View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by University of Houston Institutional Repository (UHIR)

Wiggins, Rich. "The University of Minnesota's Internet Gopher
System: A Tool for Accessing Network-Based Electronic
Information." The Public-Access Computer Systems Review 4, no. 2
(1993): 4-60. To retrieve this file, send the following e-mail
messages to LISTSERV@UHUPVM1 or LISTSERV@UHUPVM1.UH.EDU: GET
WIGGINS1 PRV4N2 F=MAIL and GET WIGGINS2 PRV4N2 F=MAIL.

1.0 Introduction

Late in 1991, a new creature began burrowing its way around the
Internet. This new critter helps people browse many of the
resources available on local campus networks or on the worldwide
Internet. Called the Internet Gopher, this tool was developed at
the University of Minnesota. Pioneering sites began deploying
Gopher servers in December 1991. In the short time since, the
Gopher system (henceforth called "Gopher") has been deployed at
many institutions around the world. A worldwide community of
"Gophernauts" has come into being, with various sites
contributing ideas, utility tools, bits of code, and schemes for
cooperative registry efforts. Gopher now accounts for a
substantial fraction of the traffic on the Internet. Gopher
servers are delivering text, index searches, still images, audio,
public domain software, and more to users all over the world.
With Gopher, a user can:

o Find out what movies are playing in Aachen, Germany.
o Learn what earthquakes took place yesterday.
o Read today's student newspaper from a school 2,000

miles away.
o Pick up a quote from Paradise Lost for a term paper.

o Read the city council meeting minutes from Wellington,
New Zealand.

o Listen to the final U.S. Presidential Debate of 1992.
o See what Michigan State's campus looks like in spring.
o Read about the Human Genome Project.

o Learn about Federal grants.

o Download public domain software.

+ Page 5 +

The above examples are a tiny sample of the kinds of information
Gopher can deliver. An illustration of the value of Gopher comes
from a user who works at Michigan State University:

I wanted to drop a quick line and tell you how much Gopher
means to me. I discovered Gopher about two months ago and

https://core.ac.uk/display/270200863?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

cannot believe how much information is out there. I have
found the new Veronica option very helpful as it allows me
to build a directory of items that are specific to my
interest. This is undoubtedly a great service for anyone
who finds it. However, for me it is unbelievable. I am
legally blind and I have always said that the most difficult
aspect of blindness is the lack of readily available
information. Gopher has the ability to change all of that.
For the first time, I feel like I can easily and
independently access important campus and worldwide
information. . . . I use a speech synthesizer and a PC
compatible computer to access the Gopher system.

This article describes the Internet Gopher: why it is needed, how
it is used, its genesis and early evolution, the underlying
protocol (and the new Gopher+ protocol), Gopher's role as a
campus-wide information system (CWIS), and its emerging role as
an Internet-wide information system. The article also discusses
navigational enhancements (e.g., Veronica), organization and
quality of service issues, privacy and security concerns,
electronic publishing issues, distribution of multimedia
information, related client and network information technologies,
and Gopher's future.

2.0 The Internet and the Need for Navigation Tools

Today, many computer users at universities, government agencies,
and commercial firms are connected in one way or another to the
Internet. The Internet is a worldwide network of networks.
Campus Ethernets and other local area networks are connected
together by a complex web under the aegis of regional networks,
national networks, or in some countries, the PTTs
(postal/telephone authorities). The constituent networks all use
the TCP/IP protocol family; the result is a worldwide network of
computers that can communicate with one another. The Internet
evolved from the old Defense Advanced Research Projects Agency
network (ARPANET). ARPANET sites consisted mainly of Department
of Defense research installations and affiliated research
institutes and universities. Many thousands of host computers
and user workstations now have Internet connectivity. The number
of computer users with Internet access is estimated to exceed 10
million.

+ Page 6 +

As a "network of networks," the Internet can be thought of
as the aggregation of various campus, corporate, and other
networks. Other than following certain rules known as
"acceptable use policies," institutions on the Internet are
generally autonomous. Therefore, services that are offered on
these campus networks are provided because some local service
provider believes it's worthwhile to do so. Often, the
motivation is to serve local users. For example, a campus
library puts its online catalog on the campus network for the
sake of local patrons, not primarily for the benefit of Internet
users.

As multiple campuses mounted similar services to satisfy the
needs of their own communities, Internet users began to find
value in using online resources from other institutions. For
instance it might be useful to scan the online catalog of a
partner interlibrary loan institution. But without a list of

host names (or IP addresses) of the various online catalogs on
the Internet, each individual user has to maintain his or her own
listing: picture a wall of Post-it notes listing names and
addresses next to a user's PC.

Online catalogs aren't the only list of Internet services a
user would want to keep up with; all sorts of services are
available on the Internet. Examples include:

o List servers and discussion groups.

o USENET News (a sort of distributed discussion
facility).

o Anonymous FTP archives, containing public domain

software and other offerings.

o Tools and services for finding people.

o Host computers that require assigned passwords.

o Databases that allow logins via Telnet.

o Databases that support the client/server model (the

chief example is WAIS).

o Archives of electronic journals and books--the nascent
virtual library.

+ Page 7 +

The need for an "Internet address book" applies to all of these
kinds of services. Several tools are evolving to help bring
order to the Internet. Various Internet navigation tools have
different goals and capabilities:

o HYTELNET provides a hypertext database of online
catalogs and other systems.

o Archie serves as an index of FTP sites, identifying
sites that hold particular files.

o WAIS allows users to search one or more databases using
natural language queries; it presents ranked search
results.

o World-Wide Web supports networked hypertext.

All of these tools will be discussed later in this paper. For
now, the focus is Gopher.

In a nutshell, Gopher offers access to files and interactive
systems using a hierarchical menu system. The organization of
the menu is defined by the administrator of each server. The
resources that each menu item describes, such as ASCII files,
Telnet sessions to other computers, and submenus, are called
"documents." The scope of a Gopher server could be limited to a
campus or to a subject area. Or, a Gopher server could include a
catalog of a variety of Internet resources. The following
section depicts a "walk-through" of "Gopherspace," showing how
Gopher operates along the way.

3.0 Overview of Gopher from the User's Point of View

Gopher serves as a menu system for networked information. The
user connects to one of the thousands of Gopher servers now in
production around the world and receives an initial (or "root")
menu. When you use a tool like Archie, you are asking the server
a specific question (e.g., "Tell me what FTP sites can provide a

copy of the program named PKZIP"). When you connect to a Gopher
server, you are asking it "Give me a menu listing the resources
you have to offer." The menu can include submenus. Each Gopher

server presents a hierarchy established by the local
administrator.

+ Page 8 +

Gopher follows the client/server model. This model divides
the labor between the program the user invokes (the "client") and
a program running on a host computer, such as a UNIX workstation
or a mainframe (the "server").

It's best to run Gopher with client software installed on
the user's workstation because it provides a superior user
interface and opens up the world of still images, audio files,
and other resources. But a user who has not installed a client
can still use Gopher: the developers have provided a sort of
central client software, and many Gopher sites offer public
client services. The public client software is sometimes known
as the "curses" client, after the UNIX screen management tool of
that name. Users connect to these public client services via
Telnet (or, depending on their local network services, via a VT
100 dial-up session).

The following initial tour of Gopherspace will use sample
screens from a public client service. This example will connect
to the service offered at the home of Gopher, the University of
Minnesota. To connect to the public client service at "Gopher
Central," one would type the following:

telnet consultant.micro.umn.edu
gopher [Type "gopher" in response to login prompt.]

The user's Telnet program must be capable of VT 100-style full-
screen operations (virtually all are). The client service will
respond as shown in Figure 1.

TERM = (vtl00) [Press Enter at this prompt.]
Erase is Ctrl-H

Kill is Ctrl-U

Interrupt is Ctrl-C

I think you're on a vtl00 terminal

At this point, the user should hit the Enter key. Having made
this connection, the user would see the root menu of the
University of Minnesota's Gopher service (see Figure 2).

+ Page 9 +

Figure 2. The University of Minnesota Gopher's Root Menu

Internet Gopher Information Client v1.12
Root gopher server: gopher.tc.umn.edu

--> 1. Information About Gopher/
2. Computer Information/
3. 1Internet file server (ftp) sites/
4. Fun & Games/
5. Libraries/
6. Mailing Lists/
7. UofM Campus Information/
8. News/
9. Other Gopher and Information Servers/
10. Phone Books/
11. Search lots of places at the U of M <?>

Press ? for Help, g to Quit, u to go up a menu Page:1/1

As noted above, Gopher presents a hierarchical menu; titles
ending in a slash ("/") are submenus (or "subdirectories" or
"folders") that list additional choices. For example, if the
user presses Enter while the cursor points at the first menu
item, a submenu of resources about Gopher will appear. The user
can choose among the menu items by using the cursor keys or by
typing in the number of the desired menu item. If the menu is
longer than will fit on one screen, the "Page: n/m" field in the
lower right corner so indicates.

After selecting the "Information About Gopher" menu item,
Gopher responds with the menu shown in Figure 3.

+ Page 10 +

Internet Gopher Information Client v1.12
Information About Gopher

--> 1. About Gopher.
2. Search Gopher News <?>
3. Gopher News Archive/
4. comp.infosystems.gopher (USENET newsgroup)/
5. Gopher Software Distribution/
6. Gopher Protocol Information/
7. Frequently Asked Questions about Gopher.
8. Gopher+ example server/
9. How to get your information into Gopher.
10. New Stuff in Gopher.
11. Reporting Problems or Feedback.
12. big Ann Arbor gopher conference picture.gif <Picture>
13. gopher93/

Press ? for Help, g to Quit, u to go up a menu Page:1/1

This menu in the University of Minnesota Gopher server is the
definitive place to learn about Gopher. Note that menu items for
ASCII text files are listed with a period at the end.

Upon selecting the first menu item ("About Gopher"), the
file shown in Figure 4 would appear.

+ Page 11 +

This is the University of Minnesota Computer & Information
Services Gopher Consultant service.

gopher n. 1. Any of various short tailed, burrowing mammals of
the family Geomyidae, of North America. 2. (Amer. colloq.)
Native or inhabitant of Minnesota: the Gopher State. 3. (Amer.
collog.) One who runs errands, does odd-jobs, fetches or
delivers documents for office staff. 4. (computer tech.)
Software following a simple protocol for tunneling through a
TCP/IP internet.

If you have questions or comments, you can get in contact with
the Gopher development team by sending e-mail to:

gopher@boombox.micro.umn.edu

If you are interested in news about new gopher servers and
software you can subscribe to the gopher-news mailing list by
sending e-mail to:

gopher-news-request@boombox.micro.umn.edu
There is also a USENET news discussion group called
comp.infosystems.gopher
where Internet Gopher is discussed.

If you want to get the most recent releases of the gopher
software, you can get these via anonymous ftp from
boombox.micro.umn.edu in the /pub/gopher directory.

Press <RETURN> to continue, <m> to mail:

In the above example, the curses client leaves the text of the
selected text file on the screen until the user types Enter.
After that, the "Information About Gopher" menu will be
redisplayed. Because Gopher is organized hierarchically, you
need a way to move back a level in the directory tree. With the
public "curses" client the user simply types "u" for "up." No
matter how deep in the hierarchy the user travels, the client is
able to back up, one menu at a time, until the root menu is

redisplayed.
+ Page 12 +

The "Information About Gopher" menu above included a menu

item entitled "2. Search Gopher News <?>"; this menu item offers
an index search, as denoted by the question mark. Gopher servers
generally implement indexing using the public domain WAIS (Wide

Area Information Servers) search engine. (A common exception:
servers implemented on NeXT workstations often exploit the
Digital Librarian delivered with NeXTStep.) Upon selecting this

menu item, the user is prompted to enter a keyword (see Figure
5).

[Cancel "G] [Accept - Enter]

Note that most Gopher clients will highlight the sought keyword
within the text of the displayed document. This makes it easy to
find the occurrences of the keyword in context.

Searching is not currently as flexible as one would like.
In particular, the standard release with the WAIS engine does not
provide for Boolean or proximity searches. In November 1992, Don
Gilbert of Indiana University announced modifications to the WAIS
indexing engine normally used with Gopher servers. His
enhancements include Boolean, partial word search, and literal
phrase searching. His biology-oriented Gopher (located at
ftp.bio.indiana.edu, port 70) allows testing of these search
features. Examples of the kinds of searches possible include:

o Boolean: red and green not blue. Result: just those
records with both the words "red" and "green,"

excluding all records with the word "blue."

o Partial words: hum*. Result: all records with "hum"
(e.g., "hummingbird," "human," and "humbug").

+ Page 13 +

o Literal phrases: red rooster-39. Result: only those
records with the full string "red rooster-39" will be
retrieved.

The scope of a Gopher index is determined by the administrator.
The administrator can choose to index one file, all files in a
subdirectory, or all files in a directory and its subdirectories.
Often a large file is broken up into a series of small files so
that it can be loaded into Gopher. This will allow the user to
selectively retrieve sections of interest. Usually, the wording
of the Gopher menu item makes it clear what the scope of a given
index is. It's the administrator's job to make sure this is the
case.

You can best learn more about Gopher by browsing through
various servers: connect to "Gopher Central" (gopher.tc.umn.edu,

port 70) and follow the list of Gophers. Alternatively, you
might use the global title index at Michigan State's central
Gopher to look up these Gopher servers (or any others of
interest) by keyword. (The index of Gopher server names is on
gopher.msu.edu, port 70; look under the "More About Gopher/Other
Gopher Servers" menu item.) Also, you may want to try Veronica
(discussed below) as a way to locate specific Gopher documents.

4.0 Gopher Clients

Recall that the above examples came from using the public client.
The best access to Gopher documents requires use of Gopher client
software running on the user's workstation. Gopher clients have
been implemented on a variety of platforms. The University of
Minnesota keeps an archive of commonly used clients, developed
there or elsewhere, on its anonymous FTP service, which is
located on boombox.micro.umn.edu. Common clients include:

o PC Gopher III--the University of Minnesota's PC client,
which was written using Borland's TurboVision. It
provides a quasi-graphical interface complete with
mouse support. PC Gopher is a relatively large
program. Since memory use on networked PCs is tight,
the program's size has been problematic.

+ Page 14 +

o UGOPHER--a PC client from the University of Texas
Medical School at Houston. It is a port of the UNIX
curses client. It provides a very simple interface,
but it demands little memory. It supports special data
types such as TN3270 and still-image files.

o Novell LWP client--a PC client from the University of
Michigan Medical School. This client works with
Novell's LAN Work Place for DOS. It supports images
and audio as well as TN3270. It sports a friendly
graphical interface with more options than the standard
client. As of this writing, it does not support a
mouse.

o Gopher Book--a Windows client from the Clearinghouse
for Networked Information Discovery and Retrieval.
Gopher Book runs under Microsoft Windows and implements
a book-like view of Gopherspace. The Gopher community
has long wanted a good Windows client; this could be
it. (Users may want to FTP to sunsite.unc.edu and look
under pub/micro/pc-stuff/ms-windows/winsock for Gopher
Book and related tools, such as the Winsock DLL.)

o TurboGopher for the Macintosh--a Macintosh client from
the University of Minnesota. Various Mac Gophers have
been implemented, at the University of Utah, Brown
University, and at other sites. TurboGopher appears to
be highly functional, robust, and efficient, and it is
on its way to superseding the other Mac offerings.

o Curses client--a generic client for UNIX workstations.
It is also used at many Gopher sites to provide Telnet
access to the Gopher world for users who haven't yet
obtained client software for their workstations. Users

installing the curses client on their UNIX workstations
must build the client from source code on the target
machine (as is commonly true with UNIX software
offerings). A version of this client can also be
compiled for use under the DEC VMS operating system.

+ Page 15 +

o NeXT Gopher Client--a NeXT client from the University
of Minnesota and the University of St. Thomas. This
client makes good use of the NeXT's large windows, and
it leaves the last two or more menus on the screen,
providing useful contextual information. Recent
modifications have been implemented by Jim Lebay of
Michigan State (icon support, bug fixes, better
handling of windows, and support for image files) and
David Lacey of the University of Iowa (support for the
MIME protocol).

o Xgopher--a client from Allan Tuchman at the University
of Illinois that runs under X-based UNIX systems. (The
X release must be later than X11 Release 3.) Xgopher
supports multiple active items and an easy-to-use
graphical user interface. It is highly configurable.
A C compiler is needed to build the client for the
target user's machine.

o Rice University CMS Client--a client that allows users
of VM/CMS mainframes to connect to Gopher servers. The
host must have outbound VT 100 Telnet to function well
when connecting to Unix-based services. (The IBM 3270
terminal protocol does not lend itself well to outbound
connections to byte-oriented hosts; check with local
support personnel to determine if such access is
available at your site.)

o MVS Gopher Client--a client from Draper Laboratory for
TSO users on MVS mainframes. This client can provide
3270 terminals with access to Gopher services.

An experimental 0S/2 client has been announced by David Singer of
IBM Almaden (look for os2gopher.zip on boombox.micro.umn.edu).
Gopher clients vary widely in their appearance and features.
The same documents may be displayed to users in quite different
form, depending on which client is used. Ultimately, the
information is the same, even though the display format varies.
(Marshall McLuhan would have a field day.) Some clients allow
the user to print an entire document. With the PC client, the
document goes to a locally attached printer; however, the NeXT
client assumes its printer is a PostScript device, which might be
connected over the local Ethernet. Some clients let the user
save a document to the local workstation's disk; others allow the
user to send a document via e-mail to the destination of choice.

+ Page 16 +

Gopher clients need a way to display files on the user's
screen. This can be done by code within the client program
itself. Alternatively, the client may launch an external tool,
often called a "browser" or a "pager." For instance, UGOPHER has
a relatively limited built-in browser. The user can install a

superior file display tool, such as the popular shareware tool
LIST from Vernon D. Buerg, and tell UGOPHER to use it instead.

Similarly, clients may launch separate programs to open
Telnet sessions, do CSO searches, play audio files, and so forth.
The user must install all the needed external tools and configure
the client to use them. Installation instructions are provided
with every client.

A useful feature in many clients is the "bookmark." Upon
finding an item of particular interest, the user sets a bookmark.
The client software stores the bookmark on the client
workstation's disk. In a later session, the user can call up the
list of bookmarks and immediately jump to items of particular
interest without having to navigate the menus. Because resources
of interest could be buried deep within Gopher servers, the
bookmark option lets the user build a customized view of
Gopherspace. (Some users have suggested the need for
hierarchical bookmarks; the current bookmarks provide a simple
flat list.)

Most clients also have the ability to save documents
themselves on the user workstation. Some information providers
have found that Gopher makes a very efficient mechanism for
delivering files to users. At least one software archive
encourages its users to obtain software via Gopher instead of
anonymous FTP. (The Stanford University Macintosh archive,
Sumex, suggests users choose Gopher over FTP or other methods.)

Gopher was originally written with the assumption that the
user would be resident on the Internet, with a permanently
assigned IP address, and have client software on his or her
workstation. This model does not always provide dial-up users
(users dialing in over a phone line using asynchronous ASCII
terminal emulators) with the same level of service as on-campus
users receive. Many institutions are experimenting with schemes
to allow dial-up users to appear to be on the Ethernet, using
protocols such as SLIP (Serial Line IP) and PPP (Point-to-Point
Protocol). Under SLIP or PPP, the user can run a standard Gopher
client, which works as if it were on a local TCP/IP network. (Of
course, data is delivered more slowly; even today's high-speed
modems don't match local area network speeds.) Because these
dynamic IP assignment schemes are relatively new and they are not
widely used, traditional dial-up users must usually rely on the
public curses client.

+ Page 17 +

In general, users who run Gopher clients benefit from a
superior environment and have access to more data types.
However, recent versions of the public curses client make it
possible for users to download files for viewing outside of their
terminal session. To download a file, one strikes a "D" (that's
a capital "D"; use lower "d" at your peril, for that says you
want to delete a bookmark) with the cursor on the document title.
When this option is invoked, the public client service asks the
user which protocol to use (i.e., raw text, Kermit, XMODEM,
YMODEM, or ZMODEM). Assuming the user's terminal emulator can
handle one of these protocols, this allows the dial-up user to
obtain a copy of a file, such as a still-image file, that
otherwise could not be displayed using the curses service.

5.0 Obtaining a Gopher Client Via FTP

A common way to obtain a client is by use of anonymous FTP. The

University of Minnesota's software archive resides on
boombox.micro.umn.edu. Other sites also maintain their own
archives, which may include local fixes or enhancements. In
particular, sites may configure clients to point to local Gopher
servers by default, or they may make changes to allow the clients
to work properly with the local network environment. New Gopher
users should consult with local computer support staff to
determine where best to obtain a client.

The following is an example of obtaining the University of
Minnesota's client for MS-DOS (see Figure 6). It assumes that
the user has a copy of PKZIP, a popular file compression
shareware tool.

+ Page 18 +

C:\GOPHER: ftp boombox.micro.umn.edu

Connected to boombox.micro.umn.edu.

Connected to boombox.micro.umn.edu.

220 boombox FTP server (Version 4.1 Tue Apr 10 05:15:32 PDT 1990)
ready.

Name (boombox.micro.umn.edu:rww): ftp

331 Guest login ok, send ident as password.
Password:wiggins.msu.edu

230 Guest login ok, access restrictions apply.

ftp> cd pub/gopher/PC client

250 CWD command successful.

ftp> dir

200 PORT command successful.

150 Opening ASCII mode data connection for /bin/ls (0 bytes).
total 1352

-rw-r—--r-- 1 bin 385 Apr 1 15:43 0O0Oreadme
-rw-r--r--— 1 bin 0 Mar 22 17:29

FTP_THESE FILES IN BINARY MODE

-rw-r--r—--— 1 bin 75376 Apr 1 15:43 bmkcvt.exe
-IrwWw-r--r—-— 1 bin 2151 Apr 1 15:43 bmkcvt.txt
-rw-r--r--— 1 bin 370 Apr 1 15:43 gopher.bmk
-rw-r—--r—-— 1 bin 182910 Apr 1 15:43 gopher.exe
-rw-r--r--— 1 bin 75711 Apr 1 15:43 gopher.ovr
drwxr-xr-x 2 bin 512 Mar 22 17:29 icky_ old client
-rw-r--r—-- 1 bin 643 Apr 1 15:43 manifest.101
drwxr-xr-x 2 bin 512 Mar 22 17:29 packet drivers
-rw-r--r-- 1 bin 41929 Apr 1 15:43 pcg3.txt
-rw-r—--r-- 1 bin 62341 Apr 1 15:43 pcg3.worddoc
-rw-r--r--— 1 bin 211699 Apr 1 15:43 pcg3.zip
-rw-r--r--— 1 bin 2999 Apr 1 15:43 release.1l01

226 Transfer complete.

838 bytes received in 0.31 seconds (2.66 Kbytes/s)
ftp> bin

200 Type set to I.

ftp> get pcg3.zip

200 PORT command successful.

150 Opening BINARY mode data connection for pcg3.zip (211699
bytes).

226 Transfer complete.

local: pcg3.zip remote: pcg3.zip

211699 bytes received in 6 seconds (34.47 Kbytes/s)
ftp> quit

221 Goodbye.
C:\gopher: pkunzip pcg3

+ Page 19 +

At this point, the client software is on your PC's disk. Before
you can use it, you must configure it. This includes specifying
the IP address of your workstation as well as your local
"netmask." If the correct answers for these values are not
obvious to you, contact local computer support for assistance.
Once you have configured the client, you can invoke it by typing
"gopher." Future sessions do not require configuration (unless
you want to change a setting, for instance to choose a different
Gopher server).

Unfortunately, use of campus or corporate computer networks
is not as simple as plugging a cable into an outlet. There are
many local variations. Some sites use public domain TCP/IP
packages; some have site licenses for commercial products. Some
departments have local area networks that are gatewayed into the
larger Internet environment. Technical support varies based on
computing platform. New Gopher users should consult local
network support specialists for assistance.

6.0 How the Gopher Protocol Works

The Gopher protocol rests on the metaphor of a file system. As
we've seen, a Gopher server delivers a menu in the form of a list
of menu items. When a Gopher client connects to a server, it
opens a TCP connection to a specified "well-known
port"--typically port 70. Once the connection is established,
the client then transmits a "selector string" that specifies what
it wants to see. If it is the initial connection to a Gopher,
the client sends a null selector string. This tells the server
to deliver the highest level, or root, menu to the client. Once
the server has finished sending the list of items, the connection
is closed. The client then displays the document titles on the
user's console, and the user is free to click on items of choice.

The information sent by the server includes the following
fields:

<type> <Document Title> <selector string> <server domain
name> <server port number>.

+ Page 20 +

One line of this form is delivered for each document. The
initial field is a one-byte document type identifier. The type
field is concatenated with the beginning of the title field;
other fields are separated by the ASCII tab character. The
Document Title field is the descriptive text that the client
should display for each item. The "selector string" is a string
of characters, usually derived from the location of the document
in the server's file system, that can be used to uniquely
identify the document for retrieval. The server domain name is
simply the domain address of the server. The port number is a
concept common in TCP/IP server nomenclature; the Gopher server
"listens" on a specified port for transactions. (The Internet
Assigned Numbers Authority, or IANA, which concerns itself with
such issues, has assigned Port 70 as the standard Gopher port,
though a given server may use another port--or ports, if a single

machine runs multiple Gopher services.)

For each document descriptor delivered by the server, the
client inspects the one-byte type designation. If a document is
of a type the client can't handle, the client simply omits that
document from its list of titles. For instance, audio files are
not currently supported via PC Gopher III. If a user points PC
Gopher III at a directory that contains such files, those titles
will not be shown to the user. Since the user can't select it,
there's no frustration with impossible requests. (Although the
protocol specification calls for this behavior, some clients,
such as the public curses client, do not in fact omit such items.
This may be useful in some cases. For instance, the user may
want to download an item via the curses client for later use
outside the Gopher session.)

The process used by Gopher clients and servers can be
envisioned in Figure 7.

+ Page 21 +

Client sends "selector string" to server via
TCP to port 70.

	()	
Client	(Campus Ethernet)	Gopher
(user	(or)	Server
workstation)	(The Internet)	

| | () | |
| | | |

Server sends back document to client,
then disconnects.

The selector string tells the server what the user wants to see.
The delivered document selectors, in turn, are the unique
identifiers needed to cause the server to deliver each upon
request. Once the server has delivered a document (whether it
be folder, plain text, or otherwise), it has done its job for
this transaction, so it disconnects. The Gopher server does not
retain any information about the client across transactions--it
is said to be "stateless." This aspect of the Gopher design is
the key to Gopher's efficiency--the server is only connected to
the user long enough to serve a particular request, and it does
not pay the high overhead cost of having hundreds or thousands of
users "logged in" at once. This highly efficient model allows
relatively small workstations to function as Gopher servers,
handling millions of requests per week from thousands of users
across the Internet.

+ Page 22 +
7.0 Gopher Document Types

The Gopher document types that have been defined so far are shown

in Table 1.

File

Directory

CSO phone-book server
Error

BinHexed Macintosh file
DOS binary archive

Item is a UNIX unencoded file
Index-Search server
Text-based Telnet session
Binary file

Redundant server
Text-based TN3270 session
GIF format graphics file
Image file

HQ H +L0VoOoJoOUlLd WNKHO

Source: Internet Request For Comments document, RFC 1436.

In practice, other document types have also been adopted (e.g.,
"M" has been used for MIME mail documents).

As Table 1 illustrates, the term "document" is used broadly
to include any type of resource that can be accessed by the
Gopher. Here is a more detailed explanation of some of the
important document types.

o File. This is a simple ASCII text file, which is
displayed on the user's workstation using some sort of
file browser.

o Directory. This is a list of documents that is used to
construct a Gopher menu. When a directory item is
selected, the server sends the client the list of items
in that directory. 1Included with each item is the
information that the client will need in order to fetch
the document when the user requests it.

+ Page 23 +

o CSO phone book server. Named after the Computing
Services Organization at the University of Illinois,
CSO provides a client/server protocol for searching a
phone database. Gopher recognizes this protocol and
lets the user interact with a CSO server in order to
look up information.

o Text-based Telnet session. This document type allows a
Gopher to present a list of host services that accept
Telnet as a remote access protocol. For instance, a
list of Internet-accessible online catalogs.

o Text-based TN3270 session. A variant of Telnet,
TN3270, is required to connect to IBM mainframe hosts.
Support for this form of connection was incomplete
early in the life of Gopher but has become pervasive in
the last several months. (TN3270 support is important

because many online catalogs and other database
services reside on IBM mainframes. These days, when
traditional mainframe-based services are looked upon
with derision by some in the networked information
community, mainframes are sometimes referred to as
"legacy systems." But a lot of valuable information is
still stored on those legacy systems, so connectivity
to them is necessary.)

There are also document types for PC (DOS binary archive),
Macintosh (BinHex file), and UNIX (unencoded file) files; graphic
files (GIF); searchable databases (index-search server); and
backup Gopher servers (redundant server).

Note that the case of the document type identifier is
significant. Because each document descriptor line contains the
name of the server where that document is located, it is easy for
a Gopher server to point to documents stored far and wide. For
instance, a Gopher server at Mythical State University might set
up the document types for a root menu as shown in Table 2.

+ Page 24 +

Type: 0

Document Title: About this Gopher
Selector: 0/about MSU

Server: gopher.mythical.edu

Port: 70

Type: 1

Document Title: Fun & Games
Selector: 1/fun

Server: gopher.tc.umn.edu
Port: 70

Type: 1

Document Title: MSU Campus Events
Selector: events

Server: events.mythical.edu

Port: 70

Type: 2

Document Title: MSU Telephone Directory
Selector: [blank]

Server: cso.mythical.edu

Port: 105

Type: 7

Document Title: Search MSU Gopher
Selector: titles 7/ts

Server: gopher.mythical.edu

Port: 70

Note that the Document Title is the only field that clients
display by default. The combination of Selector, Server, and
Port describes the document uniquely. Note also that the

selector string consists of whatever text the server wants to
receive in order to deliver a document. For Unix-based servers,
this string is prefixed by the type of the document and a slash.
Finally, note the variety of servers shown in this example.

Often a Gopher administrator will store items peculiar to his or
her domain on the same server machine as the Gopher server, but
this is not essential. It is common for documents of local
interest to reside on several servers, as shown above.
Theoretically, a server could offer only documents that reside on
other Gopher servers.

+ Page 25 +

Because the Gopher design calls for a simple protocol built
on TCP/IP, it is possible to test the behavior of servers without
even using a client. The reader might want to try connecting to
a Gopher server "manually" to see how this works. For instance,
if you were to open a Telnet session to "gopher.micro.umn.edu 70"
and then press the return key, you would see the initial menu for
the main University of Minnesota server displayed in raw form.

Most Gopher clients provide an "Item Info" option that
displays the selector string that pulls up the current document.
This can be useful when you want to know where a given document
originates. It also makes it easy for a Gopher administrator to
add a local pointer to a newly discovered, useful item.

8.0 Setting Up a Gopher Service

It is relatively easy for a developer to implement Gopher client
or server software. The protocol is also very efficient in its
demands on the server and the network. This simplicity extends
to establishing a new Gopher service: it is also easy for an
information provider to set up a Gopher server. Some Gopher
administrators report being able to bring a server online within
an hour or two of downloading the server installation kit.
Typical Gopher servers are UNIX workstations of one sort or
another. The University of Minnesota relies upon Macintoshes
running A/UX and NeXT workstations for the most part. Other
popular server platforms include Sun workstations and IBM
RS/6000s. The Gopher server code has also been implemented on
the PC, but this platform is relatively uncommon as a server.
Servers have even been implemented on IBM mainframes, both under
the VM/CMS and MVS operating systems.

+ Page 26 +

The standard Unix-based server code is written in C. It can
be found at the same repository as the client code
(boombox.micro.umn.edu), and it can be installed on a variety of
platforms with little modification. The Frequently Asked
Questions (FAQ) file often includes tidbits on peculiarities of
installation on particular platforms. The news group
(comp.infosystems.gopher) also contains discussions of
installation issues. New server administrators will want to
consult the news group archive (see Figure 3).

Numerous tools have been created that assist in managing
Gopher servers. For example, tools that analyze logs, improve
indexes, and extend support delivery of calendar-based
information are available. Some of these tools can be retrieved
from the University of Minnesota's FTP server. Others,
particularly short Perl scripts, are posted by the authors on

comp.infosystems.gopher. Thus, the discussion group is not only
a source of accumulated wisdom. It also is a repository of
helpful tools.

Gopher administrators announce new servers on the following
lists:

gopher@ebone.net (European servers)
gopher@boombox.micro.umn.edu (All other servers)

The announcement should include the name of the Gopher server,
its Internet address, and its port number. The name can include
labels such as "(experimental)" or "(Under Construction)" as
appropriate. New administrators may want to review Gopher server
names listed in "All the Gopher servers in the world" to see what
sort of names others have chosen before picking their own.

Gopher administrators face many challenges. One of these is
how to effectively organize the Gopher menu hierarchy. Another
challenge is how to convert documents from whatever format the
owner of the information prefers to flat ASCII, which is
currently the least common denominator document format--the
format that all computing platforms can cope with. Prospects for
delivering documents in PostScript are discussed below; in the
absence of that sort of advance, perhaps the best advice for the
Gopher administrator is to insist that document owners do the
translation to flat ASCII, rather than taking on that chore as a
part of running a Gopher service.

+ Page 27 +
9.0 Gopher's Origins

Computer Center staff at the University of Minnesota began
discussing the need for something like Gopher in early 1991.
They wanted an online mechanism for "publishing" hints on
computing services at the university. Mark McCahill, project
leader for the group that developed Gopher, says the goal was to
find a scheme that was more efficient than one-to-one consulting
or conventional handouts and short courses. At the time, another
group at the university was proposing a mainframe-based solution
for campus document delivery. The group designing Gopher wanted
a simple, network-based scheme that supported browsing of
available documents. They also wanted to build a service that
was fun to use, so that a critical mass of users would develop.
The original Gopher team included Farhad Anklesaria, Paul
Lindner, Daniel Torrey, Bob Alberti, and Mark McCahill.

The developers' earliest discussions produced a goal of a
simple protocol--easy to understand, describe, and implement.
They decided upon a client/server model: a client would open a
Telnet connection to the server, request specific information,
receive and display the information, and disconnect. The initial
model called for only two document types: text files and folders
(subdirectories). Thus, from the beginning, the developers
envisioned a mechanism that would deliver lists of files and
directories upon request. The client/server model would provide
for sessions lasting only long enough to deliver that list to the
user's client software. These aspects of the Gopher model have
endured.

The University of Minnesota design team held their first
serious meetings during the first week of April 1991. The Gopher
team proceeded to work on implementing the first servers and
clients. The goal at this point was to build a working prototype

that could readily be discarded; the team assumed that whatever
they produced might be replaced by something better within a
year. The team spent quite a few 16-hour days on the project.

By the last week of that month, they had prototype Gopher clients
and servers working. Initially, there was a Macintosh client and
server, a UNIX client and server, and a PC client.

By late April, the Gopher developers decided that some sort
of search mechanism was also needed. NeXT workstations were seen
as an appropriate choice for servers, because the built-in
Digital Librarian offered a highly functional search engine. The
developers also decided Gopher should support telephone directory
searches, and they settled upon the CSO telephone directory
search protocol, already in use at numerous universities, as the
best way to implement online phone books.

+ Page 28 +

These different document types--text, folders, and CSO
searches--would be sufficient to define a Gopher that could
deliver documents stored on a single server. But, from the
start, the protocol allowed a server to point to another server
as the physical home of a given document. This allows a Gopher
to include services that may be scattered across the Internet all
in one list. It also makes possible a directory of other
Gophers, any of which is a keystroke or a mouse click away.

But the developers thought about providing ways to connect
to existing database servers on campus, such as a university's
online catalog. They decided to include a document type that was
itself a Telnet session to another host computer. To round out
the collection, a document type for transferring Macintosh or PC
binary files was included. The original protocol was designed to
be extensible; the one-byte data type field could potentially
support 255 different data types. A draft Gopher protocol
specification was released in spring 1991.

The original Gopher team divided their development efforts.
Torrey implemented the client for MS-DOS, and Bob Alberti wrote
the first UNIX curses client. Anklesaria wrote the initial
server and client for the Macintosh. Lindner developed the
initial UNIX server code. Besides serving as project leader,
McCahill set up the first index server using the Digital
Librarian tool on the NeXT and assisted with early development of
the Macintosh client. Despite this division of labor, the group
worked as a team on problem solving and common issues.

Delivery of sound via Gopher was born during the early
development phase. One weekend the team member doing most of the
server code, Paul Lindner, wanted to hear some music in his
office, which is several rooms away from the communal CD player.
His NeXT workstation was capable of playing sounds, and there was
a CD player available on a workstation in another room. A few
hours later he had implemented the sound data type, and Gopher
was capable of playing music across a real-time Internet link.

The first Gopher production services were in place at the
University of Minnesota by late summer of 1991. Gopher was
announced to the world via the campus-wide information systems
mailing list (CWIS-L@WUVMD) in July 1991. A USENET news group,
alt.gopher, was started. Computer system administrators from
around the Internet began to learn about Gopher. The code was
made available for others to try, and Gopher servers began
popping up in various places. By early 1992, Gopher was no
longer a prototype but was becoming a tool of choice as
universities sought ways to implement campus-wide information

systems. Steve Worona of Cornell Information Technologies says
that Cornell was about to design a protocol that would allow them
to move their pioneering CUINFO mainframe campus information
service to a network/workstation environment, "but then we found
out about Gopher, and it was exactly what we were looking for."

[1]
+ Page 29 +

The new TurboGopher client for the Macintosh provided a
learning experience for the developers, because much of the
testing took place over 2400 bps dial-up SLIP connections. This
slow link exposed the ways in which the client blocked efficient
transfer of data. The client was modified, and it now offers
very impressive performance on high-speed networks. The
University of Minnesota team believes this to be the fastest
client now in service. Recent work on TurboGopher has been done
by University of Minnesota staffer Dave Johnson; additions
include foreign language support.

10.0 Gopher+

In August 1992, the regional computer network CICNet sponsored a
Gopher Workshop in Ann Arbor, Michigan. Invited attendees
included Gopher implementers at the various CICNet institutions
as well as Gophernauts from Brown, Yale, Cornell, Princeton,
Rice, the University of Washington, the University of North
Texas, and other institutions. Mark McCahill and Farhad
Anklesaria attended from the University of Minnesota. At that
conference, the University of Minnesota developers presented
Gopher+, their vision for how to extend Gopher beyond its
original design.

The original Gopher design, with its one-byte document type,
was adequate to meet many of the needs of the community. But
there were many demands for additions to the protocol, to handle
everything from PostScript files and various image files (e.g.,
GIF and JPEG) to global document attributes, such as author name
and document expiration date. Rather than embed each and every
requested extension in the protocol, the University of Minnesota
team devised a mechanism to support general ways to add them to
the protocol. McCahill says that the team had been working on
Gopher+ throughout 1992, but the advent of the workshop caused
their ideas to gel.

Gopher+ adds new, named fields to the simple one-byte item
descriptor in basic Gopher. TIf a client appends an exclamation
mark to a selector string, the Gopher server is expected to
deliver an Attribute Information block. The first named field,
+INFO, is required; it resembles the descriptive line sent by the
old protocol. Other named fields that have been suggested for
Gopher+ include +ABSTRACT, which would be a textual abstract
describing the document; +ADMIN, which would be the name of the
owner of the document; and +DATE, which would be the date the
document was last modified. These global document attributes
would help administrators maintain and describe documents, and,
after appropriate client enhancements, would help users select
documents of interest.

+ Page 30 +

The University of Minnesota announced it would act as a
central registry of Gopher+ data types; anyone proposing to

implement a new named attribute field will submit it for
registration to the Gopher team. This model allows cooperative
uses of new fields as agreed to by the Gopher community. It also
potentially allows a given site to implement a particular field
in its clients and servers that would be of no interest to anyone
else. As always, a client would only handle the information it
knows how to deal with. If someone adds a +HAIRCOLOR attribute,
a Gopher+ client would be free to ignore it. Note that a Gopher+
field could be a simple textual value, or, like a document under
the basic protocol, it could point to another Gopher+ server.

Besides providing a mechanism for supporting global document
attributes, Gopher+ is intended to support alternate views to a
document. For instance, a special named field called +VIEWS will
support versions of a document in different languages. With
+VIEWS a document could be offered in a variety of formats, from
flat ASCII to PostScript.

Beyond the global attributes and alternate views functions,
Gopher+ also provides a mechanism for interactive queries. A
Gopher+ server can interrogate a user for specific information
such as a password, or it could even serve as an interface
between a user and an interactive process on another host. This
+ASK support includes options for prompting for file names or for
the user to make a choice among a range of options.

In February 1993, the University of Minnesota Gopher team
announced the first clients implementing the Gopher+ protocol--a
version of TurboGopher (for the Mac) and a version of the UNIX
client. Server code is also available, and the production
version of the University of Minnesota's Gopher points to a
demonstration Gopher+ server. Users with non-Gopher+ clients can
safely point to Gopher+ servers, but they will not be able to
view the Gopher+ documents.

There has been some criticism of the Gopher+ protocol
extensions. In particular, some have argued that instead of
defining the +VIEWS scheme under Gopher+, the Gopher community
should rely upon MIME (Multipurpose Internet Mail Extensions).
Originally proposed as a way to allow arbitrary 8-bit files to
survive transit over Internet (SMTP) mail, MIME is being deployed
widely and may serve as a standard way to handle multimedia files
on a variety of platforms, whether the files are delivered via
e-mail or otherwise. Others question whether there really needs
to be a Gopher+ registry. If it does need to exist, some argue
it should be at the official Internet registry, the IANA.

In April 1993, the University of Minnesota sponsored a
second Gopher Workshop and Conference. Participants at the
Workshop urged the developers to consider adoption of the MIME
content types and registry scheme instead of "rolling their own"
types and registry. The Gopher team agreed to "strongly
consider" use of MIME content type attributes.

+ Page 31 +

In the short term, the University of Minnesota intends to
act as the registry for other global document attributes (such as
the owner of a document), but they have stated their willingness
to use IANA eventually.

Whether Gopher+ is deployed in its current form or with
changes to the syntax and registration process, it is clear that
it will allow Gopher to be extended to handle document types that
have not yet been envisioned. It will improve the ability of
Gopher administrators to organize documents. It will also allow
basic improvements in the technology, providing a framework for

improved navigation and interfacing to interactive services. An
RFC describing the base Gopher protocol has been issued (RFC
1436). Mark McCahill says that, after minor corrections are made
to that document, the base protocol will be frozen. Gopher+ is
considerably more fluid. It will be interesting to watch its
evolution.

Along with Gopher+, the University of Minnesota team has
also developed a mechanism for allowing "lightweight"
authentication of users for access to protected documents. For
instance, some vendors may insist that their documents can only
be read when users have typed in a unique password assigned to
them. The AdmitOne Authentication scheme lets a user obtain a
"ticket" that allows access to restricted documents. The
AdmitOne scheme uses encryption to avoid sending passwords over
the network. It also provides a way that a client can reuse a
ticket for subsequent transactions. Critics of AdmitOne have
pointed out schemes for defeating the security of AdmitOne, some
rather elaborate. One claim is that security cannot be provided
by a client and a server alone--a trusted third party is
required.

11.0 Organizational Issues

The greatest strength of Gopher--its ability to easily present a
single menu whose constituent documents reside far and wide on
the Internet--also presents some interesting challenges. Gopher
is being used at many universities to implement campus-wide
information systems (usually referred to by the acronym CWIS,
pronounced "kwis"). Each site setting up a CWIS under Gopher
faces the challenge of devising an organizational scheme that
embraces all the local documents and host services of interest as
well as the many documents and services available over the
Internet.

+ Page 32 +

Some sites have adopted a simple model for the root menu.
This yields a short and simple initial menu, such as:

About Gopher
The Campus
The Community
The World

This elegant approach is appealing in its simplicity. Of course,
to some extent, the scheme simply moves the problem of where best
to put various documents downstream. Even with these simple
categories, some items can be hard to place. Where do you put a
gateway to your student e-mail service? What if you have an
events calendar that integrates campus and community happenings?
Where does the local weather go?

At the other end of the spectrum, a site might choose to
have a broad set of offerings on the root menu, making more
documents accessible with fewer mouse clicks. Such a menu
structure might look like this:

. Gopher at Michigan State University.

More About Gopher (Documents & Navigation Tools)/
Keyword Search of Titles in MSU's Gopher <?>
About Michigan State University/

MSU Campus Events/

U wWwN =

. News & Weather/

. Phone Books & Other Directories/

. Information for the MSU Community/

9. Computing & Technology Services/

10. Libraries/

11. MSU Services & Facilities/

12. Outreach / Extension / Community Affairs/
13. Network & Database Resources/

[o o JEEN 0)

+ Page 33 +

This sort of scheme tries to bring commonly accessed documents to
the front. The user need not search through multiple menus to
find today's weather or the campus phone book. The very first
item is a text file with introductory material, so the new user
doesn't face a menu full of folders. A keyword title search
allows users to find documents no matter where they are stored in
the hierarchy. On the other hand, the user confronts a much
busier initial screen, which may be daunting in its length and
complexity. Depending on the client's default window size, the
initial screen may not even fit on the menu window, forcing the
user to scroll to see all choices.

Users may find the bookmark facility offered by most clients
to be a useful way to customize their view of a Gopher. Gopher
administrators can also make liberal use of indexes--both
document title indexes and full-text indexes--in order to make it
easy for users to quickly locate data without having to hunt
through the hierarchy. These tools can help, but a balanced
hierarchy that reflects local needs is a worthwhile goal, even
though there is no universal agreement on basic issues such as
whether a depth-first or breadth-first organization is best. 1In
any case, the process of building a CWIS under Gopher is much
more likely to succeed if a campus-wide committee helps design
the structure. For instance, a site might want to include staff
from the central computing organization, the library, university
relations, departments that run their own Gophers, and so forth.
A committee can help ensure needs of various campus
constituencies are met.

While an organizational scheme for a CWIS must address the
peculiar needs of each campus, most Gophers also allocate part of
their directory tree to "Internet Resources" (or some similar
name to serve the same purpose). Gopher administrators are
beginning to realize that it does not make sense for each of them
to come up with a local scheme for organizing all the online
resources of the Internet. First, this is not practical; second,
if a common organizational scheme can be devised for all of
Gopherspace, then users will not confront wildly differing
Internet directory structures as they move from campus to campus.

Note that not all Gophers aspire to the scope of a
campus-wide system. In some cases, the documents on a Gopher are
mostly related to the special purpose of the sponsoring
institution (e.g., the Electronic Frontier Foundation, the Well,
and the National Institutes of Health). Such Gophers are
inherently more narrowly focused than a university's CWIS tends
to be.

+ Page 34 +
Other administrators are mounting "subject Gophers" that may

cover a single subject or a variety of subjects of general
interest to users, but not documents pertaining to a particular

campus. For instance, Don Gilbert of Indiana University has
deployed a Gopher that is dedicated to materials on biology, and
this server is becoming a useful resource for the biological
sciences community. Sue Davidsen of the University of Michigan
Graduate Library has built a subject Gopher that delivers census,
business, and social science data. Known as Go M-Link, this
Gopher mainly serves public libraries in Michigan. Subject
Gophers in many cases have the most intuitive organization
schemes.

The use of the Internet to deliver electronic journals
presents a special organizational challenge for the Gopher
community. Discussions on how to manage and organize a set of
e-journals are underway. Some propose the venerable Dewey
Decimal Classification; some suggest the Library of Congress
Classification Schedules; others like the Universal Decimal
Classification; and others are experimenting with schemes of
their own devising. CICNet has announced a project to archive

electronic journals via their Gopher. Billy Barron of the
University of Texas at Dallas is building this archive, and he is
experimenting with organizational issues. [2] His initial effort

uses the LC Classification scheme. One group of Gopher
administrators and librarians from CICNet, NYSERNet, and other
institutions are exploring alternative approaches to Gopher
taxonomy.

Some librarians contend that any attempt to fit documents
drawn from all areas of human endeavor into a formal
classification scheme is not an appropriate model for mounting
networked information. Marty Courtois, a librarian and database
coordinator at Michigan State University, observes: "Library
classification schemes such as the Dewey Decimal System and the
Library of Congress classification are good systems for finding
materials on the shelf and are necessitated by the fact that a
single book can only be placed in one location." [3] With a
system like Gopher, cross-references can be set up as simple
alternate links. Thus, a set of subject headings based on a
controlled vocabulary can make materials far more accessible to
the user. As Courtois puts it:

It's simply easier to browse a classification list to look
for "Biological Sciences" than to have to know that "QH300"
represents that field. 1It's like giving the user a chance
to look in the card catalog and the shelves at the same
time. [4]

+ Page 35 +

The world of networked information is new and evolving. Some
organizational schemes that seem obvious to an administrator may
be suboptimal for the user. For instance, there is a tendency to
categorize networked information servers based on their location
or on the underlying technology. For instance, you might find a
Gopher menu that offers:

Other Gopher Servers

Non-Gopher Campus Wide Information Systems
WAIS-based information

World-Wide Web

The user of course is interested in information, not the
technology that presents it. 1In the long run, providers of
networked information resources need to find ways to organize

materials by subject matter, not by whether the data resides in a
Gopher, WWW, WAIS, or some other technology. As Marie-Christine
Mahe of Yale University observes, "A Gopher that splits CWISes
along technical lines is equivalent to a supermarket that would
shelve tomato sauce in different aisles, according to whether it
was in a can or in a glass jar." [5] Mahe believes that when
Gopher uses standards such as Z39.58, it will be easier to
provide uniform access to data stored under disparate systems.

In the meantime, she argues that Gopher administrators should use
topical organization whenever possible.

One could imagine a division of labor among Gophers, as
follows: (1) publisher Gophers would distribute original material
in one or more subject areas; (2) single-subject Gophers would
organize and provide access to network resources for a subject
area; (3) index Gophers, such as Veronica, would allow users to
search for resources by keyword instead of browsing; (4) master
Gophers would link users to single-subject and index Gopher
servers; and (5) CWIS Gophers would specialize in documents and
services that pertain to each campus (they would have links to
master Gophers to provide access to Internet resources).

Whether this happens or not, it is clear that there must be
more recognition of the specialized roles that Gophers can play.
If every Gopher administrator tries to provide both original
documents and organized links to Internet resources, these
efforts are doomed to fail.

