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ABSTRACT 

The significant growth of spatial data increased the need for automated discovery of 

spatial knowledge. An important task when analyzing spatial data is hotspot 

discovery. In this dissertation, we propose a novel methodology for discovering 

interestingness hotspots in spatial datasets. We define interestingness hotspots as 

contiguous regions in space which are interesting based on a domain expert’s notion of 

interestingness captured by an interestingness function. We propose computational 

methods for finding interestingness hotspots in point-based and polygonal spatial 

datasets, and gridded spatial-temporal datasets. The proposed framework identifies 

hotspots maximizing an externally given interestingness function defined on any 

number of spatial or non-spatial attributes using a five-step methodology, which 

consists of:  

(1) identifying neighboring objects in the dataset,  

(2) generating hotspot seeds,  

(3) growing hotspots from identified hotspot seeds,  

(4) post-processing to remove highly overlapping neighboring redundant hotspots, 

and  

(5) finding the scope of hotspots.  

In particular, we introduce novel hotspot growing algorithms that grow hotspots 

from hotspot seeds. A novel growing algorithm for point-based datasets is introduced 

that operates on Gabriel Graphs, capturing the neighboring relationships of objects in 

a spatial dataset.  Moreover, we present a novel graph-based post-processing 
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algorithm, which removes highly overlapping hotspots and employs a graph 

simplification step that significantly improves the runtime of finding maximum weight 

independent set in the overlap graph of hotspots. The proposed post-processing 

algorithm is quite generic and can be used with any methods to cope with overlapping 

hotspots or clusters. Additionally, the employed graph simplification step can be 

adapted as a preprocessing step by algorithms that find maximum weight clique and 

maximum weight independent sets in graphs. Furthermore, we propose a 

computational framework for finding the scope of two-dimensional point-based 

hotspots.  

We evaluate our framework in case studies using a gridded air-pollution dataset, 

and point-based crime and taxicab datasets in which we find hotspots based on 

different interestingness functions and we give a comparison of our framework with a 

state-of-the-art hotspot discovery technique. Experiments show that our methodology 

succeeds in accurately discovering interestingness hotspots and does well in 

comparison to traditional hotspot detection methods. 
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CHAPTER 1 

INTRODUCTION 

The scale of spatial data has grown rapidly with the widespread use of location-aware 

devices and data collection techniques. Extracting knowledge from large amounts of 

spatial data is becoming more important than before. Spatial data mining is the 

process of discovering interesting and previously unknown, but potentially useful 

patterns from spatial databases; however, the complexity of spatial data and implicit 

spatial relationships limits the usefulness of conventional data mining techniques for 

extracting spatial patterns [Shekhar et al. 2011].  

An important task when analyzing spatial data is hotspot discovery. Shekhar et al. 

[2011] defines hotspot discovery in spatial data mining as “a process of identifying 

spatial regions where more events are likely to happen, or more objects are likely to 

appear, in comparison to other areas”. Applications of hotspot analysis include crime 

analysis, epidemiology, voting pattern analysis, economic geography, retail analysis, 

traffic incident analysis, and demographics [Eftelioglu et al. 2016]. Eck et al. [2005] 

detects hotspots with high crime rates to help police identify high-crime areas, types 

of crime being committed, and the best way to respond. Kulldorff et al. [2005] uses 

hotspot analysis for early detection and monitoring of disease outbreak locations. Hale 

et al. [2015] uses hotspot analysis to determine the locations where nutrient yields and 

nutrient retentions occur. Barrell et al. [2013] identifies hotspots of high and low sea 

grass cover in the seabed. Yabe et al. [2016] detect evacuation hotspots after a large-

scale disaster —the Kuromoto Earthquake—using location data from smartphones. 
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Similar to Shekhar’s definition given earlier, Zhang and Eick [2016] define hotspots 

as dense regions in a spatial dataset whose density is above a user-defined threshold. 

On the other hand, Agarwal et al. [2006] defines hotspots as anomalous regions in 

spatial data, and considers hotspot discovery problem as finding maximum 

discrepancy regions.  

In this research, we propose an alternative hotspot discovery approach, which aims 

to find hotspots in spatial datasets maximizing an externally given interestingness 

function based on a domain expert’s notion of interestingness. In particular, we present 

a computational framework which grows hotspots from seed hotspots using an 

interestingness function. Interestingness functions are defined on the spatial and non-

spatial attributes of the data and are used to measure the “hotness” or “news-

worthiness” of a spatial region. This research extends the scope of hotspot discovery as 

it enables detecting hotspots based on an external interestingness function rather than 

using the number of events in a region as a measure of hotness, and enables finding 

hotspots that cannot be discovered by classical hotspot discovery techniques. For 

example, using our framework, we were able to identify with high correlation hotspots 

between PM2.5 and ozone levels in a four-dimensional gridded air pollution dataset 

[Akdag et al. 2014]. We define interestingness hotspots as contiguous regions in space, 

in which the interestingness value, computed by the plugin interestingness function, 

is larger than a predefined interestingness threshold. In general, our approach is 

capable of discovering regions with interesting patterns involving one or more spatial 

or non-spatial attributes.  

There is significant work in using spatial scan statistics [Kulldorff 1997] for finding 

hotspots in spatial datasets. Spatial scan statistics based hotspot detection techniques 
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search for regions in the dataset with statistically high number of occurrences of an 

event compared to the rest of the dataset. When using these algorithms, each object’s 

interestingness value—which is a dedicated attribute of an object—should be 

predefined and independent of properties of other objects in the hotspot region. Thus, 

they are unable to find interestingness hotspots whose value depends on properties of 

other objects in the hotspot region; for example, they cannot find hotspots where any 

given two attributes are highly correlated or where an attribute has very low variance, 

as correlation and variance measures are defined on a set of objects—rather than being 

an attribute of each object in the dataset. Furthermore, most spatial scan methods are 

restricted to finding hotspots with a certain shape, whereas our framework provides a 

graph-based hotspot growing approach that is quite general and extendible, and can 

identify hotspots of any shape.  

Moreover, spatial clustering algorithms have been used for hotspot detection. 

However, most clustering algorithms compute clusters solely relying on distance 

information. Moreover, clustering algorithms search for all hotspots in parallel, being 

forced to make compromises—for example, switching a sub region from one to another 

cluster; such a switch might increase the reward of one cluster but decrease the reward 

of the other cluster. On the other hand, hotspot discovery algorithms grow hotspots 

serially from hotspot seeds without having to make any compromises; this enables, we 

claim, hotspot discovery algorithms to find “better” hotspots compared to clustering 

approaches.  However when using hotspot discovery approaches, many of the hotspots 

obtained may overlap. Thus, the hotspot discovery approaches have to deal with 

overlapping hotspots, which requires a post-processing step that is not necessary for 

the clustering approaches that produce disjoint clusters.  
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This research focuses on finding interestingness hotspots in point-based and 

polygonal spatial datasets and gridded spatial-temporal datasets. Naturally, most 

spatial datasets are point-based datasets where each object corresponds to a location. 

Polygons are also used extensively for representing two-dimensional spatial objects 

such as cities, regions, states, countries, zip codes, etc. Gridded spatial datasets are 

quite common in scientific computing as many disciplines such as optometry, Earth 

and atmospheric sciences, medicine, and ecology produce large amounts of data relying 

on spatial grid-structures that identify locations where measurements are taken.  

In addition, we propose a methodology for finding the scope for point-based hotspots 

using polygon models. We propose two methods for creating polygons models for point-

based hotspots, and clusters. The first method creates polygons based on Voronoi 

diagram and convex hull of the point set. The second method is a more generic 

approach that creates tighter polygons based on Delaunay triangulation of the dataset, 

and uses a novel fitness function to select the parameter for generating a polygon 

model and does not require access to the whole dataset. 

In summary, we propose a framework that identifies hotspots maximizing an 

externally given interestingness function using a five-step approach, which consists of: 

(1) Identifying neighboring objects in the dataset,  

(2) Identifying hotspot seeds,  

(3) Growing hotspots from identified hotspot seeds,  

(4) Post-processing to remove highly overlapping redundant hotspots, 

(5) Finding the scope of each hotspot.  
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The main contributions of this dissertation include: 

—We present novel hotspot growing algorithms, which grow interestingness hotspots 

from seed hotspots 

—We introduce novel interestingness functions that can be of interest to domain 

experts. 

—We present a novel graph-based post-processing algorithm, which removes highly 

overlapping redundant hotspots by finding maximum weight cliques in overlap 

graphs. This algorithm is generic and can be used with any algorithm that creates 

overlapping hotspots or clusters. 

—We introduce a graph simplification algorithm that significantly improves the 

runtime of finding maximum weight independent set and maximum weight cliques 

in overlap graphs.  

—Moreover, we present a novel algorithm to determine the scope of interestingness 

hotspots that that uses polygons as hotspot models which are computed from 

Voronoi diagram and the convex hull of the objects that belong to the hotspot.    

—We present an alternative methodology for creating polygon models for spatial 

hotspots and clusters. As part of this approach, we propose a novel “polygon-

emptiness measure” that is used to assess the amount of empty spaces in polygons 

generated for a set of points. 

—We provide case studies in which we find: 

—hotspots in an air-pollution dataset with high correlation of air pollutants and 

ozone levels,  
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—hotspots in a crime dataset where majority of crimes belong to the same crime 

type,  

—hotspots in a taxicab dataset where more money is made by taxi drivers per 

minute that pick up passengers in the hotspot region, and 

—polygon models for a set of clusters in an artificial dataset 

The remainder of the dissertation is organized as follows: Chapters 2 and 3 

introduce the background and the related work, respectively. Chapter 4 describes the 

proposed hotspot discovery framework. Chapter 5 gives a detailed explanation of the 

methodology we use. In Chapter 6, we evaluate our framework in multiple case studies 

and compare our framework with the state of art hotspot discovery approaches. 

Chapter 7 gives a conclusion of the dissertation.  
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CHAPTER 2 

BACKGROUND 

In this chapter, we firstly introduce the basic concepts of graph theory that are relevant 

in this dissertation. Next, we give a description of some commonly used data structures 

and computational geometry concepts that are frequently used in our research.  

2.1 Graph Theory 

In this section, we introduce the basic concepts of graph theory that are relevant in 

this dissertation. 

Definition 2.1 (Graph). A graph G is a pair of sets (V,E), where V is a set of vertices, 

and E is a set of edges between the vertices, where E ⊆ {(u,v) | u, v ∈ V}.  The vertices 

may be part of the graph structure, or may be external entities represented by integer 

indices or references. Two vertices are adjacent if they are connected to each other 

through an edge. A weighted graph is a graph whose vertices or edges have associated 

weights. More specifically, a vertex-weighted graph has weights on its vertices and an 

edge-weighted graph has weights on its edges. When the edges in a graph have a 

direction, the graph is called a directed graph or digraph, and the edges are called 

directed edges.  

Graphs can be represented using different data structures: 

(1) Adjacency lists: Vertices are stored as objects, and every vertex keeps a list of 

adjacent vertices. 
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(2) Adjacency matrix: A two-dimensional matrix is used to store vertices and edges, in 

which the rows represent source vertices and columns represent destination vertices.  

(3) Incidence matrix: A two-dimensional boolean matrix in which the rows represent 

the vertices and columns represent the edges. The entries indicate whether the vertex 

at a row is incident to the edge at a column. 

Definition 2.2 (Complete graph). A complete graph is an undirected graph in 

which every pair of distinct vertices is connected by an edge (Figure 1). 

 

Figure 1. Complete graphs of various sizes 

Definition 2.3 (Clique). A clique is a subset of vertices of an undirected graph such 

that every two distinct vertices in the clique are adjacent. Each vertex and edge in a 

graph is also considered cliques of size 1 and 2 respectively. Finding if there is a clique 

of a given size in a graph is called the clique problem, it is one of the well-known and 

hardest NP-complete problems.  

Definition 2.4 (Maximum weight clique).  The clique with the maximum weight in 

a vertex-weighted graph is called a “maximum weight clique”. Finding the 

“maximum weight clique” is an NP-hard problem [Gary and Johnson 1979]. 



 

 
9 

Definition 2.5 (Complement graph).  The complement of a graph G is a graph G’ 

on the same set of vertices such that two distinct vertices of G’ are adjacent if and only 

if they are not adjacent in G.   

Definition 2.6 (Independent set). An independent set is a set of vertices in a graph, 

in which none of the vertices are adjacent (Figure 2). Cliques and independent sets are 

complimentary. The complement of a clique is an independent set and the complement 

of an independent set is a clique.  

 

Figure 2. Independent set in a graph 

Definition 2.7 (Maximum weight independent set). The independent set with the 

maximum weight in a vertex-weighted graph is called a “maximum weight 

independent set”, and finding the “maximum weight independent set” is a dual of 

“maximum weight clique problem” and similarly it is an NP-hard [Gary and Johnson 

1979] problem.  

Definition 2.8 (Connected component). A connected component of an undirected 

graph G is a sub graph C in which all pair of vertices are connected to each other by 

paths, and not connected to other vertices in the graph.  
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2.2 Data Structures 

In this section, we give a brief description of the basic data structures that are used 

extensively in this dissertation. 

2.2.1 Max-heap 

A max-heap is a tree-based data structure that satisfies the heap ordering property: 

The value (priority) of each node is always smaller than or equal to the value of its 

parent (Figure 3). The node with the highest priority is always at the root. The max-

heap data structure is a maximally efficient implementation of a priority queue.  

 

Figure 3. Representation of a max-heap 

Heap data structure has optimal O(1) time complexity for find-max and insert-node 

operations and O(logn) complexity for delete-max operation. However, it is inefficient 

for find-node operation on a random node, which has O(n) time complexity.  

2.2.2 Hash Set  

A hash set is a high-performance implementation of a collection holding a set of 

objects. A set is a collection that contains no duplicate elements, and whose elements 

are in no particular order (not sorted). A hash table is used to store objects in the set 
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by using a hash function that maps objects to indices in the hash table (Figure 4). 

Hash set data structure has an optimal O(1) time complexity for add, remove, and 

contains operations, whereas it is not efficient in terms of storage, sorting and 

iterating over objects. Hash set provides mathematical set operations such as set 

union, intersect, subtract, and overlaps. 

 

Figure 4. Representation of a hash set 

2.3 Computational Geometry 

Many concepts in computation geometry plays an important role in spatial data 

mining. In this section, we describe the computational geometry concepts used in this 

dissertation. 

2.3.1 Delaunay Triangulation  

Delaunay triangulation (DT) for a set of points P in a plane is a triangulation such that 

no point in P is inside the circumcircle of any triangle in DT(P). Two points pi and pj 

are connected by an edge in the Delaunay triangulation, if and only if there is an empty 
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circle passing through pi and pj (Figure 5). The exterior face of the Delaunay 

triangulation is the convex hull of the point set. DT can be calculated in O(nlogn) 

time [Cignoni et al. 1998] where n is the number of points in the point set.  

 

Figure 5. Delaunay triangulation and convex hull of a set of points.  

Exterior face of the DT is the convex hull (shown in blue) 

2.3.2 Convex Hull 

Definition 2.9 (Convex set). A convex set is a region in Euclidian space such that, all 

points on all straight line segments that join the pair of points in the region is also 

within the region. 

A convex hull for a set of points P in the Euclidian space is the smallest convex set that 

contains all points in P (blue lines in Figure 5). For two and three dimensional point 

sets, convex hull can be calculated in O(nlogh) time where n is the number of points in 

the point set, and h is the number of points on the convex hull. For higher dimensions, 

computation takes O(nlogn + nd/2), where d is the number of dimensions [Chazelle 

1993]. 
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2.3.3 Voronoi Diagram 

Voronoi diagram of a set of points (sites) is a partitioning of the plane into convex 

polygons such that each polygon corresponds to exactly one point (site) on the plane 

and every point in the interior of a polygon is closer to the corresponding site than to 

any other site. Voronoi diagram is also known as Voronoi Tessellation and Dirichlet 

tessellation. The Voronoi diagram of a set of points is dual to the Delaunay 

triangulation for the point set; for every Delaunay triangulation there exists a 

corresponding Voronoi tessellation and vice versa (Figure 6). Voronoi diagram can be 

calculated in O(nlogn) time where n is the number of points. 

  

Figure 6. Voronoi diagram (blue) and Delaunay triangulation (pink) of a point set 

2.3.4 Gabriel Graph 

Gabriel graph [Gabriel and Sokal 1969] is a type of proximity graph, which is used to 

express the proximity of points. Two distinct points a and b in a point set are adjacent 

in the Gabriel graph if the closed disc d, of which the line segment ab is a diameter, 

contains no other points (Figure 7).  
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point c is inside the circle whose 

diameter is ab, so a and b are not 

Gabriel neighbors 

 
no points inside the circle whose 

diameter is ab, so a and b are Gabriel 

neighbors 

Figure 7. Diameter circle and its relation to Gabriel neighborhood 

Unlike Delaunay graph, Gabriel graphs generalize to higher dimensions, with the 

empty disks replaced by empty closed balls. For a two-dimensional dataset with n 

points, the Gabriel graph can be computed from the Delaunay graph in O(n) time in a 

total of O(nlogn) complexity. For higher dimensional data, Gabriel graph can be 

computed in O(n3) time by brute force. In a Gabriel graph, number of edges cannot be 

more than three times the number of vertices [Matula et al. 1980].  
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CHAPTER 3 

RELATED WORK 

Spatial scan statistics (SatScan) introduced by Kulldorff [1997] is the most popular 

hotspot discovery tool. It searches circular regions occurring within a certain time 

interval and can obtain circular hotspots by growing circles from a point of origin by 

increasing the radius of the circle. SatScan finds regions where there is an unusually 

high number of occurrence of an event compared to the rest of the dataset. In order to 

achieve this, it employs statistical significance tests to evaluate the statistical 

significance of the discovered hotspots. However, our goal is different, as we try to 

search for regions maximizing the plugin interestingness function rather than finding 

regions with unusually high number of occurrences of an event; therefore, we do not 

need to employ statistical significance tests. We require that the domain expert knows 

which patterns are interesting and incorporates that information in the 

interestingness function definition either as a parameter or as part of an expression. 

Thus, our approach is not an automatic hotspot discovery approach like SatScan. On 

the other hand, spatial scan statistics cannot be used to detect hotspots where the 

interestingness (e.g., hotness) of the region is defined based on a set of objects in the 

spatial region (e.g., correlation, variance, average, etc.) rather than being defined per 

object (e.g., a single attribute representing the interestingness value of object.)  

SatScan was initially designed to find circular regions; however, spatial scan 

statistics were later extended for detecting ecliptic hotspots [Kulldorff et al. 2006], 

square pyramid shaped space-time hotspots [Iyengar, 2004], rectangular hotspots 
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[Neill et al. 2006], flexibly-shaped hotspots [Tango et al. 2005], irregular-shaped 

hotspots [Patil et al. 2004, Duczmal et al. 2004], ring-shaped hotspots [Eftelioglu et al. 

2014], network hotspots with holes, linear hotspots [Eftelioglu et al. 2016], and 

significant routes [Oliver et al. 2014]. Moreover, various spatial correlation measures 

has been used with spatial statistics such as “Ripley's K Function, Moran's I, Local 

Moran Index, Getis Ord, Geary's C, etc.” [Shekar et al. 2011]. Neill [2009] gives an 

empirical comparison of several of spatial scan statistics for outbreak detection, and 

[Eftelioglu et al. 2016] compares the capabilities of various spatial scan statistics for 

statistically significant crime hotspot detection. Our framework allows modeling a 

point, line, polygon, or grid cell, etc. as the base spatial object type, and allows a plugin 

neighborhood relation function to be used; therefore, any type of interestingness 

hotspot can be discovered using our approach. 

Spatial scan statistics can be used to detect interestingness hotspots when the 

interestingness measure can be defined on each object independently of other objects 

in the dataset (e.g., as an input attribute). However, since the goal is to find 

statistically significant hotspots that have quite different statistical measures 

compared to the rest of the dataset, it is sensitive to extreme outliers. In other words, 

small hotspots will be detected around outliers, as outliers will cause extreme statistics 

in small regions.  

There are also spatial clustering algorithms which can be used for computing 

spatial hotspots. Shekar et al. [2011] describe spatial clustering “a process of grouping 

a set of spatial objects into clusters so that objects within a cluster have high similarity 

in comparison to one another, but are dissimilar to objects in other clusters” and 

classifies common spatial clustering approaches as hierarchical, partitional and 



 

 
17 

density-based. The density-based clustering algorithm DBSCAN [Ester et al. 1996] has 

been used and extended by many for performing spatial clustering. Another popular 

clustering algorithm SNN [Ertoz et al. 2013] (Shared Nearest Neighbor) uses the 

number of shared neighbors in k-nearest neighbor lists to assess the similarity of 

spatial objects which enables the algorithm to identify clusters of varying densities. 

However, most clustering algorithms construct clusters solely based on distance 

information. They identify dense areas as hotspots and provide computational 

mechanisms to classify objects in non-dense areas as outliers. Most clustering 

algorithms cannot be used to detect interestingness hotspots based on a given 

interestingness function. 

A new group of clustering algorithms has been introduced in the literature that find 

contiguous clusters by maximizing plug-in interestingness functions similar to the 

approach used in this dissertation. These algorithms are capable of considering non-

spatial attributes in objective functions that drive the clustering process. Clusters are 

computed maximizing the sum of the rewards for each cluster based on a cluster 

interestingness function. CLEVER [Cao et al. 2013] is a k-medoids-style clustering 

algorithm which exchanges cluster representatives as long as the overall reward 

grows, whereas MOSAIC [Choo et al. 2007] and STAXAC [Amalaman and Eick 2015] 

are agglomerative clustering algorithms which start with a large number of small 

clusters, and then merge neighboring clusters as long as merging increases the overall 

interestingness.  

Clustering algorithms search for all hotspots in parallel, being forced to make 

compromises, as switching from one sub region to another cluster might increase the 

reward of one cluster but decrease the reward of the other cluster. We grow hotspots 
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from seed regions independently, thus each hotspot can grow as much as it can without 

any compromises. 
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CHAPTER 4 

INTERESTINGNESS HOTSPOT DISCOVERY FRAMEWORK 

In this section, we give a description of the framework for discovering hotspots in 

spatial datasets using interestingness functions. Moreover, we introduce 

interestingness functions and neighborhood definitions that are implemented in our 

methodology. 

4.1 A Framework for Spatial Interestingness Scoping  

Interestingness hotspots are contiguous areas in space for which an interestingness 

function i assigns a reward w>0, indicating “news-worthy” regions in a spatial dataset. 

The scope of an interestingness hotspot is a contiguous spatial region whose 

interestingness is above a certain threshold .   

More formally, we assume a spatial dataset O is given in which objects oO are 

characterized by: a set of spatial attributes S, and a set of non-spatial attributes M. 

Moreover, we assume a spatial neighboring relationship N is given where NOO; that 

describes which objects belonging to O are neighbors.  N is usually computed using 

spatial attributes S of objects in O. Finally, we assume that we have an interestingness 

measure: 

i:2O{0}+ 
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that assesses the interestingness of subsets of the objects in O by assigning rewards to 

a particular set of objects H. Moreover, we assume an interestingness threshold  is 

given that defines which patterns are interesting. 

The goal of this research is to develop frameworks and algorithms that find 

interestingness hotspots HO; H is an interestingness hotspot with respect to i if the 

following 2 conditions are met: 

(1) i(H)   

(2) H is contiguous with respect to N; that is, for each pair of objects (o,v) with o,vH, 

there has to be a path from o to v that traverses neighboring objects (w.r.t. N) belonging 

to H. In summary, interesting hotspots H are contiguous regions in space that are 

interesting (i(H)  ).  

Moreover, our framework is also capable of finding spatial-temporal hotspots in 

gridded spatial-temporal datasets. Temporal attributes of grid cells are used for 

identifying neighboring grid cells in time dimension.  

4.2 Example Interestingness Functions  

A very simple interestingness measure is the one that directly uses the value of a single 

performance attribute p, which is defined as follows: 

 

where HO is an interestingness hotspot, |H| denotes cardinality of H and h.p 

denotes the value for attribute p for object h in H. Many existing hotspot discovery 

techniques can be used to find hotspots based on ip(H).  
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Another interestingness function considers the correlation of two performance 

attributes p1 and p2; the corresponding interestingness function icorr(p1,p2) is defined as 

follows: 

 

where 0 <  < 1 is the interestingness threshold, and correl(H,p1,p2) is the correlation 

of attributes p1 and p2 with respect to the objects belonging to hotspot H. This 

interestingness function is used to find correlation hotspots .  

The Variance interestingness function ivar(p) operates on the variance of a non-

spatial attribute p and finds high variance hotspots with respect to attribute p; it is 

defined as follows: 

 

where  > 0 is the variance threshold,  and variance(H,p) is the variance of an attribute 

p with respect to the objects that form hotspot H. This interestingness function is used 

to find regions in a dataset where an attribute p does not change significantly. The 

obtained hotspots can be used to generate maps for the attribute and for generating 

prediction models for the attribute—similar to regression trees.  

Finally, we propose a purity interestingness function, which measures uniformity 

by the degree of dominance of instances belonging to a single category. The purity 

interestingness function is used for analyzing interestingness with respect to a 

categorical non-spatial attribute. Purity interestingness ipur(H) of a hotspot H is 

computed using the following formula: 
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𝑖𝑝𝑢𝑟(𝐻) =  {
0,               max(𝑝𝑟𝑜𝑝𝑡(𝐻))  <  𝜃

(max(𝑝𝑟𝑜𝑝𝑡(𝐻)) −  𝜃), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
   (4) 

where c(H) is the set of classes in the hotspot H,  𝑡 ∈ 𝑐(𝐻) , and propt is a function that 

computes the proportions of the objects in hotspot H belonging to class t, and  > 0 is 

the interestingness threshold. Interestingness hotspot whose purity is above  can be 

identified using this interestingness function. 

4.3 Reward Functions 

We grow hotspots from hotspot seeds, which are small regions with high 

interestingness. While growing hotspots, a reward function is employed to assign a 

reward to interestingness hotspots. The reward function determines the quality of a 

hotspot based on its interestingness and size. We add one of the neighboring objects to 

the hotspot in each step of the growing algorithm based on the reward increase 

calculated by the reward function. In particular, the neighboring object, which 

increases the reward value most, is added when growing a hotspot. The following 

reward function is employed in our framework: 

R(H) = i(H) × |H|   (5) 

where i(H) is the interestingness of the hotspot, |H| is the size of the hotspot and  is 

a real number determining the preference for larger regions. In general, we are 

interested in finding larger hotspots if larger hotspots are at least equally interesting 

to smaller ones. Consequently, our evaluation scheme uses a parameter β with β > 1; 

that is, the reward value increases nonlinearly with hotspot size depending on the 

value of β, favoring hotspots with more objects. Selecting larger values for the 

parameter β usually results in larger hotspots. 
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4.4 Neighborhood Definitions 

In gridded and polygonal datasets, determining the contiguity of a region is trivial; 

grid cells or polygons are neighboring if they share an edge. In some cases, it might be 

desirable to consider polygons or grid cells as neighbors when they only share a point 

(e.g., diagonal neighbors). However, contiguity or neighborhood relation is not well-

defined for point-based datasets, and a neighborhood definition is required to define 

neighborhood relation between points.  

Various neighborhood graphs for point-based datasets have been proposed in the 

literature. The most popular graphs include Delaunay triangulation, Gabriel graphs, 

relative neighborhood graphs, Euclidian minimum spanning trees and Beta skeletons. 

Figure 8 shows comparison of four popular graph types for a dog-shaped dataset.  

 

Figure 8. Popular proximity graph types for a dog-shaped dataset 

As seen in the figure, the Delaunay triangulation (DT) contains many edges between 

distant points in the dataset, which are non-intuitive as they capture irrelevant 

relationships; therefore, it is not a good choice for a neighborhood graph. On the other 

hand, minimum spanning trees and relative neighborhood graphs contain only a small 
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amount of connections between points and many close points are not connected, losing 

important relationships. In contrast, Gabriel graphs strike a good balance; many edges 

between distant points in the DT are eliminated, yet edges between close points are 

preserved. Thus, we use Gabriel graphs to identify neighboring objects in spatial 

datasets. For a more detailed discussion of various neighborhood graphs, we refer to 

[Matula et al 1980, and Jaromczyk et al. 1992]. 
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CHAPTER 5 

METHODOLOGY 

In this section, we describe our methodology that works in 5 phases: 

(1) Identify neighboring spatial objects 

(2) Find small hotspot seeds with high interestingness 

(3) Grow the hotspot seeds by adding neighboring objects 

(4) Post-process hotspots, typically removing some overlapping hotspots. 

(5) Find the scope of each hotspot 

Figure 9 depicts the hotspot discovery process and the inputs of each phase. A 

dataset, an interestingness function and a reward function are the mandatory inputs 

of the hotspot discovery framework. All inputs shown in orange color are optional and 

default values are provided that are used when no input for these parameters is given.  

The output of the hotspot discovery process is a set of hotspots with their scopes. 

  

Figure 9. Hotspot discovery process 
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5.1 Identify Neighboring Spatial Objects:  

Our framework supports plugin neighborhood definition functions which take a spatial 

object as an input and return its neighboring objects. Moreover, our framework 

provides default neighborhood definitions for point-based, polygonal, and gridded 

datasets, which will be discussed in this section. 

For polygonal datasets, we define two polygons as neighbors if any of their edges 

are coincident. In our methodology, we calculate the neighboring polygons once and 

save the neighborhood relations in a neighborhood graph. A neighborhood graph 

contains a vertex for each polygon, and an edge is created between vertices 

representing the neighboring polygons. Neighbors for each vertex are stored in an 

adjacency list.  

For gridded datasets, we define two grid cells as neighbors if they share an edge. A 

neighborhood graph is not required for gridded datasets as finding the neighbors of a 

grid cell is trivial. Following is the neighborhood definition for a 4-dimensional gridded 

dataset with x, y, z, and t dimensions:  

 
(6) 

where o1 and o2 are two grid cells and oi.x corresponds to x dimension value of oi. Based 

on this definition, a four-dimensional grid cell has eight neighbors, as the next cell and 

the previous cell in each dimension is a neighbor. 

On the other hand, as discussed in Section 4.4, neighborhood relations between a 

set of points are more challenging to define. Our framework uses Gabriel graphs to 

define neighborhoods in a point-based dataset. We introduced Gabriel graphs in 
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section 2.3.4. In a Gabriel graph, number of edges cannot be more than three times the 

number of vertices [Matula et al. 1980]. Thus, we assume in our runtime analysis that 

the number of neighbors for a hotspot region is in the order of O(n) where n is the 

number of objects in the hotspot. 

5.2 Finding Hotspot Seeds 

Our methodology depends on identifying hotspot seeds and growing these smaller 

regions to detect larger hotspots. In this section, we describe how seed regions are 

constructed for different types of datasets.  

Polygonal and point based datasets: Once the neighborhood graph for the dataset has 

been computed, we create smaller regions around each vertex in the graph that is 

composed of the vertex itself and its neighbors. We refer to these smaller regions as 

“hotspot-seed candidates”. Then, we calculate the interestingness value for each of 

these small regions to identify the ones with an interestingness value larger than a 

predefined “seed interestingness threshold”. When a Gabriel graph is used, there can 

be at most three neighbors per each vertex in average, resulting an average hotspot 

size of four or less. Seed candidates having an interestingness value larger than the 

“seed interestingness threshold” are chosen to be grown in the hotspot growing phase. 

However, we merge many of the neighboring seed regions before growing them, as 

there is a high degree of overlap between seeds generated by using a neighborhood 

graph. This merging step is explained in the next subsection. 

Gridded datasets: The whole dataset is divided into smaller sub regions of same 

dimensions and the interestingness value for each of these smaller regions is 

calculated using the plugin interestingness function. For example, for a four-
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dimensional dataset with 10 grid cells in each dimension (with a total of 104 grid cells), 

dividing the dataset into smaller regions of 2×2×2×2 grid cells yields 104 / 24 = 625 such 

regions. Our framework allows user defined seed sizes, therefore the seed candidates 

can be of any size smaller than the dataset dimensions. Similarly, an interestingness 

threshold value is used to determine which seed candidates may be used to create 

larger hotspots. We merge neighboring seeds created for gridded data too, as in most 

cases neighboring seeds are highly similar and can be merged without losing quality. 

5.2.1 Merging Seed Regions 

The seeding phase divides the dataset into smaller regions and finds the ones with the 

higher interestingness. Since we create a hotspot seed candidate around each vertex 

in the neighborhood graph, many hotspot seeds overlap. Moreover, when we create 

hotspot seeds for gridded datasets, the seeds are disjoint, but we observed that many 

of these seeds grow to the same (or quite similar) hotspots in the growing phase. This 

is not surprising, as a large hotspot with high interestingness will usually have smaller 

sub-regions with very high interestingness. A case study reported in [Akdag et al. 

2014] justifies this observation. Apparently, it is inefficient to grow all of the hotspot 

seeds, so our framework allows merging some seeds before growing them. Moreover, 

we require that the merge operation produces a new seed with an acceptable reward. 

That is, we do not want to create hotspot seeds with low rewards as a result of merging 

two neighboring seed regions. We use a merge threshold µ to determine if the union of 

seed regions is acceptable, and use the following merge rule: If the reward of the new 

region is higher than the total reward of merged regions multiplied by µ, then this 

merge is acceptable: 
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merge(s1, s2) if  R( (s1∪s2)) >  (R(s1) + R(s2)) * µ (7) 

where R(si) represents the reward of seed region si, and µ is a real valued parameter. 

Seed merge threshold µ is usually set to a value larger than 0.9 to make sure that the 

quality of the new seeds are high. We use the following approach to reduce the number 

of seeds grown: 

(1) Create a neighborhood graph of hotspot seeds, in which there is a vertex for each 

seed. Create an edge between vertices if the corresponding seeds are neighbors and if 

the union of these regions produces a new seed with an acceptable reward value 

according to the merge rule. The weight of each edge is assigned to the reward gain 

when seeds are merged. 

(2) Merge the neighboring seeds that yield the highest reward gain when merged.  

(3) Update neighborhood graph after the merge operation: Create an edge connecting 

the new vertex with the neighbors of the merged vertices using the same procedure (if 

the union yields an acceptable seed).  

(4) Continue merging seed regions as long as there are seeds to be merged (i.e., edges 

in the graph).  

This algorithm is similar to MOSAIC [Choo et al. 2007] clustering algorithm, 

however is implemented using more efficient data structures, and creates the 

neighborhood graph using an undirected graph with weighted edges instead of a 

Gabriel Graph. Algorithm 1 gives the pseudo code for the seed-processing algorithm, 

and Algorithm 2 gives the pseudo code for the merge procedure which merges seed 

regions connected by an edge in the graph. Weight of an edge is assigned to the reward 

gain (line 10 in Algorithm 1) which is calculated by R( (si∪sj))  (R(si) + R(sj)).  
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ALGORITHM 1. SEED PROCESSING ALGORITHM  

1:  Create an undirected graph G and hash set S of seed regions 

2:  foreach seed region si 

3:      Add si to G as a vertex 

4:      Add si to S 

5:  end foreach 

6:  for i = 0 to number of seed regions – 1  

7:     for j = i + 1 to number of seed regions 

8:          if si and sj are neighbors and R( (si∪sj)) >  (R(si) + R(sj)) * µ  then           

9:                  Create an edge e connecting nodes si and sj 

10:                e.weight = R( (si∪sj))    (R(si) + R(sj)) 

11:                G.AddEdge(e) 

12:        end if 

13:   end for 

14: end for 

 

15: Create a max-Heap H of edges  

16: foreach edge e in G.edges  

17:      H.enqueue(e, e.weight) 

18:  end foreach 

 

19:  while H has elements   

20:      nextEdge = H.dequeue()   

21:      if S contains both nodes connected by nextEdge then 

22:           Merge(nextEdge) 

23:     end if 

24:  end while 

We use a hash set data structure to keep a list of seeds in the graph to ensure 

minimum containment check operation (line 21 in Algorithm 1) time complexity as a 

hash set data structure has O(1) time complexity for this operation, compared to 

O(|V|) in a graph data structure. Moreover, we put edges in a priority queue, and use 

a heap data structure [Cormen 2009] to store the list of edges; as in this problem, we 

need to prioritize the edges that will be processed. The edge connecting the pair of 

nodes that results the highest reward gain when merged is the root of the heap and 

processed first. As discussed in Section 2.2.1, Heap data structure has O(logn) time 
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complexity for extract-max operation, so less time is spent for finding the next merge 

candidate; and O(logn) time complexity for add operation as we add new edges for the 

new region after a merge operation. Using solely a graph would require O(n) time for 

extract-max operation.  

ALGORITHM 2. SEED MERGE OPERATION 

1: Procedure Merge (Edge e) 

2:   Set s1 = e.source, s2 = e.target 

3:   Merge s1 and s2 by adding all elements in s1 and s2 in a new region snew 

4:   Add snew into G as a new vertex 

5:   Remove e from G 

6:   foreach neighbor si of s1 connected by edge ei 

7:       if R( (si∪snew)) >  (R(si) + R(snew)) * µ then 

8:            Create an edge enew connecting nodes si and snew 

9:            enew.weight = R( (si∪snew))  -  (R(si) + R(snew)) 

10:           G.AddEdge(enew) 

11:           G.RemoveEdge(ei) 

12:     end if 

13:  end foreach 

14:  foreach neighbor sj of s2 connected by edge ej  

15:      if R( (sj∪snew)) >  (R(sj) + R(snew)) * µ then 

16:          Create an edge enew connecting nodes sj and snew 

17:          enew.weight = R( (sj∪snew))  -  (R(sj) + R(snew)) 

18:          G.AddEdge(enew)  

19:          G.RemoveEdge(ej) 

20:     end if 

21:  end foreach 

22:  Remove s1 and s2 from the graph G and hash set S 

23:  Add snew into hash set S 

24:  End procedure 
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While processing edges in the order of descending weights, it is possible that an edge 

which is still in the heap might have been removed from the graph by the merge 

procedure as a result of merging one of the connected nodes in a previous step. That 

edge might still be in the heap as the heap data structure does not support deleting a 

particular node. In that case, the dequeue operation will return an edge that does not 

actually exist in the graph. So, we check if both nodes connected by the edge exist in the 

set of seed regions to make sure that both nodes survive (line 21 in Algorithm 1); 

otherwise we just skip processing that edge.  

5.3 Growing Hotspot Seeds 

In this phase, we grow hotspot seeds by adding neighboring objects. We will firstly 

present a trivial baseline algorithm and then we will improve the algorithm by using 

a more efficient data structure. 

5.3.1 Baseline Hotspot Growing Algorithm: 

The baseline algorithm grows hotspots by finding the neighboring spatial object in each 

step which will increase the reward function the most when added to the region. This 

neighbor is then added into the region and region’s neighbors list is updated with the 

neighbors of the newly added object which are not already a neighbor or already in the 

region. We save the best hotspot obtained so far, and update the best hotspot when a 

“hotter” hotspot has been found. We continue adding neighbors as long as the hotspot’s 

interestingness remains positive. Figure 10 gives an example of how a hotspot’s reward 

value changes while growing. This hotspot was created by running hotspot growing 

algorithm on a real gridded dataset. The hotspot starts growing with 9 grid cells and 
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the reward increases until it reaches a local maxima at 72 grid cells with a reward 

value of 28 and then the reward starts to decrease.  However, after adding a few more 

neighboring grid cells to the hotspot, the reward value starts to increase again and 

reaches the global maximum value of 37.2 at 131 grid cells. Thus, it is essential to 

continue growing hotspots even after the reward value starts decreasing. 

 

Figure 10. Change of reward value of a growing a hotspot 

We keep the objects in the region, and objects in the neighbor’s list in two separate 

hash sets as hash set data structure has optimal O(1) runtime complexity for Add, 

Remove and Contains operations which are used extensively while growing a hotspot. 

Computational complexity of the hotspot growing phase is O(|H|) × O(R(|H|)) for 

each iteration of a hotspot where |H| is the cardinality of a hotspot and O(R(|H|)) is 

the runtime complexity of calculating the reward value of hotspot H. In each iteration, 

reward value with each neighbor is calculated. Assuming that the number of neighbors 

is in the order of the size of the hotspot, as the number of objects increase in each 

iteration, a hotspot grows from h0 initial elements to n elements, and if O(R(|H|)) = 

O(|H|), the runtime complexity of growing a hotspot is:   
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If the reward is calculated incrementally in O(1) time, then the complexity is 

reduced to: 

𝑂 ( ∑ ℎ

𝑛

ℎ=ℎ𝑜

) = 𝑂(𝑛2) 

In the next section, we will demonstrate how to calculate variance interestingness 

incrementally. 

5.3.2 Incremental Calculation of Interestingness Functions 

Incremental calculation means that as new data arrives, a function’s output is updated 

without going over the previous data. For example, count or sum of elements in a 

dataset can be calculated incrementally by just increasing the value of a variable, 

instead of counting or adding all numbers again. However, not all functions can be 

calculated incrementally. Aggregate functions are categorized as distributive, 

algebraic or holistic functions [Shekhar et al. 2003]. Distributive functions can be 

computed in a distributive manner by partitioning the data into subsets, and 

aggregating the results of applying the function to each subset; therefore, it is trivial 

to calculate distributive functions incrementally by considering each new data as 

another subset, and aggregating with the previous value. Sum, count, min, max are 

examples to distributive functions. Algebraic functions can be computed by applying 

an algebraic function on a constant number of distributive functions. Therefore, 

algebraic functions can also be calculated incrementally. For example, average 

function is an algebraic function as it can be computed by sum/count. On the other 

hand, holistic functions cannot be computed by applying an algebraic function on a 

constant number of distributive functions, all data needs to be processed together. As 
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a result, unlike distributive and algebraic functions, holistic functions cannot be 

calculated incrementally. Median and rank are examples of holistic functions.  

In our framework, we calculate variance, correlation and purity interestingness 

functions incrementally as they are algebraic functions. In this subsection, we describe 

a methodology for implementing a given algebraic or distributive function 

incrementally, using variance function as an example. 

Given an empty set of objects S, we are supposed to calculate the variance of 

attribute a incrementally while adding new objects into S where each object has an 

attribute a. It was shown [Welford 1962] that variance can be calculated incrementally 

by updating the mean and sum of squared differences (M2) with each new value x using 

the following equations: 

meann = meann-1 + (x – meann-1) / n , and 

M2 = M2 + (x – meann-1) × (x – meann) 

where meann is the mean of n numbers. Then the variance can be calculated in O(1) 

time by: 

variance(S, a) = M2 / (n-1) 

where n is the number of objects in the dataset. We use the same equation in our 

implementation to calculate variance in O(1) time when a new object is added to a 

region. From a software design perspective, we create a new class named 

“StatsCalculator” which keeps a reference to n, mean and M2. Each hotspot has its own 

copy of StatsCalculator object. Each time we add a new object to a hotspot, we call the 

procedure “Add(object)” in StatsCalculator class, which updates these values with the 
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value of attribute a of the object. When we need to retrieve the variance value for the 

hotspot, we call “variance()” procedure which just returns M2/ (n-1).  

Calculating correlation function incrementally is similar but more complicated. We 

will not present the details and refer to the literature [Pebay 2008]. 

5.3.3 Heap-based Hotspot Growing Algorithm 

In this subsection, we introduce a novel heap-based hotspot growing algorithm. In the 

hotspot growing phase, the baseline algorithm searches for the best neighbor among 

all neighbors, and after each time a new neighbor is added this search is repeated. For 

example, assuming that reward function is calculated incrementally, searching for the 

best neighbor in each step takes the complexity of hotspot growing algorithm to O(n2) 

where n is the number of objects in the hotspot (in all analysis we assume there are 

O(|H|) neighbors for a hotspot H of size |H|). However, we observed that the ordering 

of the neighbors according to their ‘fitness’ for the region does not change much as the 

region grows. If a neighbor n1 increases the reward more than the neighbor n2 when 

evaluated in step si, this mostly means that n1 is still a better fit to be included in the 

region in step sj (which means that n1 has a better fitness for the hotpot). There are 

some cases this does not hold: if n1 and n2 have very close fitness values, as the region 

changes while growing, n2 may become a better fit for the region. However, by 

experimental evaluations we observed that such cases occur very rarely and do not 

affect the final hotspot significantly, as both neighbors are generally either included in 

or excluded from the hotspot. Moreover, if the interestingness function is defined on 

an attribute of objects (rather than being defined on a set of objects, like correlation 

and variance), then that attribute directly determines the fitness of an object.  Thus, 
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it is mostly unnecessary to evaluate each neighbor in each step of the growing phase. 

Instead, we use a max-heap data structure to keep the list of neighbors where the 

neighbor with the highest fitness value is the root of the heap tree. Using a max-heap, 

instead of searching for the best neighbor in each step, we simply add the root node 

into the region. When new neighbors are encountered while growing the hotspot, we 

assign each new neighbor a fitness value by either evaluating the reward gain in case 

the neighbor is added to the region, or by considering the interestingness attribute and 

add it into the heap using the fitness value as the priority of the new node. Next, we 

continue growing the region as long as there are more neighbors in the heap and the 

interestingness of the region is higher than the interestingness threshold.  

Heap data structure has O(logn) time complexity for extracting the root node 

(extract-max operation), insertion and deletion operations. Some specialized heap 

implementations (Binomial heaps and Fibonacci heaps [Cormen 2009]) allow 

amortized O(1) time complexity for insertion. Algorithm 3 gives the pseudo code of 

heap-based hotspot growing algorithm. This procedure is called repeatedly in 

GrowRegion function (line 16) as long as the interestingness of the region remains 

positive and there are more neighbors in the heap. The best reward found is memorized 

(lines 11-14) and when hotspot growing is finished, the hotspot is set back to this state. 

The runtime complexity of the heap-based hotspot growing algorithm is O(nlogn) as a 

total of O(logn) time is spent in each step where n is the number of objects in the 

hotspot—O(logn) time is spent for finding the best neighbor and removing it from 

neighbors list. In addition, O(1) time is spent for adding it to the region and O(logn) 

time is spent for adding neighbors of newly added object to the neighbors list. Before 

adding the neighbors of the newly added object to the heap, it needs to be ensured that 
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the neighbor is not contained in the region or in the neighbors list. To optimize the 

time complexity for this containment check, we keep the objects in the region in a hash 

set. Furthermore, in the implementation of max-heap data structure, we put all 

elements in the heap into an additional hash set data structure and manage them 

together to optimize the runtime complexity when checking if an object is in the 

neighbor’s list (which would be O(n) using only the heap.) 

ALGORITHM 3. HEAP-BASED HOTSPOT GROWING ALGORITHM 

1:  Procedure AddNextNeighbor(region)        

2:        set bestNeighbor = Heap.dequeue() 

3:        add bestNeighbor to region 

4:        set newReward = CalculateReward(region) 

5:        foreach neighbor n of bestNeighbor 

6:               if n is not in region and n is not in the neighbors list then 

7:                    set fitness = CalculateFitness(region, n) 

8:                    Heap.enqueue(n,fitness) 

9:               end if 

10:      end foreach 

11:      if newReward > region.alltimeBestReward then 

13:            set region.alltimeBestReward = newReward 

12:            set region’s alltimeBestObjects = region.objects  

14:      end if 

15: end procedure 

16: Procedure GrowRegion(region) 

17:      while region’s interestingness is positive and region has neighbors then 

18:              AddNextNeighbor(region) 

19:      end while 

20: End Procedure 

Using a fitness value to order neighbors requires choosing a good fitness measure 

for each neighbor of the hotspot. New neighbors are evaluated with a different state of 

the growing hotspot. Thus, it is very important to put the new neighbors in a correct 

order in the max-heap. If the interestingness value of a spatial object is based on an 
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attribute of the object, then this attribute value can be directly used as its fitness value. 

If a more complicated interestingness function is used, which is calculated on a set of 

objects, then the reward increase and hotspot size can be used to define a fitness value 

for the neighbors. Sample fitness functions are given in the experimental evaluation 

section. Heap-based growing algorithm is a greedy algorithm, as it makes a locally 

optimal choice in each step. The ordering of the neighbors based on their fitness may 

not be optimal in each step; however, this algorithm is much more efficient than the 

baseline algorithm. 

Furthermore, we grow each hotspot seed in parallel, as growing one seed does not 

affect growing other seeds. We use a shared memory parallel programming approach.  

5.3.4 Dimensional Growing Algorithm for Gridded Datasets 

In this subsection, we propose an alternative hotspot growing algorithm for gridded 

datasets which grows seed regions by extending them in the dimension that increases 

the reward value most, in each step. If the region is two-dimensional, this process is 

similar to increasing the length or width of the rectangular seed region in each step 

based on which one increases the reward value most. For a rectangular hotspot with x 

and y coordinates, as seen in Figure 11, there are 4 possible ways to extend: Increasing 

x on east direction, increasing x on west direction, increasing y on north direction and 

increasing y on south direction. On the other hand, for a 3D hotspot there are six 

different ways to extend as z coordinate can also be extended. If we think of this hotspot 

as a rectangular prism (Figure 12), we are making it either taller, larger or wider in 

each step. Similarly, for a 4D hotspot there are eight directions for extension. Our 

framework allows domain users to grow hotspots on a subset of dimensions.  
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Figure 11. Dimensional growing of a 2D region 

 

Figure 12. Dimensional growing of a 3D region 

Algorithm 4 gives the pseudo code for the dimensional growing algorithm. We 

continue extending the hotspot as long as the hotspot’s interestingness is positive. We 

keep a reference to the best reward value found so far and we output the state of the 

hotspot with the highest reward value as the result.  
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ALGORITHM 4. DIMENSIONAL GROWING ALGORITHM 

1. While seed region can be extended and its interestingness value is positive: 

2. Find the direction that improves the reward value most when the region is extended 

in this direction 

3. Extend the region in the direction chosen 

4. Update region’s interestingness and reward value 

5. If new reward is larger than the best reward found so far, update the best reward 

found so far and memorize the state of the region  

6. Output the state of the region with the best reward 

 

Computational complexity of the dimensional hotspot growing phase is O(|H|(d-1)/d) 

× d  × 2  ) × O(R(|H|) for each iteration of a hotspot where |H| is the cardinality of an 

hotspot, d is the number of dimensions and O(R(|H|) is the runtime complexity of 

calculating the reward value. In each iteration, the new reward value is calculated for 

growing dimensions in all directions and there are d×2 directions. Assuming that the 

region has same size in each dimension, on average there are |H|(d-1)/d)  grid cells in 

each direction. We add this number of grid cells for each direction in each step. Thus 

each step requires O(|H|(d-1)/d) × d  × 2  × O(R(|H|) operations in each step. Since 

region’s size is increased by a factor of |H|(d-1)/d in each iteration, the number of steps 

required to reach n cells is significantly lower than heap-based growing algorithm. The 

runtime complexity depends on number of dimensions and hotspot’s shape, however it 

is definitely much lower than the complexity of heap-based growing algorithm and very 
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close to O(|H|) when reward is calculated incrementally as shown in the experimental 

evaluation section.  

5.4 Post-processing: Finding an Optimal Set of Hotspots 

In general, hotspot growing algorithms create numerous hotspots with a high 

degree of overlaps. The goal of this phase is to reduce this highly redundant set to a 

set of high-quality hotspots with a low degree of overlaps and eliminate the overlapping 

ones with low quality. To do this, we set an overlap threshold and find an optimal set 

of hotspots that overlap less than the threshold value while maximizing the total 

reward. More formally, the post-processing problem can be defined as follows: 

Input:  a set of hotspots S, and an overlap threshold λ where 0≤λ<1, 

Problem: Find a subset S’⊆S for which ∑H∈S Reward(H) is maximal  

where Reward(H) is the reward of hotspot H, subject to the following constraints: 

∀H1∈S’ and ∀H2∈S’ (H1≠H2  overlap(H1, H2) ≤ λ ) 

where 

𝑜𝑣𝑒𝑟𝑙𝑎𝑝(𝐻1, 𝐻2) =  
|𝐻1 ∩ 𝐻2 |

min(|𝐻1|, |𝐻2|)
 (8) 

Our framework uses the reward of each hotspot as the value of a hotspot; thus, we 

try to maximize the total reward value of the resulting hotspots.  

We define the degree of overlap (8) between two hotspots as the ratio of the number 

of objects that are shared between both hotspots to the number of objects in the hotspot 

with the smaller size. For example, if one hotspot has 100 objects, and another one has 

80 objects and they share 60 objects, then the degree of overlap is 60/80 = 0.75. In this 
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definition, the number of objects in the smaller hotspot is used in the denominator to 

ensure that small hotspots contained in larger hotspots are eliminated. Alternatively, 

the total number of objects in both hotspots could be the denominator, however, if 

hotspot A with 1000 objects completely contains all objects in the hotspot B which has 

100 objects, then the overlap ratio would be 100/1100 = 0.09, which would imply a very 

low degree of overlap. Definition (8) solves this problem. However, our framework is 

quite extensible and allows using plugin definitions for overlap function.  

In the remainder of this section, we formulate the optimization problem introduced 

in this section as a graph problem in which the goal is finding the independent set of 

vertices in the graph with the maximum total weight and present a methodology that 

finds the optimal solution in multiple steps.  The steps of our methodology for removing 

redundant overlapping hotspots are as follows: 

(1) Calculate the reward of each hotspot using the plugin reward function or use the 

existing reward values calculated. 

(2) Create a weighted overlap graph of hotspots in which weight of each vertex is the 

reward of the hotspot and there is an edge between two vertices if their degree of 

overlap is more than the overlap threshold λ. 

(3) Simplify the overlap graph by eliminating vertices that cannot be in the optimal 

solution. 

(4) Find the connected components in the simplified overlap graph. 

(5) For each connected component Ci, create the complement graph Ci’. 

(6) Find the maximum weight clique (MWC) in each complement graph Ci’. 

(7) The union of all vertices in MWCs is the optimal solution 
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 5.4.1 Creating an Overlap Graph 

In this subsection, we present the methodology for creating an overlap graph for a set 

of hotspots.  

Definition 5.1 (Overlap Graph). A hotspot overlap graph is a weighted undirected 

graph G(V,E) in which each vertex v corresponds to a hotspot and weight of each vertex 

corresponds to the reward of the hotspot. There is an edge between two vertices v and 

u if and only if the degree of overlap between hotspots represented by v and u is larger 

than the overlap threshold λ. The weight of each edge is based on the degree of overlap 

between the corresponding hotspots. 

When creating the overlap graph, the reward of each hotspot calculated by the 

hotspot growing algorithm is used as the weight of each vertex in our methodology. 

However, this is not a strict requirement as our framework allows using a plugin 

reward function for post-processing step. We calculate the degree of overlap between 

each pair of hotspots using the plugin overlap function and create an edge in the 

overlap graph between vertices representing these hotspots if the degree of overlap is 

more than the overlap threshold. Figure 13a shows a sample set of overlapping 

hotspots with their reward values.  Figure 13b shows the overlap graph in which there 

is an edge (solid lines) between vertices if the degree of overlap between hotspots is 

larger than 0.4 according to definition 8, which requires that one hotspot needs to 

contain 40% of another to be considered as overlapping. Dashed lines in Figure 13b 

represents overlapping hotspots; however, the degree of overlap was less than the 

overlap threshold, so those edges were removed in the final graph (Figure 13c). 
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a) A set of overlapping hotspots 

 
b) Graph of all overlapping hotspots 

 

c) Final overlap graph G: Highly overlapping hotspots 

Figure 13. Creating an overlap graph a) A sample set of overlapping hotspots b) 

Graph of all overlapping hotspots  c) Final overlap graph G 

Since the goal is to find an optimal set of non-overlapping hotspots that maximize 

the total reward, and an edge between vertices indicates overlap, this optimization 

problem is now reduced to finding a set of vertices in G maximizing the total weight 

where there is no edge between any pair of vertices. As defined in Section 2.1, an 

independent set is a set of vertices in a graph in which there is no edge between any 

pair of vertices; therefore, we reduce this problem to finding the maximum weight 
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independent set in the overlap graph. Considering the graph in Figure 13c, the set of 

vertices with weights {70, 50, 80} are all independent, thus this set is an independent 

set. Some of the other independent sets include {125, 80}, {130, 80}, {70, 50} and each 

vertex is also an independent set by itself.  

We can also think of this problem in the following sense, considering the 

complement graph of G: If there is no edge between a pair of vertices in G, which means 

they are independent, then there will be an edge between those vertices in the 

complement graph G’. The problem can now be converted to finding the subset of 

vertices in G’ with the maximum weight in which there is an edge between all pairs of 

vertices, which is the maximum weight clique. Considering the graph in Figure 13c, 

the set of vertices with weights {125, 150, 50}, {70,150, 125}, {80, 150}, {130} are some 

of the cliques. Each vertex itself is also a clique. 

The problem of finding the maximum weight clique (MWC) or its dual problem of 

finding the maximum weight independent set in a graph are well-known NP-hard 

problems and there has been exhaustive research on this topic. Bomze et al. [1999] 

gives a survey of exact and approximate solutions to this problem. This problem is also 

known to be a hard-to-approximate NP-hard problem as shown by [Gary and Johnson 

1979]. That is, the optimal solution cannot be efficiently approximated to a certain 

degree. In our methodology, we use the maximum weight clique algorithm proposed by 

Östergård [2002], which finds the optimum solution, moreover its implementation is 

available for public use and it is quite fast—it can find maximum weight cliques in 

graphs with up to a few hundred vertices often under a second. However, it takes hours 

when the input graph is too complex with thousands of vertices; thus, we preprocess 
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the overlap graph and significantly simplify and partition the graph to improve the 

efficiency of the methodology which is the subject of the next section.  

5.4.2 Simplification of Overlap Graph 

We simplify the graph by removing the vertices which are guaranteed to be eliminated 

by maximum weight independent set or maximum weight clique algorithms. We define 

“overlap set” of a hotspot as the set of hotspots the hotspot overlaps with, including the 

hotspot itself. It is obvious that if two hotspots overlap and if they overlap with the 

same set of hotspots, then their overlap sets will be same, and the one with the higher 

reward will always be chosen in the maximum weight independent set in case one of 

these hotspots will be in the in this set at all. This is also true for a set of hotspots, that 

is, in a set of overlapping hotspots, if they all have the same overlap sets, only one of 

them can be selected into the maximum weight independent set and this will be the 

hotspot with the highest reward. Keeping only the best hotspot among such hotspots 

reduces the graph size dramatically and improves the efficiency of the framework 

significantly.  

Algorithm 5 depicts the algorithm we use for simplifying the graph. The following 

steps summarizes the simplification algorithm: 

(1) For each vertex, create a Set data structure and put the vertex itself and all of its 

adjacent vertices into the set. This set will be called “overlap set” of a vertex.   

(2) Compare each vertex’s overlap set with the overlap set of other vertices with which 

this vertex is connected. Add a vertex into a “removal set” if its weight is lower than a 

vertex with the same overlap set.  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(3) Remove vertices in the removal set from the overlap graph G. 

ALGORITHM 5. OVERLAP GRAPH SIMPLIFICATION CODE 

1. Procedure SimplifyGraph(G) 

2.           foreach vertex vi in G 

3.                   si  = overlap set of vi 

4.           end foreach 

5.           Set RemovalSet =  Empty set of vertices 

6.           foreach vertex v1 in G 

7.                if v1 is in RemovalSet then continue; 

8.                foreach vertex v2 adjacent to v1 

9.                    if v2 is in RemovalSet then continue; 

10.                      if |s1| = |s2| and |s1 ∪ s2| = |s1| then  

11.                          if v1.weight < v2.weight then 

12.                               RemovalSet.Add(v1) 

13.                          else 

14.                               RemovalSet.Add(v2) 

15.                      end if 

16.               end foreach 

17.         end foreach 

18.         foreach  vertex vj in RemovalSet 

19.                G.Remove(vj) 

20.         end foreach 

21. End Procedure 

 

 

 

Figure 14. Simplified overlap graph (on the right) 

Figure 14 visualizes the overlap graph before and after the simplification. In the 

simplification process, firstly an overlap set is created for each vertex. The vertex with 

weight 125 in Figure 13c has an overlap set of {50,70,125,130,150} which is same as 
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the overlap set of vertex with weight 130; thus, it is impossible for this vertex (125) to 

be in the maximum weight independent set as its weight is smaller than 130. The 

overlap sets of all other pair of vertices are different, so no more simplification is done 

on this graph. In graphs with a very large number of overlaps, simplification step 

significantly simplifies the graph. 

Assuming that each hotspot has a constant set of overlapping hotspots, the worst 

case runtime complexity of the simplification algorithm is O(|V|) where |V| is the 

number of vertices (hotspots) in the overlap graph. Without this assumption, the 

runtime would be O(|V|3) in case all hotspots are overlapping with most others due to 

lines 6-10 in Algorithm 5. In our implementation of the set data structure, we use a 

hash set, which assigns a hash value to each set element; therefore, checking for 

inclusion of an element in the set, adding/removing an element to/from the set is all 

achieved in O(1) time.  

To the best of our knowledge, simplification of the graph while calculating the 

maximum weight clique or independent set using an overlap set is unique to our 

approach. We claim that the proposed simplification algorithm can be employed as a 

preprocessing step by algorithms that find maximum weight cliques and maximum 

weight independent sets in graphs with highly overlapping vertices. Next, we do 

another optimization by partitioning the graph into sub-graphs.  

5.4.3 Partitioning the Overlap Graph  

In this subsection, we show how we partition the overlap graph into sub graphs. By 

definition, vertices in each connected component of a graph are independent from 

vertices in other connected components, which allows further optimizations for finding 
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the maximum weight independent set in the overlap graph. Instead of running an NP-

hard algorithm on the whole overlap graph, it makes sense to run the algorithm for 

each connected component which were already simplified. We identify the connected 

components in the overlap graph G and then find the maximum weight independent 

set of each connected component Ci by finding the maximum weight clique for the Ci’’ 

(complement of Ci). The final optimal solution is the union of all vertices in the 

“maximum weight independent set” of all connected components.  

 

Figure 15. Complement of the graph 

 

There were only one connected component in the graph in Figure 14. Therefore, we 

create the complement graph for this component (shown in Figure 15) and find the 

maximum weight clique in it. In this example, there are many possible cliques. Each 

vertex itself is a clique. Vertices with weights 70, 50 and 80 create a clique of size 3 

with a total reward of 200—they are not adjacent in Figure 13, and they are all 

pairwise adjacent in Figure 15. On the other hand, vertices with weights 130 and 80 

create a clique of size 2 with a total weight of 210 and this subset yields the maximum 

weight clique.  
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5.4.4 Summary 

We claim that the proposed hotspot post-processing algorithm can be used with our 

algorithms that create overlapping hotspots or clusters. Most hotspot discovery 

algorithms (such as SatScan) do not employ reward functions, in this case, a reward 

value to each hotspot can be assigned depending on the methodology used, or based on 

a user defined function which may consider hotspot size and other internal or external 

evaluation measures. SatScan assigns a likelihood ratio to each hotspot, which can be 

used as the reward value of hotspots. Moreover, algorithms for finding the maximum 

weight cliques and maximum weight independent sets can employ the proposed graph 

simplification algorithm as a pre-processing step to significantly simplify the input 

graphs and improve their runtimes. The graph simplification algorithm is quite 

efficient and it takes under a second to simplify graphs with hundreds of vertices and 

tens of thousands of edges. 

5.5 Finding the Scope of Hotspots 

In this subsection, we discuss how to compute the scope of hotspots. For polygonal 

datasets, determining the scope of the hotspots is trivial: Merging all polygons that 

form the hotspot will create a large polygon—the obtained polygon is the scope of the 

hotspot. The same procedure is also applied to the gridded datasets: the boundaries of 

the union of all grid cells will create a polygonal border for the gridded datasets in any 

dimensions. However, it is not trivial to compute the scope for a point-based hotspot. 

Many possible boundaries can be defined for a set of points and finding a 

representative boundary is a tricky task. In this section, we present a methodology for 

creating polygon models for 2-dimensional point-based hotspots.   
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5.5.1 Polygon Models for Clusters 

Polygons serve an important role in the analysis of spatial data. In particular, polygons 

can be used as a higher order representation for spatial clusters, such as for defining 

the habitat of a particular type of animal, for describing the location of a military 

convoy consisting of a set of vehicles, or for defining the boundaries between 

neighborhoods of a city consisting of sets of buildings. As the existing clustering 

algorithms return clusters represented as a set of points and not as a model, it is 

attractive to use polygons as cluster models due to the following reasons. 

First, it is computationally much cheaper to perform certain calculations on 

polygons than on sets of objects. For example, Cao et al. [2013] uses polygons have 

been used to describe the functional regions of a city. A given location can be assigned 

to one of those functional regions very efficiently by checking in which polygon the 

location is included. 

Second, relationships and changes between spatial clusters can be studied more 

efficiently and quantitatively by representing each spatial cluster as a polygon. 

Polygon analysis is particularly useful to mine relationships between multiple related 

datasets, as it provides a useful tool to analyze discrepancies, progression, change, and 

emergent events [Wang et al. 2013].  

However, there is not an established procedure in the literature on how to derive 

polygonal models from spatial clusters. The objective of this section is to find an 

optimal set of polygons for two-dimensional spatial clusters and hotspots. All hotspots 

can be considered as a cluster. Thus, we will use the term cluster in this section to refer 

to hotspots and clusters in two-dimensional space. 
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The input of this process is a spatial cluster containing a set of points and its output 

is a set of polygons—the model of the cluster. However, it is not trivial to generate such 

representative polygons. As shown in Figure 16, many different polygon models (or a 

set of polygons as in Figure 16e) can be generated for the same set of points. Therefore, 

it is desirable to define application specific criteria for evaluating different polygon 

models. Depending on the application context, a different one of the seven shapes in 

Figure 16 may be desirable.  

 

Figure 16. Different shapes generated for the same set of points 

5.5.2 Existing Methods for Creating Polygon Models 

Representing a set of points as polygons (or similar geometric shapes), creating the 

boundary of a set of points, or defining the perceived shape of a dot pattern has been a 

research area in computational geometry, computer graphics, computer vision, pattern 

recognition, and geographic information science for many years. 

Convex hulls are the simplest way to enclose a set of points in a convex polygon. 

However, convex hulls may contain large empty areas that are not desirable for good 

representative polygons. Creating polygon models based on Voronoi diagrams or 

Delaunay triangulations is another commonly used approach. Alani et al. [2001] 

describe a method for generating approximate regional extents for sets of points that 

are respectively inside and external to a region. However, the proposed method 
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requires defining a set of points outside the given cluster so that cluster boundaries 

can be obtained. Matt Duckham et al. [2008] propose a “simple, flexible, and efficient 

algorithm for constructing a possibly non-convex, simple polygon that characterizes 

the shape of a set of input points in the plane, termed a Characteristic shape”. The 

algorithm firstly creates the Delaunay triangulation of the point set—which actually 

is the convex hull of the point set—and then reduces it to a non-convex hull by 

replacing the longest outside edges of the current polygons  by inner edges of the 

Delaunay triangulation until a termination condition is met.   

The Alpha shapes algorithm, introduced by Edelsbrunner et al. [1983] also uses 

Delaunay triangulation as the starting step and generates a hull of polylines, enclosing 

the point set and this hull is not necessarily a closed polygon. Thus, the Alpha shapes 

algorithm requires post-processing for creating polygons out of the polylines. Besides, 

there is no easy way of determining the proper parameter for Alpha shapes algorithm.  

A. Ray Chaudhuri et al. [1997] introduce s-shapes and r-shapes; the proposed 

algorithm firstly generates a staircase like shape called s-shape, which is determined 

using an s parameter and then reduces it to a smoother shape using the r parameter. 

The algorithm can cope well with varying densities in the point set. However, there is 

no easy way to estimate a good r parameter; the authors state that “to get a 

perceptually acceptable shape, a suitable value of r should be chosen, and there is no 

closed form solution to this problem”. 

A commercial algorithm, called Concave Hull [Moreira and Santos 2007], generates 

polygons by using a method that is similar to the “gift-wrapping algorithm”  used for 

generating convex hulls. It employs a k- nearest neighbors approach to find the next 

point in the polygon and creates a simple connected polygon unless the smoothness 
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parameter k is too large and the points are not collinear. A density-based clustering 

algorithm, DContour [Chen et al. 2009] is the only algorithm, which is known to use 

density contouring for generating polygonal boundaries for a point set. However, when 

using this approach selecting the proper kernel width for the density estimation 

approach is non-trivial. 

5.5.3 A Voronoi Diagram Based Method for Finding Scopes of Hotspots 

As discussed in the previous subsection, Voronoi diagrams can be used to create 

polygonal boundaries for point-based datasets when a set of points outside the region 

is given, so that the unbounded Voronoi edges can be bounded with a polygon 

boundary.  

Our approach uses polygon models and computes the scope of point-based hotspots 

operating on the Voronoi diagram and the convex hull for the spatial dataset. We firstly 

calculate the Voronoi diagram and convex hull of the whole dataset.  Either each point 

in a hotspot will be in a Voronoi polygon, or if the point is on the convex hull of the 

dataset, it will not be enclosed by a Voronoi polygon—in which case it will be in an 

unbounded Voronoi region. In this case, we propose enclosing such points in a polygon 

by intersecting the convex hull of the dataset with the unbounded Voronoi regions. 

Moreover, some points will not lie on the convex hull, but they will be enclosed by a 

polygon, which crosses the convex hull. Such points and their Voronoi cells usually lie 

on the boundary of the dataset and their Voronoi polygons are quite large, beyond the 

convex hull. To avoid this, we intersect such Voronoi polygons with the convex hull to 

obtain hotspots that are more compact.  
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a) Voronoi cells for a set of points 

 
b) Convex hull for the same set of points 

Figure 17.  Voronoi diagram and convex hull for a set of points 

Once the Voronoi diagram and the convex hull of the dataset is created, we propose 

the following algorithm for creating a polygon model for a spatial hotspot: 

1.  Create an initial empty polygon set PS for the hotspot. 

2.  For each point P in the hotspot: 

a. If P is in a closed Voronoi cell (Voronoi polygon), check if it crosses with 

the convex hull: 

i. If the convex hull does not cross a Voronoi polygon, then add 

this polygon to PS. (Region labeled 1 in Figure 17b) 

ii. If the convex hull crosses the Voronoi polygon, then the convex 

hull splits this polygon into two polygons. In this case, the point 

will be inside one of these polygons. Add the polygon to PS. 

(Region labeled 2 in Figure 17b) 

b. If the point is not in a Voronoi polygon: find the intersection of the 

Voronoi edges around the point and the convex hull. The intersection 

will create a polygon; add this polygon into PS. (Region labeled 3 in 

Figure 17b) 

3. Return P=pP as the scope of the hotspot. 
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The result of merging the three numbered regions in Figure 17b would be the 

polygonal shape colored in pink in Figure 18. As seen in the figure, our approach 

bounds the unbounded Voronoi regions by using the Convex Hull, creating a compact 

polygon. 

 

Figure 18. Polygon model for the region in Figure 17b 

This method creates polygons for all points in the hotspot and merges them. Since 

all points in the hotspot are connected, the union of all polygons creates one large 

polygon model for the hotspot.  

On the other hand, Voronoi diagram divides the area between a point and its 

neighbors evenly. However, in some cases it might be desirable to create tighter 

boundaries excluding the area between different hotspots. Moreover, the hotspot 

locations might be given as an output from a hotspot discovery algorithm, and the 

whole dataset might not be available. We provide another methodology for creating 

polygon models for hotpots, and clusters in general, to address these concerns. In the 

next sections, we will discuss the desired polygon models in such cases, and describe a 

methodology for creating desired polygon models. 
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5.5.4 Desired Polygon Models 

In this subsection, we discuss desired polygon models for clusters. Figure 19 depicts 

three polygons that were created for the same cluster: 

 

Figure 19. Polygon models generated for a cluster 

The generated polygon in Figure 19a covers the largest area, and has the smallest 

perimeter, the least number of edges and the smoothest shape. However, it is obviously 

not a good model for the cluster because it includes large empty areas that are not 

relevant to the cluster. On the other hand, the polygon in Figure 19b has the largest 

perimeter, the most number of edges and covers the smallest area. Yet, it is also not a 

good representation for the cluster due to its ruggedness. Additionally, this polygon 

has a potential overfitting problem, as it is quite complex and therefore more sensitive 

to noise. Although this polygon does not have large empty areas, it has too many 

cavities, which result in too many edges and sharp angles. If this polygon is used as 

the model for the cluster, having so many edges will make the model less efficient in 

terms of storage and processing costs. If this polygon model is used for clustering new 
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samples, a new sample inside the cavities may not be assigned to this cluster although 

the sample is in the middle of many of the samples belonging to the cluster. 

The polygon in Figure 19c, on the other hand, balances the two objectives as it does 

not include large empty areas and has a low degree of ruggedness. In the following, a 

polygon generation framework will be introduced which fits a polygon P to a set of 

spatial objects D minimizing the two objectives, we introduced earlier; namely, 

generating smooth polygons that have a low emptiness with respect to D and a low 

complexity. Additionally, we require that all objects in D are inside the polygon P. More 

formally, we define the problem of fitting a polygon P to a set of spatial objects as 

follows: 

Let D be a set of spatial objects in the cluster. Our goal is to find a polygon P that 

minimizes the following fitness function: 

(P,D)= Emptiness(P,D) + C * Complexity(P)   (9) 

subject to the following constraint: 

oD: inside(o,P) 

where C is a parameter which assesses the relative importance of polygon complexity 

with respect to polygon emptiness; e.g., if we assign a large value of C, smooth polygons 

will be preferred. Emptiness(P,D) is a quantitative emptiness measure that assesses 

the degree to which P contains empty regions with respect to D. Complexity(P) 

measures the complexity of polygon P. 

In the following subsection, we first introduce a novel polygon-emptiness measure. 

We then describe a polygon complexity measure that has been defined by some other 
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work [Brinkhoff 1995], which will be reused in our work; finally, we introduce a method 

that fit polygons P to D, solving the optimization problem described in Eq. (9).  

5.5.5 Measuring the Emptiness of a Polygon with respect to a Dataset 

We have a surface, and we like to measure the emptiness in a surface with respect to 

spatial objects embedded into it. We call a subspace of the surface empty, if the density 

of the objects that are inside the subspace is low (typically, below a user-defined 

threshold).  

One approach to measure emptiness is to associate a density function with the area 

covered by the polygon. However, in this work we use a different approach, which is 

based on Delaunay triangulations.  

 

Figure 20. Delaunay triangulation of a point set 

In general, as can be seen in Figure 20, areas with very low density can be identified 

by large triangles in the Delaunay triangulation; that is, triangles whose area is above 

a certain size . For example, if we use the average triangle size in DT(D) as the 

threshold, the area of the large triangle on the upper right would be identified as an 

empty area. We introduce an emptiness measure, which assesses the emptiness of a 

polygon P with respect to a point cloud D. Let:  

P be a polygon whose emptiness has to be assessed, 



 

 
61 

D a set of points in 2D that P is supposed to model, 

DT(D) the set of triangles of the Delaunay triangulation of D, 

 be the triangle area threshold, 

PCONV=(tDT(D) t) be the outer polygon of the DT(D); PCONV  acts as the surface into 

which the objects of D are embedded and it is also the convex hull of D.  

Our definition of emptiness of a polygon P with respect to a point cloud D is as 

follows: 

Emptiness(P,D):= (tDT(D)area(t)>^inside(t,P)  area(t)-))/area(PCONV)       (10) 

 

When assessing emptiness of P with respect to D, we go through the triangles inside 

P, and add the differences between  and the area they cover; but, only if the size of 

their area is above , and divide this sum by the area of the convex hull of D. It should 

be noted that pCONV is not the area P covers, but a usually larger polygon which is the 

union of all triangles of Delaunay triangulation which serves as the surface into which 

the objects of D are embedded in. It should be noted that when measuring emptiness, 

triangles that are not part of P trivially do not contribute to emptiness. 

5.5.6 Measuring the Complexity of a Polygon 

We assess the complexity of polygons using the polygon complexity measure which was 

introduced by Brinkhoff et al. [1995]; it defines the complexity of a polygon P as follows: 

Complexity(P) := 0.8 * ampl(P) * freq(P) + 0.2 * conv(P)  (11) 

where ampl(P) is amplitude of vibration defined as:  

ampl(P) := 1 – ( boundary(convexhull(P)) / boundary(P) ) 
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and freq(P) is the frequency of vibration of a polygon p: 

freq(P) := 16 * (notchesnorm(P)-0.5)4 – 8 * (notchesnorm(P)-0.5) 2 + 1 

where   

notchesnorm(P) := notches(P) / (vertices(P)-3) 

and a notch is defined as a vertex with an interior angle greater than 180 degrees. 

Lastly, convexity of a polygon P is defined as: 

conv(P) := 1 – ( area(P) / area(convexhull(P)) ) 

According to this definition, polygons with too many notches, having significantly 

smaller areas and larger perimeters compared to their convex hulls are considered 

complex polygons. Most importantly, it is a suitable measure to assess the ruggedness 

of a polygon model generated.  

 

Figure 21. Change of emptiness and complexity measures of polygons created for the 

same cluster using different chi parameters 

Figure 21 depicts the change of emptiness and complexity of the polygons generated 

using the Characteristic shapes algorithm for the cluster in Figure 19 using different 

chi parameters. Emptiness was computed by setting triangle area threshold  to 1.25 

times the average triangle area in DT(D). As seen in the figure, emptiness and 
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complexity of the polygons are inversely proportional. Larger chi parameters create 

polygons which are emptier but less complex and vice versa. We employ the fitness 

function defined in (9) to find a balance between the two measures. 

5.5.7 Generating Polygons 

We use Characteristic shapes to generate polygons in conjunction with the proposed 

fitness function as this algorithm produces simple polygon models. The algorithm itself 

has a normalized parameter chi which has to be set to an integer value between 1 and 

100. The algorithm firstly creates uses Delaunay triangulation of the cluster and starts 

with the convex hull as the initial polygon (when chi=100 convex hull is returned as 

the result). It then reduces it to a non-convex hull by replacing the longest outside 

edges of the polygon by inner edges of the Delaunay triangulation until a termination 

condition is met, which is determined by chi parameter. Thus, smaller parameter 

settings result more complex polygons, and larger parameters generate larger, 

smoother and less complex polygons. 

In order to find the value of chi which minimizes the employed fitness function we 

exhaustively test all 100 chi values, and return the most fit polygon as the result. 

Runtime complexity of the Characteristic shapes algorithm is O(nlogn). Thus, our 

methodology is guaranteed to generate the fittest polygon in O(nlogn) as we 

exhaustively test 100 parameter values.  
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5.5.8 Summary 

In this section, we introduced two alternative methods for creating polygon models for 

spatial clusters. The main contributions of the work in this section include: 

(1) We presented a novel methodology for creating polygon models using the Voronoi 

diagram when the whole dataset is available. 

(2) We presented another methodology for creating polygon models for spatial clusters. 

A novel quantitative polygon fitness function is introduced to guide the generation of 

polygons from point sets, alleviating the parameter selection problem when using 

existing polygon generation methods. The proposed methodology uses Characteristic 

shapes [Duckham et al. 2008] to generate polygon models; however, we wish to 

emphasize that other polygon generation methods, such as the Concave Hull algorithm 

[Moreira and Santos 2007] and Alpha shapes [Edelsbrunner et al. 1983] can be used 

in conjunction with the proposed fitness function.  

(3) A novel emptiness measure is introduced that quantifies the presence of empty 

areas in a polygon. 
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CHAPTER 6 

EXPERIMENTAL EVALUATION 

In this section, we will evaluate our methodology using three case studies. In the first 

case study, we find high correlation hotspots of ozone and PM 2.5 concentrations in a 

gridded air pollution dataset. In the second case study, we find hotspots in a crime 

dataset where majority of the crimes belong to a single type using the purity 

interestingness function. The first two experiments will be used to display the inner 

workings of our methodology, and evaluate its effectiveness. In the last experiment, 

we compare our methodology with SatScan in a case study in which we find hotspots 

taxi pick-up locations where the total money made per minute by taxi drivers is higher 

than a specified amount.  In the experiments, we will evaluate the obtained hotspots 

based on their interestingness values and sizes. Moreover, we report wall clock 

runtimes of the phases of our methodology for the first and second experiment. All 

experiments were conducted using a MacBook Pro with an Intel i7 processor with 4 

physical cores and 16 GB of RAM. 

For all experiments, we use the following reward function for evaluating the quality 

of a region R for the hotspot growing and redundant hotspot removal phases: 

(R) = interestingness(R) × size(R)β  (12) 

where β>1 is a parameter determining the degree preference for larger regions. We set 

β to 1.01 for the experiments, giving preference to relatively smaller hotspots with high 

interestingness over larger hotspots with low interestingness, while preferring larger 

hotspot if two hotspots have the same interestingness.  
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6.1 Finding Correlation Hotspots in a Gridded Air Pollution 

Dataset 

In this subsection, we present a case study in which we use a four-dimensional spatial-

temporal air pollution dataset. Using a nationwide network of monitoring sites, 

observations for a range of climatic variables and air pollution data is stored in gridded 

data sets by Environmental Protection Agency (EPA), and huge amounts of gridded 

data are generated every day. Just the air pollution data [EPA 2016] for Houston 

Metropolitan area requires 1.8 GB of space for each day. This dataset contains four 

dimensions (longitude, latitude, altitude, and time as measurements are taken every 

hour) including 84 columns, 66 rows, 27 layers and 24 hours for each day. This 

corresponds to 3.6 million grid cells for a day and 1.3 billion grid cells for a year; 

moreover, each grid cell contains 132 air pollutant densities as attributes, and these 

observations are typically extended by adding meteorological and other types of 

observations for a particular analysis task, such as humidity, temperature, wind speed 

and solar radiation.    

The goal in this case study is to find regions with high correlation of ozone and 

PM2.5 concentrations in the air pollution dataset. PM2.5 is abbreviation for 

Particulate Matter 2.5, which refers to tiny particles or droplets in the air that are 2.5 

microns or less in width. PM2.5 is an air pollutant that causes health concerns when 

levels in air are high. We use the correlation interestingness function defined in (2) in 

Section 4.2 and set the interestingness threshold  to 0.75 for this experiment to find 

areas with very high correlation. We use the air pollution data for 24 hours on 

September 1, 2013 for Houston metropolitan area grid cells and set the seed size to 
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3x3x3x3 grid cells. We will show results for all phases of the methodology in this 

experiment.  

Phase 1. Identifying Neighboring Objects: We do not create a neighborhood graph 

for a gridded dataset, as the neighborhood relation is trivial. We used the neighborhood 

definition given in (6) in Section 5.1 for gridded datasets.  

Phase 2. Finding Seed regions: In the whole dataset, correlation coefficient 

between ozone and PM2.5 concentrations is -0.47. We started with seed candidate 

thresholds as low as 0.75 to potentially grow smaller regions where 

|correlation(seed)|> 0.75, however, there were too many such regions; therefore, we 

set the seed candidate threshold to 0.95 to grow only the best seeds and found 235 seed 

regions. We merged neighboring seed regions using µ=0.96 as the merge threshold for 

the merge rule; from the initial 235 seeds we obtained 108 seeds by merging 

neighboring ones. Merging hotspot seeds took 0.16 seconds in total. 

 

Figure 22. A part of the seed neighborhood graph for gridded datasets 

Figure 22 shows a part of the seed neighborhood graph used for merging 

neighboring seeds. Each vertex corresponds to a seed region. First number in each 

vertex is the seed number and the second number in parenthesis is the reward of the 
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seed. There is an edge between seeds if merging the connected seeds result in a region 

with a reward larger than µ * (R1 + R2), where R1 and R2 are seed rewards. 

For example, in the neighborhood graph, merging seeds 4 and 215 generate a new 

seed with a reward of 38.56 when merged, which is a 1.12 improvement (shown as 1.13 

in the graph due to rounding error) obtaining a reward that is 1.03 times larger than 

the total reward (20.20 + 17.24= 37.54) before the merge. 

Seeds are merged giving preference to the merge candidates with the highest 

reward gain. In this graph, seeds 4 and 215 will be merged first. Then, the edges are 

computed for the newly created seed region and the same process is repeated until 

there are no more merge candidates left. 

Phase 3. Growing seed regions: After growing these 108 seed regions, we observed 

that many of them grew to the same boundaries. For example, 35 seed regions grew to 

the same hotspot which lies between x:[0,25] y:[0,18] z:[5,11] t:[0,14]. The largest 

hotspot had 59280 grid cells; the smallest had 1925 grid cells. Maximum growing time 

was 0.825 seconds for the hotspot of size 51870, and the minimum growing time was 

0.018 seconds for the smallest hotspot of size 1925. The total time of growing all 108 

hotspots in parallel was 23 seconds. We also turned off parallel processing and reran 

the experiment, which increased the total time to grow all hotspots to 73 seconds. Thus, 

the parallel speedup using a computer with four processors was 73/23 = 3.17. 

Phase 4. Post-processing phase: We created the overlap graph for the 108 hotspots 

obtained using 0.66 as the overlap threshold; and the obtained graph had 1994 edges 

connecting the 108 vertices. Creating the graph requires finding the number of shared 

objects between all pairs of hotspots; since there were many hotspot with tens of 
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thousands of objects, the graph creation took 67 seconds. As shown in Figure 23, there 

are three large connected components in the graph where there is a very high number 

of overlaps between hotspots. We applied the graph simplification algorithm to the 

overlap graph and 83% of the vertices and 98.5% of edges were eliminated leaving only 

18 vertices and 28 edges in the graph.  

 

Figure 23. Overlap graph before simplification 

 

Figure 24. Simplified overlap graph. Hotspot ids and rewards (in parenthesis) are 

shown. Non-adjacent vertices maximizing the total reward are colored in red 
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Figure 24 shows the overlap graph of the remaining 18 hotspots. Running the 

maximum weight clique algorithm on the complement of this graph, we obtained 8 

non-adjacent vertices maximizing the total reward value which are colored red in the 

overlap graph (hotspots numbered 3, 6, 9, 28, 29, 31, 70, 81). Running the maximum 

weight clique algorithm on the complement of this graph took only 10 milliseconds. 

Running the same algorithm on the complement of the original graph before 

simplification (Figure 23) with 108 vertices and 1994 edges took 1.2 seconds.  

We found by performing other experiments that maximum weight clique algorithm 

can cope well with graphs up to a few hundreds of vertices and thousands of edges. 

However, it cannot cope well with graphs with more than 400 vertices and tens of 

thousands of edges (depending on the graph structure). In order to show the 

effectiveness of the graph simplification algorithm, we conducted another experiment 

in which we changed the seed threshold to 0.85 and skipped seed merging step, 

obtaining 563 hotspot seeds. After growing these hotspots, we obtained an overlap 

graph with 563 vertices and 41120 edges. Running the maximum weight clique 

algorithm on the complement graph without simplifying this graph took 30 hours. 

Next, we simplified this graph using our graph simplification algorithm, we obtained 

a graph with 57 vertices, and 238 edges—the graph simplification algorithm took only 

0.52 seconds on this graph. Running the maximum weight clique algorithm on the 

complement of simplified graph took under a second, and the results were exactly 

same. This is, we believe, a spectacular improvement, and shows the effectiveness of 

the graph simplification algorithm. 

Phase 5. Finding the Scope of Hotspots:  The scope of hotspots created by the 

dimensional growing algorithm is the rectangular boundary of the hotspot region.    
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Table 1 shows the properties of final set of 8 hotspots. Hotspot numbers, correlation of 

ozone and PM2.5 in the hotspot seeds, hotspot rewards, correlation of ozone and PM2.5 

levels in the hotspots, total time to grow the hotspots and the scope of hotspots are 

listed.  

Table 1. Properties of correlation hotspots 

HS# 

Seed 

Correl. Correlation Reward 

Total 

Cells 

Growing 

time (ms) Scope of Hotspot 

3 0.96 -0.89 5882 38038 493 

x:[0,25] y:[0,18]  

z:[0,6] t:[3,13]  

6 0.97 0.91 4146 23104 274 

x:[0,7] y:[0,18]  

z:[4,11] t:[0,18]  

9 0.95 0.87 258 1925 18 

x:[0,4] y:[12,18] 

z:[1,11] t:[15,19]  

28 0.97 0.88 6359 44460 696 

x:[0,25] y:[0,18]  

z:[6,11] t:[0,14]  

29 0.97 0.86 1125 9120 183 

x:[16,25] y:[0,18]  

z:[0,11] t:[20,23]  

31 0.96 0.8 537 9072 81 

x:[0,23] y:[13,18]  

z:[3,11] t:[17,23]  

70 -0.95 -0.89 4629 29260 377 

x:[4,25] y:[0,18]  

z:[0,9] t:[9,15]  

81 0.97 0.82 976 12750 192 x:[9,25]vy:[0,14] 

z:[2,11] t:[19,23]  

The largest hotspot (#28) contains 44460 grid cells which corresponds to a very large 

area including all longitudes and latitudes between layers 6 to 11, from 12am to 2pm 

on the selected date. Ozone levels are highly correlated with PM2.5 levels at this time 

and a domain expert can do further analysis to find out the reasons. On the other hand, 

hotspot #3 containing 38038 grid cells indicates a region with highly negative 
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correlation (-0.89) between ozone and PM2.5 levels. This hotspot is located at the same 

latitude and longitudes but in layers 0 to 6 at about the same timeframe (3am to 1pm).  

Figure 25 shows the graph of growing time of hotspots and hotspot sizes. The 

runtime complexity of dimensional hotspot growing algorithm is very close to O(n). 

 

Figure 25. Dimensional growing times by hotspot size 

Figure 26 illustrates hotspots 3 (blue), 6 (gray) and 9 (red). Time dimension was not 

taken into account in this figure, thus all hotspots seem to overlap more than they do. 

For example, hotspot 3 occurs from 3am to 2pm, whereas hotspot 9 occurs from 3pm to 

8pm, thus they do not overlap. Dimensional growing algorithm creates rectangular 

hotspots as in Figure 26, which are easy to comprehend. On the other hand, runtime 

complexity of the dimensional growing algorithm is very close to linear, which makes 

it an attractive option with very large gridded datasets. Moreover, our framework 

allows growing gridded hotspots using a subset of dimensions—seed can be created in 

2 or 3 dimensional spaces, and can be set to grow only in x or y dimensions 
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Figure 26. Three correlation hotspots from different angles (time dimension not 

shown) 

Heap-based growing algorithm can also be used with gridded datasets. However, 

hotspots created using heap-based growing algorithm will have irregular shapes, and 

these hotspots will be larger, as adding the best neighbor in each step will allow 

hotspots to exclude many of the grid cells that has to be included in dimensional 

growing, keeping the interestingness high and allowing for more controlled growing. 

We refer to our preliminary work [Akdag et al. 2014] for more details about growing 

irregularly shaped hotspots in a gridded dataset.  

6.2 Finding Purity Hotspots in a Crime Dataset 

In this experiment, we use purity interestingness function (4) defined in section 4.2 to 

find hotspots in a crime dataset where majority of the crime events belong to a single 

type of crime. The goal of this experiment is to show how our methodology employs a 

neighborhood graph, and grows seeds identified in this graph using the heap-based 

growing algorithm. We use Montgomery County of Maryland [2016] Crime data from 

1/1/2014 to 3/29/2016. There are 4910 crime events belonging to 27 different types of 

crimes including assault, illegal substance use, robbery, larceny, etc. Table 2 shows the 
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total numbers and percentages of crimes by category type. We set purity threshold to 

0.66 to find hotspots where at least 2/3 of the crimes are of same type. 

Table 2. Crime event counts and rates in the data set 

Category count rate 

Larceny 1282 26.11% 

Substance use 416 8.47% 

Driving under influence 341 6.95% 

Forgery 334 6.80% 

Vandalism 290 5.91% 

Assault 272 5.54% 

Mental Transport 236 4.81% 

Burglary 186 3.79% 

Loss of Property 181 3.69% 

Trespassing 170 3.46% 

Illegal Drinking 140 2.85% 

Disorderly conduct 117 2.38% 

16 other categories 889 19.24% 

Total 4910 100% 

We will present the results for all 5 phases of our methodology in this experiment. 

Phase 1. Identifying neighboring objects: Figure 27 shows the Delaunay 

triangulation and Gabriel graph for the dataset. As shown in the figure, Delaunay 

triangulation contains connections between many distant points, especially around the 

edges of the point set. However, those connections were removed in the Gabriel graph. 

We use the Gabriel graph for defining the neighborhood of points in the dataset.  
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a) Delaunay triangulation 

 

b) Gabriel Graph 

Figure 27. Delaunay triangulation and Gabriel graph for the Crime data set 
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Phase 2. Finding seed regions: A seed candidate region is created around each point 

which consists of the point and its first degree neighbors. Out of 4910 seed candidates, 

217 of them had an interestingness larger than the seed threshold which we set to 

0.66. 99 of the neighboring seeds were merged based on the reward increase and as a 

result 128 hotspot seeds were obtained.  

Phase 3. Growing seed regions: When growing a hotspot, we use a heap data 

structure to store the neighbors and we assign each neighbor a priority value based on 

how they fit to the region, which determines their location in the heap. We used the 

following fitness function to evaluate the fitness of a neighbor ni of hotspot H: 

fitness (ni) = (i(H ∪ ni) – i(H) ) (13) 

where i(H ∪ ni) represents the new interestingness when ni is added to the hotspot and 

|H| is the hotspot size. The neighbors which increase the interestingness value most 

is given priority, and added to the region first.  

When 128 hotspot seeds were grown, the largest four hotspots all had 36 events. 

Many hotspots grew to the same region. Thus, we eliminated such highly overlapping 

redundant hotspots in the next phase. 

Phase 4. Post-processing: We simplified the overlap graph using 0.66 as the overlap 

threshold. The resulting graph had only 24 vertices and 8 edges. 104 hotspots were 

eliminated in this phase. Using the maximum weight clique algorithm on the 

complement of this graph, we obtained 19 non-adjacent vertices maximizing the total 

weight. Out of the 19 hotspots, 17 of them belongs to larceny crime type, which is the 

most common crime type. The remaining two crimes belonged to “driving under 

influence” crime type. The average size of a hotspot was 12. 
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Phase 5. Creating hotspot scopes: We created polygonal boundaries for hotspots by 

merging the Voronoi polygons for the points in each hotspot. Figure 28 shows the 

polygons that represent two hotspots where majority of the crimes belong to “driving 

under influence” crime category and Figure 29 shows the Voronoi regions which were 

merged to create the yellow polygon in this figure. Figure 30 shows these events in the 

dataset; as shown in the figure, yellow colored points have the majority of events in 

those areas, which proves that the hotspots were correctly identified.  

 

 

Figure 28. Polygon created for “driving under 

influence” crime purity hotspots, colored in red 

and yellow 

Figure 29. Voronoi regions for 

the yellow polygon in Figure 28 
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Figure 30. “Driving under influence” crime locations colored in yellow color. Circles 

highlight areas where majority of the crimes are of this type 

Summary: In this experiment, we used a graph-based hotspot discovery approach 

to find purity hotspots in a point-based crime dataset. The results show that our 

framework was able to detect the hotspots accurately. We created hotspot scopes using 

a method that is based on Voronoi diagram and convex hull of the dataset. To the best 

of our knowledge, this is the only hotspot discovery algorithm that uses Gabriel graphs 

to define neighborhood relations, and grows hotspots using the seeds identified in this 

graph. Moreover, the proposed method for creating hotspot scopes is the only approach 

that creates polygonal hotspot scopes using Voronoi diagram and convex hull. 
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6.3 New York Taxicab Dataset: Comparison to SatScan 

In this experiment, we will compare our framework with the state-of-the-art hotspot 

discovery tool SatScan, and show the differences.  We will use an interestingness 

function that calculates interestingness of a hotspot based on a predefined attribute. 

As discussed before, SatScan can also be used for finding hotspots with interestingness 

functions that are defined using a single attribute of the objects in the dataset. The 

hotspots created by SatScan and our framework will be evaluated based on hotspot 

size and interestingness. For this experiment, we will skip details for each phase and 

just show and compare the final results. 

We will use New York City taxicab dataset [NYC Taxi and Limousine Commission 

2016] which contains trip records including fields capturing pick-up and drop-off 

dates/times, pick-up and drop-off locations, trip distances, itemized fares, rate types 

collected from green taxi trips from 1/1/2016 to 1/22/2016. In this experiment, we will 

find hotspot locations in which average money made per minute is more than 1.5 

dollars (which is 1.01 dollars/min in the input data). We use the following formula to 

calculate the average money made by minute for a trip: 

𝑅𝑎𝑡𝑒(𝑜) =  
𝑡𝑜𝑡𝑎𝑙 𝑓𝑎𝑟𝑒 𝑖𝑛𝑐𝑙𝑢𝑑𝑖𝑛𝑔 𝑡𝑖𝑝𝑠 − 𝑡𝑜𝑡𝑎𝑙 𝑐𝑜𝑠𝑡 𝑜𝑓 𝑡𝑟𝑖𝑝

𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑖𝑛 𝑚𝑖𝑛𝑢𝑡𝑒𝑠
 

where total cost is estimated as gas cost (gas price * total distance in miles / mpg) plus 

toll fees; and gas price was set to $2 per gallon and mpg was set to 20 miles per gallon. 

We use the Rate value as the attribute value for each object in SatScan, and configure 

SatScan to find hotspots with high rates. Our framework calculates the interestingness 

of a hotspot as the average rate in the hotspot: 
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where h.p is the Rate of each object h in the hotspot. The fitness of a neighboring object 

was assigned to its Rate. 

There were 1,048,574 trip records in the dataset. We randomly chose 10,000 

records, eliminated instances with errors and used the resulting 9626  trip records as 

the input. Pickup locations of the trip records and Voronoi diagram of all points are 

shown in Figure 31.  Figure 32 shows the distribution of money made by minute in 0.1 

dollar intervals. 

 

Figure 31. New York green taxicab dataset and Voronoi diagram for the dataset 
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Figure 32. Distribution of dollars made by minute in the dataset 

Results using our framework: Our framework detected 32 non-overlapping 

hotspots with at least five records in each.  We will only visualize and report the five 

hotspots with more than 10 objects in the result.  Properties for each hotspot is given 

Table 4 and Figure 33 shows the hotspots on the map.    

Table 3. Taxicab hotspots discovered by our framework 

Hotspot Rate ($/min) # of records 

1 1.62 12 

2 1.58 22 

3 1.57 13 

4 1.60 15 

5 1.69 11 
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Figure 33. Taxicab interestingness hotspots detected by our framework. 

Only the hotspots with more than 10 records are shown. 

SatScan results: We firstly used all 9626 trip records with SatScan and obtained 

only two very small hotspots with 2 objects in each. SatScan is very sensitive to 

extreme outliers, and created those two hotspots around trip records with extremely 

high rates as shown in Table 4 and Figure 34: 

Table 4. Properties of hotspots discovered by SatScan for taxicab dataset without removing outliers 

Hotspot Rate ($/min) #of records Radius (km) 

1 5.48 2 0.061  

2 5.39 2 0.16  
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Figure 34. SatScan results for taxicab dataset without removing outliers 

To obtain larger hotspots, we deleted 27 trip records, which had a rate more than 

3$/minute and ran SatScan again obtaining 7 hotspots with largely varying sizes as 

shown in Table 5. Hotspots detected by SatScan after removing outliers and Figure 35.  

Table 5. Hotspots detected by SatScan after removing outliers 

Hotspot Rate ($/min) # of objects 

1 1.31 262 

2 1.28 187 

3 1.18 924 

4 2.09 4 

5 1.98 4 

6 1.88 5 

7 2.28 2 
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Figure 35. Hotspot locations detected by SatScan after removing outliers. 

Three large areas has interestingness values less than the interestingness threshold 

($1.5/min); thus, they are not considered as interestingness hotpots. 

Three hotspots were very large containing hundreds of locations but the rate was 

at most 1.31$/min in these hotspots. Four very small hotspots containing less than 10 

objects were detected with rates higher than 1.5$/minute. These small hotspots were 

also detected by our framework but we discarded them as being too small. When we 

reran our framework with the new dataset with 27 trip records deleted, the results 

were not significantly different.  

An interesting observation is that the large region with a low rate detected by 

SatScan on the very north of the map (hotspot 1) overlaps with 2 polygonal 

interestingness hotspots detected by our framework in the same area (Figure 36).  This 

is an indication of the power of detecting irregularly shaped hotspots using an 

interestingness function that drives the growing process. Our framework is able to 

choose which areas are interesting and can grow the hotspot in that direction—e.g., in 
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north-west direction of the SatScan hotspot—, whereas SatScan cannot exclude areas 

with low interestingness in the circular hotspot. 

 

Figure 36. Hotspots detected by SatScan (circular) and our framework (polygons) in 

the same region 

Comparison: The results show that our framework is able to detect better 

interestingness hotspots compared to SatScan. The hotspots detected by our 

framework were larger in size and area, and they had acceptable rates even in presence 

of outliers. SatScan is very sensitive to outliers and creates very small hotspots around 

records with very high values, ignoring others. Even after removing outliers, it was 

unable to detect large hotspots with high interestingness value; the large hotspots it 

detected had low interestingness and there is no way to adjust SatScan to detect 

hotspots with higher than a threshold rate. This is not surprising as our framework is 

specialized in detecting irregularly shaped hotpots maximizing a given function, 

whereas SatScan tries to find circular regions that have statistically very high number 

of events compared to the rest of the dataset. 
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6.4 Creating Polygon Models for a Set of Clusters 

In this section, we present a case study in which we evaluate the methodology proposed 

for creating polygon models for spatial clusters. We will present the experimental 

results using the fitness function  defined in equation (9) in section 5.5.4. We will find 

polygon models for clusters in Complex8 dataset [Salvador et al. 2004].  

The dataset used for this experiment is depicted in Figure 37a. Figure 37b-d depict 

the polygons generated for each cluster using different C parameters. 

  

a) Complex 8 clusters b) Polygons created for C=0.2 

  

c) Polygons created for C=0.35 d) Polygons created for C=0.5 

Figure 37. Complex 8 Dataset  and polygons generated using different chi 

parameters 
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Table 6 reports the area, perimeter, emptiness, and complexity for polygons in these 

figures along with the optimal chi parameter values selected by the fitness function to 

create these polygons. 

Table 6. Statistics for polygons in Figure 37b-d separated by comma in respective order. P0-P7 represent 

polygons for clusters 0-7 in the dataset and colored respectively. 

 

The polygon P4 (cyan-colored) best illustrates the effect of changing the C 

parameter. The generated polygon for P4 in Figure 37b is very tight and rugged having 

a smaller area, larger perimeter, smaller emptiness and larger complexity values 

compared to polygons generated with larger C values. On the other hand, the 

generated polygon for P4 in Figure 37d is smoother; it has fewer edges and empty areas 

producing a larger area and emptiness value, smaller perimeter and a smaller 

complexity value. In general, by adjusting the C parameter, more or less complex 

polygons can be created depending on application requirements. 

 

  

area perimeter emptiness complexity chi

P0 1088, 2030, 2030 328, 173, 173 0.077, 0.219, 0.219 0.49, 0.02, 0.02 37, 70, 70

P1 2697, 2697, 2741 287, 287, 286 0.144, 0.144, 0.148 0.052, 0.052, 0.046 34, 34, 37

P2 21492, 23107, 23107 1052, 997, 997 0.084, 0.096, 0.096 0.125, 0.072, 0.072 6, 13, 13

P3 9477, 18057, 20146 2465, 1058, 954 0.072, 0.192, 0.233 0.589, 0.118, 0.02 2, 5, 10

P4 4829, 8408, 11246 1171, 751, 561 0.057, 0.113, 0.197 0.562, 0.319, 0.089 5, 10, 16

P5 9007, 19122, 20413 2460, 968, 947 0.063, 0.19, 0.211 0.606, 0.043, 0.015 2, 8, 18

P6 17560, 34719, 35061 3019, 1018, 1003 0.044, 0.162, 0.168 0.632, 0.054, 0.04 4, 13, 14

P7 19759, 19759, 20807 1003, 1003, 984 0.042, 0.042, 0.049 0.188, 0.188, 0.17 8, 8, 14
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CHAPTER 7 

CONCLUSION 

In this dissertation, we presented a computational framework for discovering 

interestingness hotspots in spatial datasets. Interestingness hotspots are contiguous 

regions in space, which are interesting based on a domain expert’s notion of 

interestingness which is captured by an interestingness function. Our framework uses 

a hotspot growing algorithm which works by growing seed regions using plugin 

interestingness and reward functions. To the best of our knowledge, this is the only 

hotspot discovery algorithm in the literature that grows seed regions using a reward 

function. This fact distinguishes our approach from traditional hotspot discovery 

algorithms. We claim that the proposed framework is capable of identifying a much 

broader class of hotspots, which cannot be identified by traditional distance-based 

clustering algorithms and spatial scan statistics. Moreover, the proposed framework is 

very generic and can be used with any dataset in which a neighborhood relation 

between spatial objects can be defined. We proposed using Gabriel graph for defining 

the neighborhood of objects in two-dimensional point-based datasets. We are also 

exploring the usage of three-dimensional Gabriel graphs for three-dimensional point-

based datasets, and partitioning the neighborhood graph for very large datasets.  

We use efficient data structure like heaps and hash sets to improve the efficiency 

of algorithms employed in various phases of the hotspot discovery process. Moreover, 

we grow hotspots in parallel using a shared memory parallel processing approach, 

which improves the total runtime of the hotspot growing phase significantly. We are 
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investigating using a distributed parallel programming approach for growing all 

hotspots in parallel. Furthermore, we also introduced an agglomerative seed merge 

algorithm that decreases the number of seeds grown. We plan to investigate 

alternative hotspot growing approaches in our future work. 

We evaluated our framework in case studies using real datasets and demonstrated 

that our framework is able to identify the locations of hotspots correctly and efficiently. 

We compared our framework with the state of the art hotspot discovery tool SatScan 

in a case study and our framework was able to detect better hotspots which were not 

detected by SatScan. Our graph-based hotspot growing algorithm which is driven by a 

reward and interestingness function was able to detect hotspots in different shapes 

while retaining the interestingness of the hotspots higher than a threshold value.  

We believe that polygons are quite essential in spatial analysis and we provided 

two methods for creating polygon models for two-dimensional spatial hotspots and 

clusters. First, we presented a novel method for creating polygon models using the 

Voronoi diagram for spatial clusters and hotspots when the whole dataset is available. 

Then, we introduced a methodology for creating polygon models for any spatial cluster, 

which employs a novel quantitative polygon fitness function to guide the generation of 

polygons from point sets, and alleviates the parameter selection problem when using 

existing polygon generation methods. Moreover, a novel polygon-emptiness measure is 

introduced that quantifies the presence of empty areas in a polygon. The proposed 

methodology can be used with other polygon generation methods, such as Concave Hull 

and Alpha shapes algorithms in conjunction with the proposed polygon fitness 

function.  
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We also proposed a novel and unique graph-based post-processing algorithm that 

finds an optimal set of hotspots which are allowed to overlap to a degree less than a 

threshold value. The proposed algorithm reduces removing redundant hotspots to the 

maximum weight clique problem. Moreover, it improves the efficiency of Östergård’s 

maximum weight clique algorithm [2002] significantly by simplifying the overlap 

graph of the hotspots. Moreover, this generic algorithm can be used in conjunction with 

other hotspot discovery algorithms that detect overlapping hotspots. We are also 

investigating the usage of this algorithm with cluster-aggregation problem, which 

aims to take advantage of a set of different clusterings that have been found for a data 

set to find a consensus clustering that is better than existing clusterings.   
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