like illumination, scene geometry, focal length, exposure time and

aperture size of each camera. Thus, a single BTF cannot be used for matching models

consistently. Javed et al. [71] show that all the BTFs between a given camera pair

lie in a low dimensional subspace even in the presence of large number of unknown

parameters. They propose a method to learn the low dimensional subspace from

training data and use this information to determine the probability that observations

taken from two different cameras belong to the same person. Prosser et al. [111]
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propose a cumulative BTF computation method that requires only a spare color

training set and the BTF is computed by relying on the mean operation taken over

multiple learned BTFs. A novel bi-directional matching criterion is also proposed

for comparing individuals in order to reduce false matches.

3.3.2 Descriptor Learning

This class of methods either attempt to learn the most discriminative features or a

discriminative weighting scheme for multiple features to achieve Re-ID or employ a

learning stage to generate descriptive dictionaries of features that better represent a

person’s appearance using a bag-of-features approach.

Shape and appearance context models were used in [133] where co-occurrences

between a priori learned shape and appearance words form the person descriptor.

The human silhouette is split into parts using a modified shape context algorithm

that builds on shape dictionary learned a priori. The bag-of-features based approach

is used to learn code words to characterize appearance based on HOG [40] features

computed in the log-RGB space. The human silhouette is first represented as a

collection of shape labels and then the appearance descriptor is constructed using

the spatial occurrence of the appearance words with respect to each shape label.

Since the model is based on appearance words, learned on a training dataset, the

applicability of the model is limited. Similar appearance words and visual context

using local and global spatial relationships (group context) are used to describe an

individual’s appearance in [149]. The appearance words are based on SIFT [89] and
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average RGB color as features. Groups of people are represented by two descriptors.

The first one aims to describe the ratio information of appearance words within

and across rectangular ring regions centered on the group. The second descriptor

captures more local spatial information between the labels. The obtained group

descriptors are utilized as a contextual cue for person Re-ID by combining person

descriptor matching cost and group matching cost. Group information is used to

reduce ambiguity in person Re-ID if a person would appear in the same group. Cai

and Pietikinen [33] utilize spatial distributions of self similarities with respect to

learned appearance words and combine them to form the appearance descriptor.

The appearance words are based on a weighted hue histogram and then for each

label, its occurrence frequency in each bin of a log-polar grid centered on the image

center is computed. It is used as a global color context representation to model self

similarities of image patterns. Re-ID is established between person images using a

nearest neighbor classifier.

Adaboost learning is employed in [57] to simultaneously learn discriminant fea-

tures and ensemble of weak classifiers (ELF) for pedestrian recognition. Weak clas-

sifiers are learnt on a training set to determine the features that impart maximum

discriminative ability. The color features used are histograms of RGB, HSV and

YCbCr channels and texture features are histograms of Schmid and Gabor filter re-

sponses. The most discriminative characteristics of these features, such as location of

features, most discriminative bin, and likelihood ratios determined by boosting, are

used. The Adaboost classifier assigns a positive label to pair of images from the same
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person and a negative label to pair of images from different people. This study con-

cluded that the Hue, Saturation, R, G and B channels are most discriminative in that

order. Partial least squares (PLS) technique is employed to not only find discrimi-

native weighting for color, texture and edge features but also as a means to reduce

descriptor dimensionality in [122]. The observation that appearance variations across

multiple cameras are multi-modal in nature is utilized in [85] by learning multiple

classifiers in the joint appearance feature space across multiple cameras. Re-ID is

achieved by ranking combined scores generated by all the learned classifiers.

A two step process is applied to learn discriminative features in [65]. In the first

step, covariance descriptors are used to rank the gallery images as per similarity to

a probe image. The first 50 images are shown to a human operator who decides

whether the true match exits in this set for the probe. If not, as a second step,

boosting is performed over a set of covariance descriptors based on RGB color and

Haar features to select a fixed number of discriminative features that are then used

to establish a match.

Haar-like features and dominant color descriptors are used as features for Re-

ID and to guide detection of upper and lower body of a person in [9]. Adaboost

classifier is used to find the most appropriate appearance model to use for matching

images of people. An extension of the covariance descriptors used in [10] is proposed

in [11], where instead of using predefined body parts to extract low level features,

a spatio-temporal grid over multiple images is used to extract the features. Each

region of an image is used to extract the covariance matrices and these are combined
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over multiple frames using Riemannian mean of the covariances (MRC). The spatio-

temporal MRCs that contribute to the final descriptor are selected by a boosting

algorithm and a matching scheme based on Riemannian manifolds is used for Re-ID.

A binary SVM classifier is trained in [7] to learn camera-pair specific variations in

the feature space. The features used to train the SVM are formed by concatenating

the appearance descriptors of people across a given camera pair. If both the descrip-

tors belong to the same person, then these are considered positive samples otherwise

they are treated as negative samples. In other words, it solves the camera-specific

Re-ID problem. HSV histograms extracted from 5 horizontal regions of the silhouette

is used as the appearance feature. This same idea is extended in [31], given classifiers

trained on camera pairs A-B and B-C, they attempt to infer the classifier for camera

pair A-C. The inference is based on the notion of statistical marginalization which

is approximated by summation over descriptors coming from camera B.

A view that different regions of the subject should be matched using different

matching strategies and features is explored in [8]. The location of different regions

of the body are represented by their distance from the body center along with color

and texture features. Covariance matrices are used as a feature and human body

specific matching criteria are learned using correlation based feature selection. The

distance model for matching exists in the covariance feature space.
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3.3.2.1 Attribute based person re-identification

The idea that certain features can be more important than others is explored in [86].

In the context of Re-ID, they attempt to determine features that are unique that dis-

tinguish a given subject from another even if their overall appearances are very simi-

lar. To determine such features they link low level features to attributes. Attributes

are defined a midlevel features or visual concepts that have semantics attached to

them, namely: stripped, furry, tall, short and so on [106]. An unsupervised approach

for learning adaptive weights of different features based on their unique and inherent

appearance attributes is proposed. First, a clustering stage is applied to a set of

training images to discover representative prototypes of attributes. The assumption

being that each prototype represents certain attributes specific to that subject. The

feature’s weights are then computed based on its ability to discriminate between dif-

ferent prototypes. An incoming probe image is then assigned to one of the prototypes

to generate an attribute driven representation. A combination of all appearance fea-

tures and attribute weighted features is used to rank gallery images and establish

Re-ID. The underlying features are the color and texture features proposed in [57].

A similar idea is explored in [147, 146]. Here distinctive or salient regions are de-

fined as regions that discriminate an individuals appearance and is general enough

to identify the person across different views. For instance, these regions could be

a distinctive textured backpack or bright jacket. Person images are represented by

appearance characterized patches and patch matching under spatial adjacency con-

straints is used to generate an appearance descriptor in an unsupervised fashion.

Re-ID is achieved by combining the salient patches with global appearance (SDALF
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features). We term this approach as Re-ID by saliency.

Attributes have been successfully applied over the past few years to various prob-

lems like face recognition [79]and object recognition [46, 128, 134]. In order to aug-

ment the insufficient discriminative ability of low level features, the concept of an

attribute for Re-ID is refined in [82, 83]. For instance, a human observer can dis-

tinguish between two people wearing very similar clothing based on distinct shoes

or hair styles. Thus, attributes represent features that can be interpreted distinctly

based on their perceptual semantics. 15 binary attributes: type of clothing (skirts,

jeans, etc), shoes, hair, gender and accessories are defined based on human operators

and their detection using SVM based on color and texture features [57] has also been

proposed. A combination of these attributes along with global appearance descrip-

tors (SDALF features) defined in [19] is used to compute weighted similarity between

gallery and probe images to establish Re-ID. We term this approach as Re-ID with

attributes.

3.3.3 Distance Metric Learning

These methods shift the focus from feature selection based efforts to improve Re-ID

to learning appropriate distance metrics that can maximize the matching accuracy

regardless of the choice of appearance representation. Distance-metric learning meth-

ods [143] are extensively explored in the recognition and image retrieval problems,

and they attempt to learn a metric in the space defined by image features that keep

features coming from same class closer, while, the features from different classes are
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farther apart. In the context of Re-ID, the image features are appearance descrip-

tors across camera views and the aim is to learn a distance metric in the appearance

space that maximizes the distance between descriptors of different people and min-

imizes the distance for descriptors of the same person. Metric learning is done in a

supervised fashion under pairwise constraints. The training features are paired ap-

pearance descriptors and the training labels are either positive or negative depending

on whether the appearance descriptors belong to the same person or different, re-

spectively.

Let the training appearance descriptor pairs be denoted by x1, x1, ..., xn, where,

n denotes the number of training samples. Let the dimensionality of each sample be

denoted by m. Metric learning aims to learn a distance metric, denoted by matrix

DεRmxm, such that, distance between two appearance pairs xi and xj is defined as:

d(xi, xj) = (xi − xj)TD(xi − xj) (3.1)

d(xi, xj) is a true metric as long as matrix D is symmetric positive-semidefinite. This

problem is solved using convex programming as shown below:

min
D

∑
(xi,xj)εPos

‖(xi − xj)‖2Ds.t.D < 0, and
∑

(xi,xj)εNeg

‖(xi − xj)‖2D > 1 (3.2)

where, Pos and Neg denote positive and negative label training sample sets denoting

appearance pairs the belong to the same person and different ones, respectively.

A large margin nearest neighbor (LMNN-R) distance metric is learnt in [43] such

that it minimizes the distance between true matches and maximizes false match dis-

tances. The cost was computed using 8-bin RGB and HSV histograms after subject-

ing them to principal component analysis for dimensionality reduction. The metric
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learned has the capacity to reject matches based on a universal learnt threshold on

the matching cost. It was shown in [131] that by using a slight modification in the

feature vector extraction using overlapping regions of the human blob, the LMNN-R

metric can provide greater robustness to Re-ID under occlusion and scale changes. A

similar idea is explored in [151] that solves metric learning in a probabilistic manner

termed as probabilistic relative distance learning (PRDC). They focus on maximizing

the probability that a true match pair has a smaller distance than a false matched

pair. Re-ID is cast as a tracklet matching problem in [123] and dynamic time warp-

ing distance is used as a metric to match tracklets. Dynamic time warping distance

based large margin nearest neighbor metric learning is adopted.

The person Re-ID problem is treated as a relative-ranking problem in [112],

the idea being not comparing direct distance scores between correct and incorrect

matches, instead to learn a relative ranking of these scores that captures the rele-

vance of each likely match to the probe image. A set of weak SVM based rankers

are learned using color and texture features [57] on small training datasets and com-

bined to build a stronger ranker using ensemble learning. In other words, they

attempt to learn a subspace where true matches are ranked highest. This method

is called RankSVM [74]. A Re-ID by verification approach based on transfer learn-

ing is proposed in [150], i.e., the learning process aims at extraction of transferable

discriminative information using a set of non-target people (unknown IDs). In the

verification scenario, a probe’s identity is verified against a small set of target peo-

ple (known IDs). Re-ID is performed by learning not only the separation between

target and non-target IDs, but also the separation between different targets IDs.
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The distance model is learned using the PRDC and the RankSVM frameworks. An

iterative refinement of the ranking is proposed in [93] where gallery is modeled by a

graph in the visual appearance space. The graph weights and structure are modified

to accommodate the probe image and a ranking function that optimizes the graph

Laplacian is computed and used for gallery ranking.

A set based discriminative ranking (SBDR) model is adopted in [140], where

distance between a sequence of images of a gallery person and probe is computed

using geometric distance of their approximated convex hulls. A maximum margin

based ranking scheme is employed that makes distance between a true-match pair

smaller than the false-matching pair. The metric-learning process is an iterative one

and hence compute intensive. The color and texture features defined in [57] are used

as the underlying features. Image intensity, color, position and gradient based 7-d

features are extracted and represented by Gaussian mixture models in [95]. They

are combined with weighted HSV histograms and stable color regions. The sparse

pairwise constraints based distance metric learning suited for high dimensional data

is used for Re-ID.

Mahanolobis metric distance learning is adopted in [67] by posing correspondence

detection as a two class classification problem. The learning occurs in the distance

space with only two labels for each point. In other words, distances between same

person’s different views have the same label. By relaxing the positivity constraint on

the learned matrix the above optimization problem is simplified without the need for

multiple iterations. The person image is split into overlapping rectangular regions

and HSV, Lab colors, and LBP [104] are extracted from each region to form the
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person descriptor used to learn the metric. A similar pairwise metric is learnt in [66]

using the large margin nearest neighbor framework. During the learning process,

the samples in the training data that are difficult to separate from the matching

samples are given more priority. These samples are called impostors as they invade

the perimeter of a matching pair in the distance space (Impostor learning). The

features used are the same as in [67].

3.4 Public Datasets and Evaluation Metrics

The visual characteristics of a person vary drastically across cameras, introducing

variability in illumination, poses, view angles, scales and camera resolutions. Factors

like occlusions, cluttered background and articulated bodies also contribute. Thus,

in order to develop robust Re-ID techniques it is important to acquire data that

captures these factors effectively. Along with high quality data emulating real world

conditions, there is also a need to compare and contrast Re-ID approaches being

developed and identify improvements to techniques and the datasets. There are

several public datasets that have been used to test Re-ID models. ViPER [56], i-

LIDS for Re-ID [149] and ETHZ [44] are currently, most commonly used for Re-ID

evaluations. Table 3.2 provides a summary of the widely used Re-ID datasets.
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Dataset Multiple Multiple Illumination Pose Occlusions Scale
Images Camera Variations Variations Variations

ViPER X X X X
ETHZ X X X X
i-LIDS X X X X X
CAVIAR4REID X X X X X X
i-LIDS MA and AA X X X X X X
V-47 X X X X
GRID X X X X X

Table 3.2: Summary of public person Re-ID datasets.

3.4.1 ViPER

The ViPER dataset [56] consists of images of people from two different camera views,

but it has only one image of each person per camera. The dataset was collected in

order to test viewpoint invariant pedestrian recognition and hence the aim was to

capture as many same viewpoint pairs as possible. The view angles were roughly

quantized into 45 degree angles and hence there are 8 same viewpoint angle pairs

or 28 different viewpoint angle pairs. The dataset contains 632 pedestrians image

pairs taken by two different cameras. The cameras have different viewpoints and

illumination variations exist between them. The images are cropped and scaled to

be 128x48 pixels. This is one of the most challenging datasets yet for automated

person Re-ID. Figure 3.2 shows some example images from this dataset.

3.4.2 ETHZ

ETHZ dataset consists of images of people taken by a moving camera [44] and this

camera setup provides a range of variations in person appearances. The images of
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Figure 3.2: Example images from the VIPeR dataset.

pedestrians do not come from different cameras but multiple images of the person

taken from a moving camera are present. The dataset has three sequences and

multiples images of a person from each sequence are provided. Sequence 1, 2 and

3 have 83, 35, and 28 pedestrians respectively. The dataset consists of considerable

illumination changes, scale variations and occlusions. The images are of different

sizes. Figure 3.3 shows some example images from this dataset.

3.4.3 i-LIDS for Re-ID

This dataset was extracted from the i-LIDS multi- camera tracking scenario [103]

or i-LIDS MCTS dataset which is widely used for tracking evaluation purposes and

was acquired in crowded public spaces. The dataset contains a total of 476 images

of 119 pedestrians taken from two non-overlapping cameras. On an average there
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Figure 3.3: Example images from the ETHZ for Re-ID dataset, the first, second and
third rows of images come from sequences 1, 2 and 3 respectively.

are 4 images of each pedestrian and a minimum of 2 images. The dataset has con-

siderable illumination variations and occlusions across the two cameras. All images

are normalized to 128x64 pixels. Figure 3.4 shows some example images from this

dataset.

3.4.4 CAVIAR4REID

This is extracted from another multi-camera tracking dataset [34] captured at an

indoor shopping mall with two cameras with overlapping views. The dataset [36]

contains multiple images of 72 pedestrians, out of which only 50 appear in both

cameras, where as 22 come from the same camera. The images for each pedestrian

were selected with the aim of maximizing appearance variations due to resolution

changes, light conditions, occlusions, and pose changes. The minimum and maximum
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Figure 3.4: Example images from the i-LIDS for Re-ID dataset.

size of the images is 17x39 and 72x144, respectively. Figure 3.5 shows some example

images from this dataset.

3.4.5 i-LIDS MA and AA

Almost all of the above datasets contain either a single image or multiple images

coming from one or in some cases two cameras. None of the datasets have a significant

number of multiple images of a person coming from two separate non-overlapping

cameras. In order to address this deficiency, two new datasets [11] were extracted

from two non-overlapping cameras from the i-LIDS MCTS dataset. Each of the two

datasets contain multiple tracked frames of a number pedestrains from two different

camera views. This dataset most closely resembles a multi-camera tracking scenario

and captures its characteristics better than any of the above mentioned datasets.

44



Figure 3.5: Example images from the CAVIAR for Re-ID dataset.

Figures 3.6 and 3.7 shows some example images from this dataset.

• iLIDS-MA: This dataset consists of images of 40 pedestrians taken from two

different cameras. 46 manually annotated images of each pedestrain are ex-

tracted from each camera. Thus, this dataset contains a total of 3680 images

of slightly different sizes.

• iLIDS-AA: This dataset consists of images of 100 pedestrians taken from two

different cameras. Different number of auotmatically detected and tracked im-

ages of each pedestrain are extracted from each camera. This dataset contains

a total of 10,754 images of slightly different sizes. This data presents more

challenges due to the possibility of errors coming from automated detection

and tracking.
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Figure 3.6: Example images from the automatically annotated i-LIDS dataset for
Re-ID.

Figure 3.7: Example images from the manually annotated i-LIDS dataset for Re-ID.
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Figure 3.8: Example images from the v-47 for Re-ID dataset.

3.4.6 V-47

This dataset contains videos of 47 pedestrians captured using two cameras in an

indoor setting [131]. For each camera view, two different views of each person (person

walking in two different directions) are captured. The foreground masks are provided

for every few frames of each video. The dataset has some illuminations variations

but they are not drastic. There are few occlusions and the scene is not crowded and

has very few scale variations. The dataset is important as it provides significantly

large amounts of video of each pedestrian but is not sufficiently representative of

typical Re-ID scenarios. Figure 3.8 shows some example images from this dataset.

47



Figure 3.9: Example images from the GRID dataset for Re-ID.

3.4.7 QMUL underGround Re-IDentification (GRID) Dataset

This dataset was acquired by 8 cameras with non-overlapping FOVs, installed in a

underground train station [90]. Thus, the images are low resolution and have signif-

icant illumation variations. The dataset has 250 pairs of images, i.e., 250 pedestrian

images that appear in two different camera views and an additional 775 images of

people in a single view. Even though acquisition is using 8 cameras, for a given pedes-

trian only 2 different views are available. Figure 3.9 shows some example images from

this dataset.
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3.4.8 Additional Datasets

A few other multi-camera datasets like Chokepoint [136], Terrascope [73], Person

Re-ID dataset (PRID) [65], SAIVT-SoftBio [27] and CUHK02 [85] should be men-

tioned in this context as they can be very well applied to evaluation of person Re-ID

methods. Sarc3D dataset [13] contains 200 images of 50 pedestrains taken from

4 predefined viewpoints captured with calibrated cameras to facilitate a 3D body

model generation. The 3DPes dataset [12] further extends the Sarc3D dataset by

including 600 videos of 200 people taken from 8 static and calibrated cameras. These

datasets are geared towards evaluation of 3D human body model for tracking and

identification and are applicable to Re-ID evaluation as well. Table 3.3 gives a sum-

mary of the Re-ID performance of some of the state-of-the-art approaches on some

of the popular databases discussed above. The Re-ID performance is represented by

rank 1 accuracy of Re-ID.

3.4.9 Limitations of Datasets

The currently available Re-ID datasets are fairly reasonable in terms of encompassing

multi-view variations. However, they are hardly representative of real world surveil-

lance data. For instance, in multi-camera tracking applications, video data from

large number cameras with overlapping and non-overlapping views is to be analysed

for Re-ID. The cameras and hence the data differ in resolution, frame rate and sensor

characteristics. Most of the above mentioned databases are lacking in this respect. In

addition, they do not provide means to analyse open set Re-ID performance or other
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Approach Approach i-LIDS ETHZ-1 ETHZ-2 ETHZ-3 ViPER
Type for Re-ID

Passive
SDALF [19] 28% 65% 64% 76% 19.84%
BiCov [94] - 68% 71% 84% 20.66%

Descriptor Learning
Group Context [149] 23% - - - -
ELF [57] - - - - 12%
PLS [122] - 79% 74% 77% -

Metric Learning

LMNN-R [43] - - - - 20%
Impostor Learning [66] - 78% 74% 91% 22%
PRDC [151] 42.96% - - - 15.66%
RankSVM [112] 44.05% - - - 16.27%

Table 3.3: Summary of performance of state-of-the-art approaches on popular Re-ID
datasets. The results correspond to the single-shot case, for LMNN-R, Impostor
Learning, PRDC and RankSVM methods; the accuracy on i-LIDS corresponds to
gallery size of 30 out of total 119 (not the complete gallery) and on VIPeR corre-
sponds to gallery size 316 out of total 632.

evaluate system measures like scalability or space time complexity. As unconstrained

and long duration video data is not available, the impact of integration of temporal or

sequential data into person descriptions on Re-ID cannot be judged. Availability of

video data enable learning of the inter-camera relationships [90, 91] that can greatly

boost the Re-ID performance by pruning the incorrect(false positives) matches. With

most of these datasets such experiments cannot be performed.

Evaluation of long period Re-ID requires data to be collected over several days

using same or different set of cameras. None of the currently available datasets offers

such instances of people collected on different days. A recent RGB-D person Re-ID

dataset [15] captures depth information for each pedestrian and hence can be utilized

for evaluation of depth-based features for Re-ID. But it is not collected over several
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days and hence cannot be utilized for true long period Re-ID evaluation. Also, multi-

camera tracking scenarios are by nature multiple person Re-ID problems. It implies

that there exists multiple probes that have to be matched simultaneously. These

datasets can be setup to test a multiple person Re-ID framework but are not truly

multi probe datasets. Hence, there is a definite need for a more comprehensive and

extensive Re-ID dataset.

3.4.10 Evaluation Metrics

The most widely used evaluation method for person Re-ID is the performance met-

ric known as the cumulative matching characteristic (CMC) curve. This metric is

adopted since Re-ID is intuitively posed as a ranking problem, where each element

in the gallery is ranked based on its comparison to the probe. The probability that

the correct match is ranked equal to or less than a particular value is plotted against

the size of the gallery set [56]. In order to evaluate the performance of the simul-

taneously matching multiple probe images of the gallery, the Synthetic Re-ID Rate

(SRR) curve is derived from the CMC curve. It gives the probability that any of

the given fixed number of matches are correct. The normalised area under the CMC

curve (nAUC) and Rank 1 recognition rate are also important performance metrics.

The nAUC is the probability that the Re-ID system will produce a true match over

a false (incorrect) match. However, these metrics are inadequate for evaluating the

open set Re-ID performance, more particularly, in evaluating the ability of the sys-

tem to determine if a probe ID exists in the gallery or not (novelty detection). This

point is discussed in detail in the next section.
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3.4.11 Limitations of current work and our approach

As is evident, most of the work on person Re-ID leverages clothing appearance based

features with very little focus on modeling non-clothing based features to build the

person model. We propose two model: a part-based spatio-temporal appearance

model that combines color and facial features and the other model combines color

and gait features.

The part based description of an individual implicitly incorporates the spatial

relationships between different body parts into the model. Our model leverages the

temporal nature of the data by meaningfully combining these color features over

time. Thus, the proposed model meaningfully encodes the spatial and temporal

variations in a person’s appearance. Moreover, depending on the presence of usable

face images our model can decide to include the facial features or exclude them, thus

giving our model flexibility in an unconstrained environment. The color and gait

model combines color histograms extracted from multiple frames with gait models

generated from multiple frames. Again, depending on the presence of usable gait

features, we can decide to include the gait or not. The proposed gait models are

also examined for their applicability for long period Re-ID. We evaluate our models

in open and closed set experiments for multiple person re-identification and single

person Re-ID.
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Chapter 4

Color & Facial features-based

Person-Model

Our approach to Re-ID is to propose strategies to handle the matching of the person

models dictated by the Re-ID requirement, either single or multiple person. In this

chapter, we discuss the part-based model that combines color and facial features.

The feature extraction and model generation are discussed below. This model is

generated using multiple frames of a person and is tested under a multiple person

Re-ID scenario. The multiple person Re-ID strategy is tested in open and closed set

experiments.

The proposed model in this work is a part-based spatio-temporal appearance

model that combines color and facial features. A histogram of oriented gradients

(HOG) based part detector is used to extract four stable human body parts: head,

left torso, right torso and upper legs. The part based description of an individual
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implicitly incorporates the spatial relationships between different body parts into the

model. The appearance of the torso and legs is characterized by two color features:

color histograms and representative color descriptors. In a multi-camera scenario

typically a video or sequence of frames of a particular individual are captured. Our

model leverages the temporal nature of the data by meaningfully combining these

color features over time. The pixel gray level values extracted from the head region

images are used as facial features. Since the head region images could be blurred or

no face could be present, facial feature extraction is not always possible.

Low level image cues are used to select usable face images. If usable face images

are present, the persons face model is built by using the facial features. As a result

of the selection process, the face images are no longer temporally adjacent, even

if they come from the same video. Thus, multiple models are learnt for the same

persons face to keep model inaccuracies due to feature misalignment to a minimum.

Depending on the presence of usable face images our model can decide to include the

facial features or exclude them, thus giving our model flexibility in an unconstrained

environment.

4.1 Color Model

Matching for Re-ID has 2 steps, first is determining corresponding parts from the

images to be matched and second, extracting appearance features from each corre-

sponding part to establish a match. Different parts of the body can have different
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Figure 4.1: Spatio-temporal Color Model Generation.

appearance features, for example shirt could be white and pants black, this obser-

vation has prompted us to adopt segmentation of the human body into meaningful

parts before matching. This not only locates corresponding parts to be matched

but also greatly reduces the probability of an incorrect match. Figure 4.1 shows an

overview of the clothing color feature extraction and appearance model generation

pipeline.

4.1.1 Body Part Extraction

The body of a person is represented by three stable parts. This enables us to not

only achieve a set of corresponding body parts to match but also imparts partial pose

invariance to the model since individual body parts have fewer valid poses compared
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to the entire body. Further, the parts extracted are not aligned with anatomical body

parts and hence pose variations do not result in drastic changes in the detected parts.

These body parts were extracted using the model proposed in [48], which models the

human body as a collection of parts arranged in a deformable configuration. We use

the six-part person model trained on the VOC 2008 pedestrian dataset [45]. Of the

six parts, we retain only three stable parts: left torso, right torso and the upper legs,

since they encapsulate the area of the body that provides maximum distinguishing

appearance information. The model consists of a global root template for entire

body and local part filters. The global and local templates are based on Histogram

of Oriented Gradients (HOG) features introduced in [40] and are learnt during a

training phase using latent SVM. The local part model consists of the spatial model

i.e. a set of allowable placements relative to the detection bounding box and the part

filter. The local part filters are deployed at a resolution higher than the global root

filter.

4.1.2 Part Color Feature Extraction

Color is the most expressive and powerful cue for object recognition and is leveraged

in our model to characterize appearance. We extract two different color descriptors

for each body part. The first descriptor is a color histogram that characterizes the

distribution of colors within the body part and the second descriptor is a set of

representative colors.
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4.1.2.1 Color Histograms

The color content of each body part is characterized using color histograms. In order

to provide description of the person that is invariant as much as possible to illumi-

nation variation across views and viewpoint changes, the underlying color descriptor

should be photometric color invariant. We explore four different color invariant based

histograms to compare and contrast each ones performance empirically deducing the

best suited one for Re-ID. Typically, color histograms are extracted from color in-

variant transformations in the color space. The color invariant transforms impart

robustness against illumination variations to the color histograms but at the cost of

its discriminative ability. For Re-ID, both robustness and discriminative ability is

required.

• HS Histograms: The HSV color space is a perceptually intuitive color space,

defining color in terms of its hue, purity or saturation and brightness or value.

Thus it is useful color space to match colors in or determine if one color is similar

to another consistent with human color perception. A 2D histogram based on

the H and S color channels of the HSV color space is used to characterize the

chromatic content of each body part. Hue is invariant to changes and shifts

in the illumination intensity while saturation is not [127]. Each channel is

quantized into five bins, thus we have a 5x5 element HS histogram.

• Weighted Hue Histograms: As a result of the transformation from RGB to

HSV space, the Hue value becomes unstable near the achromatic axis in the

HSV space. In order to nullify this inherent instability, the hue values are
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weighted by the saturation values and then the histogram is generated. Such

a histogram is called the weighted Hue histogram. In our experiments we use

a 16-bin weighted Hue histogram.

• Opponent Histograms: The opponent color space is given by,

O1 =
R−G√

2
, O2 =

R +G− 2B√
6

, O3 =
R +G+B√

3
(4.1)

The O1 and O2 channels encompass the chromatic content and O3 channel is

the intensity channel [127]. The chromatic opponent channels are invariant to

shifts in illumination intensity. The opponent histogram is a combination of

1D histograms based on the O1 and O2 channels. Each channel is quantized

into 8 bins, thus we have a 16 element opponent histogram.

• Transformed RGB Histogram: The transformed RGB values are generated by

independently z-normalizing each channel. Such a transformation results in

invariance to illumination color and intensity changes. The transformed RGB

histogram is a 3D histogram based on the R′, G′ and B′ channels. Each

channel is quantized into 4 bins, thus we have a 4x4x4 element transformed

RGB histogram. The transformed RGB color space is given by,

R′ =
R− µR
σR

, G′ =
G− µG
σG

, B′ =
B − µB
σB

(4.2)

Experiments revealed that the HS histogram performs better than other color

invariant histograms in terms of discriminative ability under illumination changes.

It provides robust yet discriminative description of the color content hence is better

suited to handle Re-ID challenges. The results are provided in the next chapter.
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4.1.2.2 Representative Colors Descriptor

Every part is characterized using a set of representative colors. These representa-

tive colors are extracted by fitting finite mixture models to the color vector using

the method proposed in [49]. This method employs a minimum-message-length type

selection criteria that is part of the Expectation-Maximization algorithm. This un-

supervised selection and estimation of clusters is based on Fisher information matrix.

This clustering ensures that the representative colors are formed in such a way that

the intra-cluster variance is minimized while the inter-cluster distance is maximized.

Figure 4.2 is a pictorial representation of the clustering process that results in ex-

Figure 4.2: Representative Colors Descriptor Generation.

traction of the representative colors. The clustering is done in the HSV space as it

is perceptually intuitive, hence useful to match colors in or determine if one color
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is similar to another consistent with human color perception. This maximizes our

ability to capture the perceptually dominant color in the presence of illumination

changes. The final clusters are represented by RGB triplet. Each representative

color cluster is described using the cluster’s average color. The representative col-

ors descriptor (RCD) is defined as, RCD = ({Ci} | i = 1, ..., Nc), where Nc is the

number of color clusters. In our implementation Nc ≤ 3.

4.1.3 Spatio-temporal Color Model Generation

Due to the varying conditions that exist between cameras in a surveillance environ-

ment the model should incorporate as much visual information as possible in order

to be robust and widely applicable. Typically in a surveillance environment a se-

quence of frames of a particular person exists. These multiple frames can be utilized

to learn not only the appearance but also the variations in the appearance as the

person moves through a camera’s field of view.

4.1.3.1 Active Color Model (ACM) based on Color Histograms

In order to capture the appearance variations of the chromatic content over time,

we build a probabilistic model following the idea of Active Appearance Models [39]

for each body part based on the underlying color histogram. The sequence of frames

of a person are used to extract the 2D color histograms. Thus, the sequence of 2D

histograms forms the training set used to build the ACM. The appearance model

is given by g = g + Ag.bg and it captures variations in the 2D histograms across
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the sequence of frames. Here, g is the mean 2D histogram and Ag is the matrix

describing the modes of variations in the color histograms within the sequence of

frames. Vector bg is the parameter set of the ACM. In our experiments, we only use

columns of Ag that retain 75% of the variations. This not only helps in capturing the

maximum variations but also helps to eliminate redundant information and outliers.

4.1.3.2 Representative Meta Colors Model

To meaningfully combine the representative color descriptors extracted from the se-

quence of frames, the representative colors are matched from frame to frame. The

frame to frame correspondence is established in the RGB space. Figure 4.3 illus-

trates the frame to frame representative colors matching and subsequent meta colors

determination. The representative colors that do not match up for more than 10 con-

secutive frames are rejected. Then, another level of clustering is applied within the

set of temporally matched colors. Once again, clustering is done in the HSV space

but the meta clusters are represented by RGB triplet. Within each set of matched

colors, up to 3 representative meta color clusters are built. Each representative meta

color cluster or RMC is in turn described using the average color of the meta cluster.

These RMCs are extracted for each body part to form the representative color based

spatio-temporal model. The RMC is defined as, RMC = ({MCi} | i = 1, ..., Nmc),

where Nmc is the number of meta color clusters formed over the sequence.
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Figure 4.3: Representative Meta Colors Extraction.

4.2 Facial features based Model

Traditional face recognition systems are categorized into near distance face recog-

nition (NRDA) which are often in cooperative applications. NRDA systems use

features like, Gabor wavelet or Fourier features extracted from the face, but are not

as effective in describing the facial characteristics due to the geometric shape of the

face [141]. Facial features that adapt to the variations in the facial characteristics like

Eigenfaces [126], Fisherfaces [23] or Laplacianfaces [64] are more relevant. Nonethe-

less, these features need the underlying face images to be perfectly aligned. Due to
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the resolution constraints of the head region, alignment between face images is diffi-

cult to achieve using standard appearance or landmark based registration methods.

Typically in surveillance systems the subject under observation is non-cooperative

and not necessarily facing the camera. The cameras have a wide field of view in

order to visualize large areas but at the expense of image resolution. Both of these

reasons cause significant degradation on performance of current face recognition sys-

tems. Further, most of these facial features used for face recognition breakdown

due to changes in incident illumination, head pose, expressions and age [148]. Face

recognition at a distance systems are designed to tackle most of the issues surveil-

lance videos present and have been researched widely [6]. Zhou et al. [152] make

use of the temporal nature of video to accomplish face recognition. A face cataloger

system was developed by Hampapur et al. [62] which uses two calibrated cameras

with overlapping FOVs for 3D multi-blob tracker and 3D head location determina-

tion. An active face tracking and recognition system is proposed in [110], where

two cameras, one static and one PTZ, is used to capture face images at a distance

to achieve face recognition robust to pose changes and partial occlusions. However,

this enables face recognition of a single person in a video sequence. This problem

is partially addressed in [24, 135] where the static camera is equipped with a per-

son tracker and person detections coupled with tracking data are used to direct the

PTZ cameras. Estimated pose is integrated into face tracking and used in [17] in

order to align face images. Non-overlapping blocks are extracted from aligned faces

and 2D discrete cosine transform (DCT) coefficients are concatenated to form facial

appearance features that are used for person retrieval.
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According to the study presented in [141], pixel gray level values of low-resolution

images as features can achieve a high face recognition rate. Such facial features are

better suited for Re-ID scenarios and we leverage this feature. Since the head-region

images could be blurred or no face could be present, facial feature extraction is not

always possible. Low-level image cues are used to select usable face images. If usable

face images are present, the person’s face model is built by using the facial features.

As a result of the selection process, the face images are no longer temporally adjacent,

even if they come from the same video. Thus, multiple models are learnt for the same

person’s face to keep model inaccuracies due to feature misalignment to a minimum.

Depending on the presence of usable face images our model can decide to include the

facial features or exclude them, this gives our model flexibility in an unconstrained

environment.

Since the facial features are simply the image pixels, noisy or non-facial pixels

could misguide the facial feature extraction severely. Hence a robust face image

selection process is adopted before the facial features model is generated. Figure

Figure 4.4: Combined Color and Facial feature based Model Generation Pipeline.
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4.4 depicts the pipeline from input video to output model generation with multiple

feature integration.

4.2.1 Face Image Selection

The body part detector gives the head region of a person and in order to extract

facial features only the head regions with faces are retained. All the images are

converted to gray scale and a 2 step selection process is used to retain usable face

images. First, a threshold (τ1) on RMS contrast is employed to reject incorrectly

detected head region images as well as low contrast faces. The RMS contrast is

computed by:

RMSContrast =

√
1

w.h

∑
i∈w

∑
j∈h

(Iij − I)2 (4.3)

where, Iij is the pixel intensity extracted from the face region image of size w by h.

I is the mean intensity of the image pixels. In the next step, the retained images

are then subjected to canny edge detection to detect prominent edges. The edges

are summarized by fitting an ellipse. If more than half the number of pixels in the

ellipse fitted region are above a threshold (τ2) then the head image is retained and

used to extract the facial features. If ntotal is the original head region images, then

the number of images retained after the selection process is nsel, and these images are

not all temporally adjacent. If nsel < 2, then the facial model cannot be generated.

In our experiments, τ1 = 0.04 and τ2 = 0.6.
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Figure 4.5: Facial feature based Model Generation.

4.2.2 Facial Model Generation

We use the selected images to extract the facial features. All the head region images

are resized to a fixed dimension of 24x20. The face region images are vectorized by

stacking its columns, these vectors are used as the facial features. The vector length

is thus m = w.h = 480. Thus, the facial feature based model is simply a matrix

F = [v1, ..., vn], where vk is the column corresponding to the kth face region. The
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matrix F will be of size m x n, where n is the number of selected face images.

Fm,n =



f1,1 f1,2 · · · f1,n

f2,1 f2,2 · · · f2,n
...

...
. . .

...

fm,1 fm,2 · · · fm,n


To minimize the errors in the model the underlying features should be as aligned as

possible. We make an assumption that among the selected face images temporally

adjacent frames do not change drastically and are reasonably aligned. Thus, within

F , Fj is a submatrix if size m x nj, such that the columns of Fj are temporally

consecutive face images. The submatrix is treated as a sub class, i.e. even if all

columns from F belong to the same subject, the submatrices within F are treated as

visually different instances of the same subject. F is referred to as the facial feature

model (FFM). Figure 4.5 demonstrates the face model generation process.

4.3 Re-identification by Matching

The cost of matching a gallery and probe is computed by comparing the generated

gallery model to selected frames of the probe sequence since multiple frame of the

probe are available. The probe frames to be used for cost computation are selected

at random. The matching cost of the minimum cost among all the probe frames.

The color model matching cost is computed as per equation 4.4,

dcolor(G,P ) = wACM .dACM(G,P ) + wRMC .dRMC(G,P ) (4.4)
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where, dACM(G,P ) = ‖gm− ĝ‖ is the reconstruction error obtained by projecting the

probe frame histogram ĝ into the ACM space of the gallery model. Gallery AAM is,

g = g + Ag.bg and the probe color histogram is given by ĝ. Then, gm = g + Ag.b̂g,

where b̂g = A−1g (ĝ − g).

dRMC(G,P ) is the cost based on the matching of the gallery RMC model to the

RCD extracted from the probe frame. The gallery RMC and the probe RCD are

both treated as signatures and the matching is treated as a transportation problem.

The matching cost between the gallery RMC and probe RCD is calculated using the

Earth Mover’s distance (EMD) [114]. dcolor is computed for each body part and is of

the form dcolor =
√∑

p∈Nbp
(dcolor,p)2, where, Nbp is the total number of body parts,

in our case Nbp = 3. And wACM = wRMC = 0.5 which means that both sets of color

features contribute equally to the matching cost.

The facial feature matching is established using Sparse Representation in the con-

text of face recognition [137]. The underlying implication is that given a dictionary

matrix built using labeled training images of several subjects, a test image of i -th

subject is the linear combination of the training images of only the same subject

from the dictionary. In our case, a given gallery FFM contains all usable images

of the gallery subject but the images are arranged into subsets depending on the

temporal adjacency. Given a gallery FFM FG, if the probe ID is same as the gallery

ID, the probe image will lie approximately in a linear span defined by only a subset

of the images that constitute the FFM. This implies that given a probe face image

fP , it can be expressed as fP = FG.α and the intent is to find the sparest α that

generated fP in FG. Thus among all possible solutions of α, we want the sparsest.
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This amounts to solving the following `1-minimization:

α̂ = arg min ‖α‖1s.t.fP = FG.α (4.5)

This optimization is solved using linear programming that leverages augmented La-

grange multipliers [142]. Thus, dface is given by equation 4.6 and is an estimate of

how well α̂ reproduces fP .

dface(G,P ) = ‖fP − FG.α̂‖2 (4.6)

The cost matrix C is used for assignment, which is populated using costi,j =

dist(Gi, Pj), Here, i = 1, .., NP , j = 1, .., NG and NP is number of probe subjects and

NG number of gallery subjects. Since all the probe objects come from the same video

we know their IDs are distinct so a one-to-one assignment between the probe and

gallery sets is needed from multiple person Re-ID. The combinatorial optimization

is solved using the Munkres algorithm [101]. Given a cost matrix C, the one-to-one

assignment is such that the objective function
∑

i∈NG

∑
j∈NP

C(i, j)xij is minimized.

Here, xij represents assignment of element Gi of the gallery set to element Pj of the

probe set, taking value 1 if assignment is done and 0 otherwise.

4.4 Experimental Results

4.4.1 MCID Dataset

In order to obtain real world surveillance data, we setup a camera network consisting

of 10 cameras in and around a university building. The camera network has cameras
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placed on the first floor and fifth floor of the office building. This dataset is terned as

Multi-Camera Re-ID (MCID) dataset. Figure 4.6(a) shows the placement of cameras

in the outdoor environment. The camera positions are overlayed on a top view of

the PGH building on the University of Houston Campus as well as the floor plan of

the PGH first floor. Figure 4.6(b) shows example images from each outdoor camera.

Figure 4.7 illustrates the position and camera views of the indoor cameras. The

Re-ID data consists of 30 videos, collected using 9 of these 10 cameras and consists

of 40 subjects out of which 19 can be used to establish true Re-ID. The data is split

into 3 scenarios based on the difference in environments between the camera pairs

on which Re-ID is to be established. The scenarios are Outdoor-Outdoor, Indoor-

Indoor and Outdoor-Indoor. The dataset is the most realistic Re-ID data with all

the real world Re-ID challenges of drastic illumination variations, drastic viewpoint

changes, scale and pose variations and occlusions. In the Outdoor-Outdoor scenario

there exists large variations in the illumination conditions between cameras. The

Indoor-Indoor scenario presents lesser illumination variations but is useful to test the

model’s discriminant capability. The Outdoor-Indoor scenario needs a good balance

of discriminative capability and photometric invariance in the model in order to

establish correct matches. Within each category the videos are placed in the order

of flow of people through the camera network. Every collection of sequences is

used as a single Re-ID experiment. Re-identification requires accurate single camera

person detection and tracking information. The acquired data is annotated by hand

labeling the images. This not only provides the tracking data needed for Re-ID but

also provides ground truth for evaluation of the results. The person bounding boxes
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(a)

(b)

Figure 4.6: Outdoor placement of cameras: (a) Placement of cameras overlayed on
building floor plan for perspective. (b) Example images from each outdoor cameras
FOV.
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(a)

(b)

Figure 4.7: Indoor placement of cameras: (a) Placement of cameras overlayed on
building floor plan for perspective. (b) Example images from each indoor cameras
FOV.
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obtained from annotation are all normalized to 128x64.

4.4.2 Multiple Person Re-ID Experiments

To evaluate our model under a multiple person Re-ID framework we designed 2 kinds

of experiments.

• Closed-Set Experiments: Only a subset of the probe set i.e. an intersection

between the probe and gallery set is used to establish the Re-ID. This implies

subjects that form the closed probe set is the intersection between the probe

IDs and gallery IDs. This is a closed set experiment, in the sense that it is not

possible to have false positive but rather only correct matches or mismatches.

False positive is defined as the model matching a probe ID incorrectly to a

gallery ID when in fact the probe ID is not in the gallery set. This experiment

is more geared towards testing the sensitivity of the appearance model.

• Open-Set Experiments: The entire probe sets are used for the Re-ID, this

can mean that all the subjects in the probe set might not be included in the

gallery set. The probe and the gallery are truly open sets. This implies that

possibilities of false positives will be increased considerably. This experiment is

designed to test the appearance based false acceptance reduction criteria and

a secondary objective of testing the generality of the model. In order to reduce

the false acceptance, a threshold is imposed on the cost matrix C and then

multiple person Re-ID is established.
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Figure 4.8: Re-identification Rate in different scenarios for comparative study of the
Color Invariant Histograms.

4.4.2.1 Color Invariant Histogram Evaluation

Closed set experiments use only the gallery ACM and probe histograms for Re-ID.

From figure 4.8 it is clear that not only the model’s discriminative power but also its

photometric invariance affects the Re-ID rate. For the rest of our experiments we use

the HS histogram to build our spatio-temporal ACM. Transformed RGB histogram

yeilds better Re-ID rate than the rest in the Outdoor-Outdoor scenario while HS

histogram outperforms all outer in the other two scenarios. This implies that a model

with greater photometric invariance is desirable in the Outdoor-Outdoor scenario,

while greater discriminative ability is important in the other two scenarios.
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(a) (b)

Figure 4.9: Closed Set Re-identification Performance: (a) and (b) show the com-
parative Re-ID rate for N = 2 and 10, respectively. Each graph shows the results
obtained by our color model and SDALF [19].

4.4.2.2 Closed Set Experiment Results

Only a subset of the probe set or closed probe set; i.e. an intersection between the

probe and gallery set IDs is used to establish Re-ID. This is a closed set experiment,

in the sense that it is only possible to have correct matches or mismatches. This

experiment is intended to test the sensitivity of the proposed model. The closed set

results are evaluated using matching accuracy, i.e. number of probe subjects matched

correctly. In other words, it is the percentage of rank-1 correct matches. The ef-

fectiveness of our model was compared to the SDALF model proposed in [19].First

only the color features based model was compared to the SDALF in order to de-

termine the optimal number of probe frames to use in order to ensure a correct

match. Figure 5.9 shows that for all N , our method results in higher rate in the

Outdoor-Outdoor scenario compared to SDALF. We believe this is so as our model
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Our Method (sec) SDALF (sec)

Feature Extraction 0.5086 3.8486
Matching 0.0484 0.6579

Table 4.1: Comparison of computation times (in seconds) taken by each stage of
Re-ID by our method and the SDALF method.

has improved photometric invariance compared to SDALF. Our model’s performance

on the Indoor-Indoor dataset is on par with SDALF but as N increases our model

performs better. This implies that our model’s discrimination is not diminished by

its invariance ability. On the other hand, SDALF outperforms our model in the

Outdoor-Indoor scenario for N = 2. This might imply that SDALF has better dis-

criminative ability in the presence of large color variations. We surmise this is because

SDALF also has a texture component in its model that is absent in ours. With an

increase in N , our model outperforms across all 3 scenarios. The overall accuracy of

our model is 67% compared to SDALF’s 63% for N = 2 and 77% to SDALF’s 67% for

N = 10. SDALF’s accuracy reduces in the Outdoor-Indoor scenario as N goes above

2, this might be because the possibility of picking similar frames increases which

reduces discrimination during matching. We can reasonably conclude that optimal

number of probe frames is N = 10 since for both the methods the performance over

all three scenarios is better with N = 10. Table 4.1 shows the comparison between

the computation time taken at each stage of model building and feature matching

for our color model method and the SDALF method. These computation times were

found using MATLAB’s ’tic-toc’ command on a PC with a 2.67GHz Intel Core i5
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CPU and 4GB RAM. These numbers are merely used to show that the feature ex-

traction and matching cost computation times of our method are significantly more

efficient than the SDALF method. In addition, our learnt spatio-temporal model is

a rather compact and hence has a lower storage footprint.

In all of our subsequent experiments we use N = 10 to compute the color model

matching cost. Figure 4.10 shows the closed set Re-ID performance using 2 variants

of our model, one based only on color features and the other using both the color

and facial features. From the figure the value of incorporating facial features into the

Figure 4.10: Closed Set Re-identification Performance: the bar graph shows the
results obtained by our color model, color and face model and SDALF [19].

spatio-temporal model is clearly evident. In both the Outdoor-Outdoor and Outdoor-

Indoor scenarios, we observe a significant improvement in the Re-ID performance.

In the Indoor-Indoor scenario the performance remains unchanged by addition of
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the facial features but also does not have an adverse effect on the Re-ID rate. This

implies that even low-resolution face regions with varying illumination and pose

can contribute towards improving the discriminative ability of our model. In the

Outdoor-Outdoor scenario adding facial features causes the proportion of accurate

IDs to increase from 62% to 80%, which is a considerable improvement. The overall

Re-ID rate increases to 83% from 75%. Both variants of our model outperform the

SDALF model in all 3 scenarios. In all the 3 scenarios our color only model gives

75% accurate IDs compared to 70% using SDALF.

4.4.2.3 Open Set Experiment Results

The entire probe set is used for Re-ID wherein all the subjects in the probe set might

not be present in the gallery set. This implies that in addition to correct matches

and mismatches we will also have false positives. In the case of Re-ID, true positives

(TPs) are the number of probe IDs that are correctly matched. Mismatches (MMs)

are the number of probe IDs that are incorrectly matched to gallery, when that probe

ID does exist in the gallery. False positives (FPs) are the number of probe IDs that

are matched to the gallery when the probe ID does not exist in the gallery. This

experiment is designed to test the model based false acceptance reduction criteria

and a secondary objective is to test the generality of the model.

In order to reduce the false acceptance, a threshold is imposed on the cost matrix

C and then multiple person Re-ID is established. The open set results are presented

in terms of Accuracy vs. False Acceptance Rate (FAR) curves. The accuracy and

FAR are defined as Accuracy = TPs
NP

and FAR = (MMs+FPs)
NP

, respectively, where NP
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Assignment Model Outdoor Indoor Outdoor
-Outdoor -Indoor -Indoor

Optimal
SDALF 0.38 0.32 0.35
Color 0.34 0.32 0.35
Color+Face 0.38 0.40 0.40

Sub-optimal
SDALF 0.34 0.3 0.28
Color 0.33 0.26 0.29
Color+Face 0.37 0.32 0.30

Table 4.2: Open Set (Discrimination) results for all the models. The top portion of
the table is generated using the Munkers assignment algorithm, whereas the lower
portion comes from the suboptimal assignment algorithm.

denotes the total number of probe subjects. The curves are obtained by varying a

threshold imposed on the matching cost during the computation of the cost matrix.

The threshold is varied from 0 to 0.9 in increments of 0.05. Two different assignment

techniques are employed; optimal, which is the Munkers algorithm, and the sub-

optimal assignment. The sub-optimal assignment technique is usually used when

the cost matrices have many forbidden assignments. The assignment is suboptimal

in the sense that the overall assignment cost is not the minimum possible value. In

case of Re-ID, the gallery is ever increasing and most likely the intersection between

gallery and probe is small compared to the size of the gallery. Thus, the possibility

of incorrect assignments increases and suboptimal assignment technique could be

better suited for such cases.

Figure 4.11 shows that in all 3 scenarios it is possible to find a threshold that

yields the best possible trade off between accuracy and FAR. In the Outdoor-Outdoor

scenario a threshold of 0.5 yields the best possible Accuracy/FAR ratio of 60%/33%
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(a) (b)

Figure 4.11: Open Set Results: Accuracy vs. FAR curves obtained using (a) Optimal
Assignment, and (b) Suboptimal Assignment. The top, middle and bottom row
are results obtained on the Outdoor-Outdoor, Indoor-Indoor and Outdoor-Indoor
scenarios respectively.
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using the color and facial features model and optimal assignment technique. In the

Indoor-Indoor and Outdoor-Indoor scenarios as well, color and facial features model

gets the best Accuracy/FAR ratio possible. Thus, overall in both variants of our

model it is possible to find a threshold that gives better Accuracy/FAR ratio than

SDALF.

In order to compare the open set performance of the 3 models we use the Dis-

crimination measure as an indicator of model’s accuracy and false rejection abil-

ity. The discrimination measure is simply the area between the curve and the non-

discrimination line. Table 4.2 shows that in all 3 scenarios the color and facial

features model has improved discrimination over the other two models evaluated.

In the Outdoor-Outdoor scenario and Indoor-Indoor scenario using optimal assign-

ment technique, SDALF has a higher discrimination than our color only model. We

surmise this is because SDALF also has a texture component in its model that is

absent in ours. Overall, all the models suffer a slight drop in discrimination using

the suboptimal assignment technique. Thus, we can deduce that Munkres algorithm

is a better fit for Re-ID assignments.

In general, closed- and open-set experiments both suggest that using color and

facial features has a distinct advantage in the Re-ID over using only color or even

combined color and texture features. From the shape of these curves we can deduce

that a global threshold on the matching cost is a crude yet sensible strategy for

minimizing the false acceptance rate. As the threshold increases the accuracy values

start increasing as well with a less drastic increase in the FAR. The most important

conclusion that we can draw from these experiments is that the proposed model can
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be used for false acceptance reduction during Re-ID. Specifically, open set experi-

ments can be used to select the parameters of false acceptance reduction criteria, in

our case a suitable threshold.
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Chapter 5

Color & Gait features-based

Person-Model Generation

In this chapter we discuss the person model that combines color and gait features.

The gait features are further analyzed for long period Re-ID. The combines color$gait

model is tested under single person Re-ID scenario in a closed set setting. This also

helps us investigate the utility of gait features alone for long period Re-ID. A closed

set Re-DI experiment allows us to understand the capability of the gait using the

CMC metric.

Re-ID data comes from uncontrolled environments with non-cooperative subjects

where face of a person will not always be visible. Further, the data is often low qual-

ity due to low sensor resolutions and low frame rates. If the face is visible, it varies

greatly in pose, facial expressions, and illumination conditions. All these factors

make capturing reliable facial data and subsequent face recognition very difficult.
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Even though the state-of-the-art face recognition techniques yield high recognition

rates it is important to note these results are obtained on high resolution data cap-

tured under controlled lighting and pose settings. Automated facial recognition on

low-resolution images under variations in pose, age and illumination conditions is

still an open problem [6, 148]. Gait is a behavioral biometric that has been effec-

(a) (b)

Figure 5.1: Images from SAIVT SoftBio dataset and extracted silhouettes of the
same person from different cameras, (a) images with visible face regions, (b) images
without visible face regions.

tive for human identification [63]. Gait is especially suited for Re-ID as it can be

extracted by non-obtrusive methods and does not require co-operative subjects. Fig-

ure 5.1 shows images and corresponding silhouettes of the same person taken from

different cameras. In figure 5.1 (a) the person’s face is visible but not in figure 5.1

(b). This situation occurs frequently in surveillance videos as the camera angles are

uncontrolled. Further, we can see that in sequence (a) the face resolution is really

low and hence extracting usable facial features is challenging. However, the detected

silhouettes can be used to extract gait features for Re-ID, even with low resolution

and low frame rate data. The availability of video data makes gait feature extrac-

tion feasible as gait is extracted over multiple frames. On the other hand, gait is
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sensitive to view angles and walking poses. Surveillance cameras usually have a wide

field-of-view (FOV) and people often tend to change their walking pose during the

duration of observation. This greatly increases the probability of common walking

views across different camera views, which can be leveraged for gait recognition.

Nonetheless, silhouette extraction errors due to occlusions, illumination variations

as shown in figure 5.2, can affect gait feature potency.

Figure 5.2: Example images from SAIVT SoftBio dataset and erroneous extracted
silhouettes.

In this work, we study the impact of incorporating gait features extracted from

real world surveillance videos along with color (clothing-based appearance) features

on Re-ID performance. If the number of frames available for a subject are not enough

or silhouette extraction is faulty, then the gait features are not used and the Re-ID

is only based on color feature.
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5.1 Gait Features

Gait features are divided into two categories, model-based and model-free [129].

Model-based features like stride and cadence require an explicit model construc-

tion, hence, are more sensitive to the accuracy of silhouette extraction techniques

and model fitting requires large computational cost. On the other hand, they are

invariant to view angle changes and scale. Model-free features capture changes in

silhouette shapes or body motion over time. This makes them robust to errors in sil-

houette extraction process but are more sensitive to variations due to pose and scale

changes. Since silhouette extraction on surveillance video can be very challenging

due to illumination variations, complex backgrounds, occlusions and unconstrained

environments [30], model-free gait features are well-suited for Re-ID.

Han et al. [63] extract a gait feature called Gait Energy Image (GEI) that is robust

to silhouette errors and computationally easy to extract. GEI captures the spatio-

temporal description of person’s walking pattern into a single image template by

averaging silhouette over time, however it fails to retain the dynamic changes in the

pattern. In order to incorporate the temporal information for gait recognition, Gait

History Image (GHI) was proposed in [88]. It used difference between consecutive

frames to retain frequency of motion within a GEI. All of these features are robust to

silhouettes shapes but not as much to incomplete silhouette detections. The effect of

incomplete silhouettes is partially alleviated by the Frame Difference Energy Image

(FDEI) [35] which retains only positive portions from consecutive frame differences

and combines them with GEIs to retain both static and dynamic portions of the
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person’s walking pattern. In this work, GEI and FDEI features are selected for gait

representation.

5.2 Cross-view Gait Recognition

Gait recognition across different view angles is also an active area of research [69,

16, 80]. A view transformation model (VTM) is learnt in [80] that learns a mapping

between different view angles to transform data from probe and gallery sequences in

the same view angle. A model that projects both the gallery and probe features into

a subspace where they are highly correlated is learned to improve gait recognition

in [16]. The model is learnt using canonical correlation analysis and combined with

a Gaussian process classifier trained for view angle recognition for effective cross-

view gait recognition. Gait dynamics from different views are synchronized into

fixed length stances using non-linear similarity based HMMs in [69] and multi-linear

projection model is learned to help gait recognition. All of these methods require

some way to quantify the view angles from either gallery sequence, probe sequence

or both, and involves a projection stage that introduces gait feature errors. Due to

low quality data available for gait feature extraction such methods prove challenging

to leverage for Re-ID. We propose using sparsified representation based gait recogni-

tion technique that requires no explicit common view angle synthesis or projection

subspace learning and we discuss it in detail in the next section.
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5.3 Gait Features Model

Gait is described as the walking characteristic of a person and in order to understand

the applicability of gait features to Re-ID they are combined with color features to

create a person model for recognition. A person’s walking pattern is periodic in

nature, thus motion patterns during a walking sequence repeat themselves at regular

time intervals. Thus, the features are extracted over a sequence of frames over a gait

period. Gait period is defined as the time between two successive strikes of the same

foot, or twice the time between successive strikes of opposite feet. We adopt the

method proposed in [130] for gait period estimation of arbitrary walking sequences.

The aspect ratio of silhouette over a sequence of frames is used to estimate the gait

period. Hence the assumption is that silhouettes are already extracted and pre-

processed. Pre-processing involves size normalization and horizontally aligning the

silhouettes. Figure 5.3 depicts the step by step results of the gait period estimation

method, which is as follows:

• The aspect ratio of the silhouette over a sequence of frames is represented as

a 1D temporal signal. The signal is z-normalized (subtracting the signal mean

and dividing by signal’s standard deviation) and smoothed using a moving

average filter.

• Peaks in the aspect ratio signal are magnified by computing its auto-correlation

sequence and the first derivative of the auto-correlation signal is used to detect

zero-crossings.

• Zero-crossing positions of positive and negative peaks are used to compute
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Figure 5.3: Gait Period Estimation: (a) Sample image sequence. (b) Sample sil-
houette sequence. (c) Bounding box aspect ratio after average filtering. (d) Auto-
correlation signal of aspect ratio signal. (d) First order derivative of auto-correlation.
(f) Detected peak positions.

distance between prominent peaks, average of distances between consecutive

peaks result in the gait period in number of frames.

Most of the dynamic information about walking motion can be deduced from the

lower half of the silhouette region [63], hence gait period estimation is performed

using aspect ratio of lower body silhouettes.

5.3.1 Gait Energy Image (GEI)

The first of the two gait features used is called the Gait Energy Image (GEI) first

proposed in [63]. GEI is a spatio-temporal representation of a person’s walking
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characteristic condensed into a single image and it captures the changes in the shape

of the silhouette over a sequence of images. GEI is computed by averaging the

silhouettes in the spatial domain over a gait cycle. Given, a sequence of silhouettes,

the GEI is given by,

GEI(i, j) =
1

N

N∑
t=1

St(i, j) (5.1)

where, St is the silhouette at frame t, (i, j) are the spatial image co-ordinates and N

is the estimated gait cycle period. A given sequence of images can contain multiple

gait cycles and hence can be represented by multiple GEIs. It has been shown that

GEIs are robust to errors in silhouettes in individual frames [63] and are computa-

tionally efficient. Figure 5.4 shows GEI extracted from a sample sequence from both

the SAIVT SoftBio dataset and the dataset we acquired, which we refer to as the

multi-camera Re-ID (MCID) dataset. For the MCID dataset, we only used lower

body silhouettes to extract gait features due to challenging conditions for silhouette

extraction.

(a) (b)

Figure 5.4: GEI features extracted from sample sequences from the 2 datasets, (a)
Lower body GEI from MCID dataset and (b) GEI from the SAIVT Soft-Bio dataset.
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5.3.2 Frame Difference Energy Image (FDEI)

The second gait feature used is called Frame Difference Energy Image (FDEI) and

was proposed in [35]. This feature is designed to deal with incomplete silhouettes at

the same time retaining the shape and motion changes. This is done by constructing

multiple thresholded GEIs from a single gait cycle and then summing these with

differences between consecutive silhouettes along the sequence. The difference is

taken in such a manner that only the positive values are retained and negative values

are discarded so that only parts of the silhouette that are missing or contain motion

information is retained. Having estimated the gait cycle, it is further divided into

sub-cycles with equal number of frames. The silhouettes within each sub-cycle are

averaged using equation 5.2 as follows:

GEIc(i, j) =
1

Nc

Nc∑
t=1

St(i, j), (5.2)

where, Nc denotes the period of the sub-cycle. This creates GEIs per sub-cycle of

every gait cycle. These GEIs are thresholded, only retaining the pixels with value

greater than or equal to 80% of the maximum value, in order to remove noise due to

silhouette errors. These are referred to as dominant GEIs (DGEIs) for each sub-cycle

and are computed using equation 5.3 as follows:

DGEIc(i, j) =


GEIc(i, j), if GEIc(i, j) ≥ (0.8 ∗max(GEIc))

0, otherwise

(5.3)
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The frame difference is computed by subtracting consecutive silhouettes and only

the positive portion of the difference is included in the feature as follows:

DSt(i, j) =


0, if St(i, j) ≥ St−1(i, j)

St−1(i, j)− St(i, j), otherwise

(5.4)

The FDEI is generated by summation of the positive frame difference and corre-

sponding sub-cycles dominant GEI as follows,

FDEI(i, j) = DSt(i, j) +DGEIc(i, j) (5.5)

If the silhouette in frame t is incomplete, and one at frame t − 1 is complete, then

DSt contains the incomplete portion of the silhouette and summation of difference

image with the dominant GEI compensates for missing portion. Figure 5.5 shows

FDEI extracted from a sample sequence from both the datasets.

(a) (b)

Figure 5.5: GEI features extracted from sample sequences from the 2 datasets, (a)
Lower body FDEI from MCID dataset and (b) FDEI from the SAIVT Soft-Bio
dataset.
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5.4 Feature matching for Re-ID

The distribution of colors of the person’s clothing is characterized using weighted

HSV histogram proposed in [19]. The silhouette is divided into three body parts

corresponding to head, torso and legs regions by detection of one vertical axis of

symmetry and two horizontal axes of asymmetry. The histogram for each body part

is weighted by the distance from the axis of symmetry. The histograms from each

body part are concatenated channel-wise to generate a single color feature descriptor.

The similarity measure between a gallery subject G and a probe subject P can be

defined as:

dist(G,P ) = wcolor.dcolor(G,P ) + wgait.dgait(G,P ) (5.6)

where, dcolor is the color features based similarity and dgait is the gait features based

similarity. If good quality silhouette sequences are available for both gallery and

probe subject and gait features can reliably be extracted, gait similarity is incor-

porated in the overall similarity measure. In this work, we define the acceptable

quality of the silhouettes simply as to whether or not the number of positive pixels

is greater than 40% of the total pixels in the image. Gait period estimation process

provides another gait feature selection mechanism. If the silhouettes are too noisy

or the sequences are too short, then gait period cannot be reliably estimated. Gait

similarity is combined with color similarity using wcolor and wgait. This means that

in the absence of gait model, Re-ID is established using only color features. The

color similarity is obtained using the Bhattacharyya distance [25]. Since, a sequence

of frames are available for every subject, color similarity for a given probe-gallery

pair is simply the minimum cost among all the probe-gallery frame pairs.
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5.4.1 Gait Recognition by Sparsified Representation

In order to compute the gait similarity/recognition we utilize a sparsified representa-

tion [137]. The underlying implication is that given a dictionary matrix built using

labeled training features of several subjects, a test feature of i -th subject is the

linear combination of the training images of only the same subject from the dictio-

nary. Following this implication, we construct a dictionary which is simply a matrix

V = [v1, ..., vn], where each column is obtained by vectorizing the gait features be-

longing to all the gallery subjects. Since, each gallery subject can have multiple gait

features, either GEIs or FDEIs, multiple columns in the matrix V may belong to the

same gallery subject. Given a dictionary matrix V , if the probe subject is as close

as possible the gallery subject in both identity and view angle, the probe image will

lie approximately in a linear span defined by only a subset of the gait features that

constitute the matrix V . This implies that given a probe gait feature, for example,

GEIP , it can be expressed as GEIP = V.α and the intent is to find the sparest α

that generated GEIP in V . Thus, among all possible solutions of α, we want the

sparsest. This amounts to solving the following `1-minimization:

α̂ = arg min ‖α‖1 s.t. GEIP = V.α (5.7)

This optimization is solved using linear programming that leverages augmented La-

grange multipliers [142]. Thus, dgait is given by equation 5.8 and is an estimate of

how well α̂ reproduces GEIP .

dgait(G,P ) = ‖GEIP − V.α̂‖2 (5.8)
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Further, for a given probe subject, there can be multiple GEIs/FDEIs and the gait

similarity is simply the minimum among all the probe GEIs/FDEIs.

5.5 Experimental Results

The combined gait and color features based Re-ID is tested on two datasets, our

multi-camera Re-ID (MCID) dataset and SAIVT SoftBio dataset [26]. The SAIVT

SoftBio dataset was selected as it provides real word multi-camera surveillance videos

with multiple frames per person from different camera views.

5.5.1 SAIVT SoftBio dataset

The dataset contains 150 subjects in up to 8 camera views. Only 122 subjects

are seen in at least 2 camera views. In our experiments, the gallery is formed by

different cameras and so are the probe subjects, so it is as close to the real world

Re-ID scenario as possible. The only constraint is that the same subjects gallery

and probe camera views are different. The dataset provides background images

for each subject per camera view, hence simple background subtraction followed

by low level image processing are sufficient to extract silhouette sequences for gait

feature extraction. For each subject, in a given camera view, multiple frames are

available. Only 5 randomly selected frames from a sequence are used to extract the

color features, while all frames are used to extract gait features. Table 5.1 shows

the Re-ID performance of only color, color & GEI (color+GEI) and color & FDEI
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Rank 1(%) Rank 5(%) Rank 20(%) nAUC(%)

Color Model 0.82 3.28 18.85 56.55
Color(0.8)+GEI(0.2) 0.82 3.28 21.31 59.09
Color(0.5)+GEI(0.5) 0.82 4.92 27.05 62.34
Color(0.1)+GEI(0.9) 4.10 9.84 36.06 64.75

Color(0.8)+FDEI(0.2) 0.82 3.28 21.31 58.98
Color(0.5)+FDEI(0.5) 0.82 5.74 27.05 62.24
Color(0.1)+FDEI(0.9) 4.10 11.48 36.06 64.82

Table 5.1: Rank 1, 5 and 20 matching accuracy and nAUC measures for color,
color+GEI and color+FDEI with varying weights.

(color+FDEI) in terms of rank 1, 5, and 20 Re-ID accuracy and normalized AUC

extracted from cumulative matching characteristic (CMC) curves using all the 122

subjects. When gait features cannot be extracted, Re-ID relies only on color features.

If gait is available, then a weighted sum of color and gait similarity is used to establish

a match. The table shows the performance variations with different color and gait

weight combinations. We can see that overall using combination of color and gait

performs better than only color. As we increase the weight assigned to gait features,

we notice a significant boost in performance. The improvement in rank 1 matching

accuracy is most notable with changes in weights suggesting that the gait features can

be more effective than color features. Figure 5.6 shows the CMC curves obtained by

using only color, combined color and GEI and combined color and FDEI. Figure 5.6

(a), (b) and (c) show the CMC curves obtained by varying weights given to color

and GEI/FDEI. We see that the difference in performance using GEI and FDEI is

negligible. Thus, gait features even when extracted from imperfect silhouettes and

varying viewpoints provide discriminative value. They add value to color features
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Rank 1(%) Rank 5(%) Rank 20(%) nAUC(%)

Color Model 0 17.40 78.26 49.72
GEI 17.40 56.52 95.65 72.78

FDEI 30.43 47.83 95.65 73.16

Table 5.2: Rank 1, 5 and 20 matching accuracy and nAUC measures for color, GEI
and FDEI features.

even in short period Re-ID where clothing color is a reasonable feature.

In order to better understand the potential of gait features, we performed another

experiment with the same dataset. Re-ID was performed using only gait features

without the help of color and then compared with pure color based performance.

Since only gait features are used the number of subjects for which usable gait fea-

tures available across views were limited to 23 subjects. Figure 5.7 shows the CMC

curves obtained using color, GEI and FDEI features. From the figure, the power

of gait features is even more prominent. Either of the gait features outperform the

color features significantly. FDEI features yeild a much better Rank 1 matching ac-

curacy than GEI features, yet overall their performance is still comparable. Table 5.2

summarizes the rank 1, 5, and 20 matching accuracy and nAUC measures for the

3 features. From the table we can see that in terms of rank 1 and nAUC, FDEI

features perform better than GEI. These results can be viewed as performance of

gait features for long period Re-ID as they do not utilize any clothing or appearance

features. This speaks to the ability of gait features for long period Re-ID and also

demonstrates the robustness of the proposed gait recognition method for cross view

angle gait matching. Figure 5.8 shows the first 5 ranked images from the gallery
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set given two different probes using the 3 models, we can see that in both cases the

color only Re-ID cannot find an ID match to the probe in the top 5 ranked IDs. In

the probe ID shown in the left column, the color+GEI Re-ID located the true ID in

the top 5 ranked IDs. On the other hand, the color+FDEI Re-ID rank 1 ID is the

correct ID as the probe.

5.5.2 MCID dataset

As the Re-ID is in the context of multi-camera tracking, Re-ID is established for each

camera pair. Consistent with the previous dataset experiments, only 5 randomly se-

lected frames from a sequence are used to extract the color features, while all frames

are used to extract gait features. Due to complex and uncontrolled conditions of

acquisition, traditional background modeling techniques did not perform well for sil-

houette extraction. Gray level thresholding combined with morphological operations

were used to extract lower body silhouettes. Thus, both gait features were extracted

only from lower body dynamics. For this dataset, we empirically set wgait = 0.2 and

wcolor = 0.8 as this gives the best possible Re-ID accuracy. Since Re-ID is performed

between camera pairs, all the subjects in the probe set might not be included in the

gallery set. Thus, for each camera pair, only a subset of the probe set or closed probe

set, i.e. an intersection between the probe and gallery set IDs is used to establish

Re-ID. This is a closed set experiment, in the sense that it is only possible to have

correct matches or mismatches and results are evaluated using matching accuracy,

i.e. number of probe subjects matched correctly. Again, closed set experiment is

consistent with our experiments on the SAIVT SoftBio dataset. Figure 5.9(a) shows
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the Re-ID performance using all 3 models: one based on only color, color+GEI and

color+FDEI. The value of adding gait features to color is very evident, as we observe

a significant improvement in the Re-ID accuracy. To better understand the role of

gait features in Re-ID performance, we perform another experiment, using only gait

features without the help of color and then compared with pure color based perfor-

mance. Since only gait features are used, only subjects from each camera pair for

which usable gait features are available for Re-ID. The results of this experiment is

shown in figure 5.9(b). This figure provides balanced view of performance of all the

features, alone and combined. Both purely GEI and FDEI perform reasonably well

as compared to the color even though they do not outperform color. It should be

noted that only lower body silhouettes are used to generate gait features. The Re-ID

accuracy using FDEI comes within 4% of the color accuracy. Combining either GEI

or FDEI boosts the Re-ID accuracy significantly. Incorporating FDEI with color

helps enhance Re-ID performance to 81% from 66%, a considerable boost. Thus,

we argue that combining gait features with color is an effective strategy to improve

Re-ID performance. Figure 5.10 shows the first 5 ranked images from the gallery set

given two different probes using the 3 models, we can see that in both cases the color

only Re-ID finds the true ID match to the probe in the top 5 ranked IDs at ranks

3 and 2 for the 2 IDs, respectively. In the probe ID shown in the left column, the

color+GEI Re-ID located the true ID at rank 2. On the other hand, the color+FDEI

Re-ID rank 1 ID is the correct ID as the probe in both probe IDs.
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Figure 5.6: CMC Curves on the SAIVT SoftBio dataset, combining color and gait
features with varying weights for Re-ID.
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Figure 5.7: CMC Curves on the SAIVT SoftBio dataset, using only color, only GEI
and only FDEI features for Re-ID.

Figure 5.8: Examples of Re-ID gallery ranking, showing the first 5 ranked on SAIVT
SoftBio dataset using: (a) only color, (b) color+GEI and (c) color+FDEI, for two
different IDs. The images highlighted by the red border denote the true match.
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(a) (b)

Figure 5.9: Closed set Re-ID performance: (a)Bar graph shows the results obtained
by our color, color+GEI and color+FDEI on the entire MCID dataset and (b) Bar
graph shows the results obtained by our color, color+GEI, color+FDEI, only GEI
and only FDEI on subset of MCID dataset.

Figure 5.10: Examples of Re-ID gallery ranking, showing the first 5 ranked on MCID
dataset using: (a) only color, (b) color+GEI and (c) color+FDEI for two different
IDs. The images highlighted by the red border denote the true match.
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Chapter 6

Open-Set Person Re-ID

6.1 Why is Re-ID an open set recognition prob-

lem?

A recognition problem is termed as open set when the probe presented to the system

is not assumed to have match in the gallery set. In other words, the gallery is a set of

known classes and the incoming probe may be of a known class (found in the gallery)

or an unknown class. The same is the scenario for Re-ID mainly in multi-camera

tracking. Figure 6.1 shows a typical multi-camera tracking scenario that depends

on Re-ID to assign consistent IDs across cameras. Here, Re-ID is done across each

camera pair. The first time a person is seen, his/her appearance model is learned,

and the subject is enrolled in the gallery set. Gallery is a set of people IDs previously

seen. Thus, all people observed in the second camera form the probe set. Usually,
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Figure 6.1: Re-identification setup and gallery generation in a multi-camera scenario.

surveillance scenes are uncontrolled and hence the an assumption that people seen

in the second camera only come from the first camera is unrealistic. Ideally, after

Re-ID, all the people observed in the second camera who were previously unseen are

enrolled into the gallery. As the Re-ID moves to the next camera pair the gallery set

is extended. However, enrolling unseen IDs in the gallery post Re-ID requires the

ability to first determine whether the presented probe ID is a part of the gallery i.e.

is a known ID or a novel ID. This process of identification of a new or unknown ID

(class) is known as novelty detection and it is an indispensable part of an open set

Re-ID system.

However, current solutions to Re-ID always assume that Re-ID is a closed set

problem which can be addressed by effective ranking of the gallery IDs based on

a feasible notion of similarity with probe. This is an incomplete solution based on
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an unreasonable assumption. Hence, a mechanism to classify an incoming probe as

unknown or known is important. Novelty detection is a fundamental aspect of any

classification system and hence many models have been proposed [97, 98]. However,

this is non-trivial and some important issues need to be considered:

• Effective features that are capable of distinguishing between known and un-

known classes.

• Not possible to present all possible unknown classes to a system beforehand.

• As the list of known classes increase exponentially, how should the system scale

up to unknown classes.

Most often novelty detection is treated as a one-class classification problem. Ma-

chine learning models are trained using all possible instances of the known class.

However, with a problem like Re-ID the known class consists of multiple IDs, hence

multiple classes are known. Thus, known class (gallery) is a meta class consisting of

all the known (IDs seen before) classes. So to train a one-class system all the known

IDs are labeled as positive instances. One-class novelty detection techniques using

one-class SVMs [120] and Gaussian process classifiers [78] have been proposed. A

one-class SVM arranges all the data relative to the origin of the feature space and

attempts to detect a classification hyperplane that maximizes the distance between

the training data points and the origin. Other one-class classifiers attempt to con-

struct a hypersphere around the known data such that the hypersphere volume is

minimized. However, such a representation is unable to take advantage of distinct

classes within the known meta class to better generalize the classifier which leads to
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poor novelty detection performance. An improvement to this approach in attempted

in [139], where a small number of outliers within the known classes is used to better

refine the boundary of the hypersphere. This approach is closer to binary classifica-

tion. To capitalize on the variability within the known classes to better characterize

the known space the method proposed in [28] attempts to learn a joint subspace

where all samples of each known classes are mapped to a single point. Thus, novelty

detection is simply the process of computing a distance measure between the test

sample in the learnt subspace.

Scheirer et al. [119] proposed a one-vs-set SVM designed to establish a boundary

around the known class to better define a threshold beyond which a test sample is

no longer considered from the known class. This is done to strike a balance between

generalization and specialization of the known space. We adopt this approach to

better characterize the space defined by the gallery IDs and minimize the probability

of incorrectly labeling an unknown ID with a gallery ID. For Re-ID, if a novel ID is

incorrectly labeled with a gallery ID (false positive) the effect is 3 fold: 1)Obvious

false positive, 2)mis-label the probe ID which is the true match of the gallery ID

(mis-match), and, 3) as the novel ID was not detected as such it will not be enrolled

into the gallery, causing gallery misrepresentation. We also utilize a binary SVM for

novelty detection to better understand the effect of limiting the known space.

Re-ID challenges to novelty detection are as follows:

• Known IDs is a meta class (collection or previously seen IDs).

• Known and Unknown categorization is relative to the Re-ID system (does not
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align with fundamental differences in feature space).

• The probe ID always comes from another camera view: drastic appearance

changes.

• Gallery ID descriptions are low quality.

6.2 Open Set Re-ID: Proposed Approach

Typically, an Re-ID system not only has to classify the presented probe as unknown

or known, but also if it is known it has to determine which of the gallery IDs should

be assigned to it. The proposed method to open set Re-ID tackles both these aspects

separately. When a probe is presented to the Re-ID system it is first subjected to

novelty detection i.e. classified as either known or unknown. If the probe is classified

as a known ID, then gallery ranking is performed to assign it the most likely of the

gallery IDs. Figure 6.2 depicts the proposed Re-ID setup as an open set system

with novelty detection. Given a probe, the gallery ranking based Re-ID does not

Figure 6.2: Open Set Re-ID: Novelty Detection followed by Gallery Ranking.

have a mechanism to assign an unknown label to the probe. The proposed method
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addresses this by first presenting the probe to the novelty detection stage. This helps

the system to avoid labeling a non-gallery ID incorrectly with the gallery ID, which

implies that false positive ID matches will be reduced. This also provides a means

to enroll a newly seen ID into the gallery. The importance of such a stage is more

evident as the number of unknown IDs encountered increases, which is the case in

multi-camera tracking. For example, let us consider a camera network placed at

an airport. On any given day, the number of distinct people that go through an

airport for the very first time is extremely large as compared to the people seen over

and over again. The number of unknown IDs a system encounters compared to the

number of gallery IDs and number of probe IDs can be thought of as the openness of

the problem. Thus, for a trained novelty detection system the openness is expressed

in [119] as follows:

opennness = 1−

√
2 ∗ |numgallery|

|numprobe|+ |numtarget|
(6.1)

where, numgallery is the number of IDs that exits in the gallery and used to train the

novelty detection stage, numprobe is the number of probe IDs and numtarget is the

subset of probe IDs that exist in the gallery. As the openness increases the importance

of the novelty detection stage for Re-ID performance becomes more pronounced. The

gallery and probe IDs are represented using clothing color features. We leverage the

weighted HSV histograms described in the previous chapter as the color features.

The weighted HSV histograms were proposed in [19]. The body region is divided

into two parts: upper and lower, HSV histograms are extracted for each part. They

are formed using 16 bins for the H and S channels and 4 for the V channel. Each

pixels contribution to the histogram is weighted by it’s distance from the vertical
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dividing line. The histograms from the two body parts are concatenated to for the

final feature vector.

6.2.1 Binary SVM for novelty detection

The gallery set is represented as: Gi, for i = 1, ..., numgallery. All the gallery IDs are

used as the training samples of the positive (known, yi = +1) class for the SVM. For

every ID that exists in the gallery, a corresponding negative ID that does not exist in

the gallery set G is used as the sample of the negative (unknown, yi = −1)class. The

non-gallery set is represented as: NGi, for i = 1, ..., numgallery. Thus, the training

(IDs) set for the SVM is x = G ∪NG. A binary SVM attempts to learn a classifier

f(x) such that,

f(xi)


≥ 0, yi = +1

< 0, yi = −1

(6.2)

The binary SVM adjusts the hyperplane separating the gallery and non-gallery

classes in order to achieve maximum separation between them as shown in figure 6.3.

The hyperplane is detected by solving the optimization min 1
2
‖w‖2 + C‖ξ‖ subject

to yi(wxi + b) ≥ 1 − ξi. Here w is the normal to the hyperplane and ξi is the slack

variable, which can be thought of as a measure of minimum classification error that

is tolerable. It allows room for error in hyperplane detection when training data is

non-separable. By introducing lagrange multiplier the above quadratic optimization,

the weight vector w can be expressed as the linear combination of the training data.

Thus, w =
∑2∗numgallery

i=1 αixiyi. Thus, the SVM optimization problem is transformed
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Figure 6.3: Binary SVM: separating hyperplane.

into the following form:

max
αi≥0

∑
i

αi −
1

2

∑
(i,j)

αiαjyiyjx
T
i xj

subject to 0 ≤ αi ≤ C, and
∑
i

αiy1 = 0.

(6.3)

However, if the training data is not linearly separable, the data must be mapped

into some other Hilbert Space (complete inner product space) using a mapping

function. The SVM is then trained in the transformed space, i.e. the training

data is given by, φ(xi), for i = 1, ..., 2 ∗ numgallery and the hyperplane is repre-

sented by f(x) = (< w, φ(x) > +b). If there is a kernel function K such as

K(xi, xj) = φ(xTi ).φ(xj), we do not compute explicit transform φ. Incorporating

the kernel function in equation 6.3 becomes:

max
αi≥0

∑
i

αi −
1

2

∑
(i,j)

αiαjyiyjK(xi, xj)

subject to 0 ≤ αi ≤ C, and
∑
i

αiy1 = 0.

(6.4)
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In this work, we utilize a linear kernel function. This separation hyperplane is well

suited to classify the two classes during training but it does not establish hyperplanes

that can classify further additional known or unknown classes. The hyperplane

location is refined by classification error (empirical error, Rε(f)) minimization on

the training data, hence the SVM specializes at classifying IDs that lie on either side

of the hyperplane and close to the training IDs in feature space. However, it does

not address the open space on positive side of the hyperplane and thus a probe ID

will be classified as belonging to the gallery, no matter how far it is from the decision

boundary. One-vs-set (oneSet) SVM attempts to limit the distance a probe ID can

be from the hyperplane and still be considered as belonging to the gallery.

6.2.2 One-vs-Set SVM for novelty detection

Unlike a binary object recognition problem, the distinction between classes (IDs) in

Re-ID is bit more subtle as the boundary between known and unknown IDs is difficult

to generalize. For instance, in figure 6.4 the probe IDs denoted by green circles can

be classified correctly into either known or unknown with respect to the gallery IDs

used for training as they conform nicely to the detected decision boundary. However,

the probe denoted by the red circle is placed on the positive side of the hyperplane

in the feature space. The placement in the feature space is correct given the probe

feature(color), but incorrect with respect to the learned decision boundary (in ID

space). The one-vs-set SVM offers an elegant solution to this problem by better

specialization of the space defined by the gallery IDs. The gallery space specialization

is treated as a problem of minimization of the risk of placing a gallery ID outside
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Figure 6.4: Positive open space: all the space on the right side of the positive plane is
the positive open space, PO and the space denoted by the red circle is the positively
labeled space, PT (defined by the positive labeled training data).

the gallery space. Figure 6.4 better illustrates the proposed solution. A boundary is

established around the gallery space to better define it. Only those probe IDs that

are placed between positive plane 1 and positive plane 2 as classified as known IDs

that exist in the gallery. As the gallery increases these boundaries are continually

readjusted to handle increasing number of unknown class classification and to better

generalize the gallery space. Generalization/Specialization of the gallery space is not

handled as error minimization of the SVM training function but the after the SVM

is trained, the positive hyperplane placements are adjusted by minimization of an

error function that combines empirical risk over training data with open space risk.

The open space risk is modeled as follows:

Riskopen =
δβ − δα
δ+

+
δ+

δβ − δα
(6.5)
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where, δα and δβ is the distance from the decision hyperplane to positive plane α

and positive plane β. δ+ is the separation needed to encompass all the gallery data.

During optimization the open space risk is balanced with the empirical risk deter-

mined by classifying training data with the separating hyperplane. The optimization

process is described in algorithm 1. Here, λ is a regularization constant. This results

Algorithm 1 Optimization procedure: Gallery Boundary placement

procedure Train(λr, G,NG)
train a linear binary SVM using G and NG
for xi do

classifyŷi = f(xi) . Generate decision scores
end for
ŝ = sort(ŷ) . Sort decision scores
sα = min(∀ŝi ∈ f(G))
sβ = max(∀ŝi ∈ f(G))
positive plane α = marginal plane of f
positive plane β = plane parallel to positive plane α at sβ
Greedy optimization iteratively to move positive plane α to sα−1 or sα+1

and positive plane β to sβ−1 or sβ+1 to minimize Riskopen(f) + λRε(f(N ∪NG)).
end procedure

in both the boundaries of the gallery space on a decision score generated with respect

to the hyperplane f(x).

6.3 Experimental Results

In order to test the proposed framework we utilize the SAIVT SoftBio dataset. The

datasets provides 122 subjects that appear in at least 2 distinct camera views. The

reason for selecting this dataset is that along with large number of IDs it also provides

multiple frames per subject per camera, which is important for training the novelty
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Figure 6.5: Dataset split to train and test the proposed novelty detection SVMs.

detection stage. For each ID, one camera view is used strictly to generate test features

and the training features come from a distict camera view.

First, the entire dataset is split into 3 sets to generate the set of negative training

IDs(49), non-gallery probe IDs(58) and gallery IDs (15). Out of the 49 negative

training IDs, 15 (one negative ID per gallery ID) are used as the negative IDs to

train the novelty detection stage. Thus, the training set (x) consists of 30 IDs from

one camera view: 15 IDs that belong to the gallery (positive) and 15 negative IDs

that are not part of the gallery. For each ID, 35 images are used for training, this

means that per gallery ID 35 positive and negative samples are available for training.

Both the binary SVM and oneSet SVM are trained using the same training data.

Figure 6.5 pictorially depicts the dataset split.

The probe set always consists of the exact same gallery (known) IDs, i.e., the

target IDs, except the probe images come from a different camera view compared to
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the gallery view. This probe set is used to test the closed set Re-ID scenario. How-

ever, the probe set increases in openness as progressively more probe IDs are added

from the non-gallery probe IDs set. The number of probe IDs goes from 15 (same

as gallery IDs) to 70 (15 gallery and 55 non-gallery IDs). Thus, the probe openness

goes 0%, 7% to 40%. The gallery set is always fixed at 15 IDs. This experiment is

randomly repeated 5 times with distinct 3 way split of the 122 IDs. For every probe

ID, 20 images are available to the novelty detection stage for classification. A probe

ID is label as belonging to a particular class, if more than 80% of the probe frames

are classified by the novelty detection stage as belonging to that class.

The novelty detection stage is evaluated using two metrics: accuracy and F-

measure as per [119]. Accuracy is defined as the correctly classified IDs divided by

the total IDs presented to the novelty detection stage. True positives (TPs) are de-

fined as the number of probe IDs (that truly exist in gallery) that are detected as

gallery IDs. True negatives (TNs) are defined as the number of probe IDs (that do

not exist in gallery) that are detected as non-gallery IDs. False positives (FPs) are

defined as the number of probe IDs (that do not exist in gallery) that are classified as

gallery IDs. False negatives (FNs) are defined as the number of probe IDs (that truly

exist in gallery) that are classified as non-gallery IDs. The accuracy and F-measure

are given as: Accuracy = TP+TN
TP+TN+FP+FN

and F − measure = 2 Precision∗Recall
Precision+Recall

,

Precision = TP
TP+FP

and Recall = TP
TP+FN

. Figure 6.6 shows the changes in nov-

elty detection performance with increasing probe set openness. The overall accuracy

of classification using oneSet SVM is slightly better than binary SVM. Binary SVM

gives better accuracy when the probe set of closed, which implies that it has ab better
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true positive rate. However, as the probe openness increases the accuracy of oneSet

SVM increases slighly faster than binary SVM. This implies that the oneSet SVM

is more robust to probe openness than binary SVM as it is better at true negatives

or identifying novel IDs. The F-measure of both SVMs are comparable but as the

probe openness increases, we can see the same pattern as in the accuracy graph.

The objective of novelty detection stage is to correctly identify if the probe ID

exist in the gallery or not, in order to understand this better figure 6.7 shows the

TNs(accuracy of identifying a novel ID) and FPs (error in novel ID identification) of

the oneSet and binary SVM with respect to gallery openness. The oneSet SVM does

consistently better in both metrics with probe openness. Thus, it is reasonable to

conclude that the bounding of the gallery space does result in better novelty detection

performance. Figure 6.8 examples TP, TN and FP IDs with respect to the shown

gallery IDs using both SVMs. One important observation is that the TPs of the

novelty detection stage can be improved significantly by using more discriminative

features other than color to better specialize the SVMs. In order to understand the

impact of the novelty detection stage on Re-ID performance we take the probe set

IDs classified as known by both SVMs and present them to gallery ranking stage

to achieve Re-ID. The rank 1 matched gallery ID is assigned to each probe ID. We

compare the performance with Re-ID by ranking without the novelty detection stage

to further highlight the need for novelty detection as the probe set openness affects

the Re-ID rate (accuracy). For completeness purposes, we also compare a method

that incorporates a threshold on the gallery-probe similarity to reject false matches.

The threshold is varied from 0.1 to 0.95 in increments of 0.5, we only show the Re-ID
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performance with the threshold that performs the best, which empirically was found

to be 0.2. Figure 6.9 shows the Re-ID performance with and without the novelty

detection stage. For Re-ID, true positives (TPs) are the number of probe IDs that

are correctly matched (Rank 1 matching rate). Mismatches (MMs) are the number

of probe IDs that are incorrectly matched to gallery, when that probe ID does exist

in the gallery. False positives (FPs) are the number of probe IDs that are matched to

the gallery when the probe ID does not exist in the gallery. The accuracy (Re-ID rate)

and FAR are defined as Accuracy = TPs+TNs
NP

and FAR = (MMs+FPs)
NP

, respectively,

where NP denotes the total number of probe subjects. From the figure it is evident

that incorporating the proposed (binary or oneSet) novelty detection boosts the Re-

ID rate significantly. For the closed set scenario, gallery ranking based Re-ID rate

with or without a threshold is better than Re-ID with novelty detection. However,

as probe openness increases this performance advantage is reversed significantly.

Another note worthy point is, as the FAR obtained using the threshold based false

rejection technique is much lower than without it. However, either of the novelty

detection SVMs produce a significantly lower FAR. Thus, we can safely deduce that

either binary or oneSet SVM based novelty detection is a good first step towards open

set Re-ID. Further, the oneSet SVM based novelty detection better handles probe

openness than binary SVM and hence enables better open set Re-ID performance.

117



Figure 6.6: Novelty Detection Stage Performance: Top row shows the changes in
classification accuracy with the probe set openness and the bottow row images shows
the F-measure.
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Figure 6.7: Novelty Detection Stage Performance: Top and bottom row show evolu-
tion of TNs and FPs, respectively, with the probe set openness.
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Figure 6.8: Novelty Detection Output: Comparison of the classification performance
of both the oneSet and binary SVMs for probe openess = 7% case, i.e. probe set
consists of all 15 gallery IDs plus 5 unknown IDs.
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Figure 6.9: Open-Set Re-ID: Top row shows the changes in Re-ID rate (accuracy)
with the probe set openness and the bottom row images shows the Re-ID false
acceptance rate.
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Chapter 7

Conclusion and Future Work

7.1 Summary of Current Work

We have proposed two person models for Re-ID: 1) A spatio-temporal model based on

color and facial features that captures complementary aspects of a person’s appear-

ance, and 2) A combined color and gait features model that attempts to characterize

a person with behavioral features. Both these models are based on the assumption

that multiple frames of a person are available. The color model is suited for both

single and multi-shot Re-ID. A strategy for multiple person re-identification based on

the rectangular assignment problem was presented. Two strategies to address open

set Re-ID were also proposed: 1) Threshold applied to person model similarity, and

2) SVM based novelty detection. The key contributions of our work are as follows:
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1. An adaptive part-based spatio-temporal model based on color and facial fea-

tures was proposed.

2. A principled strategy for multiple-person re-identification based on rectangular

assignment problem was proposed.

3. A person-model similarity based false acceptance reduction criteria was devel-

oped.

4. Investigated if gait extracted from real world video sequences can be success-

fully leveraged as an additional feature along with appearance features for

person Re-ID in the context of surveillance.

5. Identified robust gait features that can be extracted from noisy and incomplete

silhouettes and yet retain discriminative capability for short and long Re-ID.

6. Proposed a SVM-based novelty detection technique to address open set Re-ID.

The novelty detection incorporated Re-ID significantly boosts open set Re-ID

performance.

We would also like to point out that, to the best of our knowledge, this is the first

proposed work that offers strategies for principled multiple person re-identification,

and novelty detection for open set Re-ID. This is also the first proposed work that

combines facial and gait features with clothing-based appearance features to boost

Re-ID accuracy. The potential of gait as an independent feature for long period

Re-ID was also demonstrated.
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7.2 Future Work

In this work, we demonstrated the potential of facial and gait features as a means to

boost Re-ID performance. Thus, they are still applicable to short period Re-ID. In

order to better understand the conditions under which these features can be reliably

applied to Re-ID some more work is required. Further, we have simply scratched the

surface in terms of open set Re-ID. Following are some of the future directions we

take from this work:

• Use machine learning techniques to better estimate the contribution of color,

face and gait features to Re-ID accuracy for effective combination of these

features.

• Explore strategies for fusion of all three features into a single combined model.

• Quantify the conditions like pose changes, view angle variations, scale and

resolution that make features like face or gait reliable for Re-ID.

• Use non-clothing based gait and facial features to train the novelty detection

stage to improve open set Re-ID.

7.2.1 Open Issues in Person Re-ID

As is evident, most of the work on person Re-ID leverages clothing appearance

based features designed for short-period Re-ID and is evaluated in closed set Re-ID

scenarios. The issue of long-period Re-ID is entirely unexplored and open set Re-ID
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is not completely tackled. In order to boost Re-ID performance, different sensors

like RGB-D [3, 15] and infrared [76] that capture soft biometric cues insensitive

to appearance variations are being explored. Some other variations of Re-ID are

verification and searching of people based on textual queries [117, 55]. For the

verification task, the system is presented by a probe that claims an ID and the system

has to decide if the probe ID is the same ID that is claimed [150]. Large amounts of

video data can be searched at high speeds using textual queries. Law enforcement

agencies can utilize such systems for surveillance or forensic purposes. For evaluation

of these Re-ID applications more specialized measures might be necessary.

The focus of current work in Re-ID is geared towards robust descriptors and

effective matching schemes but the issue of scalability is often overlooked. Scalability

refers to the ability of the system to adapt itself to realistically varying factors while

maintaining the performance. The following scalability issues need further research

to address the specified shortcomings:

• In real-world applications the gallery size is large and constantly increasing.

The common similarity based ranking techniques do not scale well and hence

efficient matching schemes need to be explored.

• As the gallery is ever changing, new models are added, learning based Re-ID

techniques like classifiers, bag-of-words or distance metric optimization need

to be re-calibrated in order to incorporate the variability in the gallery set to

maintain their performance.

• In order to maximize uniqueness, descriptors are often complex, high-dimensional
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and expensive to extract. This also makes the recognition process compute in-

tensive and complicated. These factors affect the temporal complexity of the

system making real time performance difficult to achieve.

• Large gallery sizes and high-dimensional models require large amounts of stor-

age space and computational resources to effectively analyze the data.

• Automated video analytics can be simplified by on-camera data processing

(smart cameras) and communications between cameras. However, storage and

computational resource intensive Re-ID systems cannot be easily scaled to work

with low power processors and narrow bandwidth transmission channels.

• All of the current approaches to Re-ID assume accurate person detection/tracking

prior to feature extraction. A rigorous analysis of effects of detection/t rack-

ing errors on Re-ID performance has, to the best of our knowledge, not been

performed.

• Following novelty detection, enrolling new subjects in the gallery is non-trivial.

Issues like quality of model, reconciling models from several cameras and effect

of Re-ID errors on gallery enrollment require further investigation.

Consideration of scalability issues within Re-ID research can lead to better designed

and more efficient systems. Most Re-ID systems produce a ranked list of gallery, but

this list might need to be refined by a human to boost the accuracy of the ranking.

As the gallery size increases this becomes more difficult to achieve. Thus, efficient

re-ranking schemes based on human input need to be addressed [87].
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Person Re-ID is a very challenging task with wide ranging application in numerous

fields. It has received a lot of attention lately and the Re-ID models and recognition

techniques have come a long way but are still very narrow and specific in their appli-

cation to real world problems. The most obvious next step in development of unique

models is the incorporation of biometric cues. Semantic information involving human

visual system based perceptual attributes can provide valuable descriptive ability to

the models. Building hierarchical models that incorporate relationships between low

level features and high level semantics would yield more coherent descriptors. The

models should be designed keeping in mind the complexity of feature extraction and

their storage footprints. Hierarchical models can be used to significantly alleviate

the search space within the gallery. This will greatly ease out the scalability issues

as well as reduce the compute intensive nature of recognition.

In summary, person Re-ID is a broad and challenging field with vast opportunities

for improvements and research. This work attempts to provide an overview of the

Re-ID problem, its challenges, propose solutions to short and long period Re-ID,

provide a starting point for open set Re-ID and present areas of future exploration.
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