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Abstract

The theme of this thesis is scaling, units, and dimensional analysis, along

with symmetry, and the failure of these concepts at the quantum level, along

with implications of such a failure. Such a failure can be quantified by a

quantity called the quantum anomaly. The term anomaly indicates devia-

tion from expected behavior, where expected behavior is of course classical

behavior, deviant behavior quantum behavior. In the introduction, we will

give a short, simple, self-contained example explaining what is renormaliza-

tion. This example will get to the heart of what we mean by the anomaly -

the complete destruction of a system’s symmetries due to quantum effects.

The applications of the anomaly are enormous, spanning several branches

of physics, from atomic to condensed matter to particle to gravitational

physics. For example, just within particle physics, the chiral anomaly is

responsible for the decay rate of the Π0 meson to two photons. The scale

anomaly is responsible for the Yang-Mills mass gap in pure QCD and the

formation of glueballs, and its calculation is an intermediate step in lattice

QCD to calculate the QCD phase diagram - indeed, the anomaly is respon-

sible for ΛQCD itself, through dimensional transmutation.

However, one of the most exciting applications of anomalies has been realized

only in this decade in the study of ultracold gases, where the measurement of

various manifestations of the anomaly has only now become experimentally

accessible to atomic physicists. In 2008, a set of universal thermodynamic
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relations known as the Tan relations was published in a series of 3 back-to-

back-to-back papers. In (2+1) dimensions, the Tan contact is merely the

anomaly.

In this dissertation, we develop a novel framework for calculating anomalies

using the path-integral and Fujikawa’s determinant. In particular, we derive

4 results: the anomaly for a (3+1) relativistic Bose gas, the Tan-pressure

relation for a (2+1) nonrelativistic Bose gas, a new derivation of the virial

theorem, and the relationship between the Fujikawa determinant and the

quantum effective potential using the background field method. Some un-

published results will also be discussed, and as how this all began, wildly

speculative ideas end the dissertation.
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1 Outline

The introduction is multi-purpose. It provides a narrative, starting from Kepler

in the 17th century and finding its way to the modern themes explored in the

appendices. The introduction also serves as a guide, with information on where

to go within the thesis for further information and details.

Since the thesis is about symmetry and the failure of symmetry due to quantum

effects, we’ve included a section on symmetry and a section on quantum mechan-

ics, sections 5 and 6, respectively. Of course, an exposition of quantum mechanics

would fill an entire textbook, so section 6 is minimal. To make up for this, we

provide a complete, self-contained pedagogical guide to symmetries and Noether’s

theorem, and the result, section 5, contains a lot more information than any sin-

gle textbook. It should be mentioned that we use the term quantum mechanics

and quantum field theory interchangeably: one can view quantum field theory

as quantum mechanics applied to fields, or view quantum mechanics as quantum

field theory in (0+1) dimensions.

The appendices represent papers already published, or are currently under review.

Section 7.1 is written at the undergraduate level, and comes from figuring out

how to get undergraduates at this university to understand units. We will use it

to explain setting ~ = c = 1 in relativisitic quantum mechanics and ~ = m = 1

in nonrelativisitic quantum mechanics, and with that information derive the Tan-
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pressure relation. Although sections 5 and 7 are at an undergraduate level, we

worked hard to be pedagogical, and hope that the resulting presentation exceeds

anything that can be found out there, so that although the ideas in these sections

are not novel, we hope the presentation can be.

2



2 Conventions

Many of these conventions will be explained in later sections where they are

needed. However, they are all collected here for ease of reference. Most of these

conventions are standard.

The notation used for the same function, but viewed in different coordinate sys-

tems, is standard in field theory, but evidently not in all of physics. Suppose

you have a function f(x, y) = x2 + y2. If one writes this in polar coordinates as

f(r, θ) = r2 then technically this is incorrect because f was defined as taking the

first argument squared and adding it to the second argument squared, so that

f(r, θ) = r2 + θ2. Therefore one needs to define a new function g(x, y) = x2

that outputs the first argument squared and leaves the second alone, so that

g(r, θ) = r2. However, it would be a shame to give an entirely different name

to this second function, since it’s obviously related to the first function. So we’ll

still call both functions f , but attach a superscript: f 1 = f 1(x, y) = x2 + y2

and f 2 = f 2(x, y) = x2. By convention we call the first coordinate system the

unprimed coordinate system, and the second coordinate system the primed coor-

dinate system, so that f(x, y) = x2 + y2 and f ′(x, y) = x2. Of course context will

tell us that the prime does not mean a derivative. The relationship between f

and f ′ is that f(x, y) = f ′(x′, y′) = f ′(r, θ) or that x2+y2 = r2. f ′(r, θ) = f(x, y),

or more generally f ′(x′, y′) = f(x, y), can go with the mnemonic “new function

at new coordinate equals old function at old coordinate,” which is true for func-

tions that are “scalars” under the coordinate transformation. Note that (x, y)
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and (r, θ) represent different coordinates, but correspond to the same physical

point. As a concrete example, (0, 1) in the Cartesian coordinate system refers to

the same point as
(

1, π
2

)

in the polar coordinate system, but we will not write

(0, 1) =
(

1, π
2

)

because the coordinates are not equal. When we take the differ-

ence of the two functions δf = f ′ − f , it will always be the difference at the

same coordinate δf = f ′ − f ≡ f ′(x, y) − f(x, y), and not at the same point

δf = f ′ − f 6= f ′(x′, y′)− f(x, y), where the latter is most often, but not always,

zero (see mnemonic). This will be critical because in field theory, variations of

fields are always done at the same coordinate, and in general for two different

coordinate systems, the same coordinate represents different physical points. In

general, language is used to speak about points, but mathematical manipulation

and calculation considers coordinates. This can be replaced with the mnemonic

“words use points, math uses coordinates.”

We use the Einstein convention where repeated indices are summed, e.g., xµxµ =
D
∑

µ=0

xµxµ, where D represents the number of spatial dimensions, and 0 represents

the time dimension.

For a tensor with two indices, one upstairs and one downstairs, such as Θµ
ν , if

it is not symmetric, then by default we will have Θµ
ν ≡ Θµ

ν . For tensors with

more than two indices upstairs and downstairs, we will be more careful with the

horizontal spacing of the indices.
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The expression x → u acting on another expression simply means to replace all

instances of x in that expression with u. This might be because x = u so such

a replacement is legitimate (though replacing → with = would be more clear in

this instance), or it might be that x 6= u and we just want to see how the expres-

sion transforms when we make the replacement anyways, which is convenient as

it allows you to play with one side of an equation without constantly showing the

required redefinitions of the other side to maintain the equality.

Calligraphic font will only be used for densities (although not all densities will be

denoted by calligraphic fonts), so that L is the Lagrangian density, E is the energy

density, A is the anomaly density, and H is the Hamiltonian density. Most of the

time we’ll leave off the word densities, so that we’ll call L the Lagrangian when

strictly speaking it’s the Lagrangian density.

In relativistic systems, we set ~ = c = kB = 1, and choose the signature of our

metric gµν as (+−−−). We define ǫ0123 = 1 so that ǫ0123 = −1.

For nonrelativistic systems, we set ~ = m = kB = 1, c = ∞, and ǫ123 = ǫ123 = 1.

A plane wave basis vector will have the form 〈~x|~k〉 = ei
~k·~x, so that 〈~k′|~k〉 =

(2π)DδD(~k′ − ~k), where D is the number of spatial dimensions. Since |k〉 is not

normalized, the completeness relation is:
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1 =

∫

dDk
|~k〉

√

〈~k|~k〉

〈~k|
√

〈~k|~k〉
=

∫

dDk
|~k〉〈~k|

〈~k|~k〉
=

∫

dDk

(2π)D
|~k〉〈~k| ≡

∫

dDk̃ |~k〉〈~k|

(1)

A coordinate x without any sub- or super-scripts indicates all the coordinates, so

that f(x) ≡ f(xµ) = f(x0, x1, ..., xD). We will use this convention when writing

out all the indices only constitutes a distraction for the reader.

Under the simultaneous transformation with infinitesimal parameter ǫ:

xµ → xµ − ǫfµ(xη)

φ(x) → φ(x) + ǫδφ(x)

(2)

the Noether current is taken to be:

jµ =

(

∂L

∂∂µφ
δφ

)

− Lfµ (3)

Note that this convention of the current has the opposite sign of the convention

used for current algebra for Lie groups.

With this definition, upon quantization,

Q ≡

∫

dDxj0

eiQφe−iQ = φ+ δφ

(4)

Strictly speaking, Q should be Q̂ and φ should be φ̂, to indicate these are now

operators. However, unless there is any danger of confusion, we shall dispense
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with the ornaments.

Partial differentiation is denoted by ∂, while functional differentiation by δ, so

that

∂φ(x)

∂φ(y)
= δD+1

xy ,
δφ(x)

δφ(y)
= δD+1(x− y) (5)

where δD+1
xy is Kronecker delta and δD+1(x− y) is Dirac delta.
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3 Timeline

We initially set out to calculate the scale anomaly for the nonrelativistic δ2(~r )

potential using path integrals with a technique borrowed from high-energy physics

known as Fujikawa’s method. Prior to our work, all attempts to use path integral

techniques to solve for the anomaly in the context of nonrelativisitic physics had

resulted in failure. We had the choice of working in the 1st- or 2nd-quantized

theory. The 1st-quantized theory is difficult because the interactions are nonpoly-

nomial, and Fujikawa’s method is at its core a field-theoretic technique, so it was

not clear how to control the infinities for a nonpolynomial interaction, particu-

larly for an interaction with the singular behavior of δ2(~r ). So the 1st-quantized

approach was abandoned. But even in the 2nd-quantized theory where the δ2(~r )

potential becomes a polynomial interaction, it was not clear how to proceed. In-

deed, even in the relativistic sector, there does not seem to exist a set procedure

for deriving the anomaly using Fujikawa’s method for non-quadratic interactions.

The nonrelativistic sector is even worse: time and space are no longer symmet-

rical, and simultaneously controlling both the infinities in time and space added

another layer of complexity absent in the relativistic sector. Ultimately these is-

sues were overcome, resulting in the paper in section A.

At the same time, we were investigating the evaluation of the Jacobian for the

nonrelativistic case, we developed a thermodynamic framework for the treatment

of SO(2, 1) anomalies using path integrals and scaling transformations [1], using

the well-known relationship between quantum field theory and statistical mechan-
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ics, and in particular the relationship between the path integral and the partition

function. This clearly established the role of the Fujikawa Jacobian in describing

anomalies for systems at finite temperature and density, generalizing the original

work by Fujikawa at zero temperature and density. Shortly afterward, we ex-

ploited this framework to give a new general derivation of the virial theorem in

the context of field theory, resulting in the paper in section B.

Although we borrowed Fujikawa’s method from high-energy physics to solve prob-

lems in low-energy, we were able to give back: we took what we learned from

applying Fujikawa’s method to the nonrelativistic sector, in particular the impor-

tance of using a matrix-regulator, along with the thermodynamical relationship

between field theory and statistical mechanics, and applied it towards solving

high-energy problems, resulting in the papers of section C and D.
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4 Introduction

In this introduction, we will give an overview of the various themes of this thesis,

along with a road-map of where in the thesis to go for elaborations and more de-

tailed information such as the mathematical articulation of these themes. We will

also define much of the jargon through intuitive examples: a rigorous definition

of the jargon will be reserved for other sections.

As mentioned in the abstract, the unifying theme of this thesis is scaling, units,

and dimensional analysis, along with symmetry, and the failure of these concepts

at the quantum level, along with the implications of such a failure. So let us start

with classical scaling arguments.

Scaling arguments are used extensively in physics. As an example, consider a

planet orbiting the sun. Newton’s law reads:

−

(

GMm

r2

)

êr = mẍ (6)

Ignoring the constants, the scaling structure of (6) is of the form

1

r2
=
d2x

dt2
(7)

If we make the replacement x→ ℓx we get

1

ℓ2r2
=
ℓd2x

dt2
(8)

10



Now we can see that if we make the additional replacement t→ ℓ
3
2 t in (8), we get

back (7).

Therefore if we multiply the distance of the planet by ℓ, and the period by ℓ
3
2 ,

then this is also a solution of (7) and hence (6). This is Kepler’s 3rd law, that

T ∝ R
3
2 or T 2 ∝ R3. Stated another way, if x(t) is a solution of (6), then so is

ℓx(ℓ−
3
2 t).1

We chose this example because all the transformations considered in this thesis

will be a pair of simultaneous transformations of the form:

t→ ℓηt

f(t) → ℓξf(ℓ−ηt)

(9)

This type of transformation involves scaling a coordinate t, and a function of this

coordinate f(t).2 We will refer to these transformations as scale transformations

or dilations (we will use these two terms interchangeably). The specific values of

ℓ and ξ that we will use can be found in sections 5.5 and 5.6. Most of the time

invariance of the equations of motion under a transformation leads to a conserved

quantity: however, the transformation we gave for planetary motion does not lead

to a conserved quantity via Noether’s theorem, as demonstrated in comment three

in section 5.4.3. Noether’s theorem requires that the action remain invariant un-

1Formally one can set x(t) = ℓx′(t′) and t = ℓ
3

2 t′ in (7), then x′(t′) = x(t′) since the same

equations have the same solution, so that x(t) = ℓx′(t′) = ℓx(t′) = ℓx(ℓ−
3

2 t).
2In the example of the orbiting planet, f(t) = x(t), η = 3

2 , and ξ = 1.
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der the transformation (up to a surface term), which automatically ensures the

equations of motion are invariant under the transformation, but the converse does

not always hold true.

Scaling arguments are also used extensively in statistical mechanics. Consider

a box of volume V filled with photons at temperature T . We wish to find the

Helmholtz energy F = F (T, V ).3 The only variables in our theory are V , T , ~,

c, and kB, the latter three being the (reduced) Planck’s constant, the speed of

light, and Boltzmann’s constant, respectively. T is called an intensive variable

since it doesn’t depend on the size of the system: if you double the size of the

system, T remains the same. Both F and V are extensive variables: if you double

the size of the system, F and V double. Therefore F must be proportional to

V . Using dimensional analysis, the dependence of F on T and V must therefore

be F = n
(

k4B
~3c3

)

V T 4. Dimensional analysis has given us everything except the

pure number n. Using the thermodynamic relations E = F +TS = F −T ∂F
∂T

and

P = − ∂F
∂V

:

E − 3PV = F − T
∂F

∂T
− 3

(

−
∂F

∂V

)

V

= F − 4F + 3F = 0

(10)

We chose this example because, as we will see in section C, thermodynamically

the anomaly for a relativistic system in 3+1 dimensions manifests itself as:

3Since photons are not conserved, µ = 0, so by ∂F
∂N

= µ, F = F (T, V,N) = F (T, V ).
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A =
E − 3PV

V
= E − 3P (11)

The anomaly for a nonrelativistic systems (section E) in 3+1 dimensions manifests

itself as:

A =
2E − 3PV

V
= 2E − 3P (12)

Therefore, based on the classical scaling arguments above, a box of photons has

no anomaly. But is the zero value of the anomaly obtained from (10) for a box of

photons under classical reasoning maintained under quantum scrutiny?

Many more such examples of classical scaling arguments could be told, and such

arguments are useful for “back-of-the-envelop” calculations. Scaling arguments

often work in physics because the problems considered only have a few scales.

This is in contrast with architecture, where there are many scales, so that if one

scale breaks, the structure still stands....

Well, so much for classical scaling arguments. We now turn to scaling arguments

in the quantum theory.

We begin by investigating the consequences of scaling arguments on the energy

spectrum of a system. Consider the Schrödinger equation for a free particle:

13



−
~
2

2m

d2ψ

dx2
= Eψ (13)

The goal is to find the energy E of the differential equation subject to the usual

quantum constraints that are quite reasonable (finite solution at infinity, contin-

uous and smooth). The only parameters of the theory are ~ and m. However,

there is just no possible way to form units of energy just out of ~ and m. We

can consider ~ℓmξ, and try all possible values of ℓ and ξ, but we will never get a

quantity with units of energy. This would be akin to trying to form units of mass

out of length L and time T : LℓT ξ, no matter what values ℓ and ξ are, will never

get you a mass. In general, you need three independent units,4 from which all

other units can be derived (in mechanics the standard choice is L, T , and M , and

for example momentum isM1L1T−1). Since we are unable to form units of energy

out of the parameters of our system, we must therefore conclude that E = 0 or

E = ∞, because these two numbers are special in that they are scale-invariant so

require no units: zero centimeters equals zero meters equals zero light-years. And

±∞? - ditto. Actually, there is one more case: E could be a continuum between

0 and ∞. Common sense says this is the case. So we have solved for the spectrum

with dimensional analysis and common sense: E = (0,∞), where the units are

MegaErgs, or whatever you please.

As another example, take the harmonic oscillator:

4See section (7.1) for a discussion of this.

14



−
~
2

2m

d2ψ

dx2
+

1

2
mω2x2ψ = Eψ (14)

Solving for the spectrum requires knowledge of the classical orthogonal polynomi-

als, or even more abstract, knowledge of ladder operators. Therefore, we will not

solve it here. However, dimensional analysis says the only way to form units of

energy out of ~, m, and ω, is through ~
1m0ω1 = ~ω. Therefore, the spectrum can

be discrete with scale ~ω. Indeed, the spectrum is En = (n+1/2)~ω, n = 0, 1, 2, ....

There is one more example before we get to a system with a quantum anomaly.

Consider an infinite square-well with V (x) = 0 inside the well, and V (x) = ∞

outside the well. Our parameters are ~, m, and V . V already has units of en-

ergy - unfortunately, the values of V are 0 and ∞, which can’t provide a scale.

Therefore we must conclude that the energy is 0, ±∞, or a continuum between

those numbers. However, looking up the answer on Wikipedia, the spectrum is

En = π2

2

(

~2

mL2

)

n2. We had forgotten about the length of the well, L, which pro-

vides the scale in the problem.

A more systematic way of applying dimensional analysis to nonrelativistic quan-

tum mechanics is discussed in section 7.2, but we will now turn our attention to a

system with a quantum anomaly. But before we do, we should point out that 0 and

∞ are but two numbers on an uncountably infinite number line. But very small

numbers and very large numbers have an approximate scale-invariance, so long as

the scale transformations are reasonably small, e.g., 10±1015cm = 10±1015−5km ≈

15



10±1015km. So a very large number like 1010
15

or a very small number like 10−1015

needs no units, like their ∞ and 0 archetypes, so long as your scale transforma-

tions (e.g., cm → km) are small. To illustrate this I will steal two quotations from

a very good thermodynamics book [2]:

Ten percent or more of a complete stellar inventory consists of white

dwarfs, just sitting there, radiating away the thermal (kinetic) energy

of their carbon and oxygen nuclei from underneath very thin skins of

hydrogen and helium. They will continue this uneventful course until

the universe recontracts, their baryons decay, or they collapse to black

holes by barrier penetration. (Likely time scales for these three out-

comes are 1014, 1033 and 1010
76

— years for the first two and for the

third one it doesn’t matter). Virginia Trimble, SLAC Beam Line 21,

3 (fall, 1991).

It all works because Avogadro’s number is closer to infinity than to

ten. Ralph Baierlein, American Journal of Physics 46, 1045 (1978).

Now onto the quantum anomaly and an explanation of renormalization. Consider

the following system:

−
~
2

2m

(

∂2

∂x2
+

∂2

∂y2

)

ψ −
~
2λ

2m
δ2(~r )ψ = Eψ (15)
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Physically the system represents a two-dimensional, infinitely deep (but infinites-

imally small) potential-well. Before we solve this, let us see what dimensional

analysis has to say. The parameters in the theory are ~, m, and λ. However, λ

has no dimensions: it is a pure number.5 Therefore, we conclude that the energy

is E = 0 or E = ±∞, or a continuum in between those numbers. In particular,

we are looking for a bound state, i.e., a particle trapped in the well, like an orbit-

ing comet trapped in the sun’s gravity, going in circles around it, never escaping.

Therefore we conclude Eb = 0, as Eb = −∞ would indicate that particle would

emit infinite energy as it collapses to the center.

However, this is not the end of the story with this system. This system has

been solved in many different ways by many different people [3, 4, 5, 6]. We will

follow the procedure in [6], where we replace the potential V (r) = −~2λ
2m
δ2(~r )

with VR(r) = −~
2λ
2m

θ(a−r)
πa2

. VR is more general than V , constituting a continuum of

circular-well potentials parametrized by a such that: 6

lim
a→0

VR(r) = V (r) (16)

The solution for the bound state energy with the potential VR is:

Eb =
−2~2e−2γ

ma2
e

−4π
λ (17)

where γ = .577... is the Euler-Mascheroni constant.

5δ2(~r ) has dimensions of L−2, since
∫

d2~r δ2(~r ) f(~r) = f(~0).
6
∫

d2~r
(

θ(a−r)
πa2

)

= 1, and θ(a− r) = 0 for r > a: this is δ2(~r ).
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The most immediate question is how were we able to form units of energy? That’s

simple: the introduction of the scale a by the replacement of V with VR. The sec-

ond question is more tricky: don’t we have to send a → 0 to describe the δ2(r)

potential? When a → 0, (17) blows up, and we get Eb = −∞, as expected by

classical scaling argumentation, but absurd by physical argumentation (a bottom-

less pit to which you can rig a machine to extract infinite energy).

The theorist shrugs and says that the system can therefore not be physically real-

ized in nature. The experimentalist goes out and measures Eb and gets the value

Eb = −7.45µeV for a trapped hydrogen atom in that potential.

The theorist surmises that the experimentalist is joking that he’s so good at ex-

periment, that a is so tiny that it’s pretty much a δ2(~r ) potential - but there is no

possible way he could have created a true δ2(~r ) potential, or else the energy would

be much higher, infinite if he truly achieved δ2(~r ). Therefore the experimentalist

must have created a well that was very deep and narrow, but not at the level

of δ2(~r ). And it is for this well that the value Eb = −7.45µeV was measured.

The theorist then demands that the experimentalist tell him what is the size of a

so that using (17) and the quoted value of Eb, he can calculate λ. However, the

experimentalist insists that he created a genuine δ2(~r ) potential so that there is

no a (or equivalently, a = 0).
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Figure 1: λ vs a for Eb = −7.45µeV

The theorist ignores the experimentalist and guesses a = 1 nm, and using (17)

with Eb = −7.45µeV,7 arrives at λ = 10. However, he remembers the experi-

mentalist scored some extra grant money to add juice to his machine, so maybe

a = .5 nm, an even lower value, so that λ = 4.76. The theorist then decides to

just do this for every a, and plots λ = λ(a) such that Eb = −7.45µeV, resulting

in figure 1.

The theorist is now stuck since he doesn’t know what the value of a is, so he

sneaks into the experimentalist’s lab to conduct some scattering experiments in

the potential-well. Scattering happens when one shoots atoms at the potential

with so much energy, that the atoms are only deflected by the well, and not

trapped by it - like a comet moving so fast its trajectory is merely deflected by

a large gravitational body, instead of being completely trapped in orbit around

it. However, since the theorist is a novice as experiment, he is only able to shoot

7One can write Eb = −2~2e−2γ

ma2 e
−4π
λ =

−2(~c)2e−2γ

(mc2)a2 e
−4π
λ , use ~c = 0.19732697 eV · µm and

mHc2 = 938.272046MeV, and plug in Eb to get λ = λ(a).
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hydrogen atoms with low momentum. The probability that a particle of initial

momentum ~q scatters under VR is given by:

fq =

√

2π

q

[

ln

(

q2

2m

2~2e−2γ

ma2
e

−4π
λ(a)

)

− iπ +O
[qa

~

]

]−1

(18)

The theorist thinks now he’s got the experimentalist: all he has to do is plug in

every value of (a, λ(a)) from his graph in figure 1 into (18), and see which pair of

values matches the scattering data fq that the theorist secretly recorded. To the

theorist’s horror, every value reproduces the scattering data.

On closer inspection, the theorist notices that the denominator of the logarithm

in (18) is exactly the expression for Eb in (17), and the graph of pairs of points

(a, λ(a)) was determined precisely to give this value of Eb. The theorist is not

skilled enough at experiment to observe O
[

qa
~

]

corrections.

Therefore, really (18) can be written as:

fq =

√

2π

q

[

ln

(

q2

2m

|Eb|

)

− iπ +O
[qa

~

]

]−1

=

√

2π

q

[

ln

(

q2

2m

|Eb|

)

− iπ +O

[

a

λq

]

]−1
(19)

where λq is the de Broglie wavelength of the hydrogen atom. The theorist pauses

to muse over his fate. There is no possible way, given his limited experimental

skills — which we call his ignorance — to figure out what λ and a are. They can

be any point along trajectory that is figure 1. So to the theorist, a and λ are no
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longer physical, observable values. They are parameters in his theory that have

no physical meaning. Eb and fq are the only physical values, and a and λ were

only used as an intermediate step to relate the two physical quantities. If only the

theorist were skilled enough to get the de Broglie wavelength λq of his hydrogen

projectiles on the order of a nanometer could he discover the true physics beneath

it all, since the O
[

a
λq

]

term can select a pair (a, λ(a)). As it stands, the theo-

rist can forget about figuring out if the experimentalist was pulling his leg about

achieving a δ2(~r ) potential - the theorist can’t even tell if it’s closer to 1 nm or

.5 nm. The theorist is forced to admit that the experimentalist could be correct,

that he achieved a = 0 and Eb = −7.45µeV, the point at the origin of figure 1.

The theorist decides to call it a day: he was unable to one-up the experimentalist,

and besides, The Big Bang Theory television show is about to begin.

The process of choosing a model VR is called regularization. The replacement of

the unphysical parameters (a, λ(a)) that a theorist uses by physically measurable

quantities (Eb, fq) that an experimentalist measures is called renormalization. The

transformation that takes (a1, λ(a1)) to (a2, λ(a2)) along the trajectory of figure 1

is called a renormalization group (RG) transformation, and the fact that a whole

collection of points (ai, λ(ai)) gives the same physics is called invariance under the

RG group. The fact that Eb is a physical scale in the problem that was nowhere to

be found in (15) is called dimensional transmutation. Dimensional transmutation

is responsible for the scale anomaly, the breaking of dilational symmetry. To see

this, consider making the scaling x→ ℓx in (15):
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−
~
2

2m

(

∂2

∂ℓ2x2
+

∂2

∂ℓ2y2

)

ψ −
~
2λ

2m
δ2(ℓ~r )ψ = Eψ (20)

It can be shown8 that δ2(ℓ~r ) = 1
ℓ2
δ2(~r ). Therefore in order for (20) to give the

same equation as (15), it must be true that E = E
ℓ2

(so that all the ℓ’s cancel on

both sides), and if E = E
ℓ2

is true for any ℓ, E = 0 or E ±∞, i.e., E is invariant

under change of scale. The existence of E = Eb 6= 0 on the RHS of (20) as a scale

through dimensional transmutation breaks invariance under dilations. Indeed, the

anomaly A, a measure of the degree of symmetry-breaking, satisfies
∫

d2~xA = Eb:

this will be derived in section 6.1.2.

Let’s pause to quickly go over the meaning of introducing a into the problem and

having λ = λ(a), for eventually it is a (dimensions of length) that got transmuted

to Eb (dimensions of energy) which broke our symmetry, so that understanding

the meaning of a will shed light into how Eb ultimately came about. The theorist’s

intuition was correct that the experimentalist could not possibly measure physics

at a = 0. The smallest distances in physics are probed by the Large Hadron

Collider (LHC), and while they can keep pushing towards understanding physics

at the smallest of scales, they’ll never reach a = 0 (at the time of this writing they

are at a = 1 nano̊angström). So physics below a = 1 nano̊angström is unknown.

So it makes perfectly good sense to choose a value of (a, λ(a)) such that a is just

outside of the range of known physics for the area you’re studying ([0, a] is the

region of our ignorance, and we say that a parametrizes our ignorance). It pays to

8
∫

d2~r δ2(ℓ~r )f(~r ) = 1
ℓ2

∫

d2(ℓ2~r) δ2(ℓ~r )f
(

ℓ~r
ℓ

)

= 1
ℓ2

∫

d2~r δ2(~r )f
(

~r
ℓ

)

= 1
ℓ2
f(0).
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be conservative in this case, for the larger value of a we use, the smaller q needs to

be before O[qa]9 terms grow and we admit our models need fixing. The growth of

O[qa] terms indicates that new physics is emerging, invalidating the choice of VR

with a certain a as an accurate model applicable to that scale: the model predicts

its own demise through the increasing relevance of discarded O[qa] terms. The

flip side is that any VR, at low enough q, will predict the same results, as then

O[qa] become too small to measure, and results only depend on Eb: the entire

RG trajectory gives the same physics. As a consequence of this, our model can

be completely wrong regarding the behavior at high q (indeed, different a have

different O[qa] terms: the exact value of a matters when we probe to this level

of accuracy, and different a give different corrections), but it still predicts the

correct results at low q when O[qa] is undetectable: in other words, phenomena at

the smallest of scales a, like quantum gravity, have no effect that we can observe

if we can only probe the smallest of q. This is both a bane and a blessing: it

ensures that what we don’t know (a < 1 nano̊angström) has no effect on what

we know (a > 1 nano̊angström), allowing us for example to understand classical

mechanics without having to understand quantum mechanics, but at the same

time this means the only way to probe what we don’t know is through high q

and, ultimately given the costs, we may never be able to probe beyond a certain

point and there is no other way to learn about new physics: we would be stuck

with a set of (a, λ(a)). In any case, speculation of the relationship between a and

Eb for this specific δ2(~r) potential in terms of physics at unknown scales will be

9From this point on we write O
[

qa
~

]

as just O[qa]: for more information on this see section

7.2.
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reserved for section 10. It should be noted that it would be incorrect to say that

quantum gravity has no effect on our measurements at low q. It has no effect

through O[qa] terms due to the smallness of a (compared to our capabilities of

producing high enough q), but it contributes to Eb, which is only accessible by

experiment. We say that quantum gravity can only renormalize the couplings of

our low-energy interactions, but can’t provide an entirely different interaction be-

cause these interactions are suppressed by O[qa]. So when we measure the electric

charge, that includes not only the electron interacting with its photon field, but

also quantum gravitational effects: all these things together lead to the charge of

the electron quoted in textbooks, and we are unable to disentangle how much of

the charge is contributed by the photon and how much is due to quantum gravity,

as the renormalized charge is determined by experiment where quantum gravity

and electromagnetism are always on.10

Note this discussion about the meaning of renormalization is not something of

only philosophical interest, but even has some utility. Evidently the δ2(~r ) po-

tential models any attractive potential when the de Broglie wavelength λq = ~

q

is large compared to the range a of the potential, because choosing smaller val-

ues of a has no effect on measurable quantities, since they contribute at order

O[ qa
~
] = a

λq
. Or expressed another way, the de Broglie wavelength λq is too large

to resolve the structure of a small range interaction a. The δ2(~r ) potential is an

example of a contact interaction, and all systems where the range of interaction

10Unlike the a of δ2(~r ), for gravity we actually know the length λq such that
λq

Lg
≈ 1: this is

Lg = LPlanck =

√

~G
c3

= 1.6162 ·10−26 nm, where the scale G is Newton’s gravitational constant.
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a is small compared to all the other scales in the systems behave similarly - this

is the essence of the Tan relations.

According to Noether’s theorem, in classical physics, continuous symmetries of

the action imply a conservation law (see section 5.4.2 for four different proofs of

her theorem). The same thing essentially happens in quantum physics, except

that the conservation law becomes an operator equation since the current is now

an operator. However, due to the quantum anomaly, the symmetry is broken, and

we would expect that the charge is no longer conserved. This is indeed correct.

We show in section 6.2.3 that the modified conservation equation is:

∂µ〈0|j
µ(x)|0〉 = −i

〈

0

∣

∣

∣

∣

∣

tr
δδφk(x)

δφℓ(y)

∣

∣

∣

∣

y=x

∣

∣

∣

∣

∣

0

〉

(21)

The RHS is called the anomaly. When the anomaly is zero, (21) is called the

Ward identity, which is the quantum version of Noether’s conservation equation.

Eqn. (21) for anomalies is derived from the path integral approach, which is dis-

cussed in section 6.2. Within the path-integral approach, the anomaly is simply a

Jacobian, so that all anomalies reduce to the calculation of Jacobians. We calcu-

late the Jacobian for a nonrelativistic (2+1) Bose gas in section A, for chargeless

scalar electrodynamics in section C, and for a set of O(N) scalar fields in section D.

The reason the conservation laws are modified by a Jacobian results from the fact

that in quantummechanics, we are interested in integrating the action
∫

[dφ(x)]eiS[φ(x)] =
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1, whereas in classical physics, we are interested in differentiating the action

δS[φ(x)]
δφ(x)

= 0. Symmetry transformations are effected through a change of variables,

and although the action remains constant, the measure picks up a Jacobian:

∫

[dφ(x)]eiS[φ(x)] =

∫

[dφ′(x)]

∣

∣

∣

∣

δφ(x)

δφ′(y)

∣

∣

∣

∣

eiS[φ
′(x)]+...

=

∫

[dφ′(x)]ei(S[φ
′(x)]−i ln J)+...

=

∫

[dφ(x)]ei(S[φ(x)]−i ln J)+...

(22)

where in the last line we relabeled the integration variables. Therefore the action

is effectively no longer invariant, but rather S[φ(x)] → S[φ(x)]− i ln J . If the Ja-

cobian J = 1, then S[φ(x)] → S[φ(x)] just as in the classical case, and the action

effectively remains invariant. This gives the idea that the quantum effective action

Γ[φ(x)] might contain information about the anomaly, since it already includes

quantum effects. The quantum effective action is constructed so that the classical

equations of motion δΓ[φ(x)]
δφ(x)

= 0 gives the quantum result. This is discussed in

section D.

By setting J = 1, we can also recover non-anomalous results. We do this in section

B to derive the standard non-anomalous virial theorem and in section E to derive

the Tan-pressure relation in 3 spatial dimensions where there is no anomaly.
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5 Transformations and Symmetries

In this section, we carefully define what we mean by points, coordinates, trans-

formations, functions, and symmetry. This will be the only section where we are

pedantic about such things. In later sections, we will speak more loosely. In-

deed, everything in this section is obvious by intuition - the only difficulty is in

establishing notation where clarity is sometimes traded for convenience. Of course

mathematicians are very pedantic about such things and if the notation in this

section is confusing, one is free to adopt the notation one uses in the study of

differential topology, where a clear distinction between points in a manifold and

the mapping of the points to coordinate charts is established at the outset. The

culmination of this section is several derivations of Noether’s theorem, and the

application of her theorem to systems with dilational symmetry.

Along the way, we’ll provide plenty of concrete examples to use in the formulas,

to further elucidate the notation. We’ll also provide catchy mnemonic phrases to

remember the formulas.

5.1 Coordinate Transformations

First, it’s necessary to distinguish between points and coordinates. A point is a

physical location such as the Kemah Boardwalk. A coordinate is a label for this

point such as (29.544,−95.022). Such labels depend on the coordinate system

chosen (the example given above corresponds to a coordinate system whose origin

is at the intersection of the equator and the prime meridian, with the positive di-
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rections chosen to be north and east - this is the most common coordinate system

in use, but it is not the only one), but to all observers with their varied range of

coordinates, the Kemah Boardwalk is the Kemah Boardwalk.

With this definition in mind, lay out a coordinate axis xµ to label points in your

space. Then consider the mapping:

x′µ = x′µ(xν) (23)

This mapping can be interpreted in two different ways, both physically equivalent.

Right now there is only one coordinate system and since x′ and x are different

coordinates, they correspond to different points in that one coordinate system.

But we can also introduce a second coordinate system such that the (physical)

point corresponding to x′ in the second coordinate system is the same as the (phys-

ical) point described by x in the first coordinate system. The first interpretation

(that there is only a single coordinate system) corresponds to physically moving

objects from the point whose coordinate is x to the point whose coordinate is

x′ while keeping the observer still, while the second interpretation (introducing

a second coordinate system) corresponds to keeping all objects still (i.e. keeping

the same points) and moving the observer such that the coordinates of the objects

change from x to x′. As far as the observer is concerned, there is no difference

between these two scenarios, as the observer maintains his or her relative distance

to the objects: e.g., moving all objects to the right is equivalent to moving the

observer to the left.
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We will call the mapping in (23) a coordinate transformation, since in both inter-

pretations the coordinates change. Whether the points change (1st interpretation)

or the observer changes (2nd interpretation) is immaterial, and we will freely make

use of both interpretations.

Within the context of classical physics, the differences in interpretations has no

perceptible effect on how one calculates. But in quantum mechanics, these two

interpretations look different. Physically moving a point corresponds to physically

changing a wavefunction U |ψ〉, whereas moving the observer corresponds to a

change in the operator U †OU . Note that |ψ〉 is analogous to a point and not

a coordinate. One can expand |ψ〉 as
∫

dx|x〉〈x|ψ〉 =
∫

dx′|x′〉〈x′|ψ〉 of the two

different coordinates, but |ψ〉 itself is independent of coordinate system, and hence

is akin to a point.

5.2 Changes in Functions Induced by Coordinate Trans-

formations

Suppose strewn across the lawn are hot coals, and T = T (x, y) gives the tempera-

ture as a function of the coordinates in the coordinate system ∠xy. Consider the

coordinate transformation

x′ = x′(x, y)

y′ = y′(x, y)

(24)
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This will induce a transformation on the function T → T ′. The goal is to find an

expression for T ′ in terms of T .

In the first interpretation in section 5.1, the observer stays put but the coals move.

Therefore, the temperature field changes from T to T ′. The new temperature T ′

at the new point (x′, y′) is equal to the old temperature T at the old point (x, y),

i.e., T ′(x′, y′) = T (x, y). This is because the coal initially at (x, y) created the

temperature T (x, y), but this coal was then moved to (x′, y′) creating a tempera-

ture T ′(x′, y′) = T (x, y).

In the second interpretation in section 5.1, the coals stay put but the observer

moves. Therefore the temperature T at the point corresponding to (x, y) is the

same before and after the move. However, the moved observer uses the coordinate

description (x′, y′) and T ′, so that once again T ′(x′, y′) = T (x, y).

So both interpretations give the same result, as they must. We will now never

mention both interpretations again. Instead, we will freely use whichever one feels

most natural for what we’re trying to do.

T ′(x′, y′) = T (x, y)

T ′(x′, y′) = T ((x′, y′)−1)

T ′(x, y) = T ((x, y)−1)

(25)

This is our main result. Under the coordinate change (24), the fields of physi-
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cal quantities like temperature change too. The top line of (25) can be replaced

with the mnemonic “new field at new coordinate equals old field at old coordi-

nate.” Note that the bottom two lines are making comparisons of T and T ′ at the

same coordinates, but in T the argument is inversed. This can be replaced with

the mnemonic “coordinates go one way, arguments of functions go the other way.”

Let’s try a specific, concrete example. Consider a coordinate system in the ∠xy

plane. Now consider the coordinate transformation:

x′ = 2x

y′ = 2y

(26)

This corresponds to shrinking the observer by 1/2 so that everything seems twice

as big to him or her, i.e. compressing his or her coordinate axis.11

The temperature field in the new coordinate system satisfies T ′(x′, y′) = T (x, y),

so that the temperature of the primed coordinate system at the coordinate (2,2)

equals the temperature of the old coordinate system at (1,1). From the third line

of (25), T ′(x, y) = T
(

x
2
, y
2

)

, so that once again T ′(2, 2) = T
(

2
2
, 2
2

)

= T (1, 1).

However, suppose instead of the field T (x, y), we have the field H(x, y), which

gives the height of a building on campus as a function of its location (x, y). Then

it stands to reason that the buildings themselves will get taller when viewed by a

11In the first interpretation this would correspond to doubling the size of everything.

31



shrunken observer, so that

H ′(x′, y′) = 2H(x, y)

H ′(x, y) = 2H
(x

2
,
y

2

)

(27)

Therefore, if H(1, 1) = 100 ft, then H ′(2, 2) = 2H(1, 1) = 200 ft. If instead of

H(x, y), you had a function V (x, y) which measured the volume of a puddle of

water of unit radius centered at (x, y), then under the dilation of (26), V ′(x′, y′) =

23V (x, y). In general, for dilations,

f ′(x′, y′) = 2[f ]Sf(x, y) (28)

where [f ]S gives you the scaling dimensions of the field f(x, y).12

The most general transformation considered in this thesis will be one on a set of

coordinates xµ and an induced linear transformation on a set of fields φi(x
ν)

x′µ = x′µ(xν)

φ′
i(x

′) = Rijφj(x)

φ′
i(x) = Rijφj(x

−1)

(29)

This encompasses internal transformations where the coordinates don’t change, in

which case x′ = x and x−1 = x. As an example of (29), consider transformation

under the Lorentz group, with x′µ = Λµνx
ν . Then Rij = Rij(Λ), where Rij(Λ) is a

12The scaling dimension of f , denoted by [f ]S , can differ from its true dimension, denoted by

[f ], if f contains dimensionful parameters.
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representation of the Lorentz group.

5.3 Symmetries

5.3.1 Symmetries of Functions

Using the notation in sections 5.1 and 5.2, the symmetry of a function f(x) under

transformation is expressed by its invariance under the transformation, i.e.,

f ′(x) = f(x) (30)

This is merely the intuitive statement that different observers, with different ori-

entations, see the same thing relative to their orientations.

Let’s take a concrete example. Suppose the temperature profile is T (x, y) = x,

and consider rotating the coordinate system 90 degrees clockwise. Then that ob-

server describes the temperature profile as T ′(x, y) = y. According to (30), the

temperature field is not symmetric. That is, if x is viewed as east and y is viewed

as north, then the first observer sees no temperature variation to his north and

the only temperature variations are to his east, while the second observer sees no

temperature variations to her east and only temperature variations to her north.

However, if T (x, y) = x2 + y2, then T ′(x, y) = x2 + y2, and both observers see the

same thing relative to their own orientations.

Let’s take another concrete example, one that illustrates how clarity in jargon
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can be sacrificed for convenience. Suppose the height of a building located at x

is H(x) = x, i.e., buildings at ∞ are really tall and buildings at −∞ are really

subterranean. Now consider the transformation:

x′ = λx

H ′(x′) = λH(x)

H ′(x) = λH
(x

λ

)

(31)

As explained in section 5.2, the primed coordinate system is shrunk by λ, so that

what the unprimed coordinate system calls x = 1, the primed coordinate system

sees as x′ = λ. Moreover, if the height of a building as seen by the unshrunk ob-

server is H = 1, then the height as seen by the shrunk observer is H = λ. Plugging

in H(x) = x into (31), one gets H ′(x) = x = H(x). Hence H(x) is invariant by

(30) under the coordinate transformation (31). So H(x) = x is a weird function in

that if you shrink the observer (but leave points alone, i.e., the environment), the

shrunken observer cannot tell he was shrunk - he perceives everything the same

relative to his surroundings as the unshrunken observer perceives relative to hers

(this assumes buildings can only be distinguished by their height - if each building

had a different design then the shrunken observer would notice that something is

amiss). Note that all this is intuitively obvious - if you plot the graph (x,H(x))

for H(x) = x, and then scale the x and y axis by the same number say 200%,

then you get the same graph which you can overlay on and completely cover over

the original graph.13

13One would think that H(x) = cx is the only function with the property λH
(

x
λ

)

= H(x).

Just set λ = x to get xH(1) = H(x) and set H(1) = c to get H(x) = cx. However, it turns out
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However, this example is an example of inconsistent use of jargon, because it is

often said that the function H(x) is invariant under dilations x → λx if it scales

as 1
λ
. That is, we ignore that H itself has length, and only consider the behavior

of H due to the coordinate change in its argument. Using this terminology, if a

function scales as the negative of its dimension, then the function is symmetric

under dilation.

Also, one has to be careful. One can rewrite the transformation (31) as

x′ =
1

λ
x

H ′(x′) =
1

λ
H(x)

H ′(x) =
1

λ
H (λx)

(32)

Then using this terminology, if a function scales as its dimension (and not the

negative of its dimension), then the function is symmetric under dilation. As an

example, for the inverse-square potential V (x) = 1
x2
, V (λx) = 1

λ2
1
x2
, and the po-

tential has length dimensions of −2 (see section 7.2), so by (32) the inverse-square

potential V (x) is symmetric under dilations, and we say that it scales as 1
λ2
. In the

rest of this thesis, this will be the sense in which we use the term scale-invariance,

i.e., when we change a function only through a rescaling of its arguments, if the

function scales as its dimension, then we say that it is scale-invariant.

H(x) = c
δ(x) also satisfies this property.
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One last possible point of confusion that’s related to the above example. As men-

tioned in section 5.2, “coordinates go one way, arguments of functions go the other

way.” To use that mnemonic, one mustn’t forget where x shows up in. For exam-

ple, if you are talking about the function H(x) = x, then under the transformation

(31), the x in H is to be replaced by x
λ
, not λx, since the x is a function. However,

if you are considering the transformation (32), then in H(x) = x, the x is to be

replaced by λx. The same can be said about the replacement of x in V (x) = 1
x2
.

One can never get confused if one always writes both sides of H(x) = x under the

transformation (31) and always writes H(x) instead of H: then clearly H
(

x
λ

)

= x
λ
,

whereas H → x
λ
might give you some pause as you figure out if H is another co-

ordinate, or a function, and whether they’re using the transformations (31) or (32).

While on the subject of dilations, one can consider non-isotropic ones:

x′ = λHx

f ′(x′) = λV f(x)

f ′(x) = λV f

(

x

λH

)

(33)

This scales a graph (x, f(x)) by stretching it by a factor of λH in the horizontal

direction, and λV in the vertical direction. However, all dilations in this thesis

will be isotropic in space. For relativistic dilations, it will also be isotropic in

spacetime. For nonrelativistic dilations, we will stretch time and space differently,

but they will be linked by the relation λt = λ2x = λ2y = λ2z.
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As one can see, all these concepts are intuitive, but the jargon can cause confusion

for those unfamiliar with it, since the jargon can be context-dependent. Unfor-

tunately, the jargon has been so ingrained in the author that in the rest of the

thesis he’ll adhere to it, and hopes that at the very least sections 5.1, 5.2, 5.3.1,

and 5.3.2 were spared from misleading statements due to unconscious adherence

to the jargon.

Lastly, suppose that f in (30) only changes under a symmetry transformation via

its argument. Then the statement that f is symmetric under the transformation

can also be written as:

f(x′) = f(x) (34)

which intuitively states that the function is symmetric if it has the same value

at all points related to each other by the symmetry transformation. This follows

from (30) and the assumption that f only changes through its arguments.

5.3.2 Symmetries of the Action

The action S = S[φi, V, T ] =
∫

V T
dxL(φi(x), ∂µφi(x)) is a functional of the fields

φi(x) and a region of spacetime (V, T ). We will not consider actions that explicitly

depend on the coordinates - the only space-time dependence will be through the

fields φi(x).

Then from (34) the statement that the action is symmetric under the transforma-
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tion

x′µ = x′µ(xν)

φ′
i(x

′) = Rijφj(x)

φ′
i(x) = Rijφj(x

−1)

(35)

is that

S[φ′, V ′, T ′] = S[φ, V, T ]
∫

V ′T ′

dx′ L(φ′
i(x

′), ∂′µφ
′
i(x

′)) =

∫

V T

dxL(φi(x), ∂µφi(x))
(36)

It should be noted that the primes on the spacetime coordinates in the integrand

on the LHS are dummy variables, and can be replaced by unprimed variables.

However, we write them as primed to be able to better see this next step: on

the LHS, pull back from (V ′, T ′) to (V, T ) by making the substitution of variables

x′µ = x′µ(xν):

S[φ′, V ′, T ′] = S[φ, V, T ]
∫

V T

∣

∣

∣

∣

∂x′

∂x

∣

∣

∣

∣

dxL(Rijφj(x),

(

∂xν

∂x′µ

)

∂νRijφj(x)) =

∫

V T

dxL(φi(x), ∂µφi(x))

∣

∣

∣

∣

∂x′

∂x

∣

∣

∣

∣

L(Rijφj(x),

(

∂xν

∂x′µ

)

∂νRijφj(x)) = L(φi(x), ∂µφi(x))

(37)

In equating the integrands, we made the assumption that the action is invariant

under the symmetry transformation for any spacetime volume. Note that
(

∂xν

∂x′µ

)

can be calculated from knowing x′µ(xν) and using
(

∂xν

∂x′µ

)

=
(

∂x′µ

∂xν

)−1
We have
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succeeded in getting a condition on L that determines symmetry rather than a

condition on the action S. Note that (37) is intuitive - the Jacobian J =
∣

∣

∂x′

∂x

∣

∣ is

included because it is S, and not L, that is required for the system to be invari-

ant under symmetry transformation. The condition on L indicated by (37) can

be remembered by the mnemonic “Ignoring spacetime arguments, Lagrangian of

new field and new derivative times Jacobian equals Lagrangian of old field and old

derivative,” i.e., we ignore changes in the spacetime arguments of the fields, which

are instead taken into account by J , and only compare changes in the discrete

indices of the field and the discrete indices of its derivative. Let’s test (37) out

on some concrete examples. In these examples, we will only consider the case

where Rij 6= Rij(x), thereby excluding gauge transformations.14 And of course,

as always, we restrict ourselves to L that do not depend explicitly on coordinates.

Translation

x′µ = xµ+ aµ, so the Jacobian J = 1, Rij = δij , and
(

∂xν

∂x′µ

)

= δνµ, so by (37),

S is invariant.

Rotation

Assume (R†R)ij = δij and that the fields only appear in L through the

combination φ∗
iφi or ∂µφ

∗
i ∂

µφi. For rotations x
′µ = Λµνx

ν where Λ µ
η Λην = δµν ,

which also implies J = 1. Then by either (R†R)ij = δij or (R
†ΛΛTR)νijµ =

δijδ
ν
µ, according to (37), S is invariant.

Dilation
14For conservation laws, taking the symmetry to be global is sufficient.
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Consider the Lagrangian L = 1
2
∂µφ∂

µφ− g
4!
φ4 along with the dilation x′µ =

λxµ and φ′(x′) = 1
λ
φ(x). This time let’s use the mnemonic “Ignoring space-

time arguments, Lagrangian of new field and new derivative times Jacobian

equals Lagrangian of old field and old derivative.” Then
(

1
2

∂
∂(λxµ)

φ
λ

∂
∂(λxµ)

φ
λ
− g

4!

(

φ
λ

)4
)

λ4
?
=

1
2
∂µφ∂

µφ− g
4!
φ4? XXXX

Note that in the last example, L has scaling dimension −4, S has scaling dimen-

sion 0, and H has scaling dimension −1: any one of these statements is a sign of

scaling symmetry in the relativistic theory. More about this in section 5.6.

The statements made in this section are generalizable to transformations of the

form:

x′µ = x′µ(xν)

φ′
i(x

′) = fi(φj(x), x
µ)

φ′
i(x) = fi(φj(x

−1), x−1µ)

(38)

and with general Lagrangian L = L(φi(x), ∂µφi(x), x
µ). Then invariance of the

action S implies that L has the property

∣

∣

∣

∣

∂x′

∂x

∣

∣

∣

∣

L(fi(φj(x), x
µ),

(

∂xν

∂x′µ

)

∂νfi(φj(x), x
µ), x′µ(xν)) = L(φi(x), ∂µφi(x), x

µ)

(39)

We’ll only need (38) in the context of 1st-quantized theories for transformations

where x′µ = xµ and L doesn’t depend on xµ explicitly, in which case (39) becomes:
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L(fi(φj(x), x
µ),

(

∂xν

∂x′µ

)

∂νfi(φj(x), x
µ)) = L(φi(x), ∂µφi(x)) (40)

In general, Noether’s theorem requires that the action be either symmetric, or

change at most by a surface term, under the symmetry transformation. Cases

where the action changes by a surface term are sufficiently rare (occurring mainly

in 1st-quantized theories) that we will not try to formulate Noether’s theorem in

the most general manner to include them: rather, we’ll consider these rare cases

separately. For now, let us just note that allowing the action to differ by a surface

term implies that the condition for symmetry for case (40) can be extended to:

L(fi(φj(x), x
µ),

(

∂xν

∂x′µ

)

∂νfi(φj(x), x
µ)) = L(φi(x), ∂µφi(x)) + ∂µK

µ (41)

since the integral of a divergence is a surface term.

5.4 Noether’s Theorem

We acknowledge the importance of Noether’s theorem by offering several proofs

of it. Noether’s theorem states that any continuous symmetry in a system de-

scribable by an action principle has a conserved current. Moreover (and more

importantly), Noether’s theorem offers a formula for this conserved current.

5.4.1 Infinitesimal Transformations

The transformations we are considering are
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x′µ = x′µ(xν)

φ′
i(x

′) = Rijφj(x)

φ′
i(x) = Rijφj(x

−1)

(42)

We consider the infinitesimal transformation x′µ = xµ−ρfµ(xν) andRij = δij+ρrij

parametrized by the infinitesimal parameter ρ, so that (42) becomes:

x′µ = xµ − ρfµ(xν)

φ′
i(x

′) = φi(x) + ρrijφj(x)

φ′
i(x) = φi(x) + ρrijφj(x) + ρf ν∂νφi(x)

(43)

where we have thrown away O[ρ2] terms. We define ρδφi(x) = φ′
i(x)− φi(x), the

difference of the two fields at the same coordinate, so that:

δφi(x) = rijφj(x) + f ν∂νφi(x)

δ∂µφi(x) = ∂µδφi(x) = rij∂µφj(x) + ∂µ (f
ν∂νφi(x))

(44)

Note that the ∂µ commutes with δ, since δ is defined as the difference at the same

coordinate.

5.4.2 Noether’s Theorem

Proof 1

The first two proofs we will give of Noether’s theorem doesn’t involve the action

S, but the Lagrangian L. Suppose that, without using the equations of motion,
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that under (44):

∂L

∂φi(x)
δφi(x) +

∂L

∂∂µφi(x)
δ∂µφi(x) = ∂µK

µ (45)

Then, using the equations of motion:

∂µ
∂L

∂∂µφi(x)
δφi(x) +

∂L

∂∂µφi(x)
δ∂µφi(x) = ∂µK

µ

∂µ

(

∂L

∂∂µφi(x)
δφi(x)−Kµ

)

= 0

(46)

so that the current is

jµ =
∂L

∂∂µφi(x)
δφi(x)−Kµ (47)

As an example, consider L = m
2
ẋ2 − V (x) with f 0 = 1, r = 0. Then ρδx(t) = ρẋ,

and without using the equations of motion:

∂L

∂x(t)
δx(t) +

∂L

∂ẋ(t)
δẋ(t) = −V ′ẋ+mẋẍ =

dL

dt
(48)

So K0 has been identified with L, and the conserved current by (47) is:

Q =
∂L

∂ẋ(t)
δx(t)−K0 = mẋ2 − L =

m

2
ẋ2 + V (x) (49)

However, though simple, this doesn’t identify Kµ, which we had to calculate: it

is only by considering S that we can get Kµ = Lfµ. (45) says that if under the

symmetry transformation L is invariant, or at most the divergence of a (D + 1)

vector, then there is a conserved current.
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Proof 2

The second proof is essentially the first proof, except we’ll insert a step before

step (46):

∂L

∂φi(x)
δφi(x) +

∂L

∂∂µφi(x)
δ∂µφi(x) = ∂µK

µ

∂L

∂φi(x)
δφi(x)− ∂µ

∂L

∂∂µφ
δφ+ ∂µ

(

∂L

∂∂µφ
δφ

)

= ∂µK
µ

−

(

∂L

∂φi(x)
δφi(x)− ∂µ

∂L

∂∂µφ
δφ

)

= ∂µj
µ

(50)

where jµ is as defined in (47).

We have shown that if δφi(x) is a symmetry transformation, then without using

the equations of motion:

−
(

Equation of Motion for φi(x)
)

δφi(x) = ∂µj
µ

−

(

∂L

∂φi(x)
− ∂µ

∂L

∂∂µφi(x)

)

δφi(x) = ∂µj
µ

−
δS

δφi(x)
δφi(x) = ∂µj

µ

(51)

Then it’s obvious that for fields that do obey the equations of motion, the LHS is

zero, so that 0 = ∂µj
µ. In (51), the left hand sides are all the same.

Let’s try a concrete example, with L = m
2
ẋ2 − V (x), δx(t) = ẋ(t), which has

j0 = Q = m
2
ẋ2 + V (x):

44



− (−V ′(x)−mẍ) ẋ
?
=

d

dt

(m

2
ẋ2 + V (x)

)

(52)

(52) is indeed true, so that when we do use the equation of motion −V ′(x)−mẍ =

0, Q on the RHS is conserved. This gives us confidence in the correctness of (51).

The formula − δS
δφi(x)

δφi(x) = ∂µj
µ from (51), since it does not use the classical

equations of motion, will be useful in quantum physics, since jµ = ∂L
∂∂µφi(x)

δφi(x)−

Kµ is still the expression for the current in quantum physics. We will exploit this

in section 6.2.3 to derive the Ward identities.

Proof 3

This proof utilizes the action, thereby capturing Kµ = Lfµ for coordinate trans-

formations. All the hard work was done in section 5.3.2. In that section, from the

symmetry of the action, we derived the corresponding condition on L:

∣

∣

∣

∣

∂x′

∂x

∣

∣

∣

∣

L(Rijφj(x),

(

∂xν

∂x′µ

)

∂νRijφj(x)) = L(φi(x), ∂µφi(x)) (53)

Plugging in (42), (43) and (44) gives to order ρ:

∣

∣

∣

∣

∂x′

∂x

∣

∣

∣

∣

L
(

φi(x) + ρδφi(x)− ρf ν∂νφi(x),

∂µ
[

φi(x) + ρδφi(x)− ρf ν∂νφi(x)
]

+ ρ∂µf
ν∂νφi(x)

)

= L(φi(x), ∂µφi(x)) (54)
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Since
∣

∣

∂x′

∂x

∣

∣ = |δµν − ρ∂νf
µ| = 1− ρ∂νf

ν +O[ρ2], this equation to O[ρ] becomes:

L(φi(x), ∂µφi(x))− ρ∂νf
νL+ ρ

∂L

∂φi(x)

(

δφi(x)− f ν∂νφi(x)

)

+ ρ
∂L

∂∂µφi(x)

(

∂µδφi(x)− f ν∂ν∂µφi(x)

)

= L(φi(x), ∂µφi(x)) (55)

Since the xµ dependence of L is only through the fields, this becomes:

−ρ (Lfµ) + ρ

(

∂L

∂φi(x)
δφi(x) +

∂L

∂∂µφi(x)
δ∂µφi(x)

)

= 0 (56)

which is the same as (45) with Kµ = Lfµ. We have shown that, without using

the equations of motion, a symmetry of the action implies (56), so following the

rest of the steps after (45) in the first proof will complete this proof.

Proof 4

In this proof we make the infinitesimal parameter ρ spacetime dependent, ρ =

ρ(x).

δS =

∫

V T

dx

(

∂L

∂φi(x)
ρ(x)δφi(x) +

∂L

∂∂µφi(x)
δ∂µ (ρ(x)φi(x))

)

=

∫

V T

dx ρ(x)

(

∂L

∂φi(x)
δφi(x) +

∂L

∂∂µφi(x)
δ∂µφi(x)

)

+
∂L

∂∂µφi(x)
δφi(x)∂µρ(x)

(57)

Using (45), this becomes
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δS =

∫

V T

dx ρ(x)∂µK
µ +

∂L

∂∂µφi(x)
δφi(x)∂µρ(x) (58)

and integrating the second term by parts we get:

δS =

∫

V T

dx ρ(x)∂µ

(

Kµ −
∂L

∂∂µφi(x)
δφi(x)

)

= −

∫

V T

dx ρ(x)∂µj
µ(x)

(59)

where (47) was used. The classical trajectory has the property δS = 0 for any

δφi(x), and setting ρ(x) = δd(x− x′) gives ∂µj
µ(x′) = 0 for any point x′.

5.4.3 Comments

1) We first demonstrate Noether’s theorem for Galilean boosts in a 1st-quantized

theory, as it is a rare example of the action changing by a surface term, and leads

to a conserved quantity that depends explicitly on time, a feature that the con-

served quantity for dilational symmetry shares. The conserved quantity, the ini-

tial position of the center of mass of the system, is still conserved in time however.

We take

L =
∑

i

mi

2
ẋ2i −

1

2

∑

i 6=j

Vij(xi − xj) (60)

An infinitesimal boost ν is given by:
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t′ = t

x′i(t
′) = xi(t)− νt

x′i(t) = xi(t)− νt

(61)

The potential is invariant under the boost, so

δL =
∑

i

miẋiδẋi = −ν
d

dt

∑

i

mixi (62)

Therefore by (45) we identify K0 = −
∑

i

mixi and the conserved charge is given

by (47) as:

Q = −
∑

i

miẋit+
∑

i

mixi

=M
(

−Ẋcomt+Xcom

)

(63)

whereM =
∑

i

mi. Since the center of mass is a free particle, it obeys the equation

Xcom(t) = Xcom(0) + Ẋcomt, so that plugging into (63)

Q =MXcom(0) (64)

The initial position of the center of mass is the same for all times t, so indeed Q

given in (63), though explicitly dependent on time, is conserved for all times.

Integrating (62) shows that the action it not invariant but changes by a surface

term:
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δS =

∫

dt δL = −ν
∑

i

mixi

∣

∣

∣

t2

t1
= −νM

(

Xcom(t2)−Xcom(t1)
)

(65)

2) We wish to emphasize that as far as visualization is concerned, there is signif-

icant difference between symmetry of the action versus symmetry of a function.

The latter involves moving objects around and seeing if the resulting configuration

is distinguishable from the initial configuration. The former involves moving ob-

jects around and seeing if the integral of the configuration (with new boundaries)

is distinguishable from the integral of the initial configuration. In other words, it

is not the configuration of objects that must be symmetrical for Noether’s theo-

rem to apply, but that the laws of physics are symmetrical, and by the laws of

physics being symmetrical we mean that that the action changes by at most a

surface term under the symmetry transformation. For example, if you translate

your entire system to the right, then unless the distribution of your particles is

homogeneous throughout space, then the new configuration of particles looks dif-

ferent: they are farther to the right. However, the action does not change.

3) As mentioned in comment 2), it is not enough that the transformed system

obeys the same equations of motion for their to be a conserved quantity. The

action must be the same, or differ by at most a surface term. For example, in the

example of planetary motion in the introduction, we found that the transformation

of Eqn. (9) with η = 3
2
and ξ = 1 has the same equations of motion as the

initial system. However, there is no conserved quantity corresponding to that

transformation as the transformation doesn’t preserve the action or changes it
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at most by a surface term: the transformation multiplies the action by ℓ−1/2,

so that the change in action is proportional to the action itself. If S[x′, T ′] =

S[x, T ] +F (T ), where F (T ) is a surface term independent of the trajectory x′(t),

then x′(t) on the LHS is minimized by whatever trajectory xc(t) minimizes S

on the RHS, so that x′(t′) = ℓxc(t) ⇒ x′(t) = ℓxc(ℓ
− 3

2 t). Therefore x′(t) =

ℓxc(ℓ
− 3

2 t) minimizes S[x′, T ′], which represents the action for a trajectory whose

initial and final points along with length of time are symmetry-transformed from

their original values.15 The f(T ) doesn’t matter in determining x′(t) since xc(t)

minimizes both S[x, T ] and S[x, T ]+F (T ). But that relationship between actions

does not hold for the planetary system which has instead: S[x′, T ′] = ℓ−1/2S[x, T ].

Clearly xc(t), which minimizes the RHS, when symmetry-transformed, minimizes

the LHS, so the transformed coordinate system sees the same equations of motion

as the untransformed coordinate system. But the action isn’t invariant up to a

surface term, so Noether’s theorem does not apply.

5.5 Nonrelativistic Dilations

Consider the Lagrangian

L =
1

2
~̇x 2 − V (~x ) (66)

and assume V (λ~x) = 1
λ2
V (~x). Examples of such potentials are V (~x ) = 1

|~x|2
and

V (~x ) = δ2(~x ). Using the terminology just below Eqn. (32), we say that the

15In S[x′, T ′] = S[x, T ] +F (T ), x′(t) and x(t) are put in the same action S, i.e., it is S[x′, T ′]

and not S′[x′, T ′], so the equations of motion are the same.
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potential scales as its dimension. Then under the transformation:

t′ = e−2ρt = λ2t

x′(t′) = e−ρx(t) = λx(t)

x′(t) = e−ρx(e2ρt) = λx(λ−2t)

(67)

the action corresponding to (66) is invariant. To see this we will use the mnemonic

just below Eqn. (37) to determine the condition for the action to be symmetric:

“Ignoring spacetime arguments, Lagrangian of new field and new derivative times

Jacobian equals Lagrangian of old field and old derivative.” Then

(

1

2

d(λ~x)

d(λ2t)
·
d(λ~x)

d(λ2t)
− V (λ~x )

)

λ2
?
=

1

2
~̇x 2 − V (~x )

(

1

2

d(λ~x)

d(λ2t)
·
d(λ~x)

d(λ2t)
−

1

λ2
V (~x )

)

λ2
?
=

1

2
~̇x 2 − V (~x ) X

(68)

where we must remember that ~x is a field and the spacetime argument is just the

time argument t. So the conserved current is given by (47) as:

Q = j0 =
∂L

∂∂µφi(x)
δφi(x)−K0

= ~̇x ·
(

−~x(t) + 2t~̇x(t)
)

− 2tL

= −~p · ~x+ 2tH

(69)

where K0 = Lf 0 was derived in (56), f 0 and δx(t) were determined by setting ρ

infinitesimal in (67), and H = 1
2
~̇x 2 + V (~x ) is the Hamiltonian of the system.

The fact that Q is conserved can easily be tested for a free particle (V (λ~x) =
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1
λ2
V (~x) = 0), where the equation of motion is ~x(t) = ~x(0) + ~̇x t, so that plugging

this into (69) gives Q = −~p · ~x(0). ~p is conserved for all t for a free-particle, and

~x(0) is a constant (the initial position is always ~x(0) for all t).

Now consider the Lagrangian

L = ψ†(x)(i∂t)ψ(x)−
1

2
∂iψ

†(x)∂iψ(x)−

∫

dDy ψ†(x)ψ(x)V (x− y)ψ†(y)ψ(y)

(70)

under the transformation

xi = e−ρxi = λxi

t′ = e−2ρt = λ2t

ψ′(x′) = e
D
2
ρψ(x) = λ−

D
2 ψ(x)

ψ′(x) = e
D
2
ρψ(eρxi, e

2ρt) = λ−
D
2 ψ(λ−1xi, λ

−2t)

ψ′†(x′) = e
D
2
ρψ†(x) = λ−

D
2 ψ†(x)

ψ′†(x) = e
D
2
ρψ†(eρxi, e

2ρt) = λ−
D
2 ψ†(λ−1xi, λ

−2t)

(71)

The Lagrangian in (70) depends explicitly on coordinate via V (x− y), so we will

have to use (39) to determine whether it is invariant under the transformation of

(71):
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(

ψ†(x)

λ
D
2

(

i
∂

∂(λ2t)

)

ψ(x)

λ
D
2

−
1

2

∂

∂(λxi)

ψ†(x)

λ
D
2

∂

∂(λxi)

ψ(x)

λ
D
2

−

∫

dD(λy)
ψ†(x)

λ
D
2

ψ(x)

λ
D
2

V
(

λ(x− y)
)ψ†(y)

λ
D
2

ψ(y)

λ
D
2

)

λD+2

?
= ψ†(x)(i∂t)ψ(x)−

1

2
∂iψ

†(x)∂iψ(x)−

∫

dDy ψ†(x)ψ(x)V (x− y)ψ†(y)ψ(y)

(72)

which is true if and only if V
(

λ(x − y)
)

= 1
λ2
V (x − y). Assuming this is true of

the potential, then the conserved charge, following the same procedure as in the

1st-quantized case of (69) is:

j0 = iψ†

[

D

2
ψ + xi∂iψ

]

+ 2tH

H =
1

2
∂iψ

†(x)∂iψ(x) +

∫

dDy ψ†(x)ψ(x)V (x− y)ψ†(y)ψ(y)

(73)

Since complex conjugation commutes with differentiation ∂t, we define a Hermitian

charge j0 → j0+j0†

2
, or alternatively we repeat the procedure using a Hermitian

Lagrangian L → L+L†

2
instead of (70), to get:

j0 = −xi

(

i∂iψ
†ψ − iψ†∂iψ

2

)

+ 2tH

= −xiPi + 2tH

(74)

where Pi, the probability density current in quantum mechanics, is also the mo-

mentum corresponding to symmetry under spatial translations (one can check the

sign by substituting ψ = eipixi into Pi).
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5.6 Relativistic Dilations

We could apply the methods we used for nonrelativistic dilations to relativistic

ones. However, we will give a different method of determining whether a rela-

tivistic system is scale invariant. Unlike the nonrelativistic case, most relativistic

systems do have scale invariance at the classical level, so long as we can ignore

the mass of the particle, so a more general approach would be welcome. What we

will prove is:

Theorem: If in a system of units where a length scale, ~, and c are our fun-

damental units (see section 7.3 for a review of choosing these units), then if all

coupling constants have no length dimension, the theory is dilationally invariant,

at least classically.

The theorem is intuitively obvious, and what follows is the simplest we could come

up with for a proof. But first let’s define the relativistic dilation:

x′µ = e−ρxµ = λxµ ⇒ δxµ = xµ

φ′
i(x

′) = e−[φi]ρφi(x)

φ′
i(x) = e−[φi]ρφi(e

ρx) ⇒ δφi(x) = −[φi]φi(x) + xν∂νφi(x)

∂µδφi(x) =
(

− [φi] + 1
)

∂µφi(x) + xν∂ν∂µφi(x)

(75)

where [φi] gives the length dimension of the field φi in our system of units.

Now a single monomial term in L can be written generically as:
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(

∏

i

φni

i

)(

∏

j

(∂µφj)
mj

)

(76)

times a dimensionless coupling. From dimensional analysis:

∑

i

(

ni[φi] +mi

(

[φi]− 1
)

)

= −D − 1 (77)

since L has length dimension −D − 1.

Now the variation of (76) under (75) gives:

δL =
∑

i

∂L

∂φi

[

− [φi]φi(x) + xν∂νφi(x)

]

+
∑

i

∂L

∂∂µφi

[

(

− [φi] + 1
)

∂µφi(x) + xν∂ν∂µφi(x)

]

=
∑

i

[

−ni[φi]L+ xν∂νφi(x)
∂L

∂φi

]

+
∑

i

[

mi

(

− [φi] + 1
)

L+ xν∂ν∂µφi(x)
∂L

∂∂µφi

]

= (D + 1)L+ xν∂νL = ∂µ(Lx
µ) (78)

where we used (77) in the last line. So we have shown that if L has no dimensionful

coupling, then without using the equations of motion:

∂L

∂φi
δφi +

∂L

∂∂µφi
δ∂µφi = ∂µ (Lx

µ) (79)

so that by (45), Kµ = Lxµ, and the action is invariant by (56) and (75). The
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current is given by (47) as:

jµ =
∂L

∂∂µφi

[

− [φi]φi(x) + xν∂νφi(x)

]

− Lxµ (80)
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6 Quantum Mechanics

We give a brief review of the quantum mechanics necessary to understand dila-

tions. Although this work concerns only bosonic fields, it requires very little addi-

tional effort to treat fermion fields simultaneously, only requiring that a subscript

be added to the commutator operation to indicate the use of the anticommutator

instead. Therefore we include the fermion case.

6.1 Canonical Commutation Relations

Given fields φi with Lagrangian L, the conjugate momentum is defined as:

Πi(x) =
∂L

∂φi(x)
(81)

To quantize the system, both φi(x) and Πi(x) are promoted to operators obeying

the equal-time canonical (anti)commutation relation:

[φi(~x, t),Πj(~y, t)]± = iδD(~x− ~y )δij

[φi(~x, t), φj(~y, t)]± = 0

(82)

where

[A,B]+ = AB −BA (bosons)

[A,B]− = AB +BA (fermions)

(83)

It follows from (82) that
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[∂~x φi(~x, t), φj(~y, t)]± = [φi(~x, t), ∂~y φj(~y, t)]± = 0 (84)

since the spatial derivative just gives the difference of φ at two different points at

the same time, and the commutator of the two fields at the same time is zero.

Operators O obey the equation of motion:

Ȯ = i[H,O] (85)

where H =
∫

dDxH
(

φi(x),Πi(x)
)

is the Hamiltonian, and we use the convention

that [.. , ..] without a subscript indicates a commutator (and not anti-commutator)

is being used, regardless if the fields are bosons or fermions.

We will frequently make use of the identity:

[AB,C] = A[B,C]± ± [A,C]±B (86)

i.e., [AB,C] = ABC − CAB = A[B,C]+ + [A,C]+B = A[B,C]− − [A,C]−B.

Obviously, it makes sense to choose + for bosons and − for fermions so that we

can apply (82), but (86) is an equality and the choice of ± doesn’t depend on

whether A, B, or C are boson or fermion fields.
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6.1.1 Generators of Symmetries

In quantum mechanics the charge Q(x0) of Noether’s theorem generates the sym-

metry transformation:

eiQ(x0)φi(x)e
−iQ(x0) = φ′

i(x)

i[Q(x0), φi(x)] = δφi(x)

Q(x0) =

∫

dDx

(

∂L

∂∂0φi(x)
δφi(x)− Lf 0

)

(87)

It should be noted that Q(x0) does not have to be conserved classically for (87) to

apply (in which case δφi(x) would just be a transformation, and not a symmetry

transformation). The construction
∫

dDx
(

∂L
∂∂0φi(x)

δφi(x)− Lf 0
)

in and of itself

generates the transformation δφi(x), regardless of what L is and whether we attach

the label Q to it. We will prove (87) with the only assumption being that δφi(x)

depends on φ̇(x) only through φ̇(x)f 0, i.e., δφi(x) = φ̇(x)f 0 + ..., where ... does

not contain a time-derivative, which is certainly true for transformations of the

form (44). Note that Q(x0) and δφi(x) in (87) are at the same time. Therefore

in the derivation that follows, all fields and conjugate momentum are at the same

time (i.e., x0 = y0), so that (82) applies:

∫

dDy [Πj(y)δφj(y)− L(y)f 0(y), φi(x)] =

∫

dDy
(

± [Πj(y), φi(x)]± δφj(y)

+ Πj(y)[δφj(y), φi(x)]± − f 0[L(y), φi(x)]
)

(88)

where we used (86) to get the first two terms on the RHS. The first term on the
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RHS of (88) is ∓iδφi(x) using (82). Using that [δφj(y), φi(x)]± = [φ̇j(y)f
0, φi(x)]±

from (84), and that

Πj(y)[φ̇j(y)f
0, φi(x)]± = [Πj(y)φ̇j(y)f

0, φi(x)]∓ [Πj(y)f
0, φi(x)]± φ̇j(y)

= [Πj(y)φ̇j(y)f
0, φi(x)] + iφ̇i(x)f

0δD(~x− ~y )

from (86), we get

∫

dDy [Πj(y)δφj(y)− L(y)f 0(y), φi(x)] = ∓iδφi(x) + iφ̇i(x)f
0

+

∫

dDy
(

[Πj(y)δφj(y), φi(x)]− f 0[L(y), φi(x)]
)

(89)

In the last line, using Πj(y)δφj(y)− L(y)f 0 = H(y) and (85), we get:

∫

dDy [Πj(y)δφj(y)− L(y)f 0(y), φi(x)] = ∓iδφi(x)

∴ i[Q(x0), φi(x)] = ±δφi(x)

(90)

thereby proving (87). Evidently for fermions, Q(x0) =
∫

dDx
(

∂L
∂∂0φi(x)

δφi(x)− Lf 0
)

generates −δφi(x), opposite to bosons.

6.1.2 Virial Theorem

If we apply section (6.1.1) to section (5.6), we get that
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Q =

∫

dV
( ∂L

∂∂0φi
[−[φi]φi(x) + xν∂νφi(x)]− Lx0

)

generates the transformation δφi(x) = −[φi]φi(x) + xν∂νφi(x). We will restrict

ourselves to spatial dilations so that:

QS =

∫

dV
∂L

∂∂0φi

[

−[φi]φi(x) + xj∂jφi(x)
]

=

∫

dV Πi(x)
[

−[φi]φi(x) + xj∂jφi(x)
]

δφi(x) = −[φi]φi(x) + xj∂jφi(x)

(91)

where QS is the virial. The charge density T 0
j for spatial translations δφi(x) =

∂jφi(x) is given by:

T 0
j =

∂L

∂∂0φi
∂jφi(x)

= Πi(x)∂jφi(x)

(92)

so that the second term on the RHS of the second line of (91) is xjT 0
j . In gen-

eral the energy-momentum tensor T µν can be improved [7, 8] so that (91) can be

expressed entirely as:

QS =

∫

dV xj Θ0
j (93)

where Θµ
ν is the improved energy-momentum tensor. For bound systems, the

average of the rate of change of QS over long periods of time vanishes, so that:
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Q̇S =

∫

dV xj ∂0Θ
0
j = 0

= −

∫

dV xj ∂kΘ
k
j

=

∫

dV Θj
j = 0

(94)

where energy-momentum conservation ∂µΘ
µ
ν = 0 was used in the second line.

Therefore using (94) we get:

E =

∫

dV Θ0
0

=

∫

dV Θµ
µ

(95)

The addition of a confining pressure would require [9]:

E −DPV =

∫

dV Θµ
µ (96)

The improved energy-momentum tensor is related to the dilation current of (80)

by

jµ = xνΘµ
ν

(97)

so that for a classically scale-invariant system

∂µj
µ = ∂µ (x

νΘµ
ν )

0 = Θµ
µ

(98)

implying by (95) that the bound state energy of such a system is zero. Energy-
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momentum conservation ∂µΘ
µ
ν = 0 was once again used in deriving (98).

6.1.3 T-matrix for δ2-potential

We first briefly review how the T-matrix comes about. This review will be very

informal. In a scattering experiment, we are uninterested in (and incapable of)

calculating the trajectories of particles during the collision. We limit ourselves to

answering the question what is the amplitude Sfi for observing the output state

|ψ′〉 at tf = ∞ when we input the state |ψ〉 at ti = −∞, or Sfi = 〈ψ′|e−iH(tf−ti)|ψ〉.

The states |ψ〉 and 〈ψ′| are wavepackets built around the continuum scattering

states of H, so they’re almost eigenstates of H, but not quite, having a tiny band-

width about some eigenvalue. Since the particles are widely separated at both

ti = −∞ and tf = ∞ and hence non-interacting, we can say that |ψ〉 and 〈ψ′| are

built around the scattering states of H0 instead of H. So the scattering ampli-

tude 〈ψ′|e−iH(tf−ti)|ψ〉 has the fully interacting Hamiltonian H, but sandwiched

between wavepackets built around the energy eigenstates of H0 at time t = ±∞.

Therefore the scattering amplitude is:

Sfi = 〈ψ′|e−iH(tf−ti)|ψ〉

= 〈ψ′|e−iH0tf eiH0tf e−iH(tf−ti)e−iH0tieiH0ti |ψ〉

= H〈ψ
′|eiH0tf e−iH(tf−ti)e−iH0ti |ψ〉H

≡ H〈ψ
′|U(tf , ti)|ψ〉H

(99)

where |ψ〉H is the state that |ψ〉 evolves into after time |ti|, and H〈ψ
′| is the

state that evolves into 〈ψ′| after a time tf , where the evolution is with the free
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Hamiltonian H0. The subscript H on the states |...〉H is named after Heisenberg

and has nothing to do with the fully interacting Hamiltonian H: pictorially they

allow us to take our inputs and outputs as non-interacting wavepackets at the

origin rather than non-interacting wavepackets at spatial infinity. Differentiating

U(tf , ti) of (99) w.r.t. tf gives:

U̇ = −iVI(t)U

U(tf , ti) = T exp

(

−i

∫ tf

ti

dt VI(t)

)

VI(t) ≡ eiH0t(H −H0)e
−iH0t = eiH0tV e−iH0t

(100)

At this point it should be mentioned that we tried to be informally formal by

trying to justify using eigenstates of H0 as our scattering states instead of the

full H, but if we just assume we can do this then in (99) we can make the re-

placement H(tf − ti) →
∫ tf
ti
dtH(t) and (100) would still hold true, assuming H0

is time-independent and that the explicit time-dependence of H is only through

V (t), i.e., H = H0 + V (t).16 In other words, (100) holds even when V depends

explicitly on time.

U(tf , ti) in (100) can be Taylor expanded in powers of VI for small VI , and as-

suming for now that H 6= H(t) and that |ψ〉H and H〈ψ
′| are energy eigenstates of

H0 (at this point we reduce the bandwidth of the wave-packets to zero) then the

time integration can be performed and the result is:

16Since δ2(x) is localized, we can change the Hamiltonian to H = H0+ f(t)V , where f(t) = 0

at |t| > T and otherwise is equal to 1 except for a smooth transition region, for some large T .

Then we can justify using the eigenstates of H0 in place of the original H since these eigenstates

adiabatically go to eigenstates of H at |t| ≈ T with probability 1.
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Sfi = H〈ψ
′|ψ〉H − i(2π)δ(E ′ − E)Tfi

−iTfi = H〈ψ
′|T |ψ〉H

T =
∞
∑

n=0

V

(

1

E −H0 + iǫ
V

)n

= V + V

(

1

E −H0 + iǫ

)

T

(101)

The T -matrix can be interpreted in many ways. Within a Feynman diagram each

n represents scattering n+1 times, where the outgoing particles for one scattering

event join together to be the incoming particles for another scattering event, with

(E − H0 + iǫ)−1 propagating the particles from one V to another. However, we

will view T as an effective potential whose tree-level/Born approximation gives

the exact result. In the 2nd-quantized form this is the quantum effective potential.

Sandwiching (101) between momentum eigenstates 〈p′| and |p〉

T (~p ′, ~p ) = V (~p ′, ~p) +

∫

d2k

(2π)2
V (~p ′, ~k)

1

E − k2

2m
+ iǫ

T (~k, ~p ) (102)

For V ( ~X ) = λδ2( ~X ), V (~p ′, ~p ) = λ〈p′|δ2( ~X )|p〉 = λ
∫

d2~x ei(~p−~p
′)·~xδ2(~x ) = λ, so

that

T (~p ′, ~p ) = λ+ λ

∫

d2k

(2π)2
1

E − k2

2m
+ iǫ

T (~k, ~p ) (103)

Evidently, T (~p ′, ~p ) doesn’t depend on ~p ′ at all since the RHS has no such depen-

dence, so T (~k, ~p ) doesn’t depend on ~k and can be brought out of the integral.
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Indeed, evidently T (~p ′, ~p ) = T (~k, ~p ) = T (E) [5].

T (E) = λ+ λ

∫

d2k

(2π)2
1

E − k2

2m
+ iǫ

T (E)

1

T (E)
=

1

λ
−

∫

d2k

(2π)2
1

E − k2

2m
+ iǫ

(104)

The integral diverges for large k, so we will use a hard momentum cutoff Λ:

1

T (E)
=

1

λ
+
m

2π
ln

(

−
Λ2

2mE
+ iǫ

)

(105)

As in Eqn. (18) of the introduction, λ = λ(Λ), such that (105) gives the correct

result T (E) for any value E. We can find the bound state energy Eb by noting

that 1
T (Eb)

= 0:

0 =
1

λ(Λ)
+
m

2π
ln

(

−
Λ2

2mEb
+ iǫ

)

Eb = −
Λ2

2m
e

2π
mλ(Λ)

(106)

Moreover, we can eliminate the dependence of T (E) on the unphysical parameters
(

Λ, λ(Λ)
)

by substituting the 1
λ(Λ)

from the first line of (106) into (105):

1

T (E)
=
m

2π

(

ln

(

|Eb|

E

)

+ iπ

)

(107)

6.2 Path-Integral Formalism

The path-integral or functional-integral approach contains the same information as

the canonical approach. However, the study of symmetries is more natural within

the path-integral approach, since the path integral utilizes the action. Moreover,
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the fields are treated as c-numbers rather than operators, so many of the results

from section 5 can be directly used inside the path integral. We will not derive the

path-integral from the canonical approach: instead, we will simply state without

proof a number of well-known features of the path-integral.

6.2.1 The Path Integral

Time-ordered Green’s functions G(n)(x1, ..., xn) are given by the path integral:

G(n)(x1, ..., xn) =
〈

0|Tφ(x1)...φ(xn)|0
〉

=

∫

[dφ(x)] ei
∫

ddxL(φ(x),∂µφ(x))φ(x1)...φ(xn)
(108)

where the measure [dφ(x)] is normalized so that G(0) = 1, |0
〉

is the ground state

of the system, and L is a slightly modified Lagrangian that has H → H(1− iǫ).17

We will have no need to actually evaluate this functional integral. If one needed

to evaluate this integral, one could put it on a lattice, or if the terms in L higher

than quadratic are small, one can evaluate the integral perturbatively by Taylor

expanding those small terms and using the exponential of the quadratic piece as

a probability density, in which case the problem reduces to the calculation of mo-

ments.

We will need an expression for time-ordered Green’s functions of operators built

from fields. If the operators contain no time-derivatives, then:

17In general the path integral without iǫ gives the amplitude between two different wave-

functional states, in which case we would have to be careful about normalization of the measure

[dφ(x)] in actual calculations. The iǫ prescription isolates the ground state.
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〈

0|TF [φ(x1)]...|0
〉

=

∫

[dφ(x)] ei
∫

ddxL(φ(x),∂µφ(x))F [φ(x1)]... (109)

Some examples include F [φ(x1)] = φ4(x1), F [φ(x1)] = ∂iφ(x1). However, if

F [φ(x1)] involves a time-derivative, it is not true that:

〈

0|T φ̇(x1)...|0
〉

=

∫

[dφ(x)] ei
∫

ddxL(φ(x),∂µφ(x))φ̇(x1)... (110)

To see this, on the RHS of (110), one can make the replacement

φ̇(x1) =
1

ǫ

(

φ(x01 + ǫ, ~x1)− φ(x01, ~x1)
)

to get

∫

[dφ(x)] ei
∫

ddxL(φ(x),∂µφ(x))φ̇(x1)... =
d

dx01

〈

0|Tφ(x1)...|0
〉

6=
〈

0|T φ̇(x1)...|0
〉

(111)

d
dx01

〈

0|Tφ(x1)...|0
〉

6=
〈

0|T φ̇(x1)...|0
〉

due to the time-dependence of
〈

0|Tφ(x1)...|0
〉

on time-ordering, in addition to the time-dependence of the field φ(x1).

Therefore any path-integral derivation that results in a time-derivative in the

integrand is to be taken out of the integrand before interpreting the integral as a

Green’s function, e.g.,

∫

[dφ(x)] ei
∫

ddxL(φ(x),∂µφ(x))∂µj
µ(x1) = ∂x1µ

〈

0|Tjµ(x1)|0
〉

(112)
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6.2.2 The Partition Function

As mentioned in the previous footnote, without the iǫ prescription, the path

integral, when properly normalized, is equal to:

〈

φ′′(t, ~x)|e−iHt|φ′(0, ~x)
〉

=

∫ φ(t,~x)=φ′′(t,~x)

φ(0,~x)=φ′(0,~x)

[dφ(x)] ei
∫

ddxL(φ(x),∂µφ(x)) (113)

where the time integral in the action is only from t1 to t2, and |φ′(t1, ~x)
〉

are

wave-functionals18

φ̂(~x)|φ′(t, ~x)
〉

= φ′(t, ~x) |φ′(t, ~x)
〉

(114)

The wave-functionals are the generalization of the position eigenstates in quantum

mechanics to the field eigenstates in quantum field theory. Indeed, quantum field

theory can be done using wave-functionals along with the Schrödinger equation

[10], instead of the canonical or path-integral approaches.

An equation for the partition function in terms of the path integral can be gotten

from making the replacement t→ −iβ on the LHS of (113). When this is done:

〈

φ′′(−iβ, ~x)|e−βH |φ′(0, ~x)
〉

=

∫ φ(−iβ,~x)=φ′′(−iβ,~x)

φ(0,~x)=φ′(0,~x)

[dφ(x)] ei
∫

ddxL(φ(x),∂µφ(x)) (115)

18We are slightly abusing notation. The wave-functional state is |φ′′(~x )
〉

with no time-

dependence, an eigenvalue of the field operator φ̂(~x ). We put the time-label to indicate

the system/state has the field value φ′′(~x ) at time t. The QM analogy would be writing

〈q2|e
−iH(t2−t1)|q1〉 as 〈q2, t2|e

−iH(t2−t1)|q1, t1〉 to emphasize the times of the states. Of course

H〈q2, t2|q1, t1〉H is unambiguous, but we want to avoid using Heisenberg states to emphasize the

evolution operator e−iHt.
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where the time-integral of the action on the RHS is from 0 to −iβ. Note that

the replacement of t on the LHS of (113) corresponds to a Wick rotation by π
2

clockwise in the complex t-plane for the time-integral of the action on the RHS.

We make the change of variables t = −iτ in the action integral to change the

time-contour to be from 0 to β. The result is:

〈

φ′′(−iβ, ~x)|e−βH |φ′(0, ~x)
〉

=

∫ φ(−iβ,~x)=φ′′(−iβ,~x)

φ(0,~x)=φ′(0,~x)

[dφ(x)] e−
∫

ddxLE(φ(x),∂µφ(x))

=

∫ φ(−iβ,~x)=φ′′(−iβ,~x)

φ(0,~x)=φ′(0,~x)

[dφ(x)] e−SE

LE = L(φ(x), i∂τφ(x), ∂jφ(x)))

(116)

where the Euclidean Lagrangian LE is gotten by replacing ∂t in L with i∂τ . Fi-

nally, to get the partition function, we need to set |φ′(0, ~x)
〉

equal to |φ′′(−iβ, ~x)
〉

and take the trace. We can do this by setting periodic boundary conditions

φ′(0, ~x) = φ′′(−iβ, ~x), so that the result for the partition function is:

Z[β] =

∫

φ(0,~x)=φ(β,~x)

[dφ(x)] e−
∫

ddxLE(φ(x),∂µφ(x))

=

∫

φ(0,~x)=φ(β,~x)

[dφ(x)] e−SE

(117)

where we have removed the i in the labels on our integration variables φ(label).

For the grand canonical ensemble, we simply add µ
∫

ddx j0 to −SE in the ar-

gument of the exponential of (117), where µ is the chemical potential associated

with the conserved charge
∫

dDx j0.
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As in the zero-temperature case of section 6.2.1, we will have no need to actu-

ally evaluate (117). Evaluating (117) perturbatively amounts to evaluating the

Euclidean path-integral as in the zero-temperature case, except that frequency in-

tegrals are replaced by sums over discrete frequencies due to the periodic boundary

conditions on φ(x) over the finite inverse-temperature interval [0, β].

Also, for fermions, evidently the above argumentation fails, as anti-periodic bound-

ary conditions are required [11]:

Z[β] =

∫

φ(0,~x)=−φ(β,~x)

[dφ(x)] e−SE (118)

6.2.3 Fujikawa’s Method

Consider the path-integral

∫

[dφi(x)]e
iS[φi(x)] = 1 (119)

Making the substitution φi(x) = φ′
i(x) + ρδφ′

i(x):
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∫

[dφi(x)]e
iS[φi(x)] =

∫

[dφ′
i(x)]

∣

∣

∣

∣

δφk(x)

δφ′
ℓ(y)

∣

∣

∣

∣

eiS[φ
′
i(x)+ρδφ

′
i(x)]

=

∫

[dφ′
i(x)]

∣

∣

∣

∣

δd(x− y) + ρ
δδφ′

k(x)

δφ′
ℓ(y)

∣

∣

∣

∣

e
iS[φ′i(x)]+iρ

∫

ddx δS

δφ′
i
(x)

δφ′i(x)

=

∫

[dφ′
i(x)] e

ρ
∫

ddx tr
δδφ′

k
(x)

δφ′
ℓ
(y)

∣

∣

y=xe
iS[φ′i(x)]+iρ

∫

ddx δS

δφ′
i
(x)

δφ′i(x)

=

∫

[dφi(x)] e
ρ
∫

ddx tr
δδφk(x)

δφℓ(y)

∣

∣

y=xe
iS[φi(x)]+iρ

∫

ddx δS
δφi(x)

δφi(x)

(120)

where the identity |A| = detA = exp(tr logA) was used, along with log(1+ρM) =

ρM + O[ρ2]. In the last line we relabeled the fields, which are dummy variables.

Expanding to order O[ρ]:

0 =

∫

[dφi(x)] e
iS[φi(x)]ρ

∫

ddx

(

tr
δδφk(x)

δφℓ(y)

∣

∣

∣

y=x
+ i

δS

δφi(x)
δφi(x)

)

(121)

Since this holds for any volume, we can ignore the spacetime integrals. Using (51)

from section 5.4.2, then without using the equations of motion (121) becomes:

0 =

∫

[dφi(x)]e
iS[φi(x)]

(

tr
δδφk(x)

δφℓ(y)
− i∂µj

µ(x)

)

∂µ〈0|j
µ(x)|0〉 = −i

〈

0

∣

∣

∣

∣

∣

tr
δδφk(x)

δφℓ(y)

∣

∣

∣

∣

y=x

∣

∣

∣

∣

∣

0

〉 (122)

The trace acts over all internal indices that label the fields. The RHS of the second

line in (122) is called the anomaly. When the anomaly is zero, (122) is called the

Ward identity, which is the quantum version of Noether’s conservation equation.
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7 Units in Physics

In this section we briefly review what units are. We explain the choices for the

fundamental scales we will use in both nonrelativistic and relativistic physics, and

the meaning of setting certain physical quantities equal to one. Ultimately we will

use this along with the path integral to derive the Tan-pressure relation.

7.1 What are Units?

Imagine you’re a biologist on the savannah, and close to the horizon you see a rare

giant penguin. You wish to measure the height of the penguin with your meter

stick, but if you approach it then it might waddle away. But standing next to the

penguin is a common savannah rabbit. You can imagine multiplying the rabbit

and stacking them on top of each other until the stack equals the height of the

penguin:

hpen = 3hbun (123)

Since they’re so common, the savannah rabbit’s height is well-known: they’re 3

feet with very little genetic variation. Therefore we can express the height of the

penguin in two different ways:

quantity/multiple/number scale/reference/standard/unit

3 bunnies

9 feet

From this example, we note two things: 1) a measurement is a comparison be-
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tween what you want to measure (penguin) and some reference object or scale

(bunnies, or some British monarch’s foot) - there is no absolute measurement,

one always needs another object to compare; 2) to specify a measurement, you

have to give a pure number (e.g., 3) followed by the reference value (bunnies,

or more accurately height of bunny hbun). It should be clear that you can take

any object as your reference value or scale, so there are an infinite number of

units you can use. How do you know which scales to choose? It’s clear that

the experimentalist gets to use whatever is most convenient (bunnies, since us-

ing the meter stick would scare the penguin away, and also because the penguin

and bunny are conveniently at the same distance from the observer, and therefore

their heights are in proportion when viewed from this distance). When commu-

nicating with the locals one can use the common savannah rabbit since they’re

so common that everyone there knows what you mean when you use the rabbit

as your unit of length. When communicating with Americans use feet. For sci-

entific publication use meters. But without these considerations, one generally

chooses scales so that the quantity/multiple/number is between .1 and 100. An-

other way of stating this is that one compares objects of similar size. It would be a

mistake to express the penguin’s height using the light-year: the penguin is prac-

tically zero compared to a light-year, and you end up with ridiculous numbers

like .0000000000000000...light-years. Scientific notation mitigates some of this

awkwardness, but numbers such as 1.6 ∗ 10−19 Coulombs are still unfathomable -

in any reasonable system of units we should be able to make the approximation

1.6∗10−19 ≈ 0.19 Later we will see that it’s best to use as scales those dimensionful

19Take a sheet of paper and tear it into ten pieces. Take one of those ten pieces and tear it

74



Figure 2: All measurement is a comparison.

parameters that appear in your equations: those parameters then have the value

one when expressed in terms of those scales.

In SI units, we choose as our scales the kilogram, the meter, and the second.

In analogy with the bunny and height where we make the replacement hbun →

bunnies, we also shorten 2mkilogram to 2 kilograms or 2 kg (mkilogram → kilograms).

But it’s worth bearing in mind that if we say an object is 2 kilograms, what we

really mean is mobject = 2mkilogram, i.e., we are comparing the mass of the object

to the mass of another object called the kilogram that is kept in some vault in

Europe. For nonrelativistic quantum mechanics, we will use as our unit of angular

momentum H the orbital angular momentum of the hydrogen atom in a p-state,

and give this the abbreviation ~, just as we gave mkilogram the abbreviation kg. So

for example, we might express the angular momentum for the spin 1/2 electron in

the ground state as Helectron = .5Hp-state = .5~

into another ten pieces. Repeat seventeen more times: anything that’s left is an electron.
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For everyday discourse social convention often dictates what scales we use, so we

need not specify them. If we say the speed limit on I-45 is 65, then everyone

understands we mean 65 mph. Or if we say the temperature has reached triple

digits, then everyone understands Fahrenheit. This is mimicked in physics too,

where if we express all our quantities as multiples of the standard SI units, then

we can neglect writing down our units at all intermediate steps of a calculation,

knowing that the units for the final answer will be the standard SI unit for that

quantity. Let’s restate this again and give concrete examples.

By convention in physics, there are three scales for which we need not specify units:

the kilogram, the meter, and the second, which provide the reference objects for

mass, length and time (M , L, T ), respectively, in the SI system. That is, all

quantities are expressed as multiples of these quantities. To see an example of

this in a calculation, consider the calculation of the momentum of a charging

elephant meℓ = 2000 kg that runs a distance of deℓ = 4m in teℓ = 2 s:

peℓ = 2000

(

4

2

)

= 4000 (124)

We have neglected the units in the above calculation because convention dictates

that we need not specify units if they are the SI units. To recover the dimension,

we must know that momentum has dimensions equal to ML/T , and then replace

each dimension with the chosen reference object or scale, so that:

peℓ = 4000
kg m

s
(125)
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We never have to write down our units in calculations so long as all quantities

that go into the calculation are written as multiples of our chosen scales. We

can always recover the units by writing down the dimensions of the quantity we

are calculating as MηLξT ζ , and making the replacements M → kg, L → m, and

T → s. Now suppose we don’t know the mass of our elephant, so leave it as a

variable. Then:

peℓ = meℓ

(

4

2

)

= 2meℓ (126)

To recover the dimension, we know that momentum has dimension ML/T , and

our formula already has a quantity that has a dimension M , so we just need L/T :

peℓ = 2
meℓm

s
= 2

meℓLmet

tsec
(127)

The above equation says that the momentum of a charging elephant that runs a

distance of 4 meters in 2 seconds is the mass of the elephant, times the length of

a meter, divided by a duration of time equal to a second, all times 2. We are free

to express the mass of the elephant using any scale we want, e.g., kg or lb.

As another example, take a classical harmonic oscillator with mass 4 kg and spring

constant 25 kg/s2 :

mẍ = −kx

4mkgẍ = −25

(

mkg

t2sec

)

x
(128)
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We ignore the units to get:

4ẍ = −25x

x = C sin

(

5

2
t

) (129)

and then restore the dimensions:

x = CLmet sin

(

5

2

t

tsec

)

(130)

Just as we ignore writing out the units mkg, Lmet, and tsec in classical physics (as

in the above calculations), we will be ignoring units like Hp-state = ~ and Vlight = c

when doing quantum mechanics, only restoring them at the end of the calculation

if we need to emphasize what units we are using.

7.2 Units in Nonrelativistic Quantum Field Theory

In nonrelativistic physics, instead of using MLT as our fundamental dimensions,

we will choose MLH, i.e., replacing time with angular momentum. Our reference

value for angular momentum H will be the orbital angular momentum of a hy-

drogen atom in the p-state, which is given by the abbreviation ~, just as the time

interval whose duration is a second is given the abbreviation s. Our reference

value for M will be the mass of the particle we’re interested in. For our third

dimension we will take length, but leave the unit for the length unspecified: in

practice this means that anything that requires a length dimension we must leave

as a free variable, like how meℓ was used in (126). With these conventions we can
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create a chart:

quantity MLT MLH ~ m L units

m M M 0 1 0 m

x L L 0 0 1 L

t T ML2H−1 −1 1 2 mL2/~

p MLT−1 L−1H 1 0 −1 L/~

E ML2T−2 M−1L−2H2 2 −1 −2 ~
2/mL2

E ML2−DT−2 M−1L−2−DH2 2 −1 −2−D ~
2/mL2+D

H ML2T−1 H 1 0 0 ~

that tells us how to recover our units. The sixth column is particularly important

that we create a new notation [...] that returns the value of the sixth column when

a quantity is inserted into it:

[quantity] = power of L (131)

Some examples:

[meℓ] = 0

[deℓ] = 1

[teℓ] = 2

[peℓ] = −1

(132)

With our choice of units, the Schrödinger equation and canonical commutation

relations are written as:
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iψ̇ = −
1

2
∇2ψ + V ψ

[Xi, Pj ] = iδij

(133)

where we do not need to write down units for ~ and m, since these are our chosen

fundamental scales. We say that we set ~ = m = 1, by which we mean we chose

a system of units such that when we write these quantities in those units, the

quantity/multiple/number is equal to one.

7.3 Units in Relativistic Quantum Field Theory

In relativistic physics, instead of using MLT as our fundamental dimensions, we

will choose HLV , i.e., replacing time with velocity and mass with angular momen-

tum. Our reference value for angular momentum H will be the orbital angular

momentum of a hydrogen atom in the p-state, which is given by the abbreviation

~. Our reference value for V will be the speed of light. For our third dimension

we will take length, but leave the unit for the length unspecified: in practice this

means that anything that requires a length dimension we must leave as a free

variable. With these conventions we can create a chart:
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quantity MLT HLV ~ c L units

m M HL−1V −1 1 −1 −1 ~/cL

x L L 0 0 1 L

t T LV −1 0 −1 1 L/c

p MLT−1 L−1H 1 0 −1 ~/L

E ML2T−2 HL−1V 1 1 −1 ~c/L

E ML2−DT−2 HL−1−DV 1 1 −1−D ~c/L1+D

H ML2T−1 H 1 0 0 ~

that tells us how to recover our units. The sixth column is particularly important

that we create a new notation [...] that returns the value of the sixth column when

a quantity is inserted into it:

[quantity] = power of L (134)

Some examples:

[meℓ] = −1

[deℓ] = 1

[teℓ] = 1

[peℓ] = −1

(135)
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µ
5

jρ

(b)

Figure 3: Triangle diagrams for the (a) gauge and (b) chiral anomalies. For each
of the diagrams, there is another one (not shown) with the arrow in the fermion
loop going counterclockwise.

8 Anomaly Measurement

8.1 Particle Physics

The origins of the anomaly can be traced to the Feynman diagrams in figure 3,

where the diagrams live in a world where L = iψ̄γµ (∂µ + ieAµ)ψ, where ψ is a

quark field, Aµ is the photon field, and e is the charge of the quark, i.e., quantum

electrodynamics with a massless quark.

If L is viewed classically, the system has two continuous symmetries, with corre-

sponding conserved currents given by Noether’s theorem:
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ψ → eiθψ

ψ̄ → e−iθψ̄

jµ = ψ̄γµψ, ∂µj
µ = 0

(136)

and

ψ → eiγ5θψ

ψ̄ → ψ̄eiγ5θ

jµ5 = ψ̄γµγ5ψ, ∂µj
µ
5 = 0

(137)

Diagram 3(a) represents the calculation of

∂µ〈0|Tj
µ(x1)j

ν(x2)j
ρ(x3)|0〉 (138)

while 3(b) represents

∂µ〈0|〈Tj
5µ(x1)j

ν(x2)j
ρ(x3)|0〉 (139)

where T is the time-ordering product and ∂µ is w.r.t. x1.

Based on the classical result of eqns. (136) and (137), we would expect both

diagrams to be zero. Of course quantum mechanics is different from classical

mechanics, so a zero result in one does not necessarily imply a zero result in

the other. However, for symmetries, it is usually the case that a quantity that

is conserved in the classical system is also conserved when the system is quantized.
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However, Adler, Bell, and Jackiw calculated the diagrams using the full rules of

quantum mechanics, and found that they could not make both diagrams simulta-

neously zero. In general, quantities in quantum mechanics diverge, and to handle

this one must alter the high energy behavior of the theory. The arbitrariness in

this procedure allows one to fix the ∂µj
µ diagram to zero, but necessarily then

the ∂µj
µ
5 diagram is nonzero , i.e., an anomaly, as classically ∂µj

µ
5 = 0. The ∂µj

µ

diagram is set to zero not just because electric charge is experimentally observed

to be conserved, but also because gauge symmetry is important in quantum me-

chanics for the consistency of the theory (if the system doesn’t have the global

symmetry of eqn. (136), then it certainly doesn’t have the gauge symmetry).

The triangle diagrams of figure 3 are important in the history of particle physics.

The ∂µj
µ
5 diagram represents the decay of the neutral meson to two photons:

Π0 → γ + γ. jµ acting on the vacuum produces a photon. This can be seen by

the interacting part of L, which can be written as −ejµAµ, so that Aµ or the

photon serves as the source of the electromagnetic current jµ. Since jµ = ψ̄γµψ,

out of the photon source comes out a quark/anti-quark pair. ∂µj
µ
5 acting on the

vacuum represents the Π0 meson field, which is known as the partially conserved

axial current hypothesis (PCAC). So the diagram represents one of the meson’s

quark/anti-quark constituents emitting a photon and then annihilating with the

other anti-quark/quark.
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If the classical symmetry ∂µj
µ
5 = 0 held, then the diagram would be zero, so that

the Π0 meson could not decay electromagnetically to γ + γ. However, it does de-

cay electromagnetically, and taking into account the anomaly, the experimentally

measured decay rate matches the ∂µj
µ
5 diagram. Except the answer was off by a

factor of 3. This can be fixed by assuming that there are three colors of quarks

flowing in the triangle diagram, so that the calculation of the axial anomaly is

important in the history of particle physics as it provided one of the first pieces of

evidence that quarks have color, that quantum chromodynamics was indeed the

correct description of the strong force.

The ∂µj
µ diagram as mentioned is fatal to a theory if it contains an anomaly.

When constructing new models such as a string theory or a grand unified theory,

it is critical that this diagram is zero, which provides a non-trivial constraint on

the theory. For vector theories such diagrams can be shown to vanish by charge

conjugation symmetry (Furry’s theorem), but the weak interaction is chiral (i.e.,

left-handed), so the vanishing of the diagram requires cancellations that restrict

the particle content of the theory: indeed, the requirement that there is no ∂µj
µ

anomaly is achieved in the standard model by having the same number of quarks

as leptons.
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8.2 Atomic Physics

8.2.1 Contact Interactions

At very low temperatures the relative momentum of atoms are small, making the

relative de Broglie wavelength λB much larger than the range of interaction r0 of

the potential, so that collisions are unable to resolve the structure of the potential

[12]. In this case the potential can be approximated as a δD(~r) potential. For

example, in the Born approximation, for the scattering amplitude:

〈k′|V |k〉 =

∫

dDxV (x)ψ∗
k′(x)ψk(x) (140)

If the de Broglie wavelengths of ψk(x) and ψk′(x) are small, then over the range

r0 of the potential, ψ∗
k′(x)ψk(x) ≈ ψ∗

k′(0)ψk(0). Therefore:

〈k′|V |k〉 =

∫

dDxV (x)ψ∗
k′(x)ψk(x)

=

∫

|x|<r0

dDxV (x)ψ∗
k′(x)ψk(x)

= ψ∗
k′(0)ψk(0)

∫

|x|<r0

dDxV (x)

= ψ∗
k′(0)ψk(0)a

=

∫

dDx
[

aδD(x)
]

ψ∗
k′(x)ψk(x)

(141)

so that V (x) = aδD(x) produces the same low-energy physics as the true potential

[13], and is in fact indistinguishable from the true potential if one can only probe

low energies. The argument generalizes to multiple scattering:
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〈k′|V GV |k〉 =

∫

dDx′dDxψ∗
k′(x

′)V (x′)G(x, x′)V (x)ψk(x)

= ψ∗
k′(0)ψk(0)

∫

dDx′dDxV (x′)G(x, x′)V (x)

= ψ∗
k′(0)ψk(0)a1

=

∫

dDx
[

a1δ
D(x)

]

ψ∗
k′(x)ψk(x)

(142)

so that the T-matrix itself can be approximated as proportional to δD(x).

Using Feshbach resonances, experimentalists can tune the value of a, for example

to a = 0 to create a non-interacting Bose-Einstein condensate [14].

8.2.2 2D Bose Gas

A 2D untrapped Bose gas with contact interaction can be described by the La-

grangian:

L = ψ†

(

i∂t +
∇2

2

)

ψ − g(ψ†ψ)2 (143)

where ψ, ψ† obey Bose statistics.

The grand potential Ω at zero temperature can be written as:

Ω[µ] = −
1

it
lnZ

Z[µ] =

∫

[dψ][dψ†]ei
∫

d2xdt(L+µψ†ψ)

P =
1

itV
lnZ

(144)
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where we have expressed the grand partition function in real time with t → ∞

instead of Wick rotating [15]. Since T = 0, the gas is a Bose-Einstein condensate.

However, at any non-zero temperature, the gas is no longer a condensate. This

can easily be seen for the non-interacting gas (g = 0):

nexcited =

∫

d2k

(2π)2
1

e
β
(

k2

2
−µ

)

− 1
(145)

where for µ = 0 the integral suffers from an infrared divergence and if µ < 0 then

there can be no macroscopic occupation of the ground state, as:

N0 =
1

eβ(ǫ0−µ) − 1

=
1

eβ(0−µ) − 1

= −
T

µ

(146)

where in the 2nd line we assumed eβ(0−µ) ≈ 1 in order to maximize N0, and Taylor

expanded the exponential. Since µ = µ(ρ, T ) there is no way to get a proportion-

ality to N .

The result can be shown for the interacting case as well, agreeing with the

Mermim-Wagner theorem, where infrared divergences in the propagation of Gold-

stone modes in D ≤ 2 destabilize the system [16].

However, placed in a harmonic trap, the non-interacting 2D Bose gas can condense

at finite temperature (ω = 1):
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Nexcited =

∫

dnxdny
1

eβ((nx+ny+1)−µ) − 1

=

∫

dnxdny
1

eβ(nx+ny) − 1

(147)

where µ = 1 = ǫ0. There is no longer an infrared divergence no matter the

direction in which nx and ny go to zero, or more formally:

Nexcited =

∫

dnxdny
1

eβ(nx+ny) − 1

=

∫ ∞

−∞

dǫ

∫

dnxdny
1

eβ(nx+ny) − 1
δ(ǫ− nx − ny)

=

∫ ∞

−∞

dǫ
1

eβǫ − 1

∫

dnxdny δ(ǫ− nx − ny)

=

∫ ∞

0

dǫ
1

eβǫ − 1

∫ ǫ

0

dnx

=

∫ ∞

0

dǫ
ǫ

eβǫ − 1
=

1

ω2

∫ ∞

0

dǫ
ǫ

eβǫ − 1

(148)

which has no divergence as ǫ→ 0.

So far we have not taken into account the trap in our work, at least not in the

two-dimensional plane of the gas. Experimentally, to confine a gas to two di-

mensions, ωz is taken high enough compared to kBT to freeze out movement in

the z-direction. So by representing the system with a 2D Lagrangian, we have

automatically take ωz to be high by default. However, presumably to cool the

gas first requires confining the gas to a small region, so that a 2D ultra-cold gas

untrapped in its plane is not experimentally feasible. However, the anomaly is

due to the interaction of the gas molecules with each other, and not a property

of the trap, so one should be able to understand the anomalous properties of a
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gas in a trap by examination of the untrapped system: this will be discussed later.

Therefore taking all this into account, the system described by (143) and (144)

is a Bose-Einstein condensate at absolute zero, but any finite temperature would

destroy this. However, the anomaly for this system seems to occur in the excited

states (with interactions, some of the atoms will be in excited states, even at ab-

solute zero), whereas the condensate phase does not seem to exhibit the anomaly.

So in spite of the fact that in any real experiment T 6= 0 and the gas is no longer

a condensate, this does not imply the anomaly is destroyed at finite temperature,

since it doesn’t seem to be a property of the condensate phase, which we will now

argue.

We evaluate P [µ] = 1
itV

ln
∫

[dψ][dψ†]e
i
∫

d2xdt
(

ψ†
(

i∂t+
∇2

2

)

ψ−g(ψ†ψ)2+µψ†ψ
)

via a saddle-

point expansion. The minimum of the argument of the exponential in the inte-

grand is given by the Euler-Lagrangian equations and yields the Gross-Pitaevskii

equation

(

i∂t +
∇2

2

)

ψ − 2g(ψ†ψ)ψ + µψ = 0 (149)

In the simple model we are considering we want translational invariance of the

ground state so we set derivative terms to zero and get (ψ†ψ) = µ
2g
, which gives:

P [µ] =
1

itV
ln e

itV
(

−g( µ
2g )

2
+µ( µ

2g )
)

=
µ2

4g

(150)
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With this result one can in principle use thermodynamic identities to derive all

other quantities. However, one can also just use quantum mechanics to argue

them. The energy density of the ground state should equal µno, except this is

overcounting by 2 in mean-field theory as the energy is due to pairwise interactions:

E0

V
= E0 = n0µ

2
. Moreover, the path integral gives Z[µ] = 〈0|e−i(H−µN)t|0〉 =

e−i(E0−µN0)t which using (144) gives P [µ] = −E0+µn0. Using these two equations

to solve for E0 and no in terms of µ gives:

P [µ] =
µ2

4g

n0 =
µ

2g

E0 =
µ2

4g

(151)

The ground state therefore has no anomaly, as A = 2E0 − 2P [µ] = 0.

However, when we go beyond the Gross-Pitaevskii equation to take into account

quantum fluctuations, we do find the anomaly [17, 18].

P [µ] =
µ2

4g
−

µ2

16π

[

1 + 2 ln
µ

M2

]

n =
µ

2g
−

µ

4π

[

1 + ln
µ

M2

]

E =
µ2

4g
−

3µ2

16π

[

1 +
2

3
ln

µ

M2

]

(152)

All quantities in (152) are RG-invariant, with g = g(M) and β(g) = g2

π
. The

anomaly is given as 2E − 2P = −n2g2

π
.
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In principle at least, the anomaly could be measured by measuring P = P [n],

calculating E(n) from this, and seeing if 2E − 2P = 0, as would be the case for a

scale-invariant, non-anomalous system.

However, the anomaly is a quantum effect, an operator equation, which should

still hold true at finite temperature, although when taking the thermal expecta-

tion value, perhaps it is washed out. In principle, the presence of a harmonic

trap in the Hamiltonian can affect the operator equation, but the presence of the

anomaly is unaffected. This can be seen within the path-integral approach or

operator approach, but we show it within the operator approach, in 1st-quantized

form. We will use this to get a well-known virial theorem for a Bose-Einstein

condensate in a trap, and show how the anomaly would alter the equation.

The generator of the infinitesimal transformation δx → ρx, δt → 2ρt is the

operator QD = 2tH − X · P , as can be seen by operating on a wave-function

ψ(~x, t):

〈~x|e−iρQD |ψ〉 = e−iρ(2i∂t+ixj∂j)ψ(~x, t)

= ψ(~x, t) + ρ (2t∂t + xj∂j)ψ(~x, t)

(153)

The commutator of H and QD is given by:
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[QD, H] = [2tH −X · P,H]

= −[X · P,
P 2

2
+ V (X)]

= −i

(

P 2 −X ·
dV

dX

)

= −i

(

2H −

[

X ·
dV

dX
+ 2V (X)

])

(154)

so that:

Q̇D =
∂QD

∂t
+ i[H,QD] = 2H −

(

2H −

[

X ·
dV

dX
+ 2V (X)

])

=

[

X ·
dV

dX
+ 2V (X)

] (155)

For a scale-invariant system Hs, X · dVs
dX

+ 2Vs(X) = 0. However, due to the

anomaly, Q̇D = A 6= 0, which requires i[Hs, QD] = −2Hs + A in eqn. (155), a

modification of the algebra. Therefore for a scale-invariant system in a harmonic

trap H = Hs +Hosc, and eqn. (154) with this modification gives:

[QD, H] = −i

(

2H −

[

X ·
dVosc
dX

+ 2Vosc(X)

]

− A

)

= −i (2H − 4Vosc − A)

(156)

The thermal average of the commutator [QD, H] is proportional to

〈[QD, H]〉 ∝ Tr
[

e−β(H−µN)QDH
]

− Tr
[

e−β(H−µN)HQD

]

H commutes with e−β(H−µN), so the expectation value of this commutator is zero

when using the cyclic property of the trace, hence:
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〈[QD, H]〉 = 0

2〈H〉 = 4〈Vosc〉+ 〈A〉

2T + 2Eint = 2Eosc + 〈A〉

(157)

where we used eqn. (156) to replace the commutator in eqn. (157). This is the

anomalous version of eqn. (44) in [19], if eqn. (44) were modified for 2D.

Similar relations exist for 2D fermions in a harmonic trap. For example, eqn.

(157) holds for a 3D Fermi-gas at unitarity [20], and for a 2D Fermi-gas [21].

Indeed, for the 2D Fermi-gas, investigations of the frequency shift and damping

rate of the breathing mode due to the anomaly has been studied [22].
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9 Conclusion

In this thesis we derived four results, which are in the appendices. We calcu-

lated the scale anomaly for a non-relativistic interacting Bose gas in two spatial

dimensions using Fujikawa’s method, described by the Lagrangian

L = ψ†

(

i∂t +
∇2

2

)

ψ

−
1

2

∫

d2~y ψ†(t, ~x)ψ(t, ~x)V (~x− ~y )ψ†(t, ~y)ψ(t, ~y)

V (~x− ~y) = g δ2(~x− ~y)

L = ψ†

(

i∂t +
∇2

2

)

ψ −
g

2
(ψ†ψ)2

We derived the n-body virial theorem inD spatial dimensions using path integrals:

DPV = 2T−

〈

1

n!

∫

(

n
∏

i

dD~xi ρ(τ, ~xi )

)

[

~zCOM · ∇~zCOM
Ṽ (~zCOM, ~z2, ..., ~zn)

]

〉

−

〈

1

n!

∫

(

n
∏

i

dD~xi ρ(τ, ~xi )

)[

n
∑

i=2

~zi · ∇~ziṼ (~zCOM, ~z2, ..., ~zn)

]〉

.

We also considered the relativistic case, and compared the path integral method

with other methods.

We gave an introduction to symmetries and the quantum mechanics relevant for

our work, and briefly discussed some experimental aspects of anomalies. We have

shown that the path-integral can be used to describe anomalies in non-relativistic

physics.
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10 Speculation

1. Relativistic (2+1) λφ4 is super-renormalizeable, meaning it’s free of ultravi-

olet divergences. Its nonrelativistic limit is the λ δ2(~r ) potential [12]. For a

nonrelativistic system, the natural scale at which new physics appear occurs

when E → mc2. Therefore it might be the case that Eb ∝ λnmc2 for some

value of n if one integrates out the high-energy modes of the relativistic

theory down to Λ → mc2.

2. The anomaly for the λ δ2(~r) potential is an exact, non-perturbative cal-

culation. Moreover, it is not affected by spontaneous symmetry breaking.

Therefore for the broken system Eqn. (24) of section E should still hold:

2E − 2P = −
λ2

2π
〈ψ†

↑ψ
†
↓ψ↓ψ↑〉

=
λ2

2π

∂P

∂λ

(158)

At T = 0, thermodynamically E = −P + µ∂P
∂µ
. If one were to plug this

into (158), one would get a differential equation in P that has the intriguing

property that the RHS is proportional to one power of the coupling λ. In

other words, say you know P to order λn. If you plug this into the RHS of

(158), the RHS becomes proportional to λn+1. Then you have:

2

(

−P + µ
∂P

∂µ

)

− 2P = O[λn+1] (159)
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which gives a differential equation for P good to order λn+1. One might be

able to exploit this to calculate P to higher orders in lieu of going one order

higher in a diagrammatic calculation of P .

3. One could take relativistic (2+1) λφ4, but perform a nonrelativistic scaling

in which the speed of light c will scale as its nonrelativistic dimensions. Then

take the nonrelativistic limit of this result.
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Path-Integral Derivation of the Non-relativistic Scale Anomaly

Chris L. Lin and Carlos R. Ordóñez

Department of Physics, University of Houston, Houston, TX 77204-5005

In this paper we calculate the scale anomaly for a quantum field theoretic 2D

non-relativistic Bose gas with contact interactions using Fujikawa’s method, both

in vacuum and in many-body systems. The use of path integrals for these prob-

lems is novel and motivated by a recently developed path-integral framework for

addressing questions about scaling in these systems. A natural class of regulators

is found that produces the correct value of the anomaly traditionally calculated

via other methods, e.g., diagrammatically via the β function.

PACS numbers: 67.85.-d,11.10.Wx,05.70.Ce

1 Introduction

The use of Fujikawa’s method in particle physics is well known and is now standard

in textbooks [1]. It was originally developed to understand the chiral anomaly

[2] but has since been extended to other cases, including the relativistic scale

anomaly [3]. However, as far as we are aware, it has not been used before for non-

relativistic physics. There are currently reasons to embark in such calculations.

Non-relativistic anomalies have been studied since the seminal paper by R. Jackiw

[4], mostly using canonical methods, not Fujikawa’s1. Interest in these anomalies

1See [5, 6] and references therein.

101



has intensified in the study of ultracold 2D gases [7, 8, 9, 10, 11, 12, 13, 14, 15],

with the work by J. Hofmann on anomalies of trapped 2D Fermion gases being of

particular relevance [16]. Despite all this activity, there are still questions about

anomalies and their impact in such systems that need to be answered [17]. A

path-integral Fujikawa approach to study anomalies in systems with an SO(2, 1)

classical symmetry, mainly in the context of 2D diluted gases, has been recently

proposed in [18]. While this approach provides a nice picture of the structure

of anomalies in many-body systems, the calculation of the Fujikawa Jacobian is

crucial in order for this framework to also provide a practical scheme that will

help us better understand the role of anomalies in lower-dimensional physics. We

present here our first results of the Jacobian calculation for 2D complex fields with

contact interactions in the case of constant background fields.

Within the path-integral formulation, anomalies result from the presence of Jaco-

bians due to the non-invariance of the measure under symmetry transformations.

These Jacobians are functional determinants and need to be regularized. For the

chiral anomaly, all regulators lead to a finite result, whereas for the relativistic

scale anomaly an infinite piece remains that is present even if the same regulator

is used in the free theory, so this piece can be subtracted if the free theory is taken

to be non-anomalous [19]. The non-relativistic scale anomaly is similar to the rela-

tivistic case in this respect. However, unlike the latter, space and time are treated

on unequal footing in the former. Indeed, traditionally, for both the relativistic

chiral and scale anomalies, one goes into Euclidean space where the Lagrangian
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kinetic operator is Hermitian. In this Euclidean space one can work with func-

tions of a single variable (the 4 momentum squared) that is positive semi-definite

in all directions. In contrast, for the non-relativistic case the Lagrangian operator

is Hermitian in real time (“Minkowski space”). Due to the asymmetry between

space and time, one is stuck with ω and ~k 2 rather than a single k2, making the

task considerably more difficult, which may be a reason for why this problem has

not been addressed before using Fujikawa’s method.

The structure of this paper is as follows: we give a brief introduction to Fujikawa’s

method, after which we review the essential technical details for the system that

will be considered here. We then proceed with the Jacobian calculation for zero

and finite temperature. Conclusions and comments end the paper.

2 Fujikawa’s Derivation

The derivation of the anomaly via Fujikawa’s method presented here follows closely

the path-integral derivation of the Ward identities, but now the Jacobian of the

symmetry transformation is taken into account. Indeed, anomalies represent a

breakdown of the Ward identities, and it is precisely the Jacobian that invalidates

the identities. For simplicity we will demonstrate the derivation for a scalar field

theory without sources: the generalization to other (multiple) fields is straightfor-

ward. With a change of variables given by φ′(x) = φ(x) + ηδφ(x):
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∫

[dφ]eiS[φ] =

∫

[dφ′]

∣

∣

∣

∣

δφ

δφ′

∣

∣

∣

∣

eiS[φ(φ
′)]

=

∫

[dφ′]

∣

∣

∣

∣

δd(x− y)− η
δδφ′(x)

δφ′(y)

∣

∣

∣

∣

eiS[φ
′−ηδφ′]

=

∫

[dφ]

∣

∣

∣

∣

δd(x− y)− η
δδφ(x)

δφ(y)

∣

∣

∣

∣

eiS[φ−ηδφ]

=

∫

[dφ]e−η
∫

ddx δδφ
δφ eiS[φ]e−iη

∫

ddx δS
δφ
δφ

=

∫

[dφ]eiS[φ]
(

1− η

∫

ddx
δδφ

δφ
− iη

∫

ddx
δS

δφ
δφ

)

.

(1)

Since this holds for any volume V , it follows:

〈

δS

δφ
δφ

〉

= i

〈

δδφ(x)

δφ(y)

∣

∣

∣

∣

y=x

〉

. (2)

Now δS
δφ
δφ = ∂L

∂φ
δφ − ∂µ

∂L
∂∂µφ

δφ. However, if δφ is a symmetry transformation,

then ∂L
∂φ
δφ + ∂L

∂∂µφ
δ∂µφ = ∂µK

µ, so δS
δφ
δφ = − ∂L

∂∂µφ
δ∂µφ + ∂µK

µ − ∂µ
∂L
∂∂µφ

δφ or

δS
δφ
δφ = ∂µ

(

− ∂L
∂∂µφ

δφ+Kµ
)

= −∂µj
µ.

So Fujikawa’s method tells us that:

〈∂µj
µ〉 = −i

〈

δδφ(x)

δφ(y)

∣

∣

∣

∣

y=x

〉

. (3)

Had we added a source term
∫

ddx J(x)φ(x), the equation would read:

〈∂µj
µ〉 − 〈Jδφ〉 = −i

〈

δδφ(x)

δφ(y)

∣

∣

∣

∣

y=x

〉

. (4)

Differentiation w.r.t. to J(xi) n times and setting J = 0 would create contact
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terms:

〈∂µj
µ(x)φ(x1)...φ(xn)〉+ i

n
∑

i=1

〈

φ(x1)...δφ(xi)δ
d(x− xi)...φ(xn)

〉

= −i

〈

δδφ(x)

δφ(y)

∣

∣

∣

∣

y=x

φ(x1)...φ(xn)

〉

. (5)

Eq. (5) without the Jacobian contribution is the traditional Ward identity at zero

temperature, in vacuum, presented in most textbooks [20]. In our case, we only

need the Jacobian of the infinitesimal transformation by itself in order to compute

the RHS of Eq. (3) and compare our results with the literature for both the zero-

temperature and the finite-temperature case. For the latter, we will work within

the framework of reference [18], for which a detailed calculation is mandatory.

3 Contact Interaction

The Schrödinger Lagrangian density for bosons with contact interaction in 2D is

given by:

L = ψ†

(

i∂t +
∇2

2

)

ψ −
g

2
(ψ†ψ)2, (6)

which is the 2-body interaction with a V (~x− ~y) = g δ2(~x− ~y) potential:

L = ψ†

(

i∂t +
∇2

2

)

ψ −
1

2

∫

d2~y ψ†(t, ~x)ψ(t, ~x)V (~x− ~y )ψ†(t, ~y)ψ(t, ~y). (7)

105



The action corresponding to this Lagrangian is scale-invariant. This can be readily

seen by noting that in D = 2, the coupling g has no dimensions in units of length

(with h̄ = m = 1). Therefore Eq. (3) applies.

4 Scale Transformation

Under a non-relativistic dilation transformation [21]:

~x ′ = λ~x, (8)

t′ = λ2t,

ψ′(~x ′, t′) = λ−D/2ψ(~x, t).

Setting λ = 1 + η for infinitesimal η:

δ~x = η~x,

δt = 2ηt,

δ̃ψ = ηθψ(t, ~x) ≡ ηδψ,

δ̃ψ∗ = ηθψ∗(t, ~x) ≡ ηδψ∗,

θ ≡

(

−
D

2
− ~x · ~∇− 2t∂t

)

.

(9)

where D = d − 1 is the spatial dimension2. In this paper we will set D = 2.

2We used δ̃ψ (δ̃ψ∗) for the infinitesimal change in ψ (ψ∗), and set δ̃ψ = ηδψ to make the

notation consistent with Eq. (2).
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Therefore3:

δδψ(x)

δψ(y)

∣

∣

∣

∣

y=x

= [θδ(x0 − y0)δ
2(~x− ~y)]

∣

∣

y=x
=
δδψ∗(x)

δψ∗(y)

∣

∣

∣

∣

y=x

. (10)

Note that unlike translations, for dilations both conventions,

δψ = η
(

−1− ~x · ~∇− 2t∂t

)

ψ(t, ~x)

or

δψ = η
(

1 + ~x · ~∇+ 2t∂t

)

ψ(t, ~x),

leading to currents of opposite sign, are widely used. We’ve adopted the former,

which leads to a dilation charge of [22]:

D =

∫

d2~x~x ·~j − 2tH,

~j = −
i

2

(

ψ†~∇ψ − ~∇ψ†ψ
)

.

(11)

5 Fujikawa Calculation: Set Up

The generalization of the scalar case to our Lagrangian is straightforward:

3Sometimes we write x = (x0, ~x) = (t, ~x) for notational convenience.
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det







δψ(x)
δψ′(y)

δψ(x)
δψ′∗(y)

δψ∗(x)
δψ′(y)

δψ∗(x)
δψ′∗(y)






= det







δ3(x− y)− ηθδ3(x− y) 0

0 δ3(x− y)− ηθδ3(x− y)







= exp






−η

∫

dtd2~x tr







θδ(x0 − y0)δ
2(~x− ~y) 0

0 θδ(x0 − y0)δ
2(~x− ~y)







∣

∣

∣

∣

∣

∣

∣

y=x






.

(12)

where we’ve used detA = eT̂r logA 4. Comparison with Eq. (3) makes the general-

ization clear:

〈∂µj
µ〉 = −itr







θδ3(x− y) 0

0 θδ3(x− y)







∣

∣

∣

∣

∣

∣

∣

y=x

. (13)

This expression is singular so needs to be regularized. This is done by expanding

δ3(x− y)I2, where I2 =







1 0

0 1






, using the eigenbasis φn of a Hermitian operator

M :

δ3(x− y)I2 =
∑

n

φn(x0, ~x)φ
†
n(y0, ~y). (14)

Inserting a regulator that’s a function of M

δ3R(x− y)I2 =
∑

n

R

(

M

Λ2

)

φn(x0, ~x)φ
†
n(y0, ~y), (15)

with the property that R(0) = 1 so that at the end of the calculation we send

4T̂r includes both functional and matrix indices; tr only refers to the 2× 2 matrix indices in

Eqs. (12) and (13).
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Λ → ∞ and lim
Λ→∞

R
(

M
Λ2

)

= 1 ([M ] = [Λ2]). The idea is to choose R such that

large eigenvalues are suppressed giving a convergent sum:

δ3R(x− x)I2 =
∑

n

R

(

λn
Λ2

)

φn(x0, ~x)φ
†
n(x0, ~x). (16)

Once the Hermitian operator M has been selected, then the sum over n in Eq.

(15) gives:

δ3R(x− y)I2 =
∑

n

R

(

M

Λ2

)

φn(x0, ~x)φ
†
n(y0, ~y)

= R

(

M

Λ2

)

δ3(x− y)I2,

(17)

so that

tr
[

δ3R(x− y)I2
]

= tr

[

R

(

M

Λ2

)

δ3(x− y)I2

]

. (18)

For the class of regulators defined by Eqs. (19) and (20) in the next section - a

consistent choice for the untrapped system - it will be shown that the non-trivial

contribution to Eq. (18) will have an even integrand in both ω and ~k (Eq. (28)).

This means that the derivative terms in θ will give a null contribution and the

only term that will survive is given by Eq. (18). To see this, one should take the

space-time derivatives in Eq. (21), and then set x = y; these terms will give odd

contributions to the integrand in (ω,~k) space when multiplied by the even terms

of Eq. (28).

Therefore, Eq. (18) is the expression we aim to calculate.
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6 Fujikawa Calculation: Mode Expansion

6.1 Zero Temperature

For our Hermitian matrix we will choose [23]:

M =







i∂t +
∇2

2
+ µ− 2gψ∗ψ + iǫ −gψ2

−gψ∗2 −i∂t +
∇2

2
+ µ− 2gψ∗ψ + iǫ






(19)

where the fields in M are constant background fields, and 1
2

(

χ† χ

)

M







χ

χ†







is the quadratic Lagrangian resulting from a saddle point expansion of the ac-

tion about the background field ψ, and χ is the shift of the original field from

ψ. We’ve included a chemical potential µ for many-body physics that explicitly

breaks scale-invariance, but we can always set µ = 0 and as we will demonstrate,

the inclusion of µ has no effect on the anomaly.

For our regulating function R we will choose

R

(

M

Λ2

)

=

(

1±
M

Λ2

)−1

, (20)

which clearly satisifies R(0) = 1. Plugging in this regulator into Eq. (17) and

Fourier expanding δ3(x− y) gives:
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tr
[

δ3R(x− y)I2
]

=

∫

dω

2π

∫

d2~k

(2π)2

tr







1±
ω− k2

2
+µ−2gψ∗ψ+iǫ

Λ2 ∓gψ2

Λ2

∓gψ∗2

Λ2 1±
−ω− k2

2
+µ−2gψ∗ψ+iǫ

Λ2







−1

e−iω(xo−yo)+i
~k·(~x−~y). (21)

We will now take (x0, ~x) = (y0, ~y); will make a change of variables ω̃ = ω
Λ2 and

k̃ = k
Λ
; and then replace the tildes since they are dummy indices (ω and ~k are

now dimensionless):

tr [δR(0)I2] = Λ4

∫

dω

2π

∫

d2k

(2π)2

tr







1±
(

ω − k2

2
+ µ−2gψ∗ψ+iǫ

Λ2

)

∓gψ2

Λ2

∓gψ∗2

Λ2 1±
(

−ω − k2

2
+ µ−2gψ∗ψ+iǫ

Λ2

)







−1

. (22)

For notational convenience we will write the above expression as:

tr [δR(0)I2] = ±Λ4

∫

dω

2π

∫

d2~k

(2π)2
tr







ω − k2

2
+ A± + iǫ −gψ2

Λ2

−gψ∗2

Λ2 −ω − k2

2
+ A± + iǫ







−1

,

(23)

with

A± = ±1 +
µ− 2gψ∗ψ

Λ2
. (24)
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To evaluate the inverse in Eq. (23), we will use the identity for matrix inverses

(D + B)−1 = D−1 − (D−1B)D−1 + (D−1B)(D−1B)D−1 − ... with

D± =







ω − k2

2
+ A± + iǫ 0

0 −ω − k2

2
+ A± + iǫ






,

B =







0 −gψ2

Λ2

−gψ∗2

Λ2 0






.

(25)

Note that the iǫ makes D± invertible.

So Eq. (22) becomes:

tr [δR(0)I2] = ±Λ4

∫

dω

2π

∫

d2~k

(2π)2
tr
(

D−1
± − (D−1

± B)D−1
± + (D−1

± B)(D−1
± B)D−1

±

)

,

(26)

where we terminated the series at two powers of B, since each additional power

of B produces a 1
Λ2 that the Λ4 prefactor can’t offset.

The first term in the series, D−1
± , when doing the integral over ω, is independent

of the coupling:
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±Λ4

∫

dω

2π

∫

d2~k

(2π)2
tr







1

ω− k2

2
+A±+iǫ

0

0 1

−ω− k2

2
+A±+iǫ







= ±Λ4

∫

dω

2π

∫

d2~k

(2π)2

(

2(k
2

2
− A± − iǫ)

ω2 − (k
2

2
− A± − iǫ)2

)

=
∓i

2
Λ4

∫

d2~k

(2π)2
.

(27)

Therefore this term is also contained in the free-case, which we take to be anomaly-

free. So we subtract this term when calculating the anomaly. The next term

(D−1
± B)D−1

± has no diagonal elements, so is traceless.

The only term to calculate is the (D−1
± B)(D−1

± B)D−1
± term which produces:

tr [δR(0)I2] = ±Λ4

∫

dω

2π

∫

d2~k

(2π)2

(

−
gψ2

Λ2

)(

−
gψ∗2

Λ2

)

(

−2(k
2

2
− A± − iǫ)

[

ω2 − (k
2

2
− A± − iǫ)2

]2

)

= ±g2(ψ∗ψ)2
∫

dω

2π

∫ ∞

0

dk

2π

(

−2k(k
2

2
− A± − iǫ)

[

ω2 − (k
2

2
− A± − iǫ)2

]2

)

.

(28)

The integral over k is straightfoward:

tr [δR(0)I2] = ±
g2(ψ∗ψ)2

2π

∫

dω

2π

(

1

ω2 − (A± + iǫ)2

)

. (29)

Now A± in Eq. (24) can be safely taken to ±1 (Λ → ∞). For both ± cases, the

result is the same:
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tr [δR(0)I2] = i
g2(ψ∗ψ)2

4π
. (30)

Plugging this into Eq. (13) gives:

〈∂µj
µ〉 = −

g2(ψ∗ψ)2

4π
. (31)

This can be compared with [24] (for the case of constant background fields) by

making the replacement g → g
2
.

Because both R
(

M
Λ2

)

=
(

1± M
Λ2

)−1
work as regulators, any linear combination

such that their coefficients add to one works. For example:

R

(

M

Λ2

)

=
1

2

(

1 +
M

Λ2

)−1

+
1

2

(

1−
M

Λ2

)−1

=

(

1−
M2

Λ4

)−1

.

(32)

We have also verified that the following regulators work:

R

(

M

Λ2

)

=

(

1±
M

Λ2

)−2

. (33)

6.2 Many-Body

Under the formalism developed in [18]5:

5The factor of βA in the denominator of Eq. (52) in [18] cancels the Euclidean version of the

factor
∫ β

0
dτ
∫

d2~x from Eq. (12) in this paper, since for constant background fields our class of

regulators gives a constant value for tr (δR(0)I2). The time and spatial derivatives in θ̂s and θ̂

in paper [18] give no contributions in this case (untrapped) as explained here. Notice Eq. (34)
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2E − 2P = tr [δR(0)I2] . (34)

However, here the anomalous term is evaluated in Euclidean space using the finite

temperature rules. Eq. (28) with plus chosen is:

tr [δR(0)I2] =
g2(ψ∗ψ)2

2π

∫

dω

2π

(

1

ω2 − (1 + iǫ)2

)

. (35)

In terms of the original dimensionful ω:

tr [δR(0)I2] =
g2(ψ†ψ)2

2π
Λ2

∫

Λ2dω

2π

(

1

(Λ2ω)2 − (Λ2 + iǫ)2

)

=
g2(ψ†ψ)2

2π
Λ2

∫

dω

2π

(

1

ω2 − (Λ2 + iǫ)2

)

.

(36)

When going to finite temperature, the difference is that we have −∂τ instead of i∂t.

The effect is to replace ω with iω in Eq. (35). That is, had we started directly in

Euclidean space, we would still get Eq. (35), but with ω replaced by iω stemming

from −∂τ replacing i∂t in our regulator. The second change is that the integral

is a sum since the modes are discrete, with a β factor resulting from writing the

delta function as δd(x − y) = 1
β

∑

n

∫

dDk
(2π)D

e−iωn(x0−y0)ei
~k·(~x−~y). So a sum replaces

the integral. So had we started directly in Euclidean space, we would have a sum

over frequencies instead of an integral:

tr [δR(0)I2] =
g2(ψ∗ψ)2

2π

Λ2

β

∑

n

(

1

−ω2
n − (Λ2 + iǫ)2

)

, (37)

where ωn = 2πn
β

for bosons. The iǫ no longer matters and the summation is

is a 2× 2 version of Eq. (52) in [18].
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standard:

tr [δR(0)I2] = −
g2(ψ∗ψ)2

2π

Λ2

β





β coth
(

βΛ2

2

)

2Λ2



 , (38)

which in the limit of large Λ gives:

tr [δR(0)I2] = −
g2(ψ∗ψ)2

4π
. (39)

So plugging this into Eq. (34)

2E − 2P = −
g2(ψ∗ψ)2

4π
, (40)

which agrees with [25] with g → 2g. For the finite temperature case, there is some

ambiguity in the continuation to Euclidean space that affects the sign, where A+

leads to the correct sign, and A− leads to the negative sign. We take the view

that the zero-temperature limit must reproduce the vacuum result.

7 Conclusion

Fujikawa’s path-integral method has been applied to the Schrödinger Lagrangian

to describe anomalies for 2D non-relativistic, SO(2, 1) scale-invariant complex

bosons with contact interactions. A class of natural regulators was identified that

gives results consistent with those in the literature, obtained with other methods,

in both zero and finite-temperature cases [24, 25]. This work was motivated by the

recent formulation of Fujikawa’s approach to analyze the anomaly structure for 2D
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gases with SO(2, 1) classical symmetry (and other systems with such symmetry)

[18], which is relevant in the study of ultracold 2D trapped gases [16]. It was

important, therefore, that we made contact with established work using other

techniques. Further work is needed for a deeper understanding of this method

and its possible applications. In particular, heat kernel techniques will be used to

investigate trapped systems. Work on these issues is in progress [26].
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Virial Theorem for Non-relativistic Quantum Fields in D Spatial

Dimensions

Chris L. Lin and Carlos R. Ordóñez

Department of Physics, University of Houston, Houston, TX 77204-5005

The virial theorem for non-relativistic complex fields in D spatial dimensions

and with arbitrary many-body potential is derived, using path-integral methods

and scaling arguments recently developed to analyze quantum anomalies in low-

dimensional systems. The potential appearance of a Jacobian J due to a change

of variables in the path-integral expression for the partition function of the system

is pointed out, although in order to make contact with the literature most of the

analysis deals with the J = 1 case. The virial theorem is recast into a form that

displays the effect of microscopic scales on the thermodynamics of the system.

From the point of view of this paper the case usually considered, J = 1, is not

natural, and the generalization to the case J 6= 1 is briefly presented.

PACS numbers: 05.70.Ce,05.30.-d,11.10.Wx

1 Introduction

The virial theorem has been proven using a variety of methods. Recently, a

path-integral derivation of the virial theorem has been developed in the context

of quantum anomalies in non-relativistic 2D systems, or more generally, systems
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with SO(2, 1) classical symmetry [1]. The path integral is most useful in isolating

the anomaly contribution to the equation of state so obtained. This method is

in fact quite general, and applicable for non-relativistic systems with an arbitrary

2-body potential V (~x1, ~x2) in D spatial dimensions, even when there are no quan-

tum anomalies present. We present such derivation in this note, extending the

original derivation using also diagrammatic analysis, and recasting the virial the-

orem into a general equation that relates macroscopic thermodynamics variables

to the microscopic physics. As it will be shown, there is generically a Jacobian

term J that may contribute to the virial theorem, regardless of the existence of a

classical scaling symmetry. We will mainly concern ourselves here with the case

J = 1 (which we term “non-anomalous”). Comments and conclusions end the

note.

2 Virial Theorem

The work in [1] was based partly on the work by Toyoda et al. [2, 3, 4]. They

postulated that spatial scalings1

~x ′ = λ~x ,

ψ′(t, ~x ′) = λ−D/2ψ(t, ~x ),

(1)

1Toyoda et al. introduced an auxiliary external potential that has the effect of confining

the system to a volume V , and then, through a series of infinitesimal scalings and algebraic

arguments derived what amounts to the equation of state, which they referred to as virial

theorem. Unlike them, we’re not using an external potential but simply consider a system with

a large volume V (so all the typical large-volume thermodynamical considerations apply), but

like them, we’re also calling virial theorem the equation of state that will be derived in this

paper.
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leave the particle number density invariant:

dD~xψ†(t, ~x )ψ(t, ~x ) = dD~x ′ ψ′†(t, ~x ′ )ψ′(t, ~x ′ ). (2)

Let us consider a non-relativistic system whose microscopic physics is represented

by a generic 2-body interaction2

L = ψ∗

(

i∂t +
∇2

2

)

ψ −
1

2

∫

dD~y ψ∗(t, ~x)ψ(t, ~x)V (~x− ~y )ψ∗(t, ~y)ψ(t, ~y). (3)

Giving our system a macroscopic volume V , temperature β−1, and chemical po-

tential µ, and going into imaginary time gives for the partition function:

Z[V, β, µ] =
∫

[dψ∗][dψ]e
−

∫ β
0
dτ

∫

V
dD~x

[

ψ∗
(

∂τ−
∇2

2
−µ

)

ψ+ 1

2

∫

dD~y ψ∗(τ,~x)ψ(τ,~x)V (~x−~y )ψ∗(τ,~y)ψ(τ,~y)
]

. (4)

Now consider a new system with the same temperature and chemical potential,

but at volume V ′ = λDV :

Z[λDV, β, µ] =

∫

[dψ′∗][dψ′]

e
−

∫ β
0
dτ

∫

λDV
dD~x′

[

ψ′∗
(

∂τ−
∇′2

2
−µ

)

ψ′+ 1

2

∫

dD~y ′ ψ′∗(τ,~x ′)ψ(τ,~x ′)V (~x ′−~y ′ )ψ′∗(τ,~y ′)ψ′(τ,~y ′)
]

. (5)

2In this paper we set h̄ = m = 1.
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Substituting Eq. (1) into Eq. (5) gives:

Z[λDV, β, µ] =

∫

[dψ∗][dψ]J

e
−

∫ β
0
dτ

∫

V
dD~x

[

ψ∗
(

∂τ−
1

λ2
∇2

2
−µ

)

ψ+ 1

2

∫

dD~y ψ∗(τ,~x )ψ(τ,~x )V (λ(~x−~y) )ψ∗(τ,~y )ψ(τ,~y )
]

, (6)

where J is the Jacobian for the transformation (ψ′∗, ψ′) → (ψ∗, ψ). As mentioned

above, our emphasis will be in the non-anomalous case, and henceforth we assume

J = 1 (see however comments and conclusions). Then Z[λDV, β, µ] ≡ Zλ[V, β, µ],

where the superscript λ represents a microscopic system whose kinetic energy

has a factor 1
λ2

and whose potential is V (λ (~x − ~y) ). Note that Zλ=1[V, β, µ] =

Z[V, β, µ].

The pressures corresponding to Z[λDV, β, µ] and Z[V, β, µ] are equal, since the

intensive variables µ and β−1 are the same, and they correspond to the same mi-

croscopic system. The argument we just made for the pressures being the same

is valid in the thermodynamic limit, based on the principle that two intensive

variables determine the third via an equation of state e.g., P = ρT for an ideal

gas. However, in the next section we will also provide a diagrammatical proof

that the two pressures are the same.

For now assume the pressures are equal. Then using Z = eβPV , we get:
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eβPV
′

− eβPV = Z[λDV, β, µ]− Z[V, β, µ],

or eβPλ
DV − eβPV = Zλ[V, β, µ]− Z[V, β, µ].

(7)

Following [1], we set λ = 1 + η for infinitesimal η:

eβPVDηβPV = Zλ=1[V, β, µ] + ∂λZ
λ[V, β, µ]

∣

∣

∣

λ=1
η − Z[V, β, µ]

= ∂λZ
λ[V, β, µ]

∣

∣

∣

λ=1
η

= Z[V, β, µ]
〈

∫ β

0

dτ

∫

V

dDx

(

−ψ†∇2ψ −
1

2

∫

dD~y ρ(τ, ~y ) [(~x− ~y ) · ∇~xV (~x− ~y )] ρ(τ, ~x )

)

〉

η,

(8)

where we’ve defined ρ(τ, ~x ) ≡ ψ†(τ, ~x)ψ(τ, ~x). Cancelling the partition functions

on both sides, noting that thermal expectation values for the fields at the same τ

are independent of τ so that the τ integral pulls out a β, and denoting the kinetic

energy as KE:

DPV = 2KE −

〈

1

2

∫

dD~x

∫

dD~y ρ(τ, ~y ) [(~x− ~y ) · ∇~xV (~x− ~y )] ρ(τ, ~x )

〉

, (9)

which is the virial theorem in D dimensions (Eqs. (3.30) and (2.6) in [3] and [4]

respectively).
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3 N-body

It is clear that this method can be generalized to the n-body case. Since by Eq.

(2) the scaling transformation preserves
∫

dD~xψ†(τ, x)ψ(τ, x) (≡
∫

dD~x ρ(τ, ~x )),

an n-body term transforms as

1

n!

∫

(

n
∏

i

dD~xi ρ(τ, ~xi )

)

V (~x1, ..., ~xn) →
1

n!

∫

(

n
∏

i

dD~xi ρ(τ, ~xi )

)

V (~x′1, ..., ~x
′
n).

(10)

Setting V (~x1, ..., ~xn) = Ṽ (~zCOM, ~z2, ..., ~zn) where ~zi ≡ ~xi − ~x1 and ~zCOM is the

center of mass of the ~xi’s gives

DPV = 2KE−

〈

1

n!

∫

(

n
∏

i

dD~xi ρ(τ, ~xi )

)

[

~zCOM · ∇~zCOM
Ṽ (~zCOM, ~z2, ..., ~zn)

]

〉

−

〈

1

n!

∫

(

n
∏

i

dD~xi ρ(τ, ~xi )

)[

n
∑

i=2

~zi · ∇~ziṼ (~zCOM, ~z2, ..., ~zn)

]〉

.

(11)

For translationally-invariant systems, we can ignore the potential term in the 1st

line.

4 Diagrammatic Proof of P=P’

To prove diagramatically that the pressure P ′ corresponding to Z[λDV, β, µ] is

equal to the pressure P corresponding to Z[V, β, µ], it suffices to show that

Ω[λDV, β, µ] = λDΩ[V, β, µ], where Ω is the grand potential. By the cluster expan-
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sion, Ω is given by the sum of connected vacuum graphs [5]. Using the Feynman

rules, Ω[V, β, µ] ∝ δD(0)M(β, µ), where δD(0) expresses conservation of momen-

tum of the vacuum and M(β, µ) is the Feynman amplitude3 which is independent

of V , since M contains expressions like ∆n1...∆nD

V
f
(

2πni

L

)

which in the continuum

limit → dDk
(2π)D

f (ki)
4. Taking δD(0) ∝ V , it’s clear that Ω[V, β, µ] ∝ VM(β, µ), so

Ω[λDV, β, µ] = λDΩ[V, β, µ] in the continuum limit.

Alternatively since Z[λDV, β, µ] = Zλ[V, β, µ], another way to show P ′ = P is to

show that the grand potential Ωλ[V, β, µ] of Zλ[V, β, µ] is larger by a factor of λD

than Ω[V, β, µ]. Then Ωλ[V, β, µ] = Ω[λDV, β, µ] = λDΩ[V, β, µ].

The grand potential Ωλ is given by:

Ωλ = −β−1 lnZλ[V, β, µ]. (12)

By the cluster expansion, Ωλ is given by the sum of connected vacuum graphs.

Zλ[V, β, µ] and Z[V, β, µ] have the same macroscopic parameters and only differ

in that Zλ’s propagator is

∆λ =
1

iωn −
k2

2λ2
− µ

, (13)

3M is the T-matrix, and δD(0) =
∫

dDx
(2π)D

e−i0∗x ∝ V .
4For finite volume, momenta are discrete and summed over: ki =

2πni

L
. ∆n1...∆nD is a box of

unit volume surrounding the discrete lattice point ni. In the limit of large L, f
(

2πni

L

)

is assumed

not to vary much, so any point within ∆n1...∆nD not on the lattice would still contribute the

same value of f
(

2πni

L

)

. Then
∑

ni

1
V
f
(

2πni

L

)

=
∑

ni

∆n1...∆nD

V
f
(

2πni

L

)

→
∫

dn1...dnD

V
f
(

2πni

L

)

=

∫

dDk
(2π)D

f (ki).
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and that the potential is

V λ (~x − ~y) = V (λ (~x − ~y) ) (14)

instead of V (~x − ~y). Fourier transforming Eq. (14) gives the relationship:

V λ
(

~k
)

=
V
(

~k
λ

)

λD
(15)

The Feynman rules for the theory say that each vertex contributes its Fourier

transform V λ
(

~k
)

, where ~k is the momentum flowing through the vertex, and

each propagator contributes Eq. (13). For vacuum graphs, all momenta ~k in the

vertices and propagators are integrated over in loop momenta
∫

dDk
(2π)D

. Let us

make the change of variables
∫

dDk
(2π)D

=
∫

λD dDk
(2π)DλD

=
∫

λD dD k̃
(2π)D

and relabel k̃ as

~k. This will cause ∆λ(iω,~k) = ∆
(

iω,
~k
λ

)

→ ∆(iω,~k) and V λ
(

~k
)

=
V
(

~k
λ

)

λD
→

V (~k)
λD

in the loop integrals.

Therefore, Ωλ is the same as Ω, except for an overall scale factor of
(

1
λD

)ν (
λD
)L
,

where ν is the number of vertices and L is the number of loops. Topologically, for

connected vacuum graphs of the 2-body potential, L = ν +1. So the overall scale

factor becomes λD. Hence Ωλ = λDΩ, and therefore P ′ = P .

This generalizes to translationally-invariant n-body potentials, and for sponta-

neous symmetry breaking. Suppose the interaction is of the form:
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∫

V ′

(

n
∏

i=1

dD~x′i φ
′m(i)(τ, ~x′i)

)

V (~x′1, ...~x
′
n) =

λDn

λ
DM
2

∫

V

(

n
∏

i=1

dD~xi φ
m(i)(τ, ~xi)

)

V (λ~x1, ...λ~xn) (16)

where m(i) is the number of fields in the interaction with spatial coordinate ~xi,

and M =
n
∑

i=1

m(i). For translationally-invariant potentials

V λ =
V
(

k
λ

)

λD(n−1)
. (17)

So

Ωλ =

(

λDn

λ
DM
2

1

λD(n−1)

)ν
(

λD
)L

Ω. (18)

Since L =
(

M
2
− 1
)

ν + 1,5 this again gives:

Ωλ = λDΩ. (19)

For a diagram with a mixture of vertices of different types, L =
∑

i

(

Mi

2
− 1
)

νi+1,

where νi is the number of vertices of type i, and Mi is the number of lines coming

out of each vertex:

5M lines come out of each vertex, and each line coming out is 1/2 of an internal line,

so Mν
2 = I where I is the number of internal lines. The number of loops is the number of

independent momenta, L = I − ν + 1. So L =
(

M
2 − 1

)

ν + 1.
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Ωλ =

[

∏

i

(

λDni

λ
DMi

2

1

λD(ni−1)

)νi
]

(

λD
)

∑

i
(Mi

2
−1)νi+1

Ω

= λDΩ.

(20)

5 Scale Equation

The virial equation, Eq. (9), can be recast into a different form that illustrates

the effect of microscopic scales on the thermodynamics of a system. A simple way

to see this is to write the potential as6:

V (|~x− ~y |) =
f
(

gi
|~x−~y |[gi]

)

|~x− ~y |2
. (21)

f is a dimensionless function whose arguments are the ratios of the couplings gi

of V to their length dimension [gi] expressed in units of |~x− ~y | ( h̄
2

m
1

|~x−~y |2
provides

units of energy)7. Denoting r = |~x− ~y |

r
dV

dr
= −2V (r) +

1

r

df
(

gi
r[gi]

)

dr

= −2V (r)−
1

r2
[gi]gi

∂f
(

gi
r[gi]

)

∂gi

= −2V (r)− [gi]gi
∂V

∂gi
.

(22)

where the chain rule was used in line 2. Substituting this into Eq. (9) gives

6We are now restricting ourselves to radial potentials.
7As an example, consider V (|~x− ~y |) = k

2 |~x− ~y |2+λ|~x− ~y |, where the coupling k has length

dimension -4 and λ has length dimension -3. Then f
(

k
|~x−~y |

[k]
, λ
|~x−~y |

[λ]

)

= 1
2

k
|~x−~y |

−4 + λ
|~x−~y |

−3 .

The couplings k and λ provide the characteristic length scales.
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DPV = 2KE + 2V −

〈

1

2

∫

dD~x

∫

dD~y ρ(τ, ~y )

(

−[gi]gi
∂V

∂gi

)

ρ(τ, ~x )

〉

= 2E +

〈

1

2

∫

dD~x

∫

dD~y ρ(τ, ~y )

(

[gi]gi
∂V

∂gi

)

ρ(τ, ~x )

〉

.

(23)

Rearranging:

2E −DPV = −

〈

1

2

∫

dD~x

∫

dD~y ρ(τ, ~y )

(

[gi]gi
∂V

∂gi

)

ρ(τ, ~x )

〉

. (24)

On the LHS of Eq. (24) are macroscopic thermodynamic variables. The RHS is

a measure of the microscopic physics of the system. In particular, if the potential

has no scales [gi] = 0 and no anomalies (i.e., J = 1), you get 0 on the RHS,

and Eq. (24) reduces to the equation of state for a non-relativistic scale-invariant

system [6].

6 Conclusion and Comments

The goal of this paper has been to highlight certain features in the derivation of the

virial theorem for non-relativistic systems, which display a potentially important

omission due to the presence of the Jacobian needed in the path-integral derivation

developed here. Indeed, while we set J = 1 at the outset in order to make contact

with the literature (specifically, Toyoda’s et al. work [2, 3, 4]), Eq. (6) shows that

the natural procedure would be to not assume this and keep the contribution of

the Jacobian, regardless of whether or not there is a classical scaling symmetry.

Obviously, in the latter case, one has to keep the Jacobian in order to incorporate
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the quantum anomaly as was shown in [1]. The formal mathematical steps in the

general case presented here are the same as in that paper, and Eq. (24) would

become

2E −DPV =

−

〈

1

2

∫

dD~x

∫

dD~y ρ(τ, ~y )

(

[gi]gi
∂V

∂gi

)

ρ(τ, ~x )

〉

−
1

β
T̂r
(

θ̂sδ(τx − τy)δ
D(~x− ~y )I2

)

,

(25)

where I2 =







1 0

0 1






, θ̂s = −

(

1 + ~x · ~∇
)

, and we have also used the 2× 2 matrix

notation of [7] (T̂r includes both a matrix and functional trace).

As with the work in [1] and [7], the key to assess the importance of the Jacobian

term rests upon one’s ability to compute its contribution in detail, which implies

a careful regularization procedure, and possibly also renormalization. The actual

details will depend of the type of potentials considered. An interesting direction is

the relativistic generalization of these ideas. Work on this is currently in progress

[8].
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Department of Physics, University of Houston, Houston, TX 77204-5005

We derive the relativistic thermodynamic scale equation using imaginary-time

path integrals, with complex scalar field theory taken as a concrete example. We

use Fujikawa’s method to derive the scaling anomaly for this system using a ma-

trix regulator. We make a general scaling argument to show how for anomalous

systems, the β function of the vacuum theory can be derived from measurement

of macroscopic thermodynamic parameters.

PACS numbers: 05.70.Ce,11.10.Wx,11.30-j

1 Introduction

In a series of seminal papers by Callan, Coleman, and Jackiw [1, 2], it was noted

that in general the trace of the Belifante stress-energy tensor θµµ for any renormal-

izeable theory could be improved, so that classically for scale invariant systems

(systems invariant under the conformal group),

θµµ = 0. (1)

This improved tensor has a number of desirable properties over the canonical

tensor (the one derived from Noether’s theorem) such as having finite matrix
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elements in the quantum theory, and that the energy for bound states can be

naturally expressed as the trace of this tensor. Shortly after these observations,

it was noted that the same improvement program could be applied in the non-

relativisitic case [3], so that for classical scale invariant systems (systems invariant

under the Schrodinger group):

2θ00 −
3
∑

i=1

θii = 0, (2)

where the 2 results from the fact that in non-relativisitic theories time must scale

as twice the power of space.1

Eqs. (1) and (2) fail to consider the trace anomaly. In general, the trace of the

stress-energy tensor taken between bound states gives the energy of the bound

state:

Eb =

∫

dV 〈θµµ〉, (3)

which derives from the fact that the time-average of the field virial is zero for

bound states [4]. With slight modification Eq. (3) holds in the non-relativistic

case too (see [5] for a specific example). However, it is well-known that even

though θµµ = 0 for a classically scale-invariant system, which would imply bound

states can only have zero energy,2 the quantization procedure can destroy this

relationship. When this happens this is called a scale anomaly, and is the mech-

1The Schrödinger equation has only one derivative of time, and two of space, so for scale

invariance time must scale as twice the power of space.
2This is also obvious from the fact that there are no scales to even form Eb.
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anism that allows the bound state energy to differ from zero.

As an example, in QCD with massless quarks (or no quarks at all), the Lagrangian

is classically scale-invariant so that θµµ = 0. However, through the renormalization

process, a scale appears as ΛQCD. In general this makes 〈θµµ〉 = A, where A is the

anomaly. The stress-energy tensor can then be further improved:

T µν = θµν +
gµν

4
T η
η , (4)

so that T µν is no longer traceless. Then

Eb =

∫

dV
〈

T 00
〉

=

∫

dV
〈

θ00
〉

+
Eb

4
, (5)

which implies that A accounts for 1/4 of the energy of the hadron. This can

explicitly be seen in the bag model where confinement of the quarks and gluons

is the result of a cosmological constant term in the Lagrangian which contributes

a positive energy and negative pressure Λgµν to θµν , which confines the system.

Then from the tracelessness of θµν , Λ = 1
4
T µ
µ , so that confinement accounts for

1/4 of the hadron energy [4].

In this paper, we are interested in the thermal analogues of Eqns. (1) and (2).

Both of these quantities are very important in their respective areas of physics.

In the nonrelativistic sector, for an ultra-cold dilute gas, (2) would read:
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2E − 3P = −
h̄2

3m
λ
〈

(ψ†(x)ψ(x))2
〉

. (6)

The RHS is known as the Tan contact, and is extremely important in atomic

physics. In terms of it, Tan derived a set of universal relations [6, 7, 8] that gov-

ern many relationships between the thermodynamics variables of the system and

the behavior of the large momentum tails of correlation functions. These rela-

tionships hold even in the strongly interacting regime where perturbation theory

becomes inadequate [9]. A field theoretic explanation of Tan’s result was later

developed in terms of the operator product expansion [10].

In QCD, the analog would be [11]:

E − 3P =

nf
∑

i=1

mi

〈

ψ̄iψi

〉

+
2

g
β(g)

1

4

〈

F a
µνF

µνa
〉

. (7)

In the low temperature regime where the coupling g is strong, the trace anomaly

of the RHS is calculated by calculating the LHS of Eq. (7) using a lattice action.

The goal is to calculate the QCD equation of state P = P (T, µ, V ) rather than

the anomaly itself. However, for technical reasons [12], E − 3P is important as an

intermediate step in lattice QCD for calculating P (T, µ, V ), where it is given by:

A = E − 3P = −
T

V

d lnZ

d ln a
, (8)

and plugging into Eq. (7) gives after using thermodynamic identities:
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∂

∂ lnT

(

P

T 4

)

=
A

T 4
, (9)

which can then be integrated to get P (T, µ, V ). a is the lattice spacing and Z is

the partition function with lattice action.

In this paper, following the approach initiated in [13, 14, 15] for non-relativisitic

systems, we provide a continuum/non-lattice path-integral approach to deriving

the thermodynamic trace equation E − 3P , where anomalies naturally appear as

a result of a change of variables of the path integral measure, the thermal analog

of Fujikawa’s method. This is in contrast to an operator approach, where one

takes the thermal quantum statistical expectation values of both sides of Eqns.

like (1) and (2), and identifying 〈T 00〉 = E and 〈T ii〉 = PH , where PH is the

hydrodynamic pressure [16]. Within this path-integral approach, no reference

needs to be made about improvement of the stress-energy tensor, or the validity

of equating the hydrodynamic pressure PH with the thermodynamic pressure P

derived from the grand partition function, which is nontrivial, especially in the

presence of anomalies [17, 18]. For concreteness, we will take as our system a

complex scalar field theory, but the results can be extended for other systems.

The Lagrangian is given by

L = ∂µφ†∂µφ−m2φ†φ−
λ

4
(φ†φ)2 (10)

and has a U(1) symmetry
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φ→ eiθφ,

φ† → e−iθφ†,

(11)

leading to a conserved charge:

j0 = iφ†
↔

∂0φ,

Q = i

∫

d3xφ†
↔

∂0φ.
(12)

Under scale transformation:

x′µ = eρxµ,

φ′(x′) = e−ρφ(x),

φ′†(x′) = e−ρφ†(x).

(13)

2 Thermodynamic Dilation Equation

For a homogeneous system the grand potential Ω = Ω(β, µ, V ) in the large volume

limit equals −PV , so that the partition function is Z = e−βΩ = eβPV , and can be

expressed via a path integral:

Z = eβPV =
∑

i

〈i|e−β(H−µQ)|i〉 =

∫

[dφ][dφ∗]e−SE+µ
∫ β
0

∫

V
d3xdτ j0 , (14)

with3

3Due to the dependence of j0 on conjugate momenta, when integrating out conjugate mo-

menta to pass into the Lagrangian formulation of the path integral, LE acquires an additional

µ2φ∗φ term: see [19].
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SE =

∫ β

0

∫

V

d3xdτ

(

∂µφ
∗∂µφ+ (m2 − µ2)φ∗φ+

λ

4
(φ∗φ)2

)

,

j0 = −φ∗
↔

∂τφ.

(15)

Now consider an infinitesimal “relativistic thermodynamic scaling”

β′ = eρβ = β + ρβ = β + δβ,

L′
i = eρLi = Li + ρLi = Li + δLi,

µ′ = µ.

(16)

where Li is the length of the box in the i direction and ρ is a dimensionless in-

finitesimal parameter.

In the large volume limit it is assumed that P (β, µ, V ) = P (β, µ),4 so under the

transformation of Eq. (16):

δ(βPV ) = (δβ)PV + β(δP )V + βP (δV )

= ρ

(

βPV + β

(

∂P

∂β
β

)

V + βP (3V )

)

.
(17)

Now using the identity βV ∂P
∂β

= −PV − E + µQ, we get

δ(βPV ) = ρ (−βE + βP (3V ) + βµQ) , (18)

and therefore

4This can be shown via cluster decomposition: e.g., see [14].
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δ
(

eβPV
)

= δ (βPV ) eβPV = ρβ (−E + 3PV + µQ) eβPV . (19)

Eq. (19) represents the effect of the scaling in Eq. (16) on the LHS of Eq. (14).

Now we analyze the effect of this scaling to the RHS of Eq. (14), the path integral

part, from which anomalies originate, and eventually equate the two expressions.

The scaling in Eq. (16) represents a dilation of the system:

x′µ = eρxµ,

φ′(x′) = e−ρφ(x),

φ′∗(x′) = e−ρφ∗(x).

(20)

The dilated system has

eβ
′P ′V ′

=

∫

[dφ′][dφ′∗]e−S′
E+µ

∫ β′

0

∫

V ′ d
Dx′dτ ′ j′0 , (21)

where

S ′
E =

∫ eρβ

0

∫

eρV

d3x′dτ ′
(

∂′µφ
′∗∂′µφ

′ + (m2 − µ2)φ′∗φ′ +
λ

4
(φ′∗φ′)2

)

,

µ

∫ β′

0

∫

V ′

d3x′dτ ′ j′0 = µ

∫ eρβ

0

∫

eρV

d3x′dτ ′
(

−φ′∗
↔

∂′τφ
′

)

.

(22)

To compare to the undilated system, we “pull back” to unprimed variables by

substituting Eq. (20) into Eq. (21) and Eq. (22). Eq. (22) becomes:
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S ′
E =

∫ eρβ

0

∫

eρV

d3x′dτ ′
(

∂′µφ
′∗∂′µφ

′ + (m2 − µ2)φ′∗φ′ +
λ

4
(φ′∗φ′)2

)

=

∫ β

0

∫

V

e4ρd3xdτ

(

e−2ρ ∂φ∗

∂ (eρxµ)

∂φ

∂ (eρxµ)
+ (m2 − µ2)e−2ρφ∗φ+

λ

4
(e−2ρφ∗φ)2

)

= SE + 2ρ

∫ β

0

∫

V

d3xdτ (m2 − µ2)φ∗φ.

(23)

Similarly:

µ

∫ β′

0

∫

V ′

d3x′dτ ′ j′0 = µ

∫ eρβ

0

∫

eρV

d3x′dτ ′
(

−φ′∗
↔

∂′τφ
′

)

= µ

∫ β

0

∫

V

d3xdτ j0 + ρµ

∫ β

0

∫

V

d3xdτ j0.

(24)

Plugging in these expressions into Eq. (21):

eβ
′P ′V ′

=

∫

J [dφ][dφ∗]e−SE+µ
∫ β
0

∫

V
d3xdτ j0−2ρ

∫ β
0

∫

V
d3xdτ (m2−µ2)φ∗φ+ρµ

∫ β
0

∫

V
d3xdτ j0 ,

(25)

where J is the Jacobian of the transformation (φ′, φ′∗) → (φ, φ∗). Expressing

J = 1− ρA and using Eq. (19): 5

δ
(

eβPV
)

= ρβ (−E + 3PV + µQ) eβPV

= ρ

(

−A− 2

〈
∫ β

0

∫

V

d3xdτ (m2 − µ2)φ†φ

〉

+

〈

µ

∫ β

0

∫

V

d3xdτ j0

〉)

eβPV .

(26)

5〈F (φ, φ†)〉 ≡ 1

Z

∫

[dφ][dφ∗]F (φ, φ∗)e−SE+µ
∫

β

0

∫
V

d3xdτ j0 .
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The chemical potential terms drop out on both sides6 and we get:

E − 3P = 2m2
〈

φ†φ
〉

+A, (27)

where

J =

[

∂φ′∂φ′∗

∂φ∂φ∗

]

= eTr log(I2(δ
4(x−y)+ρ(−1−xµ∂µ)δ4(x−y)))

= e
ρ
∫

d4x tr[(−1−xµ∂µ)δ4(x−y)I2]
∣

∣

x=y

= 1 + ρ

∫

d4x tr
[

(−1− xµ∂µ)δ
4(x− y)I2

] ∣

∣

x=y
,

(28)

so that

A = tr
[

(1 + xµ∂µ)δ
4(x− y)I2

] ∣

∣

x=y
. (29)

I2 is the two dimensional identity matrix which results from having two fields, φ

and φ∗.7 A = A
βV

is the anomaly, a divergent quantity that requires regularization.

3 Fujikawa Calculation

In Euclidean space, LE = ∂µφ
†∂µφ+m2φ†φ+ λ

4
(φ†φ)2. A saddle point expansion

about a constant classical background φ produces the quadratic piece L2:

6Using the identity Q = ∂P
∂µ

and Eq. (14), Q = ∂P
∂µ

= 〈j0〉+ 2µ
〈

φ†φ
〉

.
7Note that Tr in Eq. (28) refers to both discrete (2 × 2) and continuous variables, whereas

tr in Eq. (29) refers to only (2× 2).
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L2 =
1

2

(

η† η

)







−∂2 +m2 + λφ∗φ λ
2
φφ

λ
2
φ∗φ∗ −∂2 +m2 + λφ∗φ













η

η†







≡
1

2

(

η† η

)







−∂2 + C λ
2
φφ

λ
2
φ∗φ∗ −∂2 + C













η

η†







≡
1

2

(

η† η

)

M







η

η†






,

(30)

where C = m2 + λφ∗φ, η is the fluctuating field around φ, and M is a Hermitian

matrix. Following Fujikawa [20], we use M , the bilinear matrix, as the Hermitian

matrix that goes in our regulator8. Choose a regulator of the form R = R
(

M
Λ2

)

with the property that R(0) = I2. The expression to be regulated is:

A = tr







θδ(x− y) 0

0 θδ(x− y)







∣

∣

∣

∣

∣

x=y

(31)

where θ = 1 + xµ∂µ, so that

AR = tr

[

R

(

M

Λ2

)

θδ(x− y)I2

]

∣

∣

∣

∣

∣

x=y

. (32)

This expression equals:

8e.g., for the chiral anomaly with L = ψ̄i /Dψ, the matrix i /D is to be used as the argument

of the regulator. M , the quadratic piece of the quantum action, naturally captures the 1-loop

effects of interactions which are responsible for anomalies.
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AR =

∫

d4k

(2π)4
trR







−∂2+C
Λ2

λφφ
2Λ2

λφ∗φ∗

2Λ2
−∂2+C

Λ2






θe−ik(x−y)

∣

∣

∣

∣

∣

x=y

=

∫

d4k

(2π)4
trR







k2+C
Λ2

λφφ
2Λ2

λφ∗φ∗

2Λ2
k2+C
Λ2






(1− ixµkµ)

= Λ4

∫

d4k

(2π)4
trR







k2 + C
Λ2

λφφ
2Λ2

λφ∗φ∗

2Λ2 k2 + C
Λ2






(1− iΛxµkµ)

= Λ4

∫

d4k

(2π)4
trR







k2 + C
Λ2

λφφ
2Λ2

λφ∗φ∗

2Λ2 k2 + C
Λ2






,

(33)

where the kµ term is odd so vanishes over the integral when multiplied by the

even function R(−k) = R(k) = f(k2). Next we define:

D = k2I2,

B =
1

Λ2







C λφφ
2

λφ∗φ∗

2
C






,

(34)

so that the equation can be written succintly:

AR = Λ4

∫

d4k

(2π)4
trR(D + B). (35)

We then Taylor expand about D (note that [D,B] = 0 so the Taylor expansion is

valid):

AR = Λ4

∫

d4k

(2π)4
tr

(

R(D) +R′(D)B +
1

2
R′′(D)B2 + ...

)

. (36)
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The first term is the same as in the non-interacting case, which is taken to be

anomaly free [21], so we neglect it. The second term can be absorbed by a mass

counter-term. Terms higher order than the third term fall faster than 1
Λ4 so the

Λ4 prefactor in Eq. (36) cannot keep them from going to zero. Only the 3rd term

is independent of the cutoff. Therefore:

AR = Λ4

∫

d4k

(2π)4
1

2
tr
(

R′′(D)B2
)

= Λ4

∫

k2dk2

16π2

1

2
tr
(

R′′(D)B2
)

,

(37)

where the solid angle Ω = 2π2 was used. Now

B2 =
1

Λ2







C2 + λ2(φ∗φ)2

4
λCφφ

λCφ∗φ∗ C2 + λ2(φ∗φ)2

4






≡

1

Λ2







B1 B2

B∗
2 B1






, (38)

and since R(D) is diagonal, we can define:

R(D) = f(k2)I2. (39)

Note that the derivative in Eq. (37) is w.r.t. k2. Therefore:

AR = Λ4

∫

k2dk2

16π2

1

2
tr
(

R′′(D)B2
)

= B1

∫

k2dk2

16π2
f ′′(k2),

(40)

where we have safely taken Λ → ∞. Integrating by parts:
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AR =
B1

16π2

[

k2f ′(k2)
]

∣

∣

∣

∞

0
−

B1

16π2

∫

dk2f ′(k2)

=
B1

16π2

[

k2f ′(k2)
]

∣

∣

∣

∞

0
−

B1

16π2
f(k2)

∣

∣

∣

∞

0

=
B1

16π2
,

(41)

where we require

f(0) = 1

f(∞) = 0

[

k2f ′(k2)
]
∣

∣

∞

0
= 0,

(42)

which are the same conditions on the regulator for the chiral case [22].

Plugging in B1 from Eq. (38) into Eq. (41), we get:

AR =
C2 + λ2(φ∗φ)2

4

16π2
=

5λ2(φ∗φ)2

64π2
+

m4

16π2
+
λm2(φ∗φ)

8π2
. (43)

The second term is independent of the coupling, and since the free theory is taken

to be non-anomalous, we can subtract it. The third term can be absorbed into the

mass term of Eq. (27), leaving only the 1st term as the anomaly [23]. Therefore

E − 3P =
5λ2

64π2

〈

(φ†φ)2
〉

. (44)

Note that the anomaly AR occurs inside the path integral, and

1

Z

∫

[dφdφ∗]f(φ, φ∗)e−SE+... = 〈f(φ, φ†)〉,
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so that in Eq. (44) there are expectation values. This replacement is valid up to

1-loop [23].

4 Dimensional Analysis for Relativistic Systems

In relativistic theories we set h̄ = c = kB = 1. The units for all quantities can

then be written as h̄icjkkBL
ℓ, where L is a variable in the problem with units of

length. Suppose the system has microscopic parameters gk, which can be coupling

constants or dimensionally transmuted quantities. We define [gk] = ℓ as the power

of L when gk is written in units of h̄icjkkBL
ℓ. So for example [m] = [E] = −1. The

grand potential Ω = Ω(β, µi, V, gi) has [Ω] = −1 and can be written as:

Ω(β, zi, V, gi) = V β−1−Df(zi, giβ
−[gi]), (45)

where f(zi, giβ
−[gi]) is a dimensionless function of dimensionless variables, zi is

the fugacity corresponding to µi (zi = eβµi), and D is the number of spatial di-

mensions.9 Ω has this form because β and µi don’t depend on the absolute size

of the system (they are intensive variables). If one doubles the system keeping β

and µi constant, then Ω, being an extensive quantity, should double. So Ω must

be proportional to V.10 To make up for the remaining dimension ([Ω] = −1), we

are free to pull out one of the dimensionful arguments of Ω, and the rest of the

arguments must be ratios with the argument we pulled out. We will pull out β.

9For example, if the coupling g1 has dimensions of length, the corresponding dimensionless

variable is g1β
−1 = g1T which is dimensionless. If the coupling g2 as dimensions of energy,

g2β
−(−1) = g2β = g2

T
.

10Ω = −PV , so Eq. (45) is consistent with the statement that P (β, µ, V ) = P (β, µ).
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This is equivalent to choosing our scale as β and measuring all other quantities in

units of β.

Take the derivative of Eq. (45) w.r.t. to β at constant fugacity zi and volume V ,

and multiply times β:

β
∂Ω

∂β

∣

∣

∣

∣

zi,V

= (−1−D) Ω + V β−1−Dβ
∂f(zi, giβ

−[gi])

∂β

∣

∣

∣

∣

zi

= (−1−D) Ω + V β−1−Dβ

[

∑

k

−[gk]gk
β

∂f(zi, giβ
−[gi])

∂gk

]

∣

∣

∣

∣

∣

zi

= (−1−D) Ω−
∑

k

[gk]gk
∂Ω

∂gk
.

(46)

Now, we use the thermodynamic identity E = ∂(βΩ)
∂β

∣

∣

∣

zi,V
= Ω+ β ∂Ω

∂β

∣

∣

∣

zi,V
.

E −DPV =

(

Ω + β
∂Ω

∂β

∣

∣

∣

∣

zi,V

)

−DPV

=

(

Ω + (−1−D) Ω−
∑

k

[gk]gk
∂Ω

∂gk

)

−DPV

= −

(

P + (−1−D)P −
∑

k

[gk]gk
∂P

∂gk

)

V −DPV

=
∑

k

[gk]gk
∂P

∂gk
V

E −DP =
∑

k

[gk]gk
∂P

∂gk
.

(47)

where the derivatives are at constant β, µ, and V .

152



5 β Function

For a system that develops a microscopic scale M through dimensional transmu-

tation via renormalization of the coupling constant:

E −DP = [M ]M
dλ

dM

∂P

∂λ
= −M

dλ

dM

∂P

∂λ
= −β(λ)

∂P

∂λ
= β(λ)

〈

∂HI

∂λ

〉

, (48)

since ∂P
∂λ

= 1
βV

∂
∂λ

ln
{

∫

[dφ][dφ∗]e−SE+µ
∫

dDxdτjo
}

pulls down the interaction term

in the path integral, creating a thermal average.

Comparison of Eq. (10), Eq. (27), Eq. (44), and Eq. (48) gives:

β(λ) =
5λ2

16π2
, (49)

as

E − 3P =
5λ2

64π2

〈

(φ†φ)2
〉

= β(λ)

〈

(φ†φ)2

4

〉

(50)

would give Eq. (49).

The β function of Eq. (49) can be gotten from setting e = 0 for the charge e in the

calculation for the four-scalar vertex in scalar electrodynamics [24]. A diagram-

153



2

1

4

3

(a) 3

1

4

2

(b) 4

1

3

2

(c)

Figure 1: Diagrams contributing to the β function for complex scalar field theory.
1 and 2 refer to incoming particles, 3 and 4 to outgoing particles.

matic calculation requires the identification of 3 diagrams (see Fig 1). Diagram

(a) contains a symmetry factor of 1/2 due to the swapping of internal propagators.

Modulo the symmetry factor, each diagram contributes the same amount to the β

function, giving 1/2+1+1 = 5(1/2), or the first diagram’s contribution multiplied

by 5. The matrix M used for regularization automatically mixes the interactions,

giving the factor of 5. Using the definition of the beta function M dλ
dM

= 5λ2

16π2 and

setting the renormalization scale M = T , one can solve the differential equation

for the coupling λ(T ) = 16π2

5 ln(Λ
T )

, where Λ is the Landau pole. As T
Λ
→ 0 the cou-

pling is small and the system behaves like a gas of noninteracting bosons, while

as T → Λ the coupling blows up and perturbation theory fails.

6 Conclusions

In this paper we have extended to relativistic systems the path-integral approach

to the study of quantum anomalies for many-body systems initiated in [13, 15, 14].

A notable difference is that in the relativisitic case we have a very wide class of

regulators characterized by the function f(k2) of Eq. (39), which other than sat-

isfying Eq. (42), are of a very general nature. An interesting result of this paper

is the extraction of the leading order result for the beta function for complex
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fields, Eq. (49), obtained here by comparing Eqs. (10), (27), (44) and (48), with-

out resorting to graphical methods [25, 24]. This result gives further support to

the importance of Fujikawa’s approach in the description of quantum anomalies

for systems at finite temperature and density. We are currently pursuing further

studies and extensions of this method, as well as applications to other systems

with classical scale symmetry.
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Ordóñez, “Anomalous commutator algebra for conformal quantum mechan-

ics,” Phys. Rev. D, vol. 67, p. 045018, Feb 2003.

[6] S. Tan, “Energetics of a strongly correlated fermi gas,” Annals of Physics,

vol. 323, no. 12, pp. 2952 – 2970, 2008.

[7] S. Tan, “Large momentum part of a strongly correlated fermi gas,” Annals

of Physics, vol. 323, no. 12, pp. 2971 – 2986, 2008.

[8] S. Tan, “Generalized virial theorem and pressure relation for a strongly cor-

related fermi gas,” Annals of Physics, vol. 323, no. 12, pp. 2987 – 2990, 2008.

[9] E. Braaten, “Universal relations for fermions with large scattering length,”

in The BCS-BEC Crossover and the Unitary Fermi Gas (W. Zwerger, ed.),

vol. 836 of Lecture Notes in Physics, pp. 193–231, Springer Berlin Heidelberg,

2012.

[10] E. Braaten and L. Platter, “Exact relations for a strongly interacting fermi

gas from the operator product expansion,” Phys. Rev. Lett., vol. 100,

p. 205301, May 2008.

[11] J. Preskill, “Quantum Chromodynamics, Lecture Notes for Physics Vol.

230abc.” California Institute of Technology, Pasadena CA, 1983.

[12] C. DeTar and U. Heller, “Qcd thermodynamics from the lattice,” The

European Physical Journal A, vol. 41, no. 3, pp. 405–437, 2009.

156
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Relationship between Fujikawa’s Method and the Background Field

Method for the Scale Anomaly

Chris L. Lin and Carlos R. Ordóñez

Department of Physics, University of Houston, Houston, TX 77204-5005

We show the equivalence between Fujikawa’s method for calculating the scale

anomaly and the diagrammatic approach to calculating the effective potential via

the background field method, for an O(N) symmetric scalar field theory. Fu-

jikawa’s method leads to a sum of terms, each one superficially in one-to-one

correspondence with a vacuum diagram of the 1-loop expansion. From the view-

point of the classical action, the anomaly results in a breakdown of the Ward

identities due to a scale-dependence of the couplings, whereas in terms of the ef-

fective action, the anomaly is the result of the breakdown of Noether’s theorem

due to explicit symmetry breaking terms of the effective potential.

PACS numbers: 11.30.-j,11.10.Gh,11.10.-z

1 Introduction

Fujikawa showed that within the path-integral formalism, all anomalies are the

result of non-invariance of the measure under symmetry transformations [1, 2, 3].

The resulting Jacobian then spoils the naive Ward identities. It is also known that

the quantum effective action preserves the symmetries of the classical action, pro-

vided that the measure is non-invariant under the symmetry transformations [4].
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Therefore there should be a relationship between Fujikawa’s method and the non-

invariant terms of the quantum effective action. We investigate this relationship

in the context of an O(N), λφ4 theory, by comparing, term-by-term, the Taylor

expansion of the Fujikawa determinant with all diagrams in the 1-loop expansion

of the quantum effective potential.

The reason for embarking on this comparison is that a framework for applying

Fujikawa’s method to non-relativisitic, classically scale-invariant systems was un-

dertaken recently [5, 6, 7]. While the quantum effective action is a standard tool

in non-relativisitic physics (e.g., see [8, 9]), Fujikawa’s method is not. Therefore

a comparison of the two approaches, without a coupling to a gravitational back-

ground as is done for the relativisitic case, might be helpful in a first approxima-

tion as a bridge between the two methods in the context of non-relativistic physics.

It is well-known that for the chiral anomaly, the choice of regulating function

f
(

/D
2

Λ2

)

one uses to regulate the Jacobian is pretty much arbitrary, except for a

few conditions governing the behavior of f and its derivatives at 0 and ∞ that

are quite reasonable [10]. The argument of the regulating function however is not

arbitrary - one must choose the gauge invariant /D. The anomaly calculated in

this manner is both finite and exact.

For the scale anomaly, things aren’t as clear. There is no symmetry that tells

you what variable must go into the regulating function. Moreover, if one Taylor
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expands the anomaly as one does in the chiral case, certain terms are infinite. If

one ignores those terms, then one can recover the anomaly, but it is not exact,

holding only to 1-loop order. One generally chooses the quadratic part of effective

action for the argument since it characterizes 1-loop effects [11].

In this paper we attempt to explore the connection between certain terms in the

effective potential when it is expanded by number of vertices and certain terms in

the Jacobian of Fujikawa’s method when it is Taylor expanded, thereby clarifying

the statement that putting the quadratic part of the effective action in the regu-

lating function captures the 1-loop effects. Also, we consider O(N) as opposed to

a single scalar field because despite the problems of Fujikawa’s method for the case

of the scale anomaly compared to the chiral anomaly, such as only capturing the

1-loop result, it still retains a universal quality in that it can capture the 1-loop

result for any N .

In the next two sections, we give a quick review of Fujikawa’s method and the

background field method for calculating the effective action. In the fourth section

we apply Fujikawa’s method to calculate the anomaly and the β function of N

scalar fields interacting via an O(N) symmetric λφ4 potential. In the fifth sec-

tion we use the background field method to write an expression for the effective

potential, organized by the number of vertices, and compare this result with the

Taylor expansion resulting from Fujikawa’s method to derive conditions on the

Fujikawa regulator for the two approaches to give the same result. Finally, in the
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sixth section we apply Noether’s theorem to the effective action and compare it

to anomalous scale-breaking of the classical action.

2 Fujikawa’s Method

For simplicity we will demonstrate this method for a single scalar field: the gen-

eralization to multiple fields is straightforward. With a change of variables given

by φ′(x) = φ(x) + ǫδφ(x):

∫

[dφ]eiS[φ] =

∫

[dφ′]

∣

∣

∣

∣

δφ

δφ′

∣

∣

∣

∣

eiS[φ(φ
′)]

=

∫

[dφ′]

∣

∣

∣

∣

δd(x− y)− ǫ
δδφ′(x)

δφ′(y)

∣

∣

∣

∣

eiS[φ
′−ǫδφ′]

=

∫

[dφ]

∣

∣

∣

∣

δd(x− y)− ǫ
δδφ(x)

δφ(y)

∣

∣

∣

∣

eiS[φ−ǫδφ]

=

∫

[dφ]e−ǫ
∫

ddx δδφ
δφ eiS[φ]e−iǫ

∫

ddx δS
δφ

δφ

=

∫

[dφ]eiS[φ]
(

1− ǫ

∫

ddx
δδφ

δφ
− iǫ

∫

ddx
δS

δφ
δφ

)

.

(1)

Since this holds for any volume V , it follows:

〈

δS

δφ
δφ

〉

= i

〈

δδφ(x)

δφ(y)

∣

∣

∣

∣

y=x

〉

. (2)

If φ → φ + ǫδφ is a symmetry transformation, then δS
δφ
δφ = −∂µj

µ, so that

Fujikawa’s method tells us that:

〈∂µj
µ〉 = −i

〈

δδφ(x)

δφ(y)

∣

∣

∣

∣

y=x

〉

. (3)
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The transformation we’re interested in are dilations for N scalar fields:

x′µ = e−ρxµ

φi(x
′) = eρφi(x)

(4)

so that the Jacobian is:

J =
δδφi(x)

δφj(y)
= (1 + xµ∂µ)δ

4(x− y)In

≡ θδ4(x− y)In

(5)

where In is the N-dimensional identity matrix and θ = (1 + xµ∂µ).

3 Background Field Method

We briefly review some facts about the effective action. The generation functional

W [J ] for the connected correlation functions can be expressed via the path integral

as:

eiW [J ] =

∫

[dφ] eiS[φ]+i
∫

Jφ (6)

The effective action is defined as the Legendre transform:

Γ[φc] = W [J(φc)]−

∫

J(φc)φc

φc =
δW

δJ
= 〈φ〉J

(7)

Γ[φc] obeys the classical equations of motion:
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δΓ

δφc

= −J (8)

and can be expanded as:

Γ[φc] =
∞
∑

n=0

1

n!

∫

dx1...dxn G
(n)
1PI(x1, ..., xn)φc(x1)...φc(xn)

=

∫

dx

(

−Veff(φc) +
1

2
Z(φc)∂µφc∂

µφc + ...

)

(9)

which shows that Γ[φc] is the generating functional for the 1PI graphs and that

the effective potential Veff is the negative sum of all 1PI graphs with all external

lines set to 0 momentum.

In the background field method1, we define a new generating functional W̃ [J ]:

eiW̃ [J ] =

∫

[dφ] eiS[φ+φ̂]+i
∫

Jφ =

∫

[dφ] eiS[φ]+i
∫

J(φ−φ̂)

= eiW [J ]e−iJφ̂

(10)

Application of Eqn. (7) to W̃ [J ] then gives the following relationships:

W̃ [J ] = W [J ]− Jφ̂

φ̃c = φc − φ̂

Γ̃[φ̃c, φ̂] = Γ[φ̃c + φ̂]

(11)

Setting φ̃c = 0 for the effective action then gives us the result we’ll need:

1For a review of the background field method, see [12].
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Γ[φ̂] = Γ̃[0, φ̂] (12)

which states that to calculate the effective action Γ[φ̂] associated with the classical

action S[φ̂], we need only calculate the 1PI vacuum graphs associated with the

classical action S[φ+ φ̂], i.e. the original action shifted by a background φ̂. In the

following section we will relabel φ in S[φ+ φ̂] as η.

4 Fujikawa Calculation

Consider the conformally invariant Lagrangian

L =
1

2
∂µφi∂

µφi −
λ

4
(φiφi)

2 (13)

where repeated indices are summed and i = 1, 2, ...N . The quadratic part of the

action S expanded around the constant background fields φ̂i (φi = φ̂i+ηi) is given

by:

S̃2 =
1

2

N
∑

i,j=1

∫

d4x d4y
δ2S

δφj(x)δφi(y)
ηj(x)ηi(y) (14)

which can be re-expressed in terms of the Lagrangian:
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S̃2 =
1

2

N
∑

i,j=1

∫

d4x

(

∂2L

∂φi∂φj

ηi(x)ηj(x) + 2
∂2L

∂φi∂∂µφj

ηi(x)∂µηj(x) +
∂2L

∂∂νφi∂∂µφj

∂νηi(x)∂µηj(x)

)

(15)

Plugging in Eqn. (13) into Eqn. (15) gives:

S̃2 =
1

2

N
∑

i,j=1

∫

d4x
([

−2λφ̂iφ̂j − λ(φ̂kφ̂k)δij

]

ηi(x)ηj(x) + ∂µηi(x)∂
µηi(x)

)

=
1

2

N
∑

i,j=1

∫

d4x ηi(x) (Bij +Dij) ηj(x) =
1

2

N
∑

i,j=1

∫

d4x ηi(x)Mijηj(x)

(16)

where

Dij = −δij∂
2, Bij =

[

−2λφ̂iφ̂j − λ(φ̂kφ̂k)δij

]

(17)

We choose Mij as the argument of our regulating matrix so that:

A = tr

[

R

(

M

Λ2

)

θδ4(x− y)In

]

∣

∣

∣

∣

∣

x=y

(18)

Going into Fourier space:
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A = tr

∫

d4k

(2π)4

[

R

(

M

Λ2

)

θeik·(x−y)In

]

∣

∣

∣

∣

∣

x=y

= tr

∫

d4k

(2π)4

[

R

(

M

Λ2

)

(1 + xµkµ)In

]

= Λ4 tr

∫

d4k

(2π)4

[

R

(

D +
B

Λ2

)

In

]

(19)

where in the 2nd line y has been set equal to x and Dij = −δij∂
2 → δijk

2. Since

Dij is even in k2, the xµkµ term vanishes upon integration. Since [D,B] = 0,

R
(

D + B
Λ2

)

admits a power series expansion about D:

A = Λ4 tr

∫

d4k

(2π)4

[

R (D) +R′(D)
B

Λ2
+

1

2!
R′′(D)

(

B

Λ2

)2

+ ...

]

(20)

Since D is diagonal, we can write R(n)(D) = f (n)(k2)In for some scalar function

f(k2), so that Eqn. (20) becomes:

A = Λ4N

∫

d4k

(2π)4
f(k2) + Λ2 (trB)

∫

d4k

(2π)4
f ′(k2) +

1

2!

(

trB2
)

∫

d4k

(2π)4
f ′′(k2) + ...

= Λ4N

∫

d4k

(2π)4
f(k2) + Λ2 (trB)

∫

Ω3dk
2

2(2π)4
k2f ′(k2) +

1

2!

(

trB2
)

∫

Ω3dk
2

2(2π)4
k2f ′′(k2)

+
∞
∑

n=3

1

Λ(2n−4)

1

n!
(trBn)

∫

Ω3dk
2

2(2π)4
k2f (n)(k2)

(21)

where Ω3 = 2π2 is the solid angle. The minimum conditions on f(k2) required to

produce the anomaly are:
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f(0) = 1

f(∞) = 0

[

k2f ′(k2)
]
∣

∣

∞

0
= 0,

(22)

which are the same conditions for the chiral anomaly [10]. However, for simplicity

we will specialize to f(k2) = e−k2 which satisifies Eqn. (22) but in addition has

the nice property that:

∫

dk2k2f (n)(k2) = (−1)n (23)

so that plugging in this regulator into Eqn. (21) gives us:

A =
∞
∑

n=0

(−1)n

Λ(2n−4)

1

n!
(trBn)

Ω3

2(2π)4

= Λ4
(

trB0
) Ω3

2(2π)4
− Λ2 (trB)

Ω3

2(2π)4
+

1

2!

(

trB2
) Ω3

2(2π)4

+
∞
∑

n=3

(−1)n

Λ(2n−4)

1

n!
(trBn)

Ω3

2(2π)4

(24)

The first term in Eqn. (25) is independent of the coupling λ so would be present

even in the free theory. Since the free theory is taken to be non-anomalous, we

ignore this term [13]. The second term, proportional to Λ2 is removed by mass

renormalization: the precise meaning of this is discussed in the next section. The

third term is the only remaining nonvanishing term in the Λ → ∞ limit, and is

independent of Λ. Evaluating (trB2) = BijBji by substituting in Bij from Eqn.

(17) gives:
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A =
1

2!

[

λ2(N + 8)(φ̂kφ̂k)
2
] Ω3

2(2π)4

=
λ2(N + 8)

32π2
(φ̂kφ̂k)

2

= β(λ)
(φ̂kφ̂k)

2

4
= β(λ)

∂HI

∂λ

(25)

where β(λ) = λ2(N+8)
8π2 and HI is the interacting Hamiltonian.

5 Equivalence of Fujikawa With Background Field

Calculation

We now apply the background field method to the Lagrangian in Eqn. (13). We

make the shift φi(x) = φ̂i + ηi(x) so that the O(N) Lagrangian becomes:

L̃ =
1

2

N
∑

i,j=1

∫

d4x ηi(x) (Dij + Bij) ηj(x) + L(φ̂i, ∂µφ̂i) + LT + LI (26)

In the above expression, L(φ̂i, ∂µφ̂i) is the original O(N) Lagrangian with the

background field substituted for φ. This term has no dependence on η and con-

tributes to the 1PI vacuum graphs at tree-level (i.e., w.r.t. the η field this term

is like a cosmological constant). LT are terms that contain only one η field: these

produce tadpole diagrams which are reducible, so LT can be neglected in calcula-

tion of 1PI graphs. LI are terms involving η3 and η4 interactions. For 1PI vacuum

graphs, these interactions contribute beginning at the 2-loop level, and hence can

be ignored for a 1-loop calculation (see Fig. 1).
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(a) (b)

Figure 1: Lowest-loop 1PI vacuum graphs with 3 and 4 vertices.

(a) (b) (c)

Figure 2: 1-loop 1PI vacuum graphs with 1,2, and 3 vertices.

So the Lagrangian we will use to calculate the 1PI vacuum graphs at 1-loop is:

L̃ =
1

2

N
∑

i,j=1

∫

d4x ηi(x)Dijηj(x) +
1

2

N
∑

i,j=1

∫

d4x ηi(x)Bijηj(x) (27)

Since the background field φ̂i (contained in Bij of Eqn. (17)) is constant and the

Lagrangian is only quadratic in η, we could sum all the 1-loop vacuum graphs at

once by calculating the determinant Dij+Bij [14]. However, instead we choose as

the propagator D−1
ij , and treat interaction Bij as an interaction vertex that joins

two propagators, and categorize the loops by the number of verticies Bij which

corresponds to twice the number of background fields φ̂ (see Fig. 2). We do this

to match the result of Eqn. (24) from Fujikawa’s method, which is an expansion

in powers of Bij .

The Feynman rules are straightforward. For each vertex we write iBij, as the 1/2

in Eqn. (27) accounts for swapping connections of the two propagators to which

each vertex connects. For each propagator we write iD−1
ij , where the 1/2 takes
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care of which end of the propagator connects to a vertex. An overall symmetry

factor is required that depends on the number of vertices Bij. This symmetry

factor is 1
2n

where n is the number of vertices: the 2 is due to reflection symmetry

and n to cyclic permutation of the vertices.

For an n-vertex diagram:

−iV n
eff =

1

2n

∫

id4k

(2π)4

(

i

−k2

)n

tr [(iB)n] =
i

2n

Ω3

(2π)4
tr Bn

(
∫ Λ

0

dk
k3

k2n

)

(28)

where a Wick rotation was performed. The anomaly in Fujikawa’s method was

given in Eqn. (24) as A =
∞
∑

n=0

(−1)n

2n!
Ω3

(2π)4
(trBn) Λ4−2n. Following the renormaliza-

tion group analysis of [15], we apply the operator ∂
∂ ln Λ

= Λ ∂
∂Λ

to Eqn. (28). Then

from the fundamental theorem of calculus Λ ∂
∂Λ

∫ Λ

0
k3

k2n
= Λ4−2n, we get the result

that:

−
∂

∂ ln Λ
Veff =

∞
∑

n=0

1

2n

Ω3

(2π)4
(trBn) Λ4−2n (29)

Only for n = 2 does this match the anomaly given by Fujikawa’s method. Indeed,

it is impossible to construct a regulator in Fujikawa’s method that exactly pro-

duces Eqn. (29). However, the terms for n ≥ 3 vanish in the limit Λ → ∞. Since

diagrams for which n ≥ 3 are convergent, they do not contribute to the anomaly,

and in Fujikawa’s method they correspond to the vanishing n ≥ 3 terms in the

Taylor expansion. The anomaly is contained entirely in Fig. 2(b). The quadratic
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divergence in Fig. 2(a) is a well-known artifact of cutoff regularization and can be

avoided by dimensional regularization, where the loop integral is zero [16]. How-

ever, Fujikawa’s method does not work with dimensional regularization since in

d− 2ǫ dimensions, the δ-function is zero [17]. Within the context of dimensional

regularization, the anomaly arises from the fact that λφ4 in d− 2ǫ dimensions is

not conformally invariant [18] rather than through the noninvariance of the path

integral measure.

This can readibly be seen by calculating the effective potential. The effective

potential is given by summing across all n of Eqn. (28):

Veff = −
∞
∑

n=1

1

2n

∫

d4k

(2π)4

(

1

k2

)n

tr Bn (30)

One can swap the integral with the summation: this avoids the need for an IR

regulator, as the summation results in a log which is IR-free. However, we are

interested in the contribution of each n-vertex diagram – therefore we introduce a

fictitious mass m to regulate the theory in the IR, and a cutoff Λ to regulate the

theory in the UV:

−Veff =
∞
∑

n=1

1

2n

∫

d4k

(2π)4

(

1

k2 +m2

)n

tr Bn

=
1

2

∫

d4k

(2π)4

(

1

k2 +m2

)

tr B +
1

4

∫

d4k

(2π)4

(

1

k2 +m2

)2

tr B2

+
∞
∑

n=3

1

2n

∫

d4k

(2π)4

(

1

k2 +m2

)n

tr Bn

(31)
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The integrals are standard, and the result in the m2 → 0 limit is:

1

2

∫

d4k

(2π)4

(

1

k2 +m2

)

tr B = −
Λ2

32π2
tr B

1

4

∫

d4k

(2π)4

(

1

k2 +m2

)2

tr B2 =
1

64π2

[

1− log
(

Λ2/m2
)]

tr B2

∞
∑

n=3

1

2n

∫

d4k

(2π)4

(

1

k2 +m2

)n

tr Bn =
1

128π2
tr

[

−3B2 + 2B2 log

(

−B

m2

)]

(32)

One can see that diagrams with n ≥ 3 are independent of Λ, and that − ∂
∂ ln Λ

acting on n = 2 produces the anomaly. Both tr B = −λ(N +2)φkφk and tr B2 =

λ2(N + 8)(φkφk)
2 are of the form of the original Lagrangian, so can be cancelled

by counter-terms. Adding all the terms in Eqn. (32) gives:

Veff = −
Λ2

32π2
tr B −

tr B2

128π2
+

1

64π2
tr

[

B2 log

(

−B

Λ2

)]

(33)

The result is independent of m2 as it should be. The n ≥ 3 terms have produced

a nonpolynomial log interaction, and the n = 2 term has provided the scale for

this interaction.

6 Noether’s Theorem and Dimensional Trans-

mutation

The field φc obeys the classical equations of motion Eqn. (8), with the effective

action Γ[φc] replacing the classical one S[φc]. Therefore, Noether’s theorem, which
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is based on the classical EOM, would apply if Γ[φc] has symmetry. In general

the quantum corrections will create terms in Γ[φc] that explicitly break scale

symmetry. Classically the measure of symmetry-breaking is
N
∑

i=1

∂Veff

∂φic
φic − 4Veff,

which gives zero for the classically scale-invariant tree-level contribution V =

λ
4
(φicφic)

2 to the effective potential. Specializing to N = 1 the effective potential

Eqn. (33) reads:

Veff =
λφ4

c

4
+

9λ2φ4
c

64π2

(

ln

(

3λφ2
c

Λ2

)

−
1

2

)

(34)

Applying
N
∑

i=1

∂Veff

∂φic
φic − 4Veff to Eqn. (34), we get:

A =
9λ2φ4

c

32π2
(35)

in agreement with Eqn. (25). From the viewpoint of classical physics, a term like

φ4
c lnM

2 is scale-invariant, acting like a φ4
c potential. It is φ

4
c lnφ

2
c term that breaks

scale-invariance. Both terms are related since dimensional transmutation of the

n = 2 graph provides the scale for the n ≥ 3 graphs which generate nonpolynomial

interactions.

7 Conclusion

The scale anomaly, and anomalies in general, are the result of the failure to main-

tain classical symmetry upon quantization. One cannot regularize the system in

a way to preserve all the symmetries of the theory. The absence of dimensionful
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parameters in the action is sufficient for the classical theory to be scale invariant.

However, the introduction of a dimensionful parameter through regularization can

provide a scale to support non-invariant φ2n interactions with n ≥ 3 in the O(N)

quantum theory. Fujikawa’s method is equivalent to the 1-loop calculation of the

anomaly in the effective potential.

We plan to investigate these connections and apply these methods for the non-

relativisitic case to study questions of interest to atomic physicists, in particular

to the field of ultra-cold atoms, where unlike the case in particle physics, the man-

ifestations of the scale anomaly in these systems have only now been accessible to

experimentalists in this decade.
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E The Tan-Pressure Relation
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Dilational Symmetry-Breaking in Thermodynamics

Chris L. Lin and Carlos R. Ordóñez

Department of Physics, University of Houston, Houston, TX 77204-5005

Using thermodynamic relations and dimensional analysis we derive a general for-

mula for the thermodynamical trace 2E − DP for non-relativistic systems and

E −DP for relativistic systems, where D is the number of spatial dimensions, in

terms of the microscopic scales of the system within the grand canonical ensemble.

We demonstrate the formula for a variety of cases, including anomalous systems

which develop scales through dimensional transmutation. Using this relation,

we make explicit the connection between dimensional analysis and the virial the-

orem. This paper is focused mainly on the non-relativistic aspects of this relation.

PACS numbers: 5.70.Ce, 67.85.-d,11.10.Wx

1 Introduction

The quantity 2E − DP for non-relativistic systems, or E − DP for relativistic

systems, where E is the thermal energy density, D the number of spatial dimen-

sions, and P the pressure, plays an important roles in physics. This quantity is

the thermal analog of the trace of the improved stress-energy tensor which is a

measure of dilational symmetry-breaking and which plays a central role in the

renormalization group [1].
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In non-relativistic physics, 2E − DP can be used as a measure of deviations of

real gases from ideal ones. Traditionally, such deviations are measured by giving

the two systems the same value for two of their thermodynamic variables, and

taking the difference between them for a third. For ideal gases, and in general

non-anomalous scale-invariant systems, 2E −DP = 0. Therefore at constant pres-

sure and volume, one can define (2Ereal −DP ) = (2Ereal −DP )−(2Eideal −DP ) =

(2Ereal − 2Eideal) ≡ 2Eres, so that (2Ereal −DP ) equals twice the residual internal

energy characterizing the departure of the system from ideal [2]. In other words,

for any system, 2E − DP is equal to the difference in its energy from any non-

anomalous scale-invariant system’s energy at the same V and P .

For ultracold gases interacting via contact interaction, 2E − DP is proportional

to the Tan contact λ2〈ψ†
↑ψ

†
↓ψ↓ψ↑〉 [3]. Many universal relations depending only

on the contact exist, independent of the exact details of the experimental setup [4].

For systems that are scale invariant at the level of the classical action, a non-zero

value of 2E−DP signifies a quantum anomaly, so that 2E−DP measures quantum

anomalies. Previously, it was shown that even in anomalous non-relativistic sys-

tems, 2E −DP can be expressed as a functional determinant via use of Fujikawa’s

path integral methods [5, 6]. Therefore, one can potentially extract information

about β(C) and hence obtain information from or even solve the scattering prob-

lem by extracting information from the thermodynamic problem.

181



In this paper we derive a simple expression for 2E −DP from dimensional analy-

sis and thermodynamics, independent of quantum mechanics or field theory and

independent of Noether’s theorem and canonical commutation relations. In this

paper we will use units where h̄ = m = kB = 1. The units for all quantities

can then be written as h̄imjkkBL
ℓ = Lℓ, where L is a variable in the problem with

units of length. We will define [gk] = ℓ, and call ℓ the dimensions of the variable gk.

With this convention, 2E −DP =
∑

k

[gk]gk
∂P
∂gk

, where E = E
V
is the thermal energy

per unit volume, P is the pressure, and D is the number of spatial dimensions.

In this formula gk are the microscopic parameters of the theory, and [gk] are the

dimensions of these parameters. The derivatives w.r.t. microscopic parameters

are taken at constant temperature β−1, volume V , and chemical potential for each

species µi. The LHS is written in terms of pure macroscopic thermodynamic vari-

ables, while the RHS contains derivatives purely on the microscopic parameters.

Such an equation can be seen as connecting thermodynamics on the LHS (variables

characterizing the macrostate) and statistical mechanics on the RHS (microscopic

variables that are system dependent). In particular, for a theory in which all the

couplings are dimensionless (in the sense that they have no length dimension as

defined above), [gk] = 0, and one might expect the system to be scale invariant

with 2E − DP = 0. However, for such systems, we show 2E − DP = −β(C)∂P
∂C

.

The microscopic parameters gk of a system usually appear in its Hamiltonian as

coupling constants, except in the case of dimensional transmutation. The latter

leads to a new microscopic scale appearing in the pressure P , and in the litera-
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ture this called a quantum anomaly. Therefore 2E −DP is also a measure of the

anomaly for scale-invariant systems.

The relativistic generalization is E − DP =
∑

k

[gk]gk
∂P
∂gk

. It was shown [7] that

the trace of the improved stress-energy tensor in relativistic λφ4 has the prop-

erty θ00 −
∑

i

θii = m2φ2, where the mass term represents a dilational symmetry-

breaking term. Identifying θ00 as E and
∑

i

θii = DPH , where PH is the hydrody-

namic pressure, one derives the thermal analog. θii is equal to the hydrodynamic

pressure [8]: however, in equilibrium, the thermodynamic pressure P equals PH

via the virial theorem (although anomalies can complicate matters [9]). Therefore

deriving this expression requires an improvement of the stress-energy tensor, and

an identification of field variables with thermodynamic variables.

We avoid the complications of having to construct the improved stress-energy

tensor, or having to work in the context of field theory, by working directly

within thermodynamics. We show the consistency of the equation for a vari-

ety of cases, with and without anomalies, and then we show that starting from

2E −DP =
∑

k

[gk]gk
∂P
∂gk

, one can derive the virial theorem, further illustrating the

robustness of the expression and showing the relationship between scaling and the

virial theorem. The relativistic case is also considered.
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2 Finite-Temperature

For ease of presentation, take the independent, dimensionful microscopic param-

eters gk of your theory, and form new parameters Ek with dimensions of energy,

and rewrite the pressure in terms of these new variables1. The grand potential

Ω = Ω(β, µi, V, Ei) for a homogeneous system in D-spatial dimensions must have

the form

Ω(β, zi, V, Ei) = V β−1−D
2 f(zi, βEi), (1)

where f(zi, βEi) is a dimensionless function of dimensionless variables, and zi is

the fugacity corresponding to µi. The reason is must have this form is because

β and µi don’t depend on the absolute size of the system (they are intensive

variables). If you double the system keeping β and µi constant, then Ω, being

an extensive quantity, should double. So Ω must be proportional to V. To make

up for the remaining dimension ([Ω] = −2), we are free to pull out one of the

dimensionful arguments of Ω, and the rest of the arguments must be ratios with

the argument we pulled out. We will pull out β. This is equivalent to choosing

our scale as β and measuring all other quantities in units of β.

Now take the derivative of eqn. (1) w.r.t. to β at constant fugacity z and volume

V , and multiply times β:

1e.g. if you have a scattering length a, replace it with the variable Ek = 1/a2.
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β
∂Ω

∂β

∣

∣

∣

∣

zi,V

=

(

−1−
D

2

)

Ω + V β−1−D
2 β

∂f(zi, βEi)

∂β

∣

∣

∣

∣

zi

=

(

−1−
D

2

)

Ω + V β−1−D
2 β

[

∑

k

Ek
β

∂f(zi, βEi)

∂Ek

]

∣

∣

∣

∣

∣

zi

=

(

−1−
D

2

)

Ω +
∑

k

Ek
∂Ω

∂Ek
.

(2)

Now, we use the thermodynamic identity E = ∂(βΩ)
∂β

∣

∣

∣

zi,V
= Ω+ β ∂Ω

∂β

∣

∣

∣

zi,V
.

2E −DPV = 2

(

Ω + β
∂Ω

∂β

∣

∣

∣

∣

zi,V

)

−DPV

= 2

(

Ω +

(

−1−
D

2

)

Ω +
∑

k

Ek
∂Ω

∂Ek

)

−DPV

= −2

(

P +

(

−1−
D

2

)

P +
∑

k

Ek
∂P

∂Ek

)

V −DPV

= −2
∑

k

Ek
∂P

∂Ek
V

2E −DP = −2
∑

k

Ek
∂P

∂Ek
.

(3)

3 0-Temperature

For 0-temperature, we lose β as a scale. Instead we use µ1, where µ1 is the

chemical potential for one of the particles:

Ω = V µ
1+D/2
1 f

(

µ1

Ei
,
µ1

µj 6=1

)

, (4)

Calculating the number of particles:
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N1 = −
∂Ω

∂µ1

∣

∣

∣

V,µj 6=1

= −(1 +D/2)
Ω

µ1

− V µ
1+D/2
1

∂f
(

µ1
Ej
, µ1
µj 6=1

)

∂µ1

= −(1 +D/2)
Ω

µ1

− V µ
1+D/2
1



−
∑

k

Ek
µ1

∂f
(

µ1
Ej
, µ1
µj 6=1

)

∂Ek
−
∑

ℓ6=1

µℓ6=1

µ1

∂f
(

µ1
Ej
, µ1
µj 6=1

)

∂µℓ6=1





= −(1 +D/2)
Ω

µ1

+
∑

k

Ek
µ1

∂

∂Ek
Ω +

∑

ℓ6=1

µℓ6=1

µ1

∂

∂µℓ6=1

Ω

N1µ1 = −(1 +D/2)Ω +
∑

k

Ek
∂

∂Ek
Ω−

∑

ℓ6=1

Nℓ6=1µℓ6=1

∑

i

Niµi = −(1 +D/2)Ω +
∑

k

Ek
∂

∂Ek
Ω

(5)

The energy E of the system at zero temperature is given by E =
∑

i

Niµi − PV .

Therefore
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2E −DPV = 2

(

∑

i

Niµi − PV

)

−DPV = 2
∑

i

Niµi − (D + 2)PV

= 2

(

−(1 +D/2)Ω +
∑

k

Ek
∂

∂Ek
Ω

)

− (D + 2)PV

= 2

(

−(1 +D/2)(−PV ) +
∑

k

Ek
∂

∂Ek
(−PV )

)

− (D + 2)PV

= −2V
∑

k

Ek
∂

∂Ek
P

2E −DP = −2
∑

k

Ek
∂P

∂Ek
.

(6)

4 Arbitrary Scale

In general, so long as your theory has microscopic parameters gi that have di-

mensions of length (and not necessarily energy or L−2, then by forming appro-

priate dimensionless variables xi = β−
[gi]

2 gi for the argument of Ω(β, z, V, gi) =

V β−1−D
2 f(z, β−

[gi]

2 gi), then one gets:

2E −DP =
∑

k

[gk]gk
∂P

∂gk
. (7)

Alternatively, one can note that Ek = g
− 2

[gk]

k , and apply the chain rule to eqn. (3)

to get eqn. (7).
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5 Relativistic Systems

In relativistic theories, h̄ = c = kB = 1, and mass attains a dimension equal to

1/L. The units for all quantities can then be written as h̄icjkkBL
ℓ = Lℓ, and we

define the dimensions of the parameter gk as [gk] = ℓ. The grand potential Ω has

[Ω] = −1 rather than the NR case [Ω] = −2, and can be written as:

Ω(β, zi, V, Ei) = V β−1−Df(zi, βEi). (8)

Following more or less the same steps as before one derives:

E −DP =
∑

k

[gk]gk
∂P

∂gk
, (9)

where again as in the nonrelativistic case, the derivatives are taken w.r.t. constant

β−1, V , and µi.

6 Examples

6.1 No anomalies, no dimensionful parameters

The free gas in any dimension has no dimensionful parameters. Hence by eqn.

(7):

2E −DP = 0, (10)

as can be verified using E = D
2
NKT and P = NKT

V
.
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6.2 No anomalies, dimensionful parameters

For a contact-interaction Bose gas at 0-T (i.e. L = ψ†
(

i∂t +
∇2

2

)

ψ − g
2

(

ψ†ψ
)2
),

in odd dimensions D = 2n + 1 (perfectly finite in dimensional regularization, no

anomalies), one can make the following 1-loop calculation [10]

Ω =

(

−
1

2

µ2

g
− LD µ

D
2
+1

)

V, (11)

where Ω is the grand potential, LD is a pure number that depends on dimension.

We will verify eqn. (7) by computing the LHS involving macroscopic thermody-

namic parameters by using thermodynamic relations on eqn. (11). Then we will

calculate the LHS of eqn. (7) by differentiation w.r.t. microscopic parameters of

eqn. (11), and compare the two results.

For the LHS, the following thermodynamic identities will be used, true for any

system:

Ω = −PV,

Ω = E − TS − µN ⇒ E = Ω+ µN (T=0),

N = −
∂Ω

∂µ
.

(12)

Calculating N for eqn. (11) using eqn. (12):

N =

(

µ

g
+ LD

(

D

2
+ 1

)

µ
D
2

)

V. (13)

Therefore:
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2E −DPV = 2(µN − PV )−DPV = 2µN − (D + 2)PV

= 2µ

(

µ

g
+ LD

(

D

2
+ 1

)

µ
D
2

)

V + (D + 2)

(

−
1

2

µ2

g
− LD µ

D
2
+1

)

V

=

([

1−
D

2

]

µ2

g

)

V

2E −DP =

([

1−
D

2

]

µ2

g

)

.

(14)

Now make the same calculation but using the microscopic scales. Since we restrict

ourselves to D = 2n+1, there is no renormalization scale as everything is perfectly

finite, a feature peculiar to odd dimensions. However, there is a microscopic length

scale associated with the coupling g, where [g] = D − 2:

∂P

∂g
[g]g =

−∂
(

Ω
V

)

∂g
(D − 2)g =

([

1−
D

2

]

µ2

g

)

. (15)

For fermions in 3-dimensions interacting via contact interactions L = ψ†
(

i∂t +
∇2

2

)

ψ−

4πaψ†
↑ψ

†
↓ψ↓ψ↑, [a] = 1:

2E − 3P = [a]a
∂P

∂a
(16)

Now βPV = ln
∫

[dψdψ†]e−
∫ β
0

∫

V
dτd2x (L0+4πaψ†

↑
ψ†
↓
ψ↓ψ↑) so that differentiating the

path integral w.r.t. a:

[a]a
∂P

∂a
= −4πa〈ψ†

↑ψ
†
↓ψ↓ψ↑〉. (17)
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Plugging into (16), we get Tan’s pressure relation:

2E − 3P = −4πa〈ψ†
↑ψ

†
↓ψ↓ψ↑〉 = −

C

4πa
, (18)

where C = (4πa)2〈ψ†
↑ψ

†
↓ψ↓ψ↑〉 is the Tan contact [3].

6.3 Anomalies, no dimensionful parameters

A Fermi-gas in D = 2 has no dimensionful parameters in the Lagrangian, L =

ψ†
(

i∂t +
∇2

2

)

ψ−Cψ†
↑ψ

†
↓ψ↓ψ↑, [C] = 0. Nevertheless, the system develops a bound

state via dimensional transmutation. Using cutoff regulariztion, the T-matrix is

[11]:

1

T (E)
=

1

C
−

1

4π
ln

(

E

Λ2

)

. (19)

The bound state is special since T (E) blows up there, so that 1
T (Eb)

= 0. Therefore

plugging in E = Eb into eqn. (19) gives:

1

C
=

1

4π
ln

(

Eb
Λ2

)

. (20)

Taking the derivative w.r.t. Eb on both sides of eqn. (20):

−
dC
dEb

C2
=

1

4π

1

Eb
dC

dEb
= −

C2

4π

1

Eb
.

(21)

Therefore:
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−2Eb
∂P

∂Eb
= −2Eb

dC

dEb

∂P

∂C
=
C2

2π

∂P

∂C
. (22)

Now βPV = ln
∫

[dψdψ†]e−
∫ β
0

∫

V
dτd2x (L0+Cψ

†
↑
ψ†
↓
ψ↓ψ↑) so that differentiating the

path integral w.r.t. C:

∂P

∂C
= −〈ψ†

↑ψ
†
↓ψ↓ψ↑〉. (23)

Plugging this result into eqn. (22) and using 2E −DP = −2Eb
∂P
∂Eb

:

2E − 2P = −
C2

2π
〈ψ†

↑ψ
†
↓ψ↓ψ↑〉, (24)

agreeing with [12]. The coupling is bare, but the RHS is finite, and both sides are

RG-invariant.

In our example, for eqn. (7), the microscopic parameter is the bound-state energy.

If you have a pressure written in term of bare parameters and cutoff P = P (C,Λ)

or renormalized with scale µ, P = P (CR, µ), then it is not correct to regard Λ

or µ as a microscopic parameter with dimensions of momentum (L−1), because

dP
dΛ

= dP
dµ

= 0, so that there is in fact no dependence on these parameters. For

our particular example, from eqn. (20), it is true that 2Eb
dC
dEb

= −ΛdC
dΛ

= −β(C)

where β(C) is the beta function of the theory, so that eqn. (22) into our eqn. (7)

would give:

2E −DP = −β(C)
∂P

∂C
, (25)
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and comparison with eqn. (24) allows us to read off β(C) = C2

2π
.

7 Connection with Virial Theorem

In previous work [13] we derived the virial theorem via path integrals, and then

used the virial theorem to derive eqn. (7). One can also work backwards from eqn.

(7) to derive the virial theorem by following the argument backwards. We repro-

duce the argument here. For a two-body potential U = 1
2

∫

dDxdDyψ∗(τ, ~x)ψ(τ, ~x)V (~x−

~y )ψ∗(τ, ~y)ψ(τ, ~y):

2E −DPV = V
∑

k

[gk]gk
∂P

∂gk

=
∑

k

[gk]gk
1

β
∂gk ln

∫

[dψdψ†]e−
∫ β
0

∫

V
dτdDx (L0+

1

2

∫

dD~y ψ∗(τ,~x)ψ(τ,~x)V (~x−~y )ψ∗(τ,~y)ψ(τ,~y))

=
∑

k

[gk]gk

(

−1

2

)〈
∫

V

∫

V

dτdDxdDyψ∗(τ, ~x)ψ(τ, ~x)
∂V

∂gk
ψ∗(τ, ~y)ψ(τ, ~y)

〉

.

(26)

Denoting r = |~x−~y |, one can show that −
∑

k

[gk]gk
∂V
∂gk

= r dV
dr
+2V (see appendix).

Plugging this into eqn. (26) gives:
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2E −DPV =
1

2

〈

ψ∗(τ, ~x)ψ(τ, ~x)r
dV

dr
ψ∗(τ, ~y)ψ(τ, ~y)

〉

+ 2 〈U〉

DPV = 2KE−

1

2

〈
∫

dDxdDy ψ∗(τ, ~x)ψ(τ, ~x) [(~x− ~y ) · ∇~xV (~x− ~y )]ψ∗(τ, ~y)ψ(τ, ~y)

〉

,

(27)

which is the virial theorem [14].

8 Conclusion

We have derived an expression for 2E − DP using only dimensional arguments,

valid for classical and quantum systems, for use in the grand canonical ensem-

ble. We worked directly within the framework of thermodynamics, not having to

improve the stress-energy tensor and invoke hydrodynamics, but instead working

directly with thermodynamic variables. In the case of quantum systems, since

the microscopic scales appear as coupling constants, or in the case of dimensional

transmutation appear via the coupling constants,
∑

k

[gk]gk
∂P
∂gk

manifests itself as

thermal expectation values of the operators multiplying the coupling constants

in the system’s Hamiltonian, which is manifest in the path integral formalism.

Finally, with the help of the path integral, we’ve shown how dimensional analysis

leads to the virial theorem.
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9 Appendix

The potential V (r) has dimensions [V ] = −2, so can generically be written:

V (r) =
f
(

gi
r[gi]

)

r2
. (28)

f is a dimensionless function whose arguments are the ratios of the couplings gi

of V (r) to their length dimension [gi] expressed in units of r.

r
dV

dr
= −2V (r) +

1

r

df
(

gi
r[gi]

)

dr

= −2V (r)−
1

r2

∑

i

[gi]gi
∂f
(

gi
r[gi]

)

∂gi

= −2V (r)−
∑

i

[gi]gi
∂V

∂gi
.

(29)
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