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Abstract

Phishing emails are a nuisance and a growing threat for the world causing loss of time,

effort and money. In this era of online communication and electronic data exchange,

every individual connected to the Internet has to face the danger of phishing attacks.

Typically, benign-looking emails are used as the attack vectors, which trick users into

revealing sensitive information like login credentials, credit-card details, etc. Since

every email contains important information in its header, this thesis describes ways of

capturing this information for successful classification of phishing emails. Moreover,

the phisher has total control over the email body and subject, but little control

over the header after the email leaves the sender’s domain, unless the phisher is

sophisticated and spends a lot of time crafting the attack, which reduces the payoff

or may even backfire or yield mixed results.

This thesis is a consolidated account of various systems designed to combat phish-

ing emails from different dimensions. The main area of focus is email header. Tech-

niques like n-gram analysis, machine learning and network port scanning are used to

extract useful features from the emails. This thesis shows that the classes of features

used in these systems are very effective in distinguishing the phishing emails from the

legitimate ones. Using different real datasets from varied domains, it highlights the

robustness of the methods presented. Some methods, like the header-domain analy-

sis, obtain high detection rates of 99.9% and low false positive rates of 0.1%. These

approaches have the advantage and flexibility that they can be easily combined with

other existing methods, in addition to being used in standalone mode.
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Chapter 1

Introduction

As the Internet has become an integral part of our lives we have entered an age

of online transactions. Almost every service we use has an online access portal.

These services need payment, for which we provide sensitive information like credit-

card details, bank account numbers etc. Since these websites handle such sensitive

information, their login credentials are also equally private and sensitive. Phishing

refers to the act of attempting to steal valuable and sensitive data from individuals

and organizations. It causes huge monetary and information loss. Such phishing

attacks are targeted towards obtaining valuable information from users as mentioned

above.
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1.1 Motivation

The APWG Phishing Activity Trends Report for the 4th quarter of 2014 [4] showed

that the number of unique phishing reports submitted was 197,252, 18% more than

in the 3rd quarter. The number of unique phishing sites had also increased from

14,258 in November, 2014 to 17,320 in December, 2014. A total of 437 brands were

targeted in Q4 and United States was the country hosting the greatest number of

the phishing sites, yet again. This clearly shows that phishing detection is still an

unsolved problem and one which causes heavy damage to the people and the society.

The most common means used by the phishers are benign-looking emails that

lure users and trick them into revealing the sensitive data and thus result in loss and

misuse of valuable private information apart from monetary losses. Since email is

the most commonly used channel for phishing attacks, this thesis concentrates on

working towards an effective way of segregating them into phishing and legitimate

classes.

Every email consists of two parts: the header and the body. The header consists

of several pre-formatted fields such as From, Delivered-To, Subject, Message-ID, etc.

The body consists of the main content of the email, usually in text/HTML format.

The phishers make it very difficult to detect the phishing emails by meticulously

constructing them to closely resemble legitimate ones. This makes the process of

distinction non-trivial, which has been observed by other researchers [23] also.

The email body is completely under the control of the sender while the header

follows a relatively stricter format and is not entirely controlled by the sender. So the
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main focus of this thesis is on detection based on email headers, with some attention

to the email body text as well. In particular, based on looking at a few (less than 10)

legitimate emails and the same number of phishing emails, our attention was drawn

to the Message-ID in the header fields. This field is a string following a certain

basic format described in the Background Chapter. It also contains information

designed to make the email globally unique. It cannot be altered easily and it provides

important information about the email that includes it.

A part of the work presented here centers on these useful properties of Message-

IDs and exploits it further by applying n-gram analysis to the Message-IDs. Various

machine-learning algorithms including an on-line confidence weighted-learning algo-

rithm were employed using 10-fold cross validation on different data sets and they

produced detection rates of above 99%. To our knowledge, this is the first time

Message-IDs have been used with n-gram analysis to detect phishing emails. This

system is named Phish-IDetector and is explained in details in Chapter 5.

The headers were also observed to contain several domain names. These domains

contained information which can be used to trace the path of the email. The do-

mains closer to the receiver’s side cannot be altered easily and it provides important

information about the trail the email has followed. Different systems were built to

extract features from these domains for classification which have been described in

Chapters 6, 7 and 9.
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1.2 Overview of Thesis

A brief overview of the rest of the chapters in this thesis is mentioned below.

1. Chapter 2: Includes background knowledge and preliminary information re-

quired to get a better understanding of the thesis.

2. Chapter 3: Includes description of Phish-IDetector, a Message-ID based phish-

ing detection system.

3. Chapter 4: Includes details about a combined grand experiment using header

and text analysis.

4. Chapter 5: Includes the description of email header domain analysis.

5. Chapter 6: Includes the description of SMTP analysis for emails.

6. Chapter 7: Includes study of the domain details obtained from the different

datasets.

7. Chapter 8: Includes the description of path analysis for emails.

8. Chapter 9: Includes the relevant related work for this thesis.

9. Chapter 10: Concludes the thesis.

1.3 Contribution

The major contributions of this thesis are as follows:
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1. The demonstration that Message-ID and domains from email header fields are

effective in phishing email detection [Chapter 3 and 5].

2. The approach of applying n-gram analysis technique with a rich variety of

classifiers to these email header properties [Chapter 3 and 5].

3. A novel approach to path analysis of emails by reconstructing the route using

Received-From and ‘by’ pairs [Chapter 8].

4. The SMTP experiment whereby we checked for open SMTP servers as an

indication of use of source routing by the phishers [Chapter 6].

5. A preliminary study of the domain details obtained from the different datasets

[Chapter 7].
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Chapter 2

Background

Electronic mail or email proliferated during the 1990s and has evolved to become an

indispensable part of our current social fabric. Essentially, an email has two parts:

the header and the body. The email body contains the actual message being sent

and is completely under the control of the sender. Whereas, email header consists of

several fields, some mandatory and some optional, which carry information regarding

the source, destination, routing details, timestamps, etc. [37]. Thus, the header

cannot be completely manipulated by the sender.

Every email contains information of the path it has taken since it left the sender’s

mail box till it reaches the receiver’s mail box. This information can be extracted

from the header fields of the email. Let’s consider a simple example where sender A

sends an email to receiver B. Though there are many header fields we will be focusing

on the ones which concern the email’s path of travel. In the most basic form, there are

four entities involved. The sender’s mail client referred to as a@sender.com, sender’s
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mail server mail.sender.com, receiver’s mail server mail.receiver.com and receiver’s

mail client b@receiver.com. The email is created by the sender using his mail client

and contains his own address as ‘From’ header and the receiver’s email as the ‘To’

header. Once sent, it passes on to his mail server which adds some header fields

like the ‘Received: from’ and the ‘Message-ID’ headers. Similarly, the receiver’s mail

server adds ‘Received: from’ header before passing it on to the receiver’s mail client.

Hence, at the end of the delivery process the length of email’s header increases with

every hop. In a more complex scenario where the email passes through several Mail

Transfer Agents (MTAs), more header fields are added to it.

We provide an explanation of some terms we will use frequently throughout the

paper.

Header domains. The header fields concerned with the transfer and delivery of

the emails mostly contain the name of the domain of each mail client and server that it

passes through. For example in the ‘From’ field address a@sender.com, ‘sender.com’

is the domain name. These domains are extracted from all the fields which contain

such information and are collectively addressed as ‘Header domains’ in the paper.

Message-ID. RFC 2822 [37] is a standard that specifies the syntax for messages

that are sent as “electronic mail” messages. It states that each email should have a

globally unique identifier called Message-ID. If this is included, it must be in the email

header. RFC 2822 also defines the syntax of Message-ID. It should be like a legiti-

mate email address and it must be included within a pair of angle brackets. A typical

Message-ID looks like the following:<20020923025816.8E7A34A8@mercea.net>. Ac-

cording to RFC 2822, Message-ID can appear in three header fields. They are (i)
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Message-ID header, (ii) In-Reply-To header and (iii) References header. The “In-

Reply-To:” and “References:” fields are used while creating a reply to a message.

They hold the message identifier of the original message and the message identifiers

of other messages (e.g. replies to the message). The “In-Reply-To:” field may be

used to identify the message (or messages) to which the new message is a reply,

while the “References:” field may be used to identify a “thread” of conversation [37].

But Message-ID of the present email should be included against the Message-ID

header [32]. The Message-ID has a fixed format of the form <LHS@RHS>where

the left hand side (LHS) is a representation of information including current time

stamp, queue id, etc. coded in different formats according to the Sendmail version.

The right hand side (RHS) represents the fully qualified domain name (FQDN).

This part starts with local host name followed by a dot and other parts of domain

information [12].

N-gram. The concept of N-gram is related to natural language processing. It is

a sequence of n characters in a string or text. For example if the text is abc123 the

1-grams would consist of one character sequence, e.g., a, c, 2, etc. Similarly, 2-grams

would be overlapping sequence of 2 characters like ab, bc, c1, 12, 23. This idea can

be further extended to higher order n-grams in a similar fashion.
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Chapter 3

Phish-IDetector

[This chapter’s contents have been published in 12th International Conference on

Security and Cryptography [42], SECRYPT 2015.]

Sendmail, one of the Mail Transfer Agents (MTAs) uses Message-ID for tracing

emails and for logging process ids [12]. Sendmail specification recommends including

Message-ID in emails and also the setting of relevant macros in its configuration file

in order to implement compulsory checking of Message-IDs [12]. “Unlike spoofing

other fields in the header, spoofing Message-ID needs special knowledge. Only tech-

nical savvy spammers can spoof the Message-ID cleverly” [32]. So, deep analysis on

Message-IDs may reveal some sort of information that could open a window to trace

the source of an email.
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3.1 Overview

Based on the above hypothesis, we delved deeper into Message-ID using n-gram

analysis up to 10-grams and found the optimum detection rates at around 5- or 6-

grams. For both higher and lower order n-grams the rates usually deteriorate. We

applied several machine learning classifiers using stable version 3.6 of Weka [19] and

an on-line confidence weighted learning algorithm of [28]. The complete process can

be summarized in the following sequence of steps.

3.1.1 Message-ID Extraction

For our study we decided to choose Message-ID as the distinguishing property be-

cause of its content, uniqueness and fixed format. All the Message-IDs from the

emails of different datasets are extracted using grep command and stored in a file.

Since each Message-ID is of the format <LHS@RHS>, we get rid of the <, @ and >

symbols common to all Message-IDs as a pre-processing step. After this step we get

two attributes for each Message-ID. We have named them LHS and RHS to denote

the left hand side and the right hand side of the Message-ID.

3.1.2 Input File Creation

Depending on which dataset the email belonged to, we labeled each instance as

belonging to either “phishing” or “legit” (legitimate) class. We created a csv file

with three columns: class label, LHS and RHS. The RHS part being of a more
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consistent format rather than LHS, we tried the classification based on only RHS as

well. In that case, there are only two columns: class label and RHS.

3.1.3 N-gram Analysis

Further, we performed n-gram analysis of the collected Message-IDs so that we could

represent the data in numeric format acceptable to most classifiers in Weka. We

decided to use n-gram analysis, as this kind of analysis is able to capture the structure

present in any text or string. As discussed in [9] the main advantage of N-gram-

based analysis is in its nature of n-gram creation. It helps in minimizing errors and

limiting it to only the n-grams derived from the erroneous part because every string is

decomposed into small parts. The remaining part of the text remains error-free. The

count of common n-grams between two strings is a good measure of text similarity,

and this measure has proved to be resistant to different kinds of textual errors. This

analysis generates unique n-gram features represented as Unicode code point of the

characters. For example, the Unicode code point for “a” is 97 so the 1-gram “a” will

be represented as 97. The feature extracted is the frequency of the n-gram in the

attribute LHS or RHS.

3.1.4 Classification

Once we obtained and represented the data in arff format, we ran the following six

classifiers on the arff file using Weka 3.6: RandomForest [8], J48 [36], Bagging [7],

AdaboostM1 [17], SMO [33] and NaiveBayes [24]. We also ran four other classifiers
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but their performance was not at par with the 6 classifiers mentioned, so we omit their

results. These are: ClassificationViaClustering, ComplementNaiveBayes, ZeroR and

BayesNet. The arff files were also converted to .svm format, the input format for the

confidence weighted algorithm [28], using a python script.

3.2 Data Sets and Classifiers

We have used two publicly available datasets. Email Message-IDs were collected

from 4,550 public phishing emails from [30] and from 9,706 legitimate emails from

SpamAssassin public corpus datasets at [3]. The phishing corpus and even the Spa-

mAssassin ham corpus we used has been used previously by [16], [38], [20].

SpamAssassin corpus segregates the emails into different subsets which we named

as follows:

1. easy ham consisting of 5051 emails

2. easy ham 1 consisting of 2500 emails

3. easy ham 2 consisting of 1400 emails

4. hard ham consisting of 500 emails

5. hard ham 1 consisting of 250 emails

All these emails had Message-IDs. We ran experiments on the phishing emails

combined with each of the above mentioned subsets of legitimate emails. All the

12



Message-IDs obtained from the phishing emails were added to the set of Message-

IDs extracted from each of the above mentioned ham sets. These datasets are hence

named according to the ham set involved in creating the dataset since the phishing

set of Message-IDs is common to all of them. Additionally, all the experiments

were performed once taking only RHS into account and once taking both the RHS

and LHS into account, and the dataset names have been prefixed with RHS and

SplitMsgId respectively. The names of the datasets are as follows:

1. RHSEasyHam and SplitMsgIdEasyHam

2. RHSEasyHam1 and SplitMsgIdEasyHam1

3. RHSEasyHam2 and SplitMsgIdEasyHam2

4. RHSHardHam and SplitMsgIdHardHam

5. RHSHardHam1 and SplitMsgIdHardHam1

We used Weka version 3.6 which is basically a collection of machine learning

algorithms for data mining tasks. It was chosen because of its wide acceptability,

popularity and its ease of use. It has previously been used for phishing detection by

[20] and [11]. Weka provided us an easy method of comparing the performance of

several classifiers on our datasets and choosing the best among them. We ran the

experiments with around 10 classifiers and chose the best 6 among them. Each of

them is explained here in brief.

Random Forest classifier (RF) [8] consists of several decision tree classifiers.

Each tree has a random set of features out of the total feature collection and this
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algorithm returns the maximum frequency class among all of the individual deci-

sion trees. It performed the best quite consistently in our experiments. For our

experiments we used the default implementation of Weka 3.6 for the Random Forest

classifier.

J48 is a Java implementation of the decision tree formed by classifier C4.5 [36].

SMO is an implementation of sequential minimal optimization algorithm devised

by John Platt for training a support vector classifier. All attributes are normalized

by default in this algorithm. A more detailed explanation can be found at [33].

Bootstrap Aggregating or Bagging is a method for generating multiple versions

of a predictor and using these to get an aggregated predictor. The aggregation

averages over the versions when predicting a numerical outcome and does a plurality

vote when predicting a class. It is explained in [7].

AdaBoostM1 (ABoost) is an implementation of the boosting algorithm by [17].

It is known to improve performance of a weak learner using a boosting algorithm.

We have used the default base classifier for Weka 3.6 in this case.

NaiveBayes (NB) is the Weka implementation of the Naive Bayes classifier,

which is a simple classifier that applies Bayes’ theorem. It strictly assumes con-

ditional independence and hence called ‘naive.’ More information can be found at

[24].

For classification based on higher order n-gram analysis we used the faster on-

line confidence weighted learning algorithm of [28]. We obtained a collection of

most confidence weighted learning algorithm into a library written in Java from [13].
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Again, we selected the 10-fold cross-validation test option for maintaining uniformity.

With this algorithm we were able to perform the classification for all the files up to

10-grams.

3.3 Independent Experiment on Message-IDs

Due to privacy issues, legitimate emails used in the field of phishing emails detection

are usually not recent ones. To prove the viability of our method with current data

without compromising the privacy aspect, we performed an independent experiment

involving 10 anonymous volunteers. Each of them was given instructions along with

a script that would collect some statistics from each mail box. We collected only two

numbers from each of them, no. of emails (Email Count) and number of Message-

IDs (Message-ID Count) not revealing any private data in their emails. The process

involved configuring each volunteer’s gmail account in their local UNIX machines

using postfix and fetchmail. The script then separated the mailbox created for each

volunteer into individual messages using procmail. And finally grep command was

used to get the email count and the Message-ID count. We had to be careful not to

over count the Message-IDs as sometimes a mail can have more than one Message-

ID. To avoid such a mistake we used grep with the option of counting only the first

occurrence of Message-ID in each email.

The data collected from the volunteers is shown in Table 3.3. It reveals that

nearly 99% of the emails have Message-ID field and proves our hypothesis that in

spite of being an optional field it would have to be included in the emails by a phisher
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to avoid raising any red flags.

Table 3.1: Email and Message-ID count from the independent experiment. Nearly
99% emails have Message-Ids.

Message-ID Experiment
Volunteers EmailCount Message-ID Count
Volunteer 1 1959 1928
Volunteer 2 1613 1594
Volunteer 3 798 787
Volunteer 4 719 712
Volunteer 5 364 361
Volunteer 6 352 352
Volunteer 7 325 325
Volunteer 8 277 263
Volunteer 9 252 252
Volunteer 10 118 118

Total 6777 6692
Percentage Emails With Message-IDs

98.75

3.4 Results

Since the file-size increased exponentially for each subsequent n-gram, Weka would

crash for any n-gram higher than 3. Also, we could run only two classifiers for the

3-grams files due to the issue of large-sized files. For both 1- and 2-grams files we

ran as many as 10 classifiers and found Random Forest to be the most effective of

them all, obtaining highest True Positive rate (TPR) and the lowest False Positive

Rate (FPR).

TPR refers to the percentage of instances of a class x, classified correctly among

all the instances truly having the class x, i.e., what part of the class was captured.
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FPR refers to the percentage of instances of a class x classified incorrectly as some

other class among all the instances not of class x [34].

Looking at both the TPR and FPR values of these experiments, it was revealed

that with an increase in order of n-gram, the classification improves but it starts

deteriorating after a certain n-gram value. For most of the experiments this optimum

value was obtained at the threshold of around 5- or 6-grams.

We present our results of all classifiers for the best among all the datasets, i.e.,

Hard Ham. Also, to give an idea of the performance across all datasets we include

the results of our best classifiers, i.e., Random Forest and J48 for all the datasets.

Tables 3.1 to 3.3 summarize the TPR and FPR values of the experiments on

dataset SplitMsgIdHardHam. Results show a constant increase in TPR and decrease

in FPR for higher order n-grams. So, the 3-grams results are the best in terms of

both TPR and FPR. Random Forest classifier even succeeds in getting 99.5% of

the phishing emails detected with a small number of false positives, i.e. legitimate

emails classified as phishing.Also, we find that the classifiers that perform the best

classification are tree classifiers Random Forest and J48.

Tables 3.4 to 3.6 summarize the TPR and FPR values of the experiments on

dataset RHSHardHam. Similar to the SplitMsgIdHardHam dataset results there is

a constant increase in TPR and decrease in FPR for higher order n-grams. So, the

3-grams results are the best in terms of both TPR and FPR.

Note that the SplitMsgIdHardHam dataset gives better results as compared to the

RHSHardHam dataset. We hypothesize that many phishers lack adequate knowledge
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of LHS structure or do not spend time on it. Both RandomForest and J48 perform

almost consistently well for both the datasets at almost any n-gram value.

Tables 3.7 to 3.10 summarize the TPR and FPR values of the RandomForest and

J48 classifiers for the experiments across all datasets. These two classifiers performed

the best and we present these tables to compare their results for each of the datasets

we used. We find that the results are fairly consistent across datasets and there is a

gradual improvement of results with the increase in the order of n-grams.

We present the results of Confidence Weighted Classifier for all 10-gram datasets

in figures 10.1 and 10.2. The advantage of Confidence Weighted algorithm was that

it could easily run on all the 10-gram files and that it had quite low false positive

rate consistently as compared to the Weka machine learning classifiers. Though the

detection rates are not as high as Random Forest and J48 classifiers, the false-positive

rates are much lower.

3.5 Information Gain

After the first set of experiments, we were curious to know which features were

performing the best among all of the 1-gram, 2-gram and 3-gram attributes. A

widely accepted method to find out the most effective features in a multi-feature

classifier is calculating the information gain for the attributes. It is a measure of

the difference in entropy values. We present the top 10 features along with their

information gain values for each of the 1-gram, 2-gram and 3-gram features. From

these IG values we find that for the RHSHardHam dataset, the hyphen ‘-’ symbol is
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quite dominant as an attribute.

3.6 Security Analysis

Our method relies on the Message-ID field which, though important and recom-

mended, is optional. Without it, our method would not work. However, note that

almost all legitimate emails include this field, and since a phisher tries to fool the user

into believing that a phishing email is legitimate, omitting this field could serve as a

red flag. In our experimental data set, 100% of the legitimate emails had Message-

IDs. Our recent experiment with 10 volunteers reveals that the Message-ID field

is present in nearly 99% of the legitimate emails. Also, the exponentially increas-

ing file size for higher order n-grams makes it difficult to run different classifiers on

them without using specialized big data approaches. We currently ran only the con-

fidence weighted algorithm on higher order n-gram files, which has proven itself to

be competitive in other scenarios, but not guaranteed to be the ideal choice for best

results.

Spoofing Message-ID field requires a technically savvy phisher, who is willing to

go the extra mile to avoid detection. For example, either this field would have to be

deleted, which would raise a red flag in light of our experiment with 10 volunteers, or

the phisher would: (i) either fake the FQDN or (ii) copy the entire Message-ID field

from a legal message sent earlier, and the phisher would have to turn off any checking

in the mail program. For such sophisticated phishers, we recommend combining our

classifiers with other classifiers or features from the header, the links and the body

19



text in the email, as, for example, in [41].
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Table 3.2: True-Positive and False-Positive Rates for Weka Classifiers on SplitMs-
gIdHardHam Dataset

1-gram for SplitMsgIdHardHam
Classifiers TPR FPR

RandomForest 99.5 4.9
J48 96.6 18

Bagging 96.7 27.5
SMO 94.3 46.8

AdaboostM1 94.9 37.3
NaiveBayes 87.2 29.7

Table 3.3: True-Positive and False-Positive Rates for Weka Classifiers on SplitMs-
gIdHardHam Dataset

2-gram for SplitMsgIdHardHam
Classifiers TPR FPR

RandomForest 99.4 4.9
J48 97 18.4

Bagging 97.2 23.2
SMO 97.6 8.8

AdaboostM1 95 37
NaiveBayes 92 29.1

Table 3.4: True-Positive and False-Positive Rates for Weka Classifiers on SplitMs-
gIdHardHam Dataset

3-gram for SplitMsgIdHardHam
Classifiers TPR FPR

RandomForest 99.3 5.2
J48 98.7 8

21



Table 3.5: True-Positive and False-Positive Rates for Weka Classifiers on RHSHard-
Ham Dataset

1-gram for RHSHardHam
Classifiers TPR FPR

RandomForest 99.4 5
J48 96.5 17.6

Bagging 96.7 27.4
SMO 94.3 46.8

AdaboostM1 93 59.4
NaiveBayes 88.1 45.4

Table 3.6: True-Positive and False-Positive Rates for Weka Classifiers on RHSHard-
Ham Dataset

2-gram for RHSHardHam
Classifiers TPR FPR

RandomForest 99.3 5.2
J48 98 10.5

Bagging 97.7 18.6
SMO 98.8 5.5

AdaboostM1 93.9 54.1
NaiveBayes 92.4 35.8

Table 3.7: True-Positive Rate and False-Positive Rate for Weka Classifiers on
RHSHardHam Dataset

3-gram for RHSHardHam
Classifiers TPR FPR

RandomForest 99.4 5
J48 97.4 16.8
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Table 3.8: True-Positive and False-Positive Rates for RandomForest and J48 across
all SplitMsgId Datasets

1-gram
DataSet RandomForests J48

(Split) TPR FPR TPR FPR
EasyHam 93.7 10.1 90.2 12.7
EasyHam1 95.7 4.6 91.3 9.2
EasyHam2 95.4 13.2 91 16.4
HardHam 99.5 4.9 96.6 18
HardHam1 98.5 26.5 97.3 36.4

Table 3.9: True-Positive and False-Positive Rates for RandomForest and J48 across
all SplitMsgId Datasets

2-gram
DataSet RandomForests J48

(Split) TPR FPR TPR FPR
EasyHam 93.9 9.9 91 12.1
EasyHam1 96.1 4.2 92.3 8.2
EasyHam2 95.9 12.7 92.9 15
HardHam 99.4 4.9 97 18.4
HardHam1 98.5 26.1 97.8 33

Table 3.10: True-Positive and False-Positive Rates for RandomForest and J48 across
all RHS Data Sets

1-gram
DataSet RandomForests J48

(RHS) TPR FPR TPR FPR
EasyHam 95.6 4.7 91.4 9.1
EasyHam1 93.7 10.1 90.2 12.7
EasyHam2 95.3 13.3 91 16.4
HardHam 99.4 5 96.5 17.6
HardHam1 98.5 26.1 97.3 36.8
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Table 3.11: True-Positive Rate and False-Positive Rate for RandomForest and J48
across all RHS Data Sets

2-gram
DataSet RandomForests J48

(RHS) TPR FPR TPR FPR
EasyHam 94.8 8.8 95.9 5.3
EasyHam1 98.5 1.5 96.6 3.4
EasyHam2 95 15.1 96.1 7.5
HardHam 99.3 5.2 98 10.5
HardHam1 97.9 36.4 98.4 22

Figure 3.1: True-Positive and False-Positive Rates for Confidence Weighted Classifier on
SplitMsgIdHardHam Dataset
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Figure 3.2: True-Positive Rate and False-Positive Rate for Confidence Weighted Classifier
on RHSHardHam Dataset
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Table 3.12: Information gain values of Top 10 attributes represented as ’Att’ in the
table for RHSHardHam Data Set.

RHSHardHam
1-gram 2-gram 3-gram

Att IG Att IG Att IG
- 0.110599 -a 0.125108 -sf 0.125992
a 0.103357 bv 0.118968 -a 0.125108
e 0.073969 sf 0.118461 -ac 0.122093
. 0.063256 v- 0.117757 fo1 0.122093
s 0.060871 1- 0.116663 -ag 0.122093
f 0.059647 o1 0.1156 abv 0.122093
t 0.058247 c- 0.11354 bv- 0.122093
g 0.055149 - 0.110599 o1- 0.122093
n 0.049335 -s 0.108526 1-a 0.122093
b 0.045831 a 0.103357 sfo 0.122093

Table 3.13: Information gain values of Top 10 attributes represented as ’Att’ for
SplitMsgIdHardHam Dataset

SplitMsgIdHardHam
1-gram 2-gram 3-gram

Att IG Att IG Att IG
. 0.2007 . 0.200703 . 0.200703
a 0.16614 a 0.16614 a 0.16614
o 0.15855 o 0.158549 o 0.158549
t 0.10909 l. 0.146136 il. 0.146136
r 0.10193 .J 0.14211 l. 0.146136
l 0.09794 Ma 0.140517 .10 0.144005
i 0.09426 aM 0.139745 .J 0.14211
v 0.0927 av 0.139732 Ma 0.140517
M 0.06281 ot 0.139432 Mai 0.139745
- 0.05612 va 0.138928 vaM 0.139745
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Chapter 4

Grand Experiment

4.1 Enhancement of Semantic Feature Selection

A general semantic feature selection method for text problems was proposed by [40]

which is based on the use of statistical t-test and WordNet - a lexical database, that

can work as both a dictionary and a thesaurus [15]. In the semantic feature selection

method, the email body text was used for feature selection using t-test. Weight

calculation of the features was done and the features with weights above a certain

threshold were used to form appropriate sets. These sets of features were then used

in different classifiers. Here is a brief overview of the system proposed.

The authors observed that 84.7% of the phishing emails had the word ‘your’,

as opposed to 34.7% of the legitimate emails. So, all the bi-grams (sequence of 2
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words) following the word ‘your’ were collected along with their frequencies and t-

test was performed to choose appropriate bi-grams as features. Further weights were

calculated for these chosen bi-grams and a final set was formed with the bi-grams

having weights above the set threshold. This set was called PROPERTY. Similarly,

they worked with all the words in sentences having a hyperlink or any word from the

set: ‘url’, ‘link’, ‘website’. After t-test and weight calculation, the resulting set was

called ACTION. The text in the subject field of the emails were also collected. The

stopwords were removed from the subject and t-test was performed on the remaining

words to select the features forming the set PH-SUB.

4.2 Preliminaries

Some terms used further in this chapter are closely related to Natural Language Pro-

cessing (NLP). We describe them briefly here for a better understanding of the reader.

Word Sense refers to the particular sense or meaning of a word, among its dif-

ferent meanings, that is used in a particular sentence. It is important to understand

the complete meaning of the sentence. For example, in case of the word ’bank’, it

needs to be clear whether it means the financial institution or the sides of a river.

Named Entity refers to the parts of texts that are nouns belonging to different

categories like person, place, organization, etc.
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Hyponym simply means a more specific term. It is closely related to the concept

of hypernym which refers to a more general term in terms of the meaning of the word.

For example spoon is a type of or a more specific form of cutlery. Hence, spoon is

the hyponym of cutlery and cutlery is the hypernym of spoon.

Their system consisted of four different classifiers:

Classifier 1: Pattern Matching (PM)

Classifier 2: PM + Part of speech (POS) Tagging

Classifier 3: PM + POS + Word Senses

Classifier 4: PM + POS + Word Senses + WordNet

Pattern Matching involved two subclassifiers: Action-detector and Nonsensical-

detector. Action detector marked an email as phishing if it has: i) the word ‘your’

followed by a bi-gram belonging to PROPERTY (for example, ‘your credit card’),

and ii) a word from ACTION in a sentence containing a hyperlink or any word

from set: ‘url’, ‘link’, ‘website’. All of these words were selected irrespective of the

cases, i.e. both upper and lower case versions were considered. Nonsensical detector

checked if the email subject has at least a named-entity, or a word from PH-SUB.

If so, the email was marked as phishing if i) it contains at least one link, and ii) its

text is not similar to the subject.

They provided the definition of ‘similar’ as follows: An email body text is similar

to its subject if all of the words in the subject (excluding stopwords) are present in

the email’s text.
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PM + POS Tagging classifier build on the previous one by using part of

speech tags. Bi-grams not containing a noun or a named-entity are removed before

forming the set PROPERTY. Similarly, words that are not verbs are excluded from

the analysis for set ACTION and only named-entities, nouns, verbs, adverbs and

adjectives were used for making the set PH-SUB.

PM + POS Tagging + Word Senses extended the classifier 2 by including

the senses of words using SenseLearner [29]. The statistical analysis was performed

on words with their POS tags and senses.

PM + POS Tagging + Word Senses + WordNet is the final classifier and

it works by extending the sets ACTION, PROPERTY and PH-SUB by computing

the synonyms and the direct hyponyms of the synonyms of each selected feature in

the sets. Wordnet is used to get the synonyms and the direct hyponyms in this case.

4.3 Enhancement

Apart from re-implementing the above mentioned system, some observations and

minor enhancements were also made. First of all the selected bi-grams were the ones

occurring after you, yours, your’s so that the phishing emails having these variations

of the word ‘your’ may also get detected. Also for the Action-detector, the sentences

having the words: site and hyperlink were also included in the analysis process.

We wanted to study the combined effect of different classifiers so we performed a

grand experiment involving the following classifiers:
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4.4 Semantic Feature Selection Pattern Matching

Pattern Matching as explained above.

4.5 PhishNet-NLP Enhanced Header Analysis

The header analysis as proposed in [41] was used along with some modifications. In

the mentioned paper, the authenticity of the email was checked using a matching

technique. If the first Received From field had the same domain as From or localhost

or current email account or forwarding email account or Received SPF address then

email was marked legitimate else, phishing. As an enhancement, more fields like

the CC field, the BCC field and the Message-ID field domains were included while

matching the Received From field domain. Another check was added so that if the

Received From field domain is different from the ones before and after it, both of

which are same, the email is marked as phishing. For example if the email goes

from domain a.relay.com to b.relay.com to a.relay.com again, it is suspicious and the

email is marked phishing. This is to support the fact that a legitimate email will not

contain such cycles where it leaves a domain and then reenters after going through

some other domain.
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4.6 Phish-IDetector

In Phish-IDetector, as explained in chapter 4, the Message-IDs are extracted from

all the emails. Features are extracted using N-gram analysis and the classification is

dome using machine learning classifiers in Weka.

4.7 Results Collation

For combining the results from these classifiers we used majority voting. Table 4.1

shows the results for the set of emails for which all 3 classifiers had predictions. Table

4.2 shows the results for the complete datasets. Some of these emails did not have

predictions from all 3 classes. For these emails, the final class was decided as the

prediction from Phish-IDetector since it had the highest TPR.
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Table 4.1: The Collated Results for the Emails classified by all 3 classifiers
All3Present

Dataset Phish Legitimate Total TPR FPR
EasyHam 5 1511 1516 99.67 0.33
EasyHam1 17 733 750 97.733 2.267
EasyHam2 9 412 421 97.862 2.138
HardHam 6 144 150 96 4
HardHam1 1 74 75 98.667 1.333

EasyHamPhish 1306 27 1333 97.974 2.026
EasyHam1Phish 1315 18 1333 98.65 1.35
EasyHam2Phish 1315 18 1333 98.65 1.35
HardHamPhish 1315 18 1333 98.65 1.35
HardHam1Phish 1315 18 1333 98.645 1.35

Table 4.2: The Collated Results for All Datasets
Dataset Phish Legitimate Total TPR FPR

EasyHam 15 5036 5051 99.703 0.297
EasyHam1 134 2366 2500 94.64 5.36
EasyHam2 55 1345 1400 96.071 3.928
HardHam 7 493 500 98.6 1.4
HardHam1 2 248 250 99.2 0.8

EasyHamPhish 4335 215 4550 95.275 4.725
EasyHam1Phish 4517 33 4550 99.275 0.725
EasyHam2Phish 4528 22 4550 99.516 0.484
HardHamPhish 4529 21 4550 99.538 0.462
HardHam1Phish 4529 21 4550 99.538 0.462
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Chapter 5

Header-Domain Analysis

As mentioned in Chapter 1 and 2, each email contains information about the path it

has traveled from the sender to the receiver. The domains in the header fields give

a good approximation of this path. This header field is a string following a certain

basic format. It also contains information which can be used to trace the path of

the email. The domains closer to the receiver’s side cannot be altered easily and it

provides important information about the trail the email has followed. Figure 5.1

shows an example of an email header with the header domains.

5.1 Prediction

Studying the mechanism of email transfer and delivery closely, we find that each

email can provide us with information to trace its path. Also, we feel the domain

headers [Please refer Chapter 2 for description.] give a good indication of this path.

34



Our prediction is that the string of all the domain headers in an email would show

signs of obfuscation in case of phishing emails where the phisher is tricking users to

believe that the email has come from an authentic source. Also, since phishers are

distributed across the world, the header domains can indicate the path and hence

their location which could be key to distinguishing them from the legitimate senders.

Furthermore, it may be that phishers could use source routing for the emails, where

they fix the path for the emails in advance using available open smtp servers resulting

in same or similar paths for the phishing emails. Once a path or a part of the path

in the form of domain names is found to be associated with phishing emails, another

email with the same path will most likely be phish as well. To test our hypothesis we

chose to combine two of the most popular and effective techniques of phishing email

classification: n-gram analysis [25], [22], [39] and machine learning [16], [20], [1].

5.2 The Overall Approach

The main aim being classification of emails as phishing or legitimate, our approach

works using n-gram analysis of the string of domain names present in the header

of the emails. Using popular machine-learning classifiers proved to be effective for

phishing email classification, we obtain good results. The method used for classifi-

cation was chosen to be 10-fold cross validation due to its known effectiveness and

universal acceptance. The advantage of our system is its combination of simplicity

and effectiveness. Though minimal information is required and the whole process in-

volves no complex steps, the results are promising. Since we used different datasets
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from various sources [described in Section 5.4.] and still got consistent results, it

proves the robustness of our method.

Apart from the domains, we derive information about the email’s path [Please

refer to Chapter 8 for details] by using four different types of analyses.

Finally we conduct several experiments involving n-gram features from the header

domains.

5.3 Architecture

Our system consists of the following main components. Figure 5.2 is a diagrammatic

representation of our system. The individual components are summarized below.

5.3.1 Domain Extraction Component

This component is responsible for extracting the domains from the email headers.

The raw emails with full headers serve as the input. As mentioned, the string of

header fields contain information about an email’s path. Some of the header fields

have this information in the format of an email address like LHS@RHS, and we

extract extract only the RHS part to get the domain names. Other fields have just

the domain name and we extract the full domains. All the domain names are collected

from each email and stored in a single string, separated by commas. The string is the

output of this component. For example in the header shown in Figure 5.1, the string

will include these domains: citizensbank.com, login.monkey.org, mail1.monkey.org,
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funky.monkey.org, mail2.monkey.org, and so on. TLD Removal: We formed new

datasets by removing the (Top Level Domains) TLDs from the collected domains to

get rid of any bias caused due to the TLD differences between the legitimate and

phishing datsets. The results did deteriorate but only a little which shows that the

TLD difference had a very small contribution in the classification success. A more

detailed analysis is done in section 5.7.

5.3.2 Data File Creation Component

After the domain extraction is done, this component handles the creation of the

data file, which consists of the class information for all the emails along with their

respective header domains string. For each email we determined the given label based

on the dataset, i.e., “phishing” or “legit” (legitimate) class and put the extracted

domain headers beside each label. Hence, we create a csv file with two columns.

First containing the class label and the second containing a single string of header

domains for each email.

5.3.3 N-gram Analysis Component

Next, the n-gram analysis component takes the output csv file from the previous

component and performs n-gram analysis on the information. We decided to do

n-gram analysis of the collected header domains, as this kind of analysis is able to

capture the structure present in any text or string. Also, this method enabled us to

represent the data in numeric format acceptable to most classifiers in Weka. This
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analysis generates unique n-gram features represented as Unicode code point of the

characters. For example, the Unicode code point for “a” is 97 so the 1-gram “a” will

be represented as 97. The feature extracted is the frequency of the n-gram in the

header domains. Hence, the original data collected was transformed and represented

in the arff format. The arff files were also converted to .svm format, the input format

for the confidence weighted algorithm [28], using a python script.

5.3.4 Classification Component

Once we obtained and represented the data in arff format, we passed it on to the

classification component. Here the following seven classifiers were run on the arff file

using Weka 3.6: RF, J48, Bagging, AttSel, SMO, BLR and NBMultinomial. The

confidence weighted algorithm mentioned in Chapter 3 was also used for classifica-

tion.

5.4 Data Sets and Classifiers

We have used two publicly available datasets and two datasets collected from volun-

teers. Email header domains were collected from these datasets separately. In total

we had 3392 phishing emails from a private dataset created by Dr. Jose Nazario [31],

2949 legitimate emails from [14] 197 phishing and 4986 legitimate emails from one

of the author’s inbox.

We ran experiments on combinations of the phishing emails sets combined with
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each of the above mentioned sets of legitimate emails and experimented with both

balanced datasets as well as unbalanced datasets to study the effect on the results.

For the unbalanced datasets we had some with more phishing emails than legitimate

and some vice versa. These datasets are named according to the sets involved in

creating the final dataset. The names and description of the datasets are given

below.

5.4.1 Unbalanced Datasets

1. CSDMCNPN

2. CSDMCRV

3. RVLNPN

4. RVLRV

5.4.2 Balanced Datasets

1. BalCSDMCNPN (2949 legit and phish emails each)

2. BalCSDMCRV (197 legit and phish emails each)

3. BalRVLNPN (3392 legit and phish emails each)

4. BalRVLRV (197 legit and phish emails each)

We used Weka version 3.6 which is basically a collection of machine learning

algorithms for data mining tasks. It was chosen because of its wide acceptability,
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popularity and its ease of use. It has previously been used for phishing detection by

[20] and [11]. Weka provided us an easy method of comparing the performance of

several classifiers on our datasets and choosing the best among them. We ran the

experiments with around 7 classifiers and chose the best among them. Each of them

is explained here in brief.

Random Forest (RF) classifier [Please refer Chapter 3].

J48 [Please refer Chapter 3].

SMO [Please refer Chapter 3].

Bootstrap Aggregating or Bagging [Please refer Chapter 3].

AttributeselectedClassifer This (AttSel) classifier first does attribute selec-

tion and reduces the dimensionality of the training and testing sets before running

the classifier. It is useful in removing redundant attributes and thus improving clas-

sification. We used the default options for this classifier in our experiments.

BayesianLogisticRegression (BLR) is an implementation of bayesian logistic

regression for both Gaussian and Laplace priors and more details can be found at

[18].

NaiveBayes (NB) [Please refer Chapter 3].

Apart from Weka, we also used an online confidence weighted algorithm for classi-

fication [28]. The main advantage of an online learning algorithm is its speed. Being

much faster than Weka, we were able to classify even higher order n-gram files using

confidence weighted algorithm. Since online algorithms have the capability to learn
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from each instance and then discard it immediately, without storing the whole set of

instances, it can run much faster than the batch algorithms. Specially in our case,

where the feature set increases exponentially for every higher n-gram, it was a great

option.

5.5 Experiment Including IPs in Domains

The first set of experiments involved only the domains from the emails and not the

IP addresses contained in them. We realized that this would result in loss of data

and eventually sub standard results. So we repeated the experiments taking the IPs

in the header into account. This did result in the increase in processing time since

the extra step of extracting domain from IP was added.

5.6 Results

The results for the various experiments conducted are summarized in this section.

Tables 5.1 to 5.5 summarize the TPR and FPR values of the experiments on the

balanced dataset RVLNPN with full domains. Results till 5-grams are reported here.

These show that for some classifiers like NBMultinomial the detection improves with

higher order n-grams whereas for some classifiers like SMO and RF performance

slightly decreases as n-gram order increases.
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Figure 5.1: An Email Header With Header Domains

Table 5.1: 1gramFullDomainsBalRVLNPN
1gramFullDomainsBalRVLNPN
Classifier TP Rate FP Rate
BLR 0.999 0.001
NBMultinomial 0.997 0.003
SMO 1 0
AttSel 0.998 0.002
Bagging 0.999 0.001
J48 0.999 0.001
RF 1 0
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Figure 5.2: Architecture of Header Domain Analysis System

Table 5.2: 2gramFullDomainBalRVLNPN
2gramFullDomainBalRVLNPN
Classifier TP Rate FP Rate
BLR 1 0
NBMultinomial 0.997 0.003
SMO 1 0
AttSel 0.998 0.002
Bagging 0.999 0.001
J48 0.999 0.001
RF 0.999 0.001
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Table 5.3: 3gramFullDomainsBalRVLNPN
3gramFullDomainsBalRVLNPN
Classifier TP Rate FP Rate
BLR 1 0
NBMultinomial 0.997 0.003
SMO 1 0
AttSel 0.998 0.002
Bagging 0.999 0.001
J48 0.999 0.001
RF 0.999 0.001

Table 5.4: 4gramFullDomainsBalRVLNPN
4gramFullDomainsBalRVLNPN
Classifier TP Rate FP Rate
BLR 0.999 0.001
NBMultinomial 0.998 0.002
SMO 0.999 0.001
AttSel 0.998 0.002
Bagging 0.999 0.001
J48 0.999 0.001
RF 0.999 0.001

Table 5.5: 5gramFullDomainsBalRVLNPN
5gramFullDomainsBalRVLNPN
Classifier TP Rate FP Rate
BLR 1 0
NBMultinomial 0.998 0.002
SMO 0.999 0.001
AttSel 0.997 0.003
Bagging 0.999 0.001
J48 0.999 0.001
RF 0.999 0.001
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Tables 5.6 to 5.10 summarize the TPR and FPR values of the experiments on

the balanced dataset RVLNPN having domains without TLDs. Results till 5-grams

are reported here. These show that for some classifiers like NBMultinomial and BLR

the detection improves with higher order n-grams whereas for some classifiers like

AttSel performance slightly decreases as n-gram order increases.

Tables 5.11 to 5.15 summarize the TPR and FPR values of the experiments on the

unbalanced dataset RVLNPN having full domains. Results till 5-grams are reported

here. These show that for some classifiers like AttSel the detection improves with

higher order n-grams whereas for some classifiers like BLR and SMO performance

slightly decreases as n-gram order increases.

Tables 5.16 to 5.20 summarize the TPR and FPR values of the experiments on

the unbalanced dataset RVLNPN having domains without TLDs. Results till 5-

grams are reported here. These show that for some classifiers like BLR and SMO

the detection improves with higher order n-grams whereas performance does not

decreases as n-gram order increases for any of the classifiers.
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Table 5.6: 1gramNoTLDDomainsBalRVLNPN
1gramNoTLDDomainsBalRVLNPN
Classifier TP Rate FP Rate
BLR 0.999 0.001
NBMultinomial 0.997 0.003
SMO 0.999 0.001
AttSel 0.998 0.002
Bagging 0.998 0.002
J48 0.999 0.001
RF 0.999 0.001

Table 5.7: 2gramNoTLDDomainsBalRVLNPN
2gramNoTLDDomainsBalRVLNPN
Classifier TP Rate FP Rate
BLR 1 0
NBMultinomial 0.997 0.003
SMO 0.999 0.001
AttSel 0.997 0.003
Bagging 0.999 0.001
J48 0.999 0.001
RF 0.999 0.001

Table 5.8: 3gramNoTLDDomainsBalRVLNPN
3gramNoTLDDomainsBalRVLNPN
Classifier TP Rate FP Rate
BLR 1 0
NBMultinomial 0.998 0.002
SMO 0.999 0.001
AttSel 0.997 0.003
Bagging 0.999 0.001
J48 0.999 0.001
RF 0.999 0.001
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Table 5.9: 4gramNoTLDDomainsBalRVLNPN
4gramNoTLDDomainsBalRVLNPN
Classifier TP Rate FP Rate
BLR 1 0
NBMultinomial 0.998 0.002
SMO 0.999 0.001
AttSel 0.997 0.003
Bagging 0.999 0.001
J48 0.999 0.001
RF 0.999 0.001

Table 5.10: 5gramNoTLDDomainsBalRVLNPN
5gramNoTLDDomainsBalRVLNPN
Classifier TP Rate FP Rate
BLR 1 0
NBMultinomial 0.998 0.002
SMO 0.999 0.001
AttSel 0.997 0.003
Bagging 0.999 0.001
J48 0.999 0.001
RF 0.999 0.001

Table 5.11: 1gramFullDomainsRVLNPN
1gramFullDomainsRVLNPN
Classifier TP Rate FP Rate
BLR 0.999 0.001
NBMultinomial 0.997 0.003
SMO 1 0
AttSel 0.999 0.001
Bagging 1 0.001
J48 1 0
RF 1 0.001
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Table 5.12: 2gramFullDomainsRVLNPN
2gramFullDomainsRVLNPN
Classifier TP Rate FP Rate
BLR 1 0
NBMultinomial 0.997 0.003
SMO 1 0.001
AttSel 1 0.001
Bagging 0.999 0.001
J48 0.999 0.001
RF 1 0

Table 5.13: 3gramFullDomainsRVLNPN
3gramFullDomainsRVLNPN
Classifier TP Rate FP Rate
BLR 1 0.001
NBMultinomial 0.998 0.001
SMO 1 0.001
AttSel 1 0.001
Bagging 0.999 0.001
J48 0.999 0.001
RF 1 0.001

Table 5.14: 4gramFullDomainsRVLNPN
4gramFullDomainsRVLNPN
Classifier TP Rate FP Rate
BLR 1 0.001
NBMultinomial 0.998 0.001
SMO 0.999 0.001
AttSel 1 0.001
Bagging 0.999 0.001
J48 0.999 0.001
RF 0.999 0.001
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Table 5.15: 5gramFullDomainsRVLNPN
5gramFullDomainsRVLNPN
Classifier TP Rate FP Rate
BLR 0.999 0.001
NBMultinomial 0.998 0.001
SMO 0.999 0.001
AttSel 1 0.001
Bagging 0.999 0.001
J48 0.999 0.001
RF 0.999 0.001

Table 5.16: 1gramNoTLDDomainsRVLNPN
1gramNoTLDDomainsRVLNPN
Classifier TP Rate FP Rate
BLR 0.999 0.001
NBMultinomial 0.996 0.004
SMO 0.999 0.001
AttSel 0.998 0.002
Bagging 0.999 0.001
J48 0.999 0.001
RF 1 0

Table 5.17: 2gramNoTLDDomainsRVLNPN
2gramNoTLDDomainsRVLNPN
Classifier TP Rate FP Rate
BLR 1 0
NBMultinomial 0.997 0.003
SMO 1 0
AttSel 0.999 0.001
Bagging 0.999 0.001
J48 0.999 0
RF 1 0
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Table 5.18: 3gramNoTLDDomainsRVLNPN
3gramNoTLDDomainsRVLNPN
Classifier TP Rate FP Rate
BLR 1 0
NBMultinomial 0.998 0.003
SMO 1 0
AttSel 0.999 0.001
Bagging 0.999 0
J48 0.999 0
RF 1 0

Table 5.19: 4gramNoTLDDomainsRVLNPN
4gramNoTLDDomainsRVLNPN
Classifier TP Rate FP Rate
BLR 1 0
NBMultinomial 0.998 0.003
SMO 1 0
AttSel 0.999 0.001
Bagging 0.999 0
J48 0.999 0
RF 1 0

Table 5.20: 5gramNoTLDDomainsRVLNPN
5gramNoTLDDomainsRVLNPN
Classifier TP Rate FP Rate
BLR 1 0
NBMultinomial 0.998 0.003
SMO 1 0
AttSel 0.999 0.001
Bagging 0.999 0.001
J48 0.999 0
RF 1 0
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Table 5.21: 1gramFullDomainsBalCSDMCNPN
1gramFullDomainsBalCSDMCNPN
Classifier TP Rate FP Rate
BLR 0.998 0.002
NBMultinomial 0.987 0.013
SMO 0.998 0.002
AttSel 0.997 0.003
Bagging 0.999 0.001
J48 0.994 0.006
RF 0.999 0.001

Table 5.22: 2gramFullDomainsBalCSDMCNPN
2gramFullDomainsBalCSDMCNPN
Classifier TP Rate FP Rate
BLR 0.999 0.001
NBMultinomial 0.996 0.004
SMO 0.999 0.001
AttSel 0.998 0.002
Bagging 0.997 0.003
J48 0.999 0.001
RF 0.999 0.001

Table 5.23: 3gramFullDomainsBalCSDMCNPN
3gramFullDomainsBalCSDMCNPN
Classifier TP Rate FP Rate
BLR 0.999 0.001
NBMultinomial 0.997 0.003
SMO 0.999 0.001
AttSel 0.998 0.002
Bagging 0.998 0.002
J48 0.999 0.001
RF 0.999 0.001
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Tables 5.21 to 5.25 summarize the TPR and FPR values of the experiments on the

balanced dataset CSDMCNPN having full domains. Results till 5-grams are reported

here. These show that for some classifiers like BLR and SMO the detection improves

with higher order n-grams whereas performance does not decreases as n-gram order

increases for any of the classifiers.

Tables 5.26 to 5.30 summarize the TPR and FPR values of the experiments on the

balanced dataset CSDMCNPN having domains with no TLD. Results till 5-grams

are reported here. These show that for some classifiers like BLR and NBMultinomial

the detection improves with higher order n-grams whereas performance does not

decreases as n-gram order increases for any of the classifiers.

Tables 5.31 to 3.35 summarize the TPR and FPR values of the experiments on

the unbalanced dataset CSDMCNPN having full domains. Results till 5-grams are

reported here. These show that for some classifiers like BLR and SMO the detection

improves with higher order n-grams whereas performance does not decreases as n-

gram order increases for any of the classifiers.

Tables 5.36 to 5.40 summarize the TPR and FPR values of the experiments on

the balanced dataset CSDMCNPN having domains with no TLD. Results till 5-

grams are reported here. These show that for some classifiers like BLR and SMO

the detection improves with higher order n-grams whereas performance does not

decreases as n-gram order increases for any of the classifiers.
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Table 5.24: 4gramFullDomainsBalCSDMCNPN
4gramFullDomainsBalCSDMCNPN
Classifier TP Rate FP Rate
BLR 0.999 0.001
NBMultinomial 0.997 0.003
SMO 0.999 0.001
AttSel 0.998 0.002
Bagging 0.998 0.002
J48 0.999 0.001
RF 0.999 0.001

Table 5.25: 5gramFullDomainsBalCSDMCNPN
5gramFullDomainsBalCSDMCNPN
Classifier TP Rate FP Rate
BLR 0.999 0.001
NBMultinomial 0.997 0.003
SMO 0.999 0.001
AttSel 0.998 0.002
Bagging 0.998 0.002
J48 0.999 0.001
RF 0.999 0.001

Table 5.26: 1gramNoTLDDomainsBalCSDMCNPN
1gramNoTLDDomainsBalCSDMCNPN
Classifier TP Rate FP Rate
BLR 0.998 0.002
NBMultinomial 0.991 0.009
SMO 0.999 0.001
AttSel 0.987 0.013
Bagging 0.998 0.002
J48 0.995 0.005
RF 0.999 0.001
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Table 5.27: 2gramNoTLDDomainsBalCSDMCNPN
2gramNoTLDDomainsBalCSDMCNPN
Classifier TP Rate FP Rate
BLR 0.999 0.001
NBMultinomial 0.997 0.003
SMO 0.999 0.001
AttSel 0.998 0.002
Bagging 0.999 0.001
J48 0.999 0.001
RF 0.999 0.001

Table 5.28: 3gramNoTLDDomainsBalCSDMCNPN
3gramNoTLDDomainsBalCSDMCNPN
Classifier TP Rate FP Rate
BLR 0.999 0.001
NBMultinomial 0.997 0.003
SMO 0.999 0.001
AttSel 0.998 0.002
Bagging 0.998 0.002
J48 0.999 0.001
RF 0.999 0.001

Table 5.29: 4gramNoTLDDomainsBalCSDMCNPN
4gramNoTLDDomainsBalCSDMCNPN
Classifier TP Rate FP Rate
BLR 0.999 0.001
NBMultinomial 0.997 0.003
SMO 0.999 0.001
AttSel 0.998 0.002
Bagging 0.998 0.002
J48 0.999 0.001
RF 0.999 0.001
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Table 5.30: 5gramNoTLDDomainsBalCSDMCNPN
5gramNoTLDDomainsBalCSDMCNPN
Classifier TP Rate FP Rate
BLR 0.999 0.001
NBMultinomial 0.997 0.003
SMO 0.999 0.001
AttSel 0.998 0.002
Bagging 0.998 0.002
J48 0.999 0.001
RF 0.999 0.001

Table 5.31: 1gramFullDomainsCSDMCNPN
1gramFullDomainsCSDMCNPN
Classifier TP Rate FP Rate
BLR 0.998 0.001
NBMultinomial 0.987 0.012
SMO 0.998 0.001
AttSel 0.994 0.007
Bagging 0.998 0.001
J48 0.995 0.005
RF 0.999 0.001

Table 5.32: 2gramFullDomainsCSDMCNPN
2gramFullDomainsCSDMCNPN
Classifier TP Rate FP Rate
BLR 0.999 0.001
NBMultinomial 0.998 0.002
SMO 0.999 0.001
AttSel 0.997 0.003
Bagging 0.998 0.002
J48 0.998 0.002
RF 0.999 0.001
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Table 5.33: 3gramFullDomainsCSDMCNPN
3gramFullDomainsCSDMCNPN
Classifier TP Rate FP Rate
BLR 0.999 0.001
NBMultinomial 0.997 0.003
SMO 0.999 0.001
AttSel 0.997 0.003
Bagging 0.999 0.001
J48 0.998 0.002
RF 0.999 0.001

Table 5.34: 4gramFullDomainsCSDMCNPN
4gramFullDomainsCSDMCNPN
Classifier TP Rate FP Rate
BLR 0.999 0.001
NBMultinomial 0.997 0.003
SMO 0.999 0.001
AttSel 0.997 0.003
Bagging 0.999 0.001
J48 0.998 0.002
RF 0.999 0.001

Table 5.35: 5gramFullDomainsCSDMCNPN
5gramFullDomainsCSDMCNPN
Classifier TP Rate FP Rate
BLR 0.999 0.001
NBMultinomial 0.997 0.003
SMO 0.999 0.001
AttSel 0.997 0.003
Bagging 0.999 0.001
J48 0.998 0.002
RF 0.999 0.001
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Table 5.36: 1gramNoTLDDomainsCSDMCNPN
1gramNoTLDDomainsCSDMCNPN
Classifier TP Rate FP Rate
BLR 0.998 0.002
NBMultinomial 0.986 0.006
SMO 0.999 0
AttSel 0.99 0.019
Bagging 0.999 0.002
J48 0.998 0.003
RF 1 0

Table 5.37: 2gramNoTLDDomainsCSDMCNPN
2gramNoTLDDomainsCSDMCNPN
Classifier TP Rate FP Rate
BLR 1 0
NBMultinomial 0.997 0.002
SMO 1 0
AttSel 0.995 0.008
Bagging 0.999 0.001
J48 0.998 0.002
RF 1 0

Table 5.38: 3gramNoTLDDomainsCSDMCNPN
3gramNoTLDDomainsCSDMCNPN
Classifier TP Rate FP Rate
BLR 1 0
NBMultinomial 0.997 0.002
SMO 1 0
AttSel 0.997 0.007
Bagging 0.998 0.002
J48 0.998 0.002
RF 1 0
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Table 5.39: 4gramNoTLDDomainsCSDMCNPN
4gramNoTLDDomainsCSDMCNPN
Classifier TP Rate FP Rate
BLR 1 0
NBMultinomial 0.997 0.002
SMO 1 0
AttSel 0.997 0.007
Bagging 0.998 0.002
J48 0.998 0.002
RF 1 0

Table 5.40: 5gramNoTLDDomainsCSDMCNPN
5gramNoTLDDomainsCSDMCNPN
Classifier TP Rate FP Rate
BLR 1 0
NBMultinomial 0.996 0.002
SMO 1 0
AttSel 0.997 0.007
Bagging 0.998 0.002
J48 0.998 0.002
RF 1 0
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Tables 5.41 to 5.45 summarize the TPR and FPR values of the experiments on

the balanced dataset RVLRV having full domains. Results till 5-grams are reported

here. These show very poor performance and the reason could be that all the emails

are from the same individuals account and for almost all of them the source as well

as the destination domains are the same.

Tables 5.46 to 5.50 summarize the TPR and FPR values of the experiments on

the balanced dataset RVLRV having domains with no TLD. Results till 5-grams are

reported here. These show very poor performance and the reason could be that all

the emails are from the same individuals account and for almost all of them the

source as well as the destination domains are the same.

Tables 5.51 to 5.55 summarize the TPR and FPR values of the experiments

on the unbalanced dataset RVLRV having full domains. Results till 5-grams are

reported here. These show much better results than the balanced dataset because

the distribution of legitimate and phishing emails are very skewed with only 197

phishing emails vs. 4986 Legitimate ones.
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Table 5.41: 1gramFullDomainsBalRVLRV
1gramFullDomainsBalRVLRV
Classifier TP Rate FP Rate
BLR 0.508 0.492
NBMultinomial 0.5 0.5
SMO 0.495 0.505
AttSel 0.492 0.508
Bagging 0.508 0.492
J48 0.492 0.508
RF 0.503 0.497

Table 5.42: 2gramFullDomainsBalRVLRV
2gramFullDomainsBalRVLRV
Classifier TP Rate FP Rate
BLR 0.505 0.495
NBMultinomial 0.5 0.5
SMO 0.503 0.497
AttSel 0.492 0.508
Bagging 0.503 0.497
J48 0.492 0.508
RF 0.495 0.505

Table 5.43: 3gramFullDomainsBalRVLRV
3gramFullDomainsBalRVLRV
Classifier TP Rate FP Rate
BLR 0.505 0.495
NBMultinomial 0.5 0.5
SMO 0.5 0.5
AttSel 0.492 0.508
Bagging 0.503 0.497
J48 0.492 0.508
RF 0.503 0.497
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Table 5.44: 4gramFullDomainsBalRVLRV
4gramFullDomainsBalRVLRV
Classifier TP Rate FP Rate
BLR 0.505 0.495
NBMultinomial 0.505 0.495
SMO 0.503 0.497
AttSel 0.492 0.508
Bagging 0.503 0.497
J48 0.492 0.508
RF 0.503 0.497

Table 5.45: 5gramFullDomainsBalRVLRV
5gramFullDomainsBalRVLRV
Classifier TP Rate FP Rate
BLR 0.505 0.495
NBMultinomial 0.505 0.495
SMO 0.508 0.492
AttSel 0.492 0.508
Bagging 0.503 0.497
J48 0.492 0.508
RF 0.497 0.503

Table 5.46: 1gramNoTLDDomainsBalRVLRV
1gramNoTLDDomainsBalRVLRV
Classifier TP Rate FP Rate
BLR 0.497 0.503
NBMultinomial 0.505 0.495
SMO 0.5 0.5
AttSel 0.492 0.508
Bagging 0.5 0.5
J48 0.492 0.508
RF 0.497 0.503

61



Table 5.47: 2gramNoTLDDomainsBalRVLRV
2gramNoTLDDomainsBalRVLRV
Classifier TP Rate FP Rate
BLR 0.503 0.497
NBMultinomial 0.505 0.495
SMO 0.5 0.5
AttSel 0.492 0.508
Bagging 0.5 0.5
J48 0.492 0.508
RF 0.497 0.503

Table 5.48: 3gramNoTLDDomainsBalRVLRV
3gramNoTLDDomainsBalRVLRV
Classifier TP Rate FP Rate
BLR 0.503 0.497
NBMultinomial 0.505 0.495
SMO 0.5 0.5
AttSel 0.492 0.508
Bagging 0.5 0.5
J48 0.492 0.508
RF 0.497 0.503

Table 5.49: 4gramNoTLDDomainsBalRVLRV
4gramNoTLDDomainsBalRVLRV
Classifier TP Rate FP Rate
BLR 0.5 0.5
NBMultinomial 0.505 0.495
SMO 0.505 0.495
AttSel 0.492 0.508
Bagging 0.5 0.5
J48 0.492 0.508
RF 0.495 0.505
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Table 5.50: 5gramNoTLDDomainsBalRVLRV
5gramNoTLDDomainsBalRVLRV
Classifier TP Rate FP Rate
BLR 0.5 0.5
NBMultinomial 0.505 0.495
SMO 0.495 0.505
AttSel 0.492 0.508
Bagging 0.5 0.5
J48 0.492 0.508
RF 0.495 0.505

Table 5.51: 1gramFullDomainsRVLRV
1gramFullDomainsRVLRV
Classifier TP Rate FP Rate
BLR 0.962 0.962
NBMultinomial 0.958 0.962
SMO 0.962 0.962
AttSel 0.962 0.962
Bagging 0.962 0.962
J48 0.962 0.962
RF 0.962 0.962

Table 5.52: 2gramFullDomainsRVLRV
2gramFullDomainsRVLRV
Classifier TP Rate FP Rate
BLR 0.962 0.962
NBMultinomial 0.954 0.962
SMO 0.962 0.962
AttSel 0.962 0.962
Bagging 0.962 0.962
J48 0.962 0.962
RF 0.962 0.962
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Table 5.53: 3gramFullDomainsRVLRV
3gramFullDomainsRVLRV
Classifier TP Rate FP Rate
BLR 0.962 0.962
NBMultinomial 0.954 0.962
SMO 0.962 0.962
AttSel 0.962 0.962
Bagging 0.962 0.962
J48 0.962 0.962
RF 0.962 0.962

Table 5.54: 4gramFullDomainsRVLRV
4gramFullDomainsRVLRV
Classifier TP Rate FP Rate
BLR 0.962 0.962
NBMultinomial 0.954 0.962
SMO 0.962 0.962
AttSel 0.962 0.962
Bagging 0.962 0.962
J48 0.962 0.962
RF 0.962 0.962

Table 5.55: 5gramFullDomainsRVLRV
5gramFullDomainsRVLRV
Classifier TP Rate FP Rate
BLR 0.962 0.962
NBMultinomial 0.954 0.962
SMO 0.962 0.962
AttSel 0.962 0.962
Bagging 0.962 0.962
J48 0.962 0.962
RF 0.962 0.962
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Table 5.56: 1gramNoTLDDomainsRVLRV
1gramNoTLDDomainsRVLRV
Classifier TP Rate FP Rate
BLR 0.962 0.962
NBMultinomial 0.959 0.962
SMO 0.962 0.962
AttSel 0.962 0.962
Bagging 0.962 0.962
J48 0.962 0.962
RF 0.962 0.962

Table 5.57: 2gramNoTLDDomainsRVLRV
2gramNoTLDDomainsRVLRV
Classifier TP Rate FP Rate
BLR 0.962 0.962
NBMultinomial 0.959 0.962
SMO 0.962 0.962
AttSel 0.962 0.962
Bagging 0.962 0.962
J48 0.962 0.962
RF 0.962 0.962
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Tables 5.56 to 5.60 summarize the TPR and FPR values of the experiments on the

unbalanced dataset RVLRV having domains with no TLD. Results till 5-grams are

reported here. These show much better results than the balanced dataset because

the distribution of legitimate and phishing emails are very skewed with only 197

phishing emails vs 4986 Legitimate ones.

Tables 5.61 to 5.65 summarize the TPR and FPR values of the experiments on

the unbalanced dataset CSDMCRV having full domains. Results till 5-grams are

reported here. These results show that the detection rates are fairly constant for all

classifiers.

Tables 5.66 to 5.70 summarize the TPR and FPR values of the experiments on the

unbalanced dataset CSDMCRV having domains with no TLD. Results till 5-grams

are reported here. These results show that the detection rates are fairly constant for

all classifiers.
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Table 5.58: 3gramNoTLDDomainsRVLRV
3gramNoTLDDomainsRVLRV
Classifier TP Rate FP Rate
BLR 0.962 0.962
NBMultinomial 0.959 0.962
SMO 0.962 0.962
AttSel 0.962 0.962
Bagging 0.962 0.962
J48 0.962 0.962
RF 0.962 0.962

Table 5.59: 4gramNoTLDDomainsRVLRV
4gramNoTLDDomainsRVLRV
Classifier TP Rate FP Rate
BLR 0.962 0.962
NBMultinomial 0.959 0.962
SMO 0.962 0.962
AttSel 0.962 0.962
Bagging 0.962 0.962
J48 0.962 0.962
RF 0.962 0.962

Table 5.60: 5gramNoTLDDomainsRVLRV
5gramNoTLDDomainsRVLRV
Classifier TP Rate FP Rate
BLR 0.962 0.962
NBMultinomial 0.959 0.962
SMO 0.962 0.962
AttSel 0.962 0.962
Bagging 0.962 0.962
J48 0.962 0.962
RF 0.962 0.962
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Table 5.61: 1gramFullDomainsBalCSDMCRV
1gramFullDomainsBalCSDMCRV
Classifier TP Rate FP Rate
BLR 1 0
NBMultinomial 1 0
SMO 0.997 0.003
AttSel 0.995 0.005
Bagging 0.995 0.005
J48 0.995 0.005
RF 0.997 0.003

Table 5.62: 2gramFullDomainsBalCSDMCRV
2gramFullDomainsBalCSDMCRV
Classifier TP Rate FP Rate
BLR 1 0
NBMultinomial 1 0
SMO 1 0
AttSel 0.995 0.005
Bagging 0.995 0.005
J48 0.995 0.005
RF 0.997 0.003

Table 5.63: 3gramFullDomainsBalCSDMCRV
3gramFullDomainsBalCSDMCRV
Classifier TP Rate FP Rate
BLR 1 0
NBMultinomial 1 0
SMO 0.997 0.003
AttSel 0.995 0.005
Bagging 0.995 0.005
J48 0.995 0.005
RF 0.997 0.003
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Table 5.64: 4gramFullDomainsBalCSDMCRV
4gramFullDomainsBalCSDMCRV
Classifier TP Rate FP Rate
BLR 1 0
NBMultinomial 1 0
SMO 0.997 0.003
AttSel 0.995 0.005
Bagging 0.995 0.005
J48 0.995 0.005
RF 0.997 0.003

Table 5.65: 5gramFullDomainsBalCSDMCRV
5gramFullDomainsBalCSDMCRV
Classifier TP Rate FP Rate
BLR 1 0
NBMultinomial 1 0
SMO 0.997 0.003
AttSel 0.995 0.005
Bagging 0.995 0.005
J48 0.995 0.005
RF 0.997 0.003

Table 5.66: 1gramNoTLDBalCSDMCRV
1gramNoTLDBalCSDMCRV
Classifier TP Rate FP Rate
BLR 1 0
NBMultinomial 1 0
SMO 0.995 0.005
AttSel 0.995 0.005
Bagging 0.995 0.005
J48 0.995 0.005
RF 0.997 0.003
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Table 5.67: 2gramNoTLDBalCSDMCRV
2gramNoTLDBalCSDMCRV
Classifier TP Rate FP Rate
BLR 1 0
NBMultinomial 1 0
SMO 0.997 0.003
AttSel 0.992 0.008
Bagging 0.992 0.008
J48 0.992 0.008
RF 0.997 0.003

Table 5.68: 3gramNoTLDBalCSDMCRV
3gramNoTLDBalCSDMCRV
Classifier TP Rate FP Rate
BLR 1 0
NBMultinomial 1 0
SMO 0.997 0.003
AttSel 0.995 0.005
Bagging 0.995 0.005
J48 0.995 0.005
RF 0.997 0.003

Table 5.69: 4gramNoTLDBalCSDMCRV
4gramNoTLDBalCSDMCRV
Classifier TP Rate FP Rate
BLR 1 0
NBMultinomial 1 0
SMO 0.997 0.003
AttSel 0.995 0.005
Bagging 0.995 0.005
J48 0.995 0.005
RF 0.997 0.003
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Table 5.70: 5gramNoTLDBalCSDMCRV
5gramNoTLDBalCSDMCRV
Classifier TP Rate FP Rate
BLR 1 0
NBMultinomial 1 0
SMO 0.997 0.003
AttSel 0.995 0.005
Bagging 0.995 0.005
J48 0.995 0.005
RF 0.997 0.003

Table 5.71: 1gramFullDomainsCSDMCRV
1gramFullDomainsCSDMCRV
Classifier TP Rate FP Rate
BLR 1 0
NBMultinomial 1 0
SMO 1 0.005
AttSel 1 0.005
Bagging 1 0.005
J48 1 0.005
RF 1 0.005

Table 5.72: 2gramFullDomainsCSDMCRV
2gramFullDomainsCSDMCRV
Classifier TP Rate FP Rate
BLR 1 0
NBMultinomial 0.999 0
SMO 1 0.005
AttSel 1 0.005
Bagging 1 0.005
J48 1 0.005
RF 1 0.005

71



Table 5.73: 3gramFullDomainsCSDMCRV
3gramFullDomainsCSDMCRV
Classifier TP Rate FP Rate
BLR 1 0
NBMultinomial 0.998 0
SMO 1 0.005
AttSel 1 0.005
Bagging 1 0.005
J48 1 0.005
RF 1 0.005

Table 5.74: 4gramFullDomainsCSDMCRV
4gramFullDomainsCSDMCRV
Classifier TP Rate FP Rate
BLR 1 0
NBMultinomial 0.994 0
SMO 1 0.005
AttSel 1 0.005
Bagging 1 0.005
J48 1 0.005
RF 1 0.005
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Tables 5.71 to 5.75 summarize the TPR and FPR values of the experiments on

the unbalanced dataset CSDMCRV having full domains. Results till 5-grams are

reported here. These results show that the detection rates are fairly constant for all

classifiers except NBMultinomial.

Tables 5.76 to 5.80 summarize the TPR and FPR values of the experiments on the

unbalanced dataset CSDMCRV having domains with no TLD. Results till 5-grams

are reported here. These results show that the detection rates are fairly constant for

all classifiers except NBMultinomial.

Tables 5.81 and 5.82 summarize the TPR and FPR values of the Confidence-

Weighted algorithm experiments on the balanced and unbalanced dataset CSDMC-

NPN having domains with no TLD. Results till 10-grams are reported here. These

results show that the detection rates are fairly constant for all n-grams.

Tables 5.83 and 5.84 summarize the TPR and FPR values of the Confidence-

Weighted algorithm experiments on the balanced and unbalanced dataset CSDM-

CNPN having full domains. Results till 10-grams are reported here. These results

show that the detection rates are fairly constant for all n-grams.

Tables 5.85 and 5.86 summarize the TPR and FPR values of the Confidence-

Weighted algorithm experiments on the balanced and unbalanced dataset RVLNPN

having full domains. Results till 10-grams are reported here. These results show

that the detection rates are fairly constant for all n-grams.

Tables 5.87 and 5.88 summarize the TPR and FPR values of the Confidence-

Weighted algorithm experiments on the balanced and unbalanced dataset RVLNPN
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having domains with no TLD. Results till 10-grams are reported here. These results

show that the detection rates are fairly constant for all n-grams.
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Table 5.75: 5gramFullDomainsCSDMCRV
5gramFullDomainsCSDMCRV
Classifier TP Rate FP Rate
BLR 1 0
NBMultinomial 0.988 0.001
SMO 1 0.005
AttSel 1 0.005
Bagging 1 0.005
J48 1 0.005
RF 1 0.005

Table 5.76: 1gramNoTLDCSDMCRV
1gramNoTLDCSDMCRV
Classifier TP Rate FP Rate
BLR 1 0
NBMultinomial 1 0
SMO 1 0.005
AttSel 1 0.005
Bagging 1 0.005
J48 1 0.005
RF 1 0.005

Table 5.77: 2gramNoTLDCSDMCRV
2gramNoTLDCSDMCRV
Classifier TP Rate FP Rate
BLR 1 0
NBMultinomial 0.999 0
SMO 1 0.005
AttSel 1 0.005
Bagging 1 0.005
J48 1 0.005
RF 1 0.005
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Table 5.78: 3gramNoTLDCSDMCRV
3gramNoTLDCSDMCRV
Classifier TP Rate FP Rate
BLR 1 0
NBMultinomial 0.994 0
SMO 1 0.005
AttSel 1 0.005
Bagging 1 0.005
J48 1 0.005
RF 1 0.005

Table 5.79: 4gramNoTLDCSDMCRV
4gramNoTLDCSDMCRV
Classifier TP Rate FP Rate
BLR 1 0
NBMultinomial 0.988 0.001
SMO 1 0.005
AttSel 1 0.005
Bagging 1 0.005
J48 1 0.005
RF 1 0.005

Table 5.80: 5gramNoTLDCSDMCRV
5gramNoTLDCSDMCRV
Classifier TP Rate FP Rate
BLR 1 0
NBMultinomial 0.983 0.001
SMO 1 0.005
AttSel 1 0.005
Bagging 1 0.005
J48 1 0.005
RF 1 0.005
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Table 5.81: Confidence-Weighted Results for NoTLDDomainsBalCSDMCNPN
NoTLDDomainsBalCSDMCNPN
Gram TP Rate FP Rate
1 0.997965412 0.00169549
2 1 0.00169549
3 1 0.00169549
4 1 0.00169549
5 1 0.00169549
6 1 0.00169549
7 1 0.00169549
8 1 0.00169549
9 1 0.00169549
10 1 0.00169549

Table 5.82: Confidence-Weighted Results for NoTLDDomainsCSDMCNPN
NoTLDDomainsCSDMCNPN
Gram TP Rate FP Rate
1 0.998643608 0.000147406
2 1 0
3 1 0
4 1 0
5 1 0
6 1 0.000294811
7 1 0.000294811
8 1 0.000294811
9 1 0
10 1 0
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Table 5.83: Confidence-Weighted Results for FullDomainsBalCSDMCNPN
FullDomainsBalCSDMCNPN
Gram TP Rate FP Rate
1 0.999660902 0.001356392
2 0.799392097 0.199523323
3 1 0.001356392
4 1 0.001356392
5 1 0.001356392
6 1 0.001356392
7 1 0.001356392
8 1 0.001356392
9 1 0.001356392
10 1 0.001356392

Table 5.84: Confidence-Weighted Results for FullDomainsCSDMCNPN
FullDomainsCSDMCNPN
Gram TP Rate FP Rate
1 0.99830451 0.000147406
2 1 0
3 1 0
4 1 0
5 1 0
6 1 0
7 1 0.000294811
8 1 0.000294811
9 1 0
10 1 0
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Table 5.85: Confidence-Weighted Results for FullDomainsBalRVLNPN
FullDomainsBalRVLNPN
Gram TP Rate FP Rate
1 0.999115566 0.000589623
2 1 0.001356392
3 0.598996656 0.399587345
4 1 0.001356392
5 1 0.001356392
6 1 0.001356392
7 1 0.001356392
8 1 0.001356392
9 1 0.001356392
10 1 0.001356392

Table 5.86: Confidence-Weighted Results for FullDomainsRVLNPN
FullDomainsRVLNPN
Gram TP Rate FP Rate
1 0.999115566 0.000589623
2 1 0.001356392
3 0.598996656 0.399587345
4 1 0.001356392
5 1 0.001356392
6 1 0.001356392
7 1 0.001356392
8 1 0.001356392
9 1 0.001356392
10 1 0.001356392
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Table 5.87: Confidence-Weighted Results for NoTLDDomainsBalRVLNPN
NoTLDDomainsBalRVLNPN
Gram TP Rate FP Rate
1 1 0.000589623
2 1 0.000294811
3 0.999410377 0.000884434
4 1 0.000589623
5 0.999410377 0.000589623
6 1 0.000294811
7 1 0.000589623
8 1 0.000589623
9 1 0.000589623
10 0.799822852 0.200765381

Table 5.88: Confidence-Weighted Results for NoTLDDomainsRVLNPN
NoTLDDomainsRVLNPN
Gram TP Rate FP Rate
1 0.999598877 0
2 1 0
3 1 0
4 0.999598877 0.000589623
5 1 0.000294811
6 1 0
7 0.631010265 0.238378639
8 1 0
9 0.6332907 0.241702398
10 1 0
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Table 5.89: Results for 1-gram features of the full domains dataset
1gramFullDomainsFromHeader&IPsNoMsgIdCSDMCRVL+NPNRV
Class Classifier TPR FPR Precision Recall FMeasure ROC
legit ABoost 0.996 0.004 0.998 0.996 0.997 1
phish ABoost 0.996 0.004 0.991 0.996 0.994 1
Wghtd ABoost 0.996 0.004 0.996 0.996 0.996 1
legit AttSel 0.998 0.074 0.968 0.998 0.983 0.962
phish AttSel 0.926 0.002 0.995 0.926 0.959 0.962
Wghtd AttSel 0.976 0.051 0.976 0.976 0.975 0.962
legit Bagging 1 0.001 0.999 1 1 1
phish Bagging 0.999 0 1 0.999 0.999 1
Wghtd Bagging 1 0.001 1 1 1 1
legit BLR 0.997 0.059 0.974 0.997 0.985 0.969
phish BLR 0.941 0.003 0.993 0.941 0.967 0.969
Wghtd BLR 0.98 0.041 0.98 0.98 0.98 0.969
legit J48 0.998 0.001 0.999 0.998 0.999 0.999
phish J48 0.999 0.002 0.995 0.999 0.997 0.999
Wghtd J48 0.998 0.001 0.998 0.998 0.998 0.999
legit NB 0.998 0.074 0.968 0.998 0.983 0.967
phish NB 0.926 0.002 0.995 0.926 0.959 0.991
Wghtd NB 0.976 0.051 0.976 0.976 0.975 0.975
legit RF 1 0.001 1 1 1 1
phish RF 0.999 0 1 0.999 1 1
Wghtd RF 1 0 1 1 1 1
legit SMO 1 0 1 1 1 1
phish SMO 1 0 1 1 1 1
Wghtd SMO 1 0 1 1 1 1
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Table 5.90: Results for 2-gram features of the full domains dataset
2gramFullDomainsFromHeader&IPsNoMsgIdCSDMCRVL+NPNRV
Class Classifier TPR FPR Precision Recall FMeasure ROC
legit ABoost 0.999 0.004 0.998 0.999 0.999 1
phish ABoost 0.996 0.001 0.998 0.996 0.997 1

Wghtd ABoost 0.998 0.003 0.998 0.998 0.998 1
legit AttSel 1 0.004 0.998 1 0.999 0.998
phish AttSel 0.996 0 0.999 0.996 0.998 0.998

Wghtd AttSel 0.999 0.003 0.999 0.999 0.999 0.998
legit Bagging 1 0.001 1 1 1 1
phish Bagging 0.999 0 1 0.999 0.999 1

Wghtd Bagging 1 0.001 1 1 1 1
legit BLR 1 0 1 1 1 1
phish BLR 1 0 1 1 1 1

Wghtd BLR 1 0 1 1 1 1
legit J48 1 0.002 0.999 1 1 0.999
phish J48 0.998 0 1 0.998 0.999 0.999

Wghtd J48 0.999 0.001 0.999 0.999 0.999 0.999
legit NB 1 0.074 0.968 1 0.983 0.97
phish NB 0.926 0 0.999 0.926 0.961 0.98

Wghtd NB 0.977 0.051 0.978 0.977 0.977 0.974
legit RF 1 0.001 1 1 1 1
phish RF 0.999 0 1 0.999 0.999 1

Wghtd RF 1 0.001 1 1 1 1
legit SMO 1 0 1 1 1 1
phish SMO 1 0 1 1 1 1

Wghtd SMO 1 0 1 1 1 1

82



Table 5.91: Results for 3-gram features of the full domains dataset
3gramFullDomainsFromHeader&IPsNoMsgIdCSDMCRVL+NPNRV
Class Classifier TPR FPR Precision Recall FMeasure ROC
legit ABoost 0.999 0.004 0.998 0.999 0.999 1
phish ABoost 0.996 0.001 0.998 0.996 0.997 1

Wghtd ABoost 0.998 0.003 0.998 0.998 0.998 1
legit AttSel 1 0.004 0.998 1 0.999 0.998
phish AttSel 0.996 0 0.999 0.996 0.998 0.998

Wghtd AttSel 0.999 0.003 0.999 0.999 0.999 0.998
legit Bagging 1 0.001 1 1 1 1
phish Bagging 0.999 0 1 0.999 0.999 1

Wghtd Bagging 1 0.001 1 1 1 1
legit BLR 1 0 1 1 1 1
phish BLR 1 0 1 1 1 1

Wghtd BLR 1 0 1 1 1 1
legit J48 1 0.002 0.999 1 1 0.999
phish J48 0.998 0 1 0.998 0.999 0.999

Wghtd J48 0.999 0.001 0.999 0.999 0.999 0.999
legit NB 0.999 0.074 0.968 0.999 0.983 0.971
phish NB 0.926 0.001 0.999 0.926 0.961 0.98

Wghtd NB 0.977 0.051 0.977 0.977 0.976 0.974
legit RF 1 0 1 1 1 1
phish RF 1 0 1 1 1 1

Wghtd RF 1 0 1 1 1 1
legit SMO 1 0 1 1 1 1
phish SMO 1 0 1 1 1 1

Wghtd SMO 1 0 1 1 1 1
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Table 5.92: Results for 4-gram features of the full domains dataset
4gramFullDomainsFromHeader&IPsNoMsgIdCSDMCRVL+NPNRV
Class Classifier TPR FPR Precision Recall FMeasure ROC
legit ABoost 0.999 0.004 0.998 0.999 0.999 1
phish ABoost 0.996 0.001 0.998 0.996 0.997 1

Wghtd ABoost 0.998 0.003 0.998 0.998 0.998 1
legit AttSel 1 0.004 0.998 1 0.999 0.998
phish AttSel 0.996 0 0.999 0.996 0.998 0.998

Wghtd AttSel 0.999 0.003 0.999 0.999 0.999 0.998
legit Bagging 1 0.001 1 1 1 1
phish Bagging 0.999 0 1 0.999 0.999 1

Wghtd Bagging 1 0.001 1 1 1 1
legit BLR 1 0 1 1 1 1
phish BLR 1 0 1 1 1 1

Wghtd BLR 1 0 1 1 1 1
legit J48 1 0.002 0.999 1 1 0.999
phish J48 0.998 0 1 0.998 0.999 0.999

Wghtd J48 0.999 0.001 0.999 0.999 0.999 0.999
legit NB 0.999 0.074 0.968 0.999 0.983 0.971
phish NB 0.926 0.001 0.999 0.926 0.961 0.979

Wghtd NB 0.977 0.051 0.977 0.977 0.976 0.973
legit RF 1 0.001 1 1 1 1
phish RF 0.999 0 1 0.999 0.999 1

Wghtd RF 1 0.001 1 1 1 1
legit SMO 1 0 1 1 1 1
phish SMO 1 0 1 1 1 1

Wghtd SMO 1 0 1 1 1 1
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Tables 5.89 to 5.98 summarize the results of the weka experiments on the com-

bined dataset CSDMCRVL+NPNRV having full domains. Results till 10-grams are

reported here. These results show that the detection rates are fairly constant for all

n-grams.

Tables 5.99 to 5.108 summarize the results of the weka experiments on the com-

bined dataset CSDMCRVL+NPNRV having domains with no TLD. Results till 10-

grams are reported here. These results show that the detection rates are fairly

constant for all n-grams.

Tables 5.109 and 5.110 summarize the results of the Confidence Weighted Algo-

rithm experiments on the combined dataset CSDMCRVL+NPNRV having domains

with no TLD. Results till 10-grams are reported here. These results show that the

detection rates are fairly constant for all n-grams.

5.7 Information Gain

Since n-gram analysis results in creation of a very high number of features, we de-

cided to find out which features were the most contributing ones towards the final

classification. We selected the top 25 features according to their information gain

values. Tables 5.111 and 5.112 show the features with their respective information

gain values. These values clearly show a pattern that the domains with uh.edu in

them were easily separable from the others. This is because of a large number of

emails of the contributor having this particular domain segment.
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Table 5.93: Results for 5-gram features of the full domains dataset
5gramFullDomainsFromHeader&IPsNoMsgIdCSDMCRVL+NPNRV
Class Classifier TPR FPR Precision Recall FMeasure ROC
legit ABoost 0.999 0.004 0.998 0.999 0.999 1
phish ABoost 0.996 0.001 0.998 0.996 0.997 1

Wghtd ABoost 0.998 0.003 0.998 0.998 0.998 1
legit AttSel 1 0.004 0.998 1 0.999 0.998
phish AttSel 0.996 0 0.999 0.996 0.998 0.998

Wghtd AttSel 0.999 0.003 0.999 0.999 0.999 0.998
legit Bagging 1 0.001 1 1 1 1
phish Bagging 0.999 0 1 0.999 0.999 1

Wghtd Bagging 1 0.001 1 1 1 1
legit BLR 1 0 1 1 1 1
phish BLR 1 0 1 1 1 1

Wghtd BLR 1 0 1 1 1 1
legit J48 1 0.002 0.999 1 1 0.999
phish J48 0.998 0 1 0.998 0.999 0.999

Wghtd J48 0.999 0.001 0.999 0.999 0.999 0.999
legit NB 0.999 0.074 0.968 0.999 0.983 0.971
phish NB 0.926 0.001 0.999 0.926 0.961 0.979

Wghtd NB 0.977 0.051 0.977 0.977 0.976 0.973
legit RF 1 0.001 0.999 1 1 1
phish RF 0.999 0 1 0.999 0.999 1

Wghtd RF 1 0.001 1 1 1 1
legit SMO 1 0 1 1 1 1
phish SMO 1 0 1 1 1 1

Wghtd SMO 1 0 1 1 1 1
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Table 5.94: Results for 6-gram features of the full domains dataset
6gramFullDomainsFromHeader&IPsNoMsgIdCSDMCRVL+NPNRV
Class Classifier TPR FPR Precision Recall FMeasure ROC
legit ABoost 0.999 0.004 0.998 0.999 0.999 1
phish ABoost 0.996 0.001 0.998 0.996 0.997 1

Wghtd ABoost 0.998 0.003 0.998 0.998 0.998 1
legit AttSel 1 0.004 0.998 1 0.999 0.998
phish AttSel 0.996 0 0.999 0.996 0.998 0.998

Wghtd AttSel 0.999 0.003 0.999 0.999 0.999 0.998
legit Bagging 1 0.001 1 1 1 1
phish Bagging 0.999 0 1 0.999 0.999 1

Wghtd Bagging 1 0.001 1 1 1 1
legit BLR 1 0 1 1 1 1
phish BLR 1 0 1 1 1 1

Wghtd BLR 1 0 1 1 1 1
legit J48 1 0.002 0.999 1 1 0.999
phish J48 0.998 0 1 0.998 0.999 0.999

Wghtd J48 0.999 0.001 0.999 0.999 0.999 0.999
legit NB 1 0.074 0.968 1 0.983 0.971
phish NB 0.926 0 0.999 0.926 0.961 0.979

Wghtd NB 0.977 0.051 0.978 0.977 0.977 0.973
legit RF 1 0.001 1 1 1 1
phish RF 0.999 0 1 0.999 0.999 1

Wghtd RF 1 0.001 1 1 1 1
legit SMO 1 0 1 1 1 1
phish SMO 1 0 1 1 1 1

Wghtd SMO 1 0 1 1 1 1
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Table 5.95: Results for 7-gram features of the full domains dataset
7gramFullDomainsFromHeader&IPsNoMsgIdCSDMCRVL+NPNRV
Class Classifier TPR FPR Precision Recall FMeasure ROC
legit ABoost 0.999 0.004 0.998 0.999 0.999 1
phish ABoost 0.996 0.001 0.998 0.996 0.997 1

Wghtd ABoost 0.998 0.003 0.998 0.998 0.998 1
legit AttSel 1 0.004 0.998 1 0.999 0.998
phish AttSel 0.996 0 0.999 0.996 0.998 0.998

Wghtd AttSel 0.999 0.003 0.999 0.999 0.999 0.998
legit Bagging 1 0.001 1 1 1 1
phish Bagging 0.999 0 1 0.999 0.999 1

Wghtd Bagging 1 0.001 1 1 1 1
legit BLR 1 0 1 1 1 1
phish BLR 1 0 1 1 1 1

Wghtd BLR 1 0 1 1 1 1
legit J48 1 0.002 0.999 1 1 0.999
phish J48 0.998 0 1 0.998 0.999 0.999

Wghtd J48 0.999 0.001 0.999 0.999 0.999 0.999
legit NB 1 0.074 0.968 1 0.983 0.971
phish NB 0.926 0 0.999 0.926 0.961 0.979

Wghtd NB 0.977 0.051 0.978 0.977 0.977 0.973
legit RF 1 0 1 1 1 1
phish RF 1 0 1 1 1 1

Wghtd RF 1 0 1 1 1 1
legit SMO 1 0 1 1 1 1
phish SMO 1 0 1 1 1 1

Wghtd SMO 1 0 1 1 1 1
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Table 5.96: Results for 8-gram features of the full domains dataset
8gramFullDomainsFromHeader&IPsNoMsgIdCSDMCRVL+NPNRV
Class Classifier TPR FPR Precision Recall FMeasure ROC
legit ABoost 0.999 0.004 0.998 0.999 0.999 1
phish ABoost 0.996 0.001 0.998 0.996 0.997 1

Wghtd ABoost 0.998 0.003 0.998 0.998 0.998 1
legit AttSel 1 0.004 0.998 1 0.999 0.998
phish AttSel 0.996 0 0.999 0.996 0.998 0.998

Wghtd AttSel 0.999 0.003 0.999 0.999 0.999 0.998
legit Bagging 1 0.001 1 1 1 1
phish Bagging 0.999 0 1 0.999 0.999 1

Wghtd Bagging 1 0.001 1 1 1 1
legit BLR 1 0 1 1 1 1
phish BLR 1 0 1 1 1 1

Wghtd BLR 1 0 1 1 1 1
legit J48 1 0.002 0.999 1 1 0.999
phish J48 0.998 0 1 0.998 0.999 0.999

Wghtd J48 0.999 0.001 0.999 0.999 0.999 0.999
legit NB 1 0.074 0.968 1 0.983 0.971
phish NB 0.926 0 0.999 0.926 0.961 0.979

Wghtd NB 0.977 0.051 0.978 0.977 0.977 0.973
legit RF 1 0.001 1 1 1 1
phish RF 0.999 0 1 0.999 1 1

Wghtd RF 1 0 1 1 1 1
legit SMO 1 0 1 1 1 1
phish SMO 1 0 1 1 1 1

Wghtd SMO 1 0 1 1 1 1
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Table 5.97: Results for 9-gram features of the full domains dataset
9gramFullDomainsFromHeader&IPsNoMsgIdCSDMCRVL+NPNRV
Class Classifier TPR FPR Precision Recall FMeasure ROC
legit ABoost 0.999 0.004 0.998 0.999 0.999 1
phish ABoost 0.996 0.001 0.998 0.996 0.997 1

Wghtd ABoost 0.998 0.003 0.998 0.998 0.998 1
legit AttSel 1 0.004 0.998 1 0.999 0.998
phish AttSel 0.996 0 0.999 0.996 0.998 0.998

Wghtd AttSel 0.999 0.003 0.999 0.999 0.999 0.998
legit Bagging 1 0.001 1 1 1 1
phish Bagging 0.999 0 1 0.999 0.999 1

Wghtd Bagging 1 0.001 1 1 1 1
legit BLR 1 0 1 1 1 1
phish BLR 1 0 1 1 1 1

Wghtd BLR 1 0 1 1 1 1
legit J48 1 0.002 0.999 1 1 0.999
phish J48 0.998 0 1 0.998 0.999 0.999

Wghtd J48 0.999 0.001 0.999 0.999 0.999 0.999
legit NB 1 0.074 0.968 1 0.983 0.971
phish NB 0.926 0 0.999 0.926 0.961 0.979

Wghtd NB 0.977 0.051 0.978 0.977 0.977 0.973
legit RF 1 0.001 1 1 1 1
phish RF 0.999 0 1 0.999 1 1

Wghtd RF 1 0 1 1 1 1
legit SMO 1 0 1 1 1 1
phish SMO 1 0 1 1 1 1

Wghtd SMO 1 0 1 1 1 1
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Table 5.98: Results for 10-gram features of the full domains dataset
10gramFullDomainsFromHeader&IPsNoMsgIdCSDMCRVL+NPNRV
Class Classifier TPR FPR Precision Recall FMeasure ROC
legit ABoost 0.999 0.004 0.998 0.999 0.999 1
phish ABoost 0.996 0.001 0.998 0.996 0.997 1

Wghtd ABoost 0.998 0.003 0.998 0.998 0.998 1
legit AttSel 1 0.004 0.998 1 0.999 0.998
phish AttSel 0.996 0 0.999 0.996 0.998 0.998

Wghtd AttSel 0.999 0.003 0.999 0.999 0.999 0.998
legit Bagging 1 0.001 1 1 1 1
phish Bagging 0.999 0 1 0.999 0.999 1

Wghtd Bagging 1 0.001 1 1 1 1
legit BLR 1 0 1 1 1 1
phish BLR 1 0 1 1 1 1

Wghtd BLR 1 0 1 1 1 1
legit J48 1 0.002 0.999 1 1 0.999
phish J48 0.998 0 1 0.998 0.999 0.999

Wghtd J48 0.999 0.001 0.999 0.999 0.999 0.999
legit NB 1 0.074 0.968 1 0.983 0.971
phish NB 0.926 0 0.999 0.926 0.961 0.979

Wghtd NB 0.977 0.051 0.978 0.977 0.977 0.973
legit RF 1 0 1 1 1 1
phish RF 1 0 1 1 1 1

Wghtd RF 1 0 1 1 1 1
legit SMO 1 0 1 1 1 1
phish SMO 1 0 1 1 1 1

Wghtd SMO 1 0 1 1 1 1
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Table 5.99: Results for 1-gram features of the domains with no TLD dataset
1gramNoTLDDomainsFromHeader&IPsNoMsgIdCSDMCRVL+NPNRV
Class Classifier TPR FPR Precision Recall FMeasure ROC
legit ABoost 0.999 0.074 0.967 0.999 0.983 0.98
phish ABoost 0.926 0.001 0.997 0.926 0.96 0.98

Wghtd ABoost 0.976 0.052 0.977 0.976 0.976 0.98
legit AttSel 0.997 0.059 0.974 0.997 0.985 0.969
phish AttSel 0.941 0.003 0.992 0.941 0.966 0.969

Wghtd AttSel 0.979 0.042 0.98 0.979 0.979 0.969
legit Bagging 1 0.056 0.975 1 0.987 0.982
phish Bagging 0.944 0 0.999 0.944 0.971 0.982

Wghtd Bagging 0.982 0.039 0.983 0.982 0.982 0.982
legit BLR 0.999 0.059 0.974 0.999 0.987 0.97
phish BLR 0.941 0.001 0.998 0.941 0.969 0.97

Wghtd BLR 0.981 0.041 0.982 0.981 0.981 0.97
legit J48 0.999 0.056 0.975 0.999 0.987 0.981
phish J48 0.944 0.001 0.997 0.944 0.97 0.981

Wghtd J48 0.982 0.039 0.982 0.982 0.981 0.981
legit NB 0.996 0.074 0.968 0.996 0.981 0.966
phish NB 0.926 0.004 0.99 0.926 0.957 0.96

Wghtd NB 0.974 0.052 0.975 0.974 0.974 0.964
legit RF 1 0.055 0.976 1 0.988 0.983
phish RF 0.945 0 1 0.945 0.971 0.983

Wghtd RF 0.983 0.038 0.983 0.983 0.983 0.983
legit SMO 0.999 0.055 0.976 0.999 0.987 0.972
phish SMO 0.945 0.001 0.998 0.945 0.971 0.972

Wghtd SMO 0.982 0.038 0.983 0.982 0.982 0.972
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Table 5.100: Results for 2-gram features of the domains with no TLD dataset
2gramNoTLDDomainsFromHeader&IPsNoMsgIdCSDMCRVL+NPNRV
Class Classifier TPR FPR Precision Recall FMeasure ROC
legit ABoost 0.997 0.059 0.974 0.997 0.985 0.98
phish ABoost 0.941 0.003 0.993 0.941 0.966 0.98

Wghtd ABoost 0.98 0.041 0.98 0.98 0.979 0.98
legit AttSel 1 0.059 0.974 1 0.987 0.971
phish AttSel 0.941 0 1 0.941 0.97 0.971

Wghtd AttSel 0.982 0.04 0.982 0.982 0.982 0.971
legit Bagging 1 0.056 0.975 1 0.987 0.983
phish Bagging 0.944 0 0.999 0.944 0.971 0.983

Wghtd Bagging 0.982 0.039 0.983 0.982 0.982 0.983
legit BLR 1 0.055 0.976 1 0.988 0.973
phish BLR 0.945 0 1 0.945 0.972 0.973

Wghtd BLR 0.983 0.038 0.983 0.983 0.983 0.973
legit J48 1 0.056 0.975 1 0.987 0.978
phish J48 0.944 0 1 0.944 0.971 0.978

Wghtd J48 0.983 0.039 0.983 0.983 0.982 0.978
legit NB 0.995 0.074 0.968 0.995 0.981 0.97
phish NB 0.926 0.005 0.989 0.926 0.956 0.962

Wghtd NB 0.974 0.052 0.974 0.974 0.973 0.968
legit RF 1 0.055 0.976 1 0.988 0.983
phish RF 0.945 0 1 0.945 0.971 0.983

Wghtd RF 0.983 0.038 0.983 0.983 0.983 0.983
legit SMO 1 0.055 0.976 1 0.988 0.973
phish SMO 0.945 0 1 0.945 0.972 0.973

Wghtd SMO 0.983 0.038 0.983 0.983 0.983 0.973
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Table 5.101: Results for 3-gram features of the domains with no TLD dataset
3gramNoTLDDomainsFromHeader&IPsNoMsgIdCSDMCRVL+NPNRV
Class Classifier TPR FPR Precision Recall FMeasure ROC
legit ABoost 0.997 0.059 0.974 0.997 0.985 0.98
phish ABoost 0.941 0.003 0.993 0.941 0.966 0.98

Wghtd ABoost 0.98 0.041 0.98 0.98 0.979 0.98
legit AttSel 1 0.059 0.974 1 0.987 0.971
phish AttSel 0.941 0 1 0.941 0.97 0.971

Wghtd AttSel 0.982 0.04 0.982 0.982 0.982 0.971
legit Bagging 1 0.056 0.975 1 0.987 0.983
phish Bagging 0.944 0 0.999 0.944 0.971 0.983

Wghtd Bagging 0.982 0.039 0.983 0.982 0.982 0.983
legit BLR 1 0.055 0.976 1 0.988 0.973
phish BLR 0.945 0 1 0.945 0.972 0.973

Wghtd BLR 0.983 0.038 0.983 0.983 0.983 0.973
legit J48 1 0.056 0.975 1 0.987 0.978
phish J48 0.944 0 1 0.944 0.971 0.978

Wghtd J48 0.983 0.039 0.983 0.983 0.982 0.978
legit NB 0.995 0.074 0.968 0.995 0.981 0.971
phish NB 0.926 0.005 0.989 0.926 0.956 0.962

Wghtd NB 0.974 0.052 0.974 0.974 0.973 0.968
legit RF 1 0.055 0.976 1 0.988 0.983
phish RF 0.945 0 1 0.945 0.971 0.983

Wghtd RF 0.983 0.038 0.983 0.983 0.983 0.983
legit SMO 1 0.055 0.976 1 0.988 0.973
phish SMO 0.945 0 1 0.945 0.972 0.973

Wghtd SMO 0.983 0.038 0.983 0.983 0.983 0.973
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Table 5.102: Results for 4-gram features of the domains with no TLD dataset
4gramNoTLDDomainsFromHeader&IPsNoMsgIdCSDMCRVL+NPNRV
Class Classifier TPR FPR Precision Recall FMeasure ROC
legit ABoost 1 0.055 0.976 1 0.988 0.973
phish ABoost 0.945 0 1 0.945 0.972 0.973

Wghtd ABoost 0.983 0.038 0.983 0.983 0.983 0.973
legit AttSel 1 0.059 0.974 1 0.987 0.971
phish AttSel 0.941 0 1 0.941 0.97 0.971

Wghtd AttSel 0.982 0.04 0.982 0.982 0.982 0.971
legit Bagging 1 0.056 0.975 1 0.987 0.983
phish Bagging 0.944 0 0.999 0.944 0.971 0.983

Wghtd Bagging 0.982 0.039 0.983 0.982 0.982 0.983
legit BLR 1 0.055 0.976 1 0.988 0.973
phish BLR 0.945 0 1 0.945 0.972 0.973

Wghtd BLR 0.983 0.038 0.983 0.983 0.983 0.973
legit J48 1 0.056 0.975 1 0.987 0.978
phish J48 0.944 0 1 0.944 0.971 0.978

Wghtd J48 0.983 0.039 0.983 0.983 0.982 0.978
legit NB 0.995 0.074 0.968 0.995 0.981 0.97
phish NB 0.926 0.005 0.989 0.926 0.956 0.961

Wghtd NB 0.974 0.052 0.974 0.974 0.973 0.967
legit RF 1 0.055 0.976 1 0.988 0.983
phish RF 0.945 0 1 0.945 0.971 0.983

Wghtd RF 0.983 0.038 0.983 0.983 0.983 0.983
legit SMO 1 0.055 0.976 1 0.988 0.973
phish SMO 0.945 0 1 0.945 0.972 0.973

Wghtd SMO 0.983 0.038 0.983 0.983 0.983 0.973
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Table 5.103: Results for 5-gram features of the domains with no TLD dataset
5gramNoTLDDomainsFromHeader&IPsNoMsgIdCSDMCRVL+NPNRV
Class Classifier TPR FPR Precision Recall FMeasure ROC
legit ABoost 0.997 0.059 0.974 0.997 0.985 0.98
phish ABoost 0.941 0.003 0.993 0.941 0.966 0.98

Wghtd ABoost 0.98 0.041 0.98 0.98 0.979 0.98
legit AttSel 1 0.059 0.974 1 0.987 0.971
phish AttSel 0.941 0 1 0.941 0.97 0.971

Wghtd AttSel 0.982 0.04 0.982 0.982 0.982 0.971
legit Bagging 1 0.056 0.975 1 0.987 0.983
phish Bagging 0.944 0 0.999 0.944 0.971 0.983

Wghtd Bagging 0.982 0.039 0.983 0.982 0.982 0.983
legit BLR 1 0.055 0.976 1 0.988 0.973
phish BLR 0.945 0 1 0.945 0.972 0.973

Wghtd BLR 0.983 0.038 0.983 0.983 0.983 0.973
legit J48 1 0.056 0.975 1 0.987 0.978
phish J48 0.944 0 1 0.944 0.971 0.978

Wghtd J48 0.983 0.039 0.983 0.983 0.982 0.978
legit NB 0.995 0.074 0.968 0.995 0.981 0.97
phish NB 0.926 0.005 0.989 0.926 0.956 0.961

Wghtd NB 0.974 0.052 0.974 0.974 0.973 0.967
legit RF 1 0.055 0.976 1 0.988 0.983
phish RF 0.945 0 1 0.945 0.972 0.983

Wghtd RF 0.983 0.038 0.983 0.983 0.983 0.983
legit SMO 1 0.055 0.976 1 0.988 0.973
phish SMO 0.945 0 1 0.945 0.972 0.973

Wghtd SMO 0.983 0.038 0.983 0.983 0.983 0.973
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Table 5.104: Results for 6-gram features of the domains with no TLD dataset
6gramNoTLDDomainsFromHeader&IPsNoMsgIdCSDMCRVL+NPNRV
Class Classifier TPR FPR Precision Recall FMeasure ROC
legit ABoost 0.997 0.059 0.974 0.997 0.985 0.98
phish ABoost 0.941 0.003 0.993 0.941 0.966 0.98

Wghtd ABoost 0.98 0.041 0.98 0.98 0.979 0.98
legit AttSel 1 0.059 0.974 1 0.987 0.971
phish AttSel 0.941 0 1 0.941 0.97 0.971

Wghtd AttSel 0.982 0.04 0.982 0.982 0.982 0.971
legit Bagging 1 0.056 0.975 1 0.987 0.983
phish Bagging 0.944 0 0.999 0.944 0.971 0.983

Wghtd Bagging 0.982 0.039 0.983 0.982 0.982 0.983
legit BLR 1 0.055 0.976 1 0.988 0.973
phish BLR 0.945 0 1 0.945 0.972 0.973

Wghtd BLR 0.983 0.038 0.983 0.983 0.983 0.973
legit J48 1 0.056 0.975 1 0.987 0.978
phish J48 0.944 0 1 0.944 0.971 0.978

Wghtd J48 0.983 0.039 0.983 0.983 0.982 0.978
legit NB 0.995 0.074 0.968 0.995 0.981 0.97
phish NB 0.926 0.005 0.989 0.926 0.956 0.961

Wghtd NB 0.974 0.052 0.974 0.974 0.973 0.967
legit RF 1 0.055 0.976 1 0.988 0.983
phish RF 0.945 0 1 0.945 0.972 0.983

Wghtd RF 0.983 0.038 0.983 0.983 0.983 0.983
legit SMO 1 0.055 0.976 1 0.988 0.973
phish SMO 0.945 0 1 0.945 0.972 0.973

Wghtd SMO 0.983 0.038 0.983 0.983 0.983 0.973
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Table 5.105: Results for 7-gram features of the domains with no TLD dataset
7gramNoTLDDomainsFromHeader&IPsNoMsgIdCSDMCRVL+NPNRV
Class Classifier TPR FPR Precision Recall FMeasure ROC
legit ABoost 0.997 0.059 0.974 0.997 0.985 0.98
phish ABoost 0.941 0.003 0.993 0.941 0.966 0.98

Wghtd ABoost 0.98 0.041 0.98 0.98 0.979 0.98
legit AttSel 1 0.059 0.974 1 0.987 0.971
phish AttSel 0.941 0 1 0.941 0.97 0.971

Wghtd AttSel 0.982 0.04 0.982 0.982 0.982 0.971
legit Bagging 1 0.056 0.975 1 0.987 0.983
phish Bagging 0.944 0 0.999 0.944 0.971 0.983

Wghtd Bagging 0.982 0.039 0.983 0.982 0.982 0.983
legit BLR 1 0.055 0.976 1 0.988 0.973
phish BLR 0.945 0 1 0.945 0.972 0.973

Wghtd BLR 0.983 0.038 0.983 0.983 0.983 0.973
legit J48 1 0.056 0.975 1 0.987 0.978
phish J48 0.944 0 1 0.944 0.971 0.978

Wghtd J48 0.983 0.039 0.983 0.983 0.982 0.978
legit NB 0.995 0.074 0.968 0.995 0.981 0.97
phish NB 0.926 0.005 0.989 0.926 0.956 0.961

Wghtd NB 0.974 0.052 0.974 0.974 0.973 0.967
legit RF 1 0.055 0.976 1 0.988 0.983
phish RF 0.945 0 1 0.945 0.972 0.983

Wghtd RF 0.983 0.038 0.983 0.983 0.983 0.983
legit SMO 1 0.055 0.976 1 0.988 0.973
phish SMO 0.945 0 1 0.945 0.972 0.973

Wghtd SMO 0.983 0.038 0.983 0.983 0.983 0.973
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Table 5.106: Results for 8-gram features of the domains with no TLD dataset
8gramNoTLDDomainsFromHeader&IPsNoMsgIdCSDMCRVL+NPNRV
Class Classifier TPR FPR Precision Recall FMeasure ROC
legit ABoost 0.997 0.059 0.974 0.997 0.985 0.98
phish ABoost 0.941 0.003 0.993 0.941 0.966 0.98

Wghtd ABoost 0.98 0.041 0.98 0.98 0.979 0.98
legit AttSel 1 0.059 0.974 1 0.987 0.971
phish AttSel 0.941 0 1 0.941 0.97 0.971

Wghtd AttSel 0.982 0.04 0.982 0.982 0.982 0.971
legit BLR 1 0.055 0.976 1 0.988 0.973
phish BLR 0.945 0 1 0.945 0.972 0.973

Wghtd BLR 0.983 0.038 0.983 0.983 0.983 0.973
legit J48 1 0.056 0.975 1 0.987 0.978
phish J48 0.944 0 1 0.944 0.971 0.978

Wghtd J48 0.983 0.039 0.983 0.983 0.982 0.978
legit NB 0.995 0.074 0.968 0.995 0.981 0.97
phish NB 0.926 0.005 0.989 0.926 0.956 0.961

Wghtd NB 0.974 0.052 0.974 0.974 0.973 0.967
legit RF 1 0.055 0.976 1 0.988 0.983
phish RF 0.945 0 1 0.945 0.972 0.983

Wghtd RF 0.983 0.038 0.983 0.983 0.983 0.983
legit SMO 1 0.055 0.976 1 0.988 0.973
phish SMO 0.945 0 1 0.945 0.972 0.973

Wghtd SMO 0.983 0.038 0.983 0.983 0.983 0.973
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Table 5.107: Results for 9-gram features of the domains with no TLD dataset
9gramNoTLDDomainsFromHeader&IPsNoMsgIdCSDMCRVL+NPNRV
Class Classifier TPR FPR Precision Recall FMeasure ROC
legit ABoost 0.997 0.059 0.974 0.997 0.985 0.98
phish ABoost 0.941 0.003 0.993 0.941 0.966 0.98

Wghtd ABoost 0.98 0.041 0.98 0.98 0.979 0.98
legit AttSel 1 0.059 0.974 1 0.987 0.971
phish AttSel 0.941 0 1 0.941 0.97 0.971

Wghtd AttSel 0.982 0.04 0.982 0.982 0.982 0.971
legit BLR 1 0.055 0.976 1 0.988 0.973
phish BLR 0.945 0 1 0.945 0.972 0.973

Wghtd BLR 0.983 0.038 0.983 0.983 0.983 0.973
legit J48 1 0.056 0.975 1 0.987 0.978
phish J48 0.944 0 1 0.944 0.971 0.978

Wghtd J48 0.983 0.039 0.983 0.983 0.982 0.978
legit NB 0.995 0.074 0.968 0.995 0.981 0.97
phish NB 0.926 0.005 0.989 0.926 0.956 0.961

Wghtd NB 0.974 0.052 0.974 0.974 0.973 0.967
legit RF 1 0.055 0.976 1 0.988 0.983
phish RF 0.945 0 1 0.945 0.972 0.983

Wghtd RF 0.983 0.038 0.983 0.983 0.983 0.983
legit SMO 1 0.055 0.976 1 0.988 0.973
phish SMO 0.945 0 1 0.945 0.972 0.973

Wghtd SMO 0.983 0.038 0.983 0.983 0.983 0.973
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Table 5.108: Results for 10-gram features of the domains with no TLD dataset
10gramNoTLDDomainsFromHeader&IPsNoMsgIdCSDMCRVL+NPNRV
Class Classifier TPR FPR Precision Recall FMeasure ROC
legit ABoost 0.997 0.059 0.974 0.997 0.985 0.98
phish ABoost 0.941 0.003 0.993 0.941 0.966 0.98

Wghtd ABoost 0.98 0.041 0.98 0.98 0.979 0.98
legit AttSel 1 0.059 0.974 1 0.987 0.971
phish AttSel 0.941 0 1 0.941 0.97 0.971

Wghtd AttSel 0.982 0.04 0.982 0.982 0.982 0.971
legit BLR 1 0.055 0.976 1 0.988 0.973
phish BLR 0.945 0 1 0.945 0.972 0.973

Wghtd BLR 0.983 0.038 0.983 0.983 0.983 0.973
legit J48 1 0.056 0.975 1 0.987 0.978
phish J48 0.944 0 1 0.944 0.971 0.978

Wghtd J48 0.983 0.039 0.983 0.983 0.982 0.978
legit NB 0.995 0.059 0.974 0.995 0.984 0.97
phish NB 0.941 0.005 0.989 0.941 0.964 0.961

Wghtd NB 0.978 0.042 0.979 0.978 0.978 0.967
legit SMO 1 0.055 0.976 1 0.988 0.973
phish SMO 0.945 0 1 0.945 0.972 0.973

Wghtd SMO 0.983 0.038 0.983 0.983 0.983 0.973

Table 5.109: Confidence Weighted Algo Results for Full Domains
FullDomainsCSDMCRVL+NPNRV
Gram TP Rate FP Rate

1 99.937 0.111
2 100 0.195
3 99.986 0.195
4 99.987 0.195
5 99.987 0.195
6 99.987 0.195
7 99.987 0.195
8 99.987 0.195
9 99.987 0.195
10 99.987 0.195
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Table 5.110: Confidence Weighted Algo Results for Full Domains
NoTLDDomainsCSDMCRVL+NPNRV
Gram TP Rate FP Rate

1 99.912 5.656
2 93.535 5.155
3 99.987 5.656
4 93.8 5.322
5 99.987 5.656
6 93.699 4.96
7 99.987 5.656
8 93.938 5.183
9 99.987 5.656
10 93.585 5.183
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5.8 Comparative Analysis

We make a direct comparison with Phish-IDetector, a system which uses ngram

analysis on Message-IDs of the emails. For this purpose we have extracted header

domains excluding the Message-ID header for the header domain analysis and only

the Message-IDs separately. Running experiments on the Message-IDs and the rest of

the header domains reveal that our header domain analysis produces better detection

and greatly reduces the false positive rate. We can thus, infer from these experiments

that the header domains are a better indicator of legitimacy of emails than just the

Message-ID.

There has been some work done in using the SMTP path of an email for clas-

sification [26] but it has only been used for spam detection and not for phishing.

Besides, they only make use of the SMTP path as indicated by the IP addresses

in the Received fields, whereas, we have collected the domains from several headers

besides those like From, Delivered-To, CC etc.

Tables 5.113 and 5.116 summarize the results of the weka experiments on the

combined dataset CSDMCRVL+NPNRV for both RHS and Split Message-ID n-

gram features. Results till 2-grams are reported here. These results show that the

detection rate and false positive rate are slightly better for Split Message-ID than

that for RHS Message-ID datasets.

103



5.9 Error Analysis

It is very important to find out how any system can be improved further. We took

a closer look at the misclassifications performed by our classifiers to find out the

shortcomings our technique and what could be done to make it better.

We checked the misclassified emails for both full domains as well as domains with

no TLDs and made some observations. A legitimate email was constantly marked

phish as it did not have enough information in the header. The only domain available

was “cs.uh.edu” and it was insufficient for proper classification.

For the phishing emails some of the wrongly classified emails did not have com-

plete headers and hence ended up providing only single domain, for example, “pay-

pal.com”, “westernunion.com”.

Another important observation was that removing TLDs from the domains caused

information loss and increased the false positive rate. But the false negative rate was

not affected significantly. This means that though some legitimate emails ended up

being classified as phish, the phishing emails were classified as legitimate, which is

of more importance for phishing classifiers. The cost associate with false negatives

is much higher than that associated with false positives.

5.10 Security Analysis

As mentioned, the exponentially increasing file size for higher order n-grams makes

it difficult to run different classifiers on them without using specialized big data
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approaches. We currently ran only the confidence weighted algorithm on higher

order n-gram files, which has proven itself to be competitive in other scenarios, but

not guaranteed to be the ideal choice for best results. Phishers could try to obfuscate

the header domains and try to evade our system, however they cannot change the

entire path of the email. For instance, the Received-From headers closest to the

receiver’s end are not under the control of the sender. Also, the combination of the

domains of the Received-From headers and the other headers would help in case of

such obfuscations.

Aggregating the header domain analysis with the SMTP features would also help

in identifying such cases of obfuscation.
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Table 5.111: Information Gain Values for 5gramFullDomainsBalNazarioPhish-
NewRVL

5gramFullDomainsBalNazarioPhishNewRVL
S.No. IG Feature
1 0.985588 o
2 0.98479 m
3 0.98304 space
4 0.98304 “space
5 0.9811 or
6 0.975533 u
7 0.973901 edu
8 0.973901 .ed
9 0.973901 du
10 0.973901 .e
11 0.973901 .edu
12 0.969608 h.
13 0.969608 uh
14 0.969608 h.e
15 0.969608 uh.e
16 0.969608 uh.ed
17 0.969608 h.ed
18 0.969608 h.edu
19 0.969608 uh.
20 0.968558 s.
21 0.967529 ail
22 0.967529 mai
23 0.967529 mail
24 0.967529 il
25 0.967529 ai
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Table 5.112: Information Gain Values for 5gramNoTLDDomainsBalNazarioPhish-
NewRVL

5gramNoTLDDomainsBalNazarioPhishNewRVL
S.No. IG Feature
1 0.977489 e
2 0.977009 m
3 0.973901 uh
4 0.973352 c
5 0.972813 cs.
6 0.972813 cs
7 0.972813 .u
8 0.972813 .uh
9 0.972813 s.
10 0.972266 o
11 0.969608 cs.uh
12 0.969608 s.u
13 0.969608 s.uh
14 0.969608 cs.u
15 0.96831 s
16 0.967529 il
17 0.967529 ail
18 0.967529 ai
19 0.967529 mail
20 0.967529 mai
21 0.966257 ma
22 0.965111 u
23 0.963732 l
24 0.963428 .cs.
25 0.963428 .cs
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Table 5.113: Results for 1-gram features of the RHS Message-IDs from combined
dataset

1gramRHSCSDMCRVL+NPNRV
Class Classifier TPR FPR Precision Recall FMeasure ROC
legit ABoost 0.94 0.725 0.742 0.94 0.829 0.727
phish ABoost 0.275 0.06 0.676 0.275 0.391 0.727

Wghtd ABoost 0.733 0.518 0.721 0.733 0.693 0.727
legit AttSel 0.959 0.351 0.858 0.959 0.906 0.905
phish AttSel 0.649 0.041 0.878 0.649 0.746 0.905

Wghtd AttSel 0.863 0.254 0.864 0.863 0.856 0.905
legit Bagging 0.974 0.093 0.959 0.974 0.967 0.988
phish Bagging 0.907 0.026 0.941 0.907 0.924 0.988

Wghtd Bagging 0.954 0.072 0.953 0.954 0.953 0.988
legit BLR 0.894 0.53 0.789 0.894 0.838 0.682
phish BLR 0.47 0.106 0.668 0.47 0.552 0.682

Wghtd BLR 0.762 0.398 0.751 0.762 0.749 0.682
legit J48 0.976 0.071 0.968 0.976 0.972 0.984
phish J48 0.929 0.024 0.946 0.929 0.938 0.984

Wghtd J48 0.962 0.056 0.961 0.962 0.961 0.984
legit NB 0.741 0.363 0.819 0.741 0.778 0.767
phish NB 0.637 0.259 0.526 0.637 0.576 0.767

Wghtd NB 0.709 0.33 0.728 0.709 0.715 0.767
legit RF 0.999 0.026 0.988 0.999 0.993 0.998
phish RF 0.974 0.001 0.997 0.974 0.985 0.998

Wghtd RF 0.991 0.019 0.991 0.991 0.991 0.998
legit SMO 0.914 0.583 0.776 0.914 0.84 0.666
phish SMO 0.417 0.086 0.687 0.417 0.519 0.666

Wghtd SMO 0.76 0.428 0.749 0.76 0.74 0.666
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Table 5.114: Results for 2-gram features of the RHS Message-IDs from combined
dataset

2gramRHSCSDMCRVL+NPNRV
Class Classifier TPR FPR Precision Recall FMeasure ROC
legit ABoost 0.995 0.841 0.724 0.995 0.838 0.733
phish ABoost 0.159 0.005 0.934 0.159 0.271 0.733

Wghtd ABoost 0.735 0.581 0.789 0.735 0.662 0.733
legit AttSel 0.94 0.468 0.816 0.94 0.874 0.848
phish AttSel 0.532 0.06 0.799 0.532 0.639 0.848

Wghtd AttSel 0.813 0.341 0.811 0.813 0.8 0.848
legit Bagging 0.98 0.068 0.97 0.98 0.975 0.99
phish Bagging 0.932 0.02 0.955 0.932 0.943 0.99

Wghtd Bagging 0.965 0.053 0.965 0.965 0.965 0.99
legit BLR 0.975 0.114 0.95 0.975 0.962 0.93
phish BLR 0.886 0.025 0.94 0.886 0.913 0.93

Wghtd BLR 0.947 0.086 0.947 0.947 0.947 0.93
legit J48 0.984 0.053 0.976 0.984 0.98 0.992
phish J48 0.947 0.016 0.964 0.947 0.956 0.992

Wghtd J48 0.973 0.041 0.973 0.973 0.973 0.992
legit NB 0.597 0.128 0.912 0.597 0.722 0.82
phish NB 0.872 0.403 0.494 0.872 0.631 0.821

Wghtd NB 0.683 0.213 0.782 0.683 0.693 0.82
legit RF 0.999 0.026 0.988 0.999 0.994 0.998
phish RF 0.974 0.001 0.997 0.974 0.985 0.998

Wghtd RF 0.991 0.018 0.991 0.991 0.991 0.998
legit SMO 0.973 0.137 0.94 0.973 0.956 0.918
phish SMO 0.863 0.027 0.934 0.863 0.898 0.918

Wghtd SMO 0.939 0.103 0.939 0.939 0.938 0.918
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Table 5.115: Results for 1-gram features of the Split Message-IDs from combined
dataset

1gramSplitMsgIdCSDMCRVL+NPNRV
Class Classifier TPR FPR Precision Recall FMeasure ROC
legit ABoost 0.995 0.95 0.699 0.995 0.821 0.688
phish ABoost 0.05 0.005 0.813 0.05 0.094 0.688

Wghtd ABoost 0.701 0.656 0.734 0.701 0.595 0.688
legit AttSel 0.934 0.589 0.778 0.934 0.849 0.81
phish AttSel 0.411 0.066 0.737 0.411 0.528 0.81

Wghtd AttSel 0.771 0.426 0.765 0.771 0.749 0.81
legit Bagging 0.962 0.139 0.939 0.962 0.95 0.979
phish Bagging 0.861 0.038 0.911 0.861 0.885 0.979

Wghtd Bagging 0.93 0.108 0.93 0.93 0.93 0.979
legit BLR 0.925 0.617 0.768 0.925 0.839 0.654
phish BLR 0.383 0.075 0.697 0.383 0.494 0.654

Wghtd BLR 0.756 0.449 0.746 0.756 0.732 0.654
legit J48 0.965 0.103 0.954 0.965 0.959 0.97
phish J48 0.897 0.035 0.92 0.897 0.908 0.97

Wghtd J48 0.944 0.082 0.943 0.944 0.944 0.97
legit NB 0.404 0.22 0.803 0.404 0.537 0.663
phish NB 0.78 0.596 0.371 0.78 0.503 0.663

Wghtd NB 0.521 0.337 0.668 0.521 0.527 0.663
legit RF 0.997 0.02 0.991 0.997 0.994 1
phish RF 0.98 0.003 0.994 0.98 0.987 1

Wghtd RF 0.992 0.015 0.992 0.992 0.992 1
legit SMO 0.981 0.825 0.725 0.981 0.834 0.578
phish SMO 0.175 0.019 0.808 0.175 0.288 0.578

Wghtd SMO 0.73 0.574 0.751 0.73 0.664 0.578

110



Table 5.116: Results for 2-gram features of the Split Message-IDs from combined
dataset

2gramSplitMsgIdCSDMCRVL+NPNRV
Class Classifier TPR FPR Precision Recall FMeasure ROC
legit ABoost 1 0.941 0.702 1 0.825 0.706
phish ABoost 0.059 0 0.986 0.059 0.112 0.706

Wghtd ABoost 0.707 0.648 0.79 0.707 0.603 0.706
legit AttSel 0.931 0.358 0.852 0.931 0.89 0.894
phish AttSel 0.642 0.069 0.808 0.642 0.716 0.894

Wghtd AttSel 0.841 0.268 0.838 0.841 0.836 0.894
legit Bagging 0.976 0.105 0.954 0.976 0.965 0.988
phish Bagging 0.895 0.024 0.944 0.895 0.919 0.988

Wghtd Bagging 0.951 0.08 0.951 0.951 0.951 0.988
legit BLR 0.946 0.162 0.928 0.946 0.937 0.892
phish BLR 0.838 0.054 0.875 0.838 0.856 0.892

Wghtd BLR 0.912 0.128 0.912 0.912 0.912 0.892
legit J48 0.981 0.058 0.974 0.981 0.977 0.99
phish J48 0.942 0.019 0.957 0.942 0.95 0.99

Wghtd J48 0.969 0.046 0.969 0.969 0.969 0.99
legit NB 0.516 0.191 0.857 0.516 0.644 0.749
phish NB 0.809 0.484 0.43 0.809 0.562 0.749

Wghtd NB 0.607 0.282 0.724 0.607 0.619 0.749
legit RF 0.999 0.022 0.99 0.999 0.994 1
phish RF 0.978 0.001 0.997 0.978 0.987 1

Wghtd RF 0.992 0.016 0.992 0.992 0.992 1
legit SMO 0.95 0.166 0.927 0.95 0.938 0.892
phish SMO 0.834 0.05 0.883 0.834 0.858 0.892

Wghtd SMO 0.914 0.13 0.913 0.914 0.913 0.892
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Chapter 6

SMTP Analysis

In this thesis, we attempt to go beyond the problem of email classification. The emails

provide us with much more information and we extract these to find out about the

SMTP servers involved in the email relaying process. We attempt to take a look at

the state of the internet through the perspective of emails. We collect the statistics

like the total number of SMTP servers for each email, which is a representation of the

length of its path and the statistics about the percentage of SMTP servers open. The

main aim of this experiment is to determine if the SMTP servers of domains in the

phishing emails are more likely to be open than those of the legitimate emails. This

information would give substantial proof to either support or reject our hypothesis

of phishers using source routing. For every email all the Received-From domains are

extracted and using nslookup command all the smtp servers are collected for each

of those domains. Then the state of each of the smtp servers is checked using nmap

command. Examples of the commands used are as follows:
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nslookup -querytype=mx domainName

where domainName is the Received-From domain

nmap -p25 -PN smtpServer

where smtpServer is the smtp server returned by nslookup

Since this involves determining the state of the SMTP port on the server, and

we use nmap command to do so, here is a list to get familiar with the port states

returned by this command [27].

6.1 States Returned by nmap for SMTP Server

According to [27], the different states returned by nmap command are:

1. open

This indicates that an application is actively accepting TCP connections, UDP

datagrams or SCTP connections on this port. Usually, the purpose of port

scanning is to determine which ports are open. Open ports are exploitable

for security attacks. There is a constant conflict between the attackers an the

administrators as the former tries to exploit and the latter tries to protect

the ports. From a non-security point of view, these scans provide information
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about the services that are present in the network for use.

2. closed

This indicates that the port is accessible (it receives and responds to nmap

probe packets), but no application is listening on it. This gives some informa-

tion like a host is up on an IP address (host discovery, or ping scanning), and

as part of OS detection. Though not active, closed ports are still reachable and

might open in the future, which could be determined using port scanning. To

block such ports from revealing any information, the administrators may use

firewalls.

3. filtered

This indicates that nmap cannot determine whether the port is open because

its probes cannot reach the port because packet filtering prevents it. This

could be due to a dedicated firewall device, router rules, or host-based firewall

software. These ports are very frustrating for the attackers as they provide so

little information because the filters simply drop probes without responding.

Very rarely they respond with ICMP error messages such as type 3 code 13

(destination unreachable: communication administratively prohibited). Usu-

ally the probes are dropped, which slows down the scan dramatically. It forces

nmap to retry several times to check if the probe was dropped due to network

congestion rather than filtering.

4. unfiltered

This indicates that a port is accessible, but nmap cannot determine whether it

114



is open or closed. Only the ACK scan, used to map firewall rulesets, designates

ports into this state. Other scan types such as Window scan, SYN scan, or

FIN scan, may provide information whether the port is open.

5. open—filtered

This indicates that nmap is unable to determine whether a port is open or

filtered. This happens for the scans where open ports give no response. The

packet filter could have dropped the probe or any corresponding response so

nmap does not know for sure whether the port is open or being filtered.

6. closed—filtered

This indicates that nmap is unable to determine whether a port is closed or

filtered. It is only used for the IP ID idle scan.

6.2 Three Options for SMTP State

The possible number of states being six in total, we had to decide on the aggregation

of states of each of the SMTP servers for a domain. This would require converting

the states to binary values of open (1) or close (0). We finally used three different

options for the feature creation.

1. Option 1

We keep these granular state information for each SMTP server returned for

the Received-From domains in the header. We combine the name of the server
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with its corresponding state and get n-grams from this combination and use

these n-grams as the features.

2. Option 2: The Strict-Open Assumption

Here, we perform the aggregation of the states of all the SMTP servers returned

by each of the Received-From domains. We converted the states to binary form

by assigning the state 1 to only those SMTP servers which returned ‘open’ state;

all other 5 states are assigned 0. If any of the SMTP server had open state -

1, the corresponding domain was considered to have open state - 1. Again the

domains were combined with the aggregated states and n-gram features were

derived from them.

3. Option 3: The Strict-Closed Assumption

Same as Option 2 but here the states were converted to binary form by assigning

the state 0 to only those SMTP servers which returned ‘close’ state; all other

5 states are assigned 1.

6.3 Inference

Our experiments revealed that none of the SMTP servers were in “open” state.

They were all either “filtered” or nmap failed to resolve the server host name. This

shows that the system administrators are taking care not to leave any SMTP servers

as open relays. However, [6] talks about more sophisticated ways of exploiting an

SMTP server such that it acts as an open relay even when it is actually closed to

outside traffic. A more specialized technique will have to be developed if we want to
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find out about such exploitable SMTP servers.

6.4 SMTP Domains Intersection

The SMTP domains from different datasets had some intersections. For the pairs

of datasets CSDMC+RV, CSDMC+RVL and RVL+NPN there were no intersecting

domains. But for the pairs CSDMC+NPN, RVL+RV and NPN+RV the intersections

have been listed in tables 6.1 - 6.3. The tables show that the frequencies of the

intersecting domains between the legitimate (CSDMC) and phishing (NPN) sets are

much lesser than the frequencies of the intersecting domains between the phishing sets

NPN and RV. The numbers are high for the legitimate + phishing set of RVL+RV

and this is because they are all from the same individual’s inbox.
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Table 6.1: Intersecting SMTP Domains for CSDMC+NPN
CSDMC+NPN

SMTPServer TotalFrequency
hotmail.com 28

eastrmimpo03.cox.net 19
eastrmimpo01.cox.net 18
eastrmimpo02.cox.net 16
eastrmmtao103.cox.net 12
eastrmmtao102.cox.net 11

edge03.upcmail.net 5
smtp.newsguy.com 4

free.fr 3
hrndva-omtalb.mail.rr.com 3

pih-relay04.plus.net 3
smtp-out4.blueyonder.co.uk 3

defout.telus.net 2
edge01.upcmail.net 2

fed1rmimpo03.cox.net 2
fed1rmmtao102.cox.net 2

filter.sfr.fr 2
mail02.svc.cra.dublin.eircom.net 2

Table 6.2: Intersecting SMTP Domains for RVL+RV
RVL+RV

SMTPServer TotalFrequency
dijkstra.cs.uh.edu 11989
smtp3.cc.uh.edu 2161
smtp4.cc.uh.edu 2089

localhost.localdomain 123
yahoogroups.com 24

tx2outboundpool.messaging.microsoft.com 5
edge01.upcmail.net 2

rediffmail.com 2
snt0-omc1-s49.snt0.hotmail.com 2
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Table 6.3: Intersecting SMTP Domains for NPN+RV
NPN+RV

SMTPServer TotalFrequency
localhost.localdomain 123

mta01.xtra.co.nz 10
na01-bl2-obe.outbound.protection.outlook.com 9

yahoo.com 8
google.com 6

DHE-VE07-1.bps-staff.birmingham.k12.mi.us 4
mail.birmingham.k12.mi.us 4

stcexcpsm04.corp.star 4
1e100.net 3

att.net 3
fep14.mx.upcmail.net 3

HMWEXMB07.AD.HISD.ORG 3
MYMAIL.exeter.edu 3

S0-OTT-X1.nrn.nrcan.gc.ca 3
S0-OTT-XSMTP3.nrcan.gc.ca 3

SSFEXCHEDGE02.srunet.sruad.edu 3
stcexcpsm02.corp.star 3

WCCUSDEXCH01.wccusd.net 3
webmail.exeter.edu 3

ADMIN-IMSS01.HOUSTONISD.ORG 2
co1outboundpool.messaging.microsoft.com 2

correo.ult.edu.cu 2
device.lan 2

edge01.upcmail.net 2
howard.edu 2

localhost.com 2
mail2.wccusd.net 2

rediffmail.com 2
toroondcbmts05-srv.bellnexxia.net 2
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Chapter 7

Domain Details

We aimed at performing an Internet-scale study of the current distribution, state and

other properties of the existing SMTP servers. The goal is to build a local database

of SMTP servers by crawling as many IP addresses as possible. However, we start at

a smaller level and use the domains collected from our email datasets. We collect the

following information for each of these domains: Domain Name, IP Address, Query

Time, Query Date, City, State Name, Country, Zip, Latitude, Longitude, ASN, BGP

and State of the SMTP domain. The procedure used to collect these data are as

follows:

Using nslookup, nmap and aggregation as earlier, we determined the main SMTP

server’s state. The state was determined using the Option 3 or the strict closed

assumption. The IP address was obtained using the command : dig +short do-

mainName We used a command line tool called geoiplookup to get the following

information: stateName, cityName, zipCode, latitude, longitude. And finally we
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used the verbose form of whois command from whois.cymru.com to get the follow-

ing: ASN, BGPPrefix, countryName. The query date and time are saved using the

date command.

7.1 Timestamps Visualization

Another interesting factor of the emails that remains unexplored is a time stamps

analysis. Each email is associated with a collection of time stamps as appearing in

the email header. This takes care of the number of hops in the path of the email as

well. We conducted experiments using n-grams from the raw time stamps collection

for each email. This produced very good results. But since the overlap of time spans

of the different phishing and legitimate datasets was negligible, these results are not

dependable.

To visualize the time stamps for each dataset, histograms were created for the

frequency of email at each hour of the day. Since the emails traveled through different

time zones, two types of histograms are formed. One for the local times and another

for the times converted to Coordinated Universal Time (UTC).

Tables 7.1 to 7.8 show the frequencies of emails having the time stamps corre-

sponding to the different hours of the day.

Tables 7.9 to 7.16 show the frequencies of emails having the sent time stamps

corresponding to the different hours of the day.
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Figure 7.1: Frequency of Legitimate Emails from CSDMC for Local time
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Figure 7.2: Frequency of Legitimate Emails from CSDMC for UTC
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Figure 7.3: Frequency of Legitimate Emails from RVL for Local time
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Figure 7.4: Frequency of Legitimate Emails from RVL for UTC
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Figure 7.5: Frequency of Phishing Emails from NPN for Local time
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Figure 7.6: Frequency of Phishing Emails from NPN for UTC
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Figure 7.7: Frequency of Phishing Emails from RV for Local time
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Figure 7.8: Frequency of Phishing Emails from RV for UTC
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Figure 7.9: Frequency of Legitimate Emails’ Sent Times from CSDMC in Local time
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Figure 7.10: Frequency of Legitimate Emails’ Sent Times from CSDMC in UTC
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Figure 7.11: Frequency of Legitimate Emails’ Sent Times from RVL in Local time
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Figure 7.12: Frequency of Legitimate Emails’ Sent Times from RVL in UTC
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Figure 7.13: Frequency of Phishing Emails’ Sent Times from NPN in Local time

0 5 10 15 20

Hour of the Day (0-23)

0

20

40

60

80

100

120

140

160

180

F
re

q
u
e
n
c
y

Localtime Hour Frequency (NazarioPhishNew-SenderOnly)

134



Figure 7.14: Frequency of Phishing Emails’ Sent Times from NPN in UTC
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Figure 7.15: Frequency of Phishing Emails’ Sent Times from RV in Local time
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Figure 7.16: Frequency of Phishing Emails’ Sent Times from RV in UTC
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Figure 7.17: Frequency of All Legit Emails’ Sent Times in Local time
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Figure 7.18: Frequency of All Legit Emails’ Sent Times in UTC
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Tables 7.17 to 7.20 show the frequencies of all phishing and all legit emails having

the sent time stamps corresponding to the different hours of the day.

Tables 7.17 to 7.20 show the frequencies of all phishing and all legit emails having

the time stamps corresponding to the different hours of the day.
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Figure 7.19: Frequency of All Phishing Emails’ Sent Times in Local time
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Figure 7.20: Frequency of All Phishing Emails’ Sent Times in UTC
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Figure 7.21: Frequency of All Legit Emails for UTC for Local time
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Figure 7.22: Frequency of All Legit Emails for UTC
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Figure 7.23: Frequency of All Phishing Emails for Local time
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Figure 7.24: Frequency of All Phishing Emails for UTC

0 5 10 15 20

Hour of the Day (0-23)

0

200

400

600

800

1000

1200

1400

F
re

q
u
e
n
c
y

UTC Hour Frequency (Phish)

146



Chapter 8

Path Analysis

This chapter deals with the reconstruction of the path taken by the emails. Chapter

5 talks about the supposition that a path once associated with phishing emails is

more likely to be associated with other phishing email and we test it using path

analysis as described here.

As the email is sent, the first mail server or relay that receives it should have

the same domain as the sender. That means the first Received-From domain should

match the From field domain. It is checked whether this condition is met by the

email or not making it a binary feature. Similarly, for other two binary features it

is checked if all ‘by’ domains are present in the Received-From domains and if the

domain matches the accompanying IP in the Received-From field. We also performed

preliminary path analysis to check if the email’s path is broken. To determine the

break in the path we go through the Received-From and ‘by’ pairs in the email

and create the path it traveled using the domains as the vertices or nodes and an
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edge between them representing a connection or the absence of an edge representing

discontinuity. This results in several continuous features related to the path.

These header fields get added to the email in a bottom-up approach. So the first

Received-From field is actually the one in the bottom and the last one is the one at the

top. Hence, the path formed also follows the bottom-up approach. An example can

be seen in the figure 5.2 where the path can be traced as follows: The email was re-

ceived from user-119ac86.biz.mindspring.com by maynard.mail.mindspring.net, from

maynard.mail.mindspring.net by xent.com, from lair.xent.com by xent.com and so

on.

8.1 Subroutines

We tried various ways of extracting from the header information about the path

that an email has taken from the sender to the recipient. Four different checks

were performed and the result converted to features for each email to determine

the legitimacy of the path taken. Before creating the features, we performed the

Comprehensive Extraction of Email Header Information from all the emails.

This included the extraction of all the fields and data that we found relevant for the

purpose of email header analysis. Domains from all the header fields, ESMTPIDs,

Message-IDs, X-Mailer information, X-Spam information, Timestamps, Received-

from and By pairs, would be a good representation of the data extracted. This was

done to facilitate any further header analysis experiments involving the data from

the headers. The four different checks performed are in the form of the following
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subroutines:

8.1.1 From Received-From Mismatch

Ideally, the From field domain of an email should match the domain of the first

Received-From field, i.e., the Received-From closest to the sender. This subroutine

checks if this condition is satisfied. If yes, it returns 0 otherwise 1 which is also the

value of the binary feature ‘From Received-From Mismatch’.

8.1.2 All By in Received-From

The domains following the ‘by’ field in the emails are the ones which have received

the emails. Since they are receiving the emails, it is proper that they become the

next domain from which another domain will receive the email. So, a ‘by’ domain

must also be in the Received-From domain. This subroutine checks if all the ‘by’

fields are present in the Received-From fields. If yes, it returns 0 otherwise 1 which

is also the value of the binary feature ‘All By in Received-From’.

8.1.3 Claiming Domain Different from Actual Domain

Many domains also provide an IP along with them in the email headers. In case of

obfuscation the email might be claiming to be from a domain but actually belong to

another. The subroutine determines if that is the case by checking if the domain from

the given IP matches the given domain. If yes, it returns 0 otherwise 1 which is also
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the value of the binary feature ‘Claiming Domain Different from Actual Domain’.

8.1.4 Path Broken

For this check, we try to recreate the complete chain of edges formed by the from-by

pairs in the email header. We keep track of connected edges where the Received-

From match the previous ‘by’, the disconnected edges where only a From-By pair is

available without any connection to the next edge, and the orphan nodes which are

the domains that are not a part of any From-By edge pairs. We calculate the total

path length, the connected edges count and ratio, the disconnected edges count and

ratio from the path analysis. Also, we derive the number of breaks and the distance

of the first break from the sender. This results in several continuous features as fol-

lows: TotalConnectedEdges, TotalDisjointEdges, TotalOrphanNodes, PathLength,

ConnectedRatio, DisjointRatio, OrphanRatio, BreakPosition1, BreakPosition2 till

maximum number of breaks.

To explain this with a simple example consider the following chain: a-b, b-c, c-d,

e-f, g, h-i, where a, b, c .. i are the domains. Here we can see that the connected

edges are a-b, b-c and c-d. The disconnected edges are e-f and h-i and the orphan

node is g.
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8.2 Results

Table 8.1 summarizes the results of the weka experiments on the combined dataset

CSDMCRVL+NPNRV for the combined features of path analysis. These results

show that the best result is obtained for Random Forest classifier with 93% TPR

and 13.3% FPR.
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Figure 8.1: The received Header Fields of an Email
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Table 8.1: Results for combined features of path analysis
PathAnalysisCombinedCSDMCRVL+NPNRV

Class Classifier TPR FPR Precision Recall FMeasure ROC
legit ABoost 0.819 0.329 0.846 0.819 0.833 0.798

phishing ABoost 0.671 0.181 0.627 0.671 0.648 0.798
Weighted ABoost 0.773 0.283 0.778 0.773 0.775 0.798

legit AttSel 0.902 0.355 0.849 0.902 0.875 0.889
phishing AttSel 0.645 0.098 0.749 0.645 0.693 0.889
Weighted AttSel 0.822 0.275 0.818 0.822 0.818 0.889

legit Bagging 0.981 0.196 0.917 0.981 0.948 0.976
phishing Bagging 0.804 0.019 0.952 0.804 0.872 0.976
Weighted Bagging 0.926 0.14 0.928 0.926 0.924 0.976

legit BLR 0.999 0.981 0.692 0.999 0.818 0.509
phishing BLR 0.019 0.001 0.907 0.019 0.037 0.509
Weighted BLR 0.694 0.676 0.759 0.694 0.575 0.509

legit J48 0.982 0.193 0.919 0.982 0.949 0.971
phishing J48 0.807 0.018 0.952 0.807 0.874 0.971
Weighted J48 0.927 0.138 0.929 0.927 0.926 0.971

legit NB 0.478 0.129 0.891 0.478 0.622 0.768
phishing NB 0.871 0.522 0.43 0.871 0.576 0.768
Weighted NB 0.6 0.251 0.748 0.6 0.608 0.768

legit RF 0.983 0.186 0.921 0.983 0.951 0.981
phishing RF 0.814 0.017 0.955 0.814 0.879 0.981
Weighted RF 0.93 0.133 0.932 0.93 0.929 0.981

legit SMO 0.969 0.782 0.733 0.969 0.834 0.593
phishing SMO 0.218 0.031 0.759 0.218 0.339 0.593
Weighted SMO 0.735 0.548 0.741 0.735 0.68 0.593
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Chapter 9

Related Work

Since it is a much-employed security threat, automatic detection of phishing emails

has attracted significant attention of researchers over the last decade or so. We

highlight and compare our work with respect to best previous related research.

9.1 Phish-IDetector

One attempt to phishing emails classification was made by PILFER [16]. This paper

lists 10 features, both binary as well as continuous numeric ones designed to highlight

user-targeted deception in electronic communication. These features were mainly

based on URL information like: IP based URLs, Age of linked to domain names,

Nonmatching URLs, Number of dots (in the URLs) etc. There were also some other

feature that considered if the emails were in HTML format, the site of redirection,

output from spam filter, etc. Applying machine learning on these extracted features
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via random forest classifier with 10-fold cross validation they could correctly classify

over 96% of the emails. Their false-positive rate was of the order of 0.001%. The

datasets they used were the same as ours but being an older version, the number of

emails were significantly less in their experiments. They had a total of 6950 non-

phishing emails from SpamAssassin [3] dataset and only 860 phishing emails from

the Nazario [30] dataset.

The structural features of the emails such as ‘spoofing of online banks and retail-

ers’, ‘link in the text is different from the destination’, ‘using IP addresses instead of

URLs’, etc. were studied by [10] and these features were selected using the simulated

annealing algorithm. They found that these structural features when combined with

one class support vector machine (SVM), could be used to efficiently classify the

phishing emails before it reaches the users inbox, essentially reducing human expo-

sure. They claimed a 100% precision and recall. However their data set was small

consisting of only 400 emails in total. Half of them were phishing and the other

half were legitimate emails. The phishing emails were collected over a period of 6

months. And the legitimate ones were gathered from (i) postings on newsgroups,

bulletin boards, and from other users inbox and (ii) from 8 different volunteers who

provided emails sent to them from legitimate business organizations such as credit

card statements, online purchase receipts from Amazon, etc.

Some methods utilize the confidence weighted linear classifiers like [5] but it is

only applied to the email body or text unlike our approach. They use the contents

of the emails (word stems) as features without applying any heuristic based phishing

specific features and the best accuracy obtained was 99.77% which is 99.99% in our
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case. They obtained a false positive rate of less than 1%. In simple terms, word stem

refers to the simple form or the root of a word. For example, run is the stem for

running. They represented each email document as a vector of stemmed words which

is commonly known as ‘bag of words’ representation. For the phishing dataset they

used the Nazario corpus and for the legitimate emails they used the SpamAssassin

ham corpus.

A hybrid feature selection approach based on combination of content-based and

behavior-based features was put forward by [20]. It could mine the attacker behavior

based on email header and utilized the Message-ID tags of emails to do so. The

authors analyzed the Message-ID tag and sender email to form a feature called

Domain sender. It is a binary feature that represents the similarity of domain name

extracted from email sender with domain Message-ID. If it is similar, the email is

considered legitimate and the value is set to 0 otherwise 1. This method of hybrid

features selections were able to achieve 96% accuracy rate and 4% false positives

rate. For the phishing emails, they used the same data set as ours but for the

legitimate ones, they only used the easy ham directory of the SpamAssassin corpus

which contained only 2364 ham emails.

Another paper that goes deep into email header analysis is [32]. It studies the

Message-ID field minutely and explains each part that constitute it. Message-ID

generation is discussed in details and the uniqueness of this field is established. The

author shows that spoofing of this field is tough and may not be possible for every

phisher unless he has sound technical knowledge in this field. Hence, the author

suggests that Message-ID could be used to find out about the source of the email
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which could be useful in forensic analysis.

It is also worth mentioning the work done in the field of phishing emails detection

using the information in the email header, links and body by [41]. They included

natural language processing tools and techniques along with contextual informa-

tion from a user’s mailbox in their email header and body analysis. For the body

of the email they calculate Textscore using lexical analysis, part-of-speech (POS)

tagging,etc. along with verb analysis of action words. They also calculate the Con-

textscore considering the email as a vector of TFIDF. For header analysis they look

at the From, Delivered-to and Received-From fields. And in case of link analysis,

they consider the length of the domains in the url and employ google search to ensure

authenticity of the domain. Their method was able to correctly classify 98% of the

2000 phishing emails and 99.3% of the 1000 legitimate emails.

9.2 Header-Domain Analysis

Please refer to Table 9.1.
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Table 9.1: Related Work for Header Domain Analysis
Classifier Summary Features Results Datasets

Weka:
C4.5 Decision
Tree,Support
Vector
Machine,
Multilayer
Perception,
Nave Bayes,
Bayesian
Network
and Random
Forest (RF).[2]

Identify
potential
header
features
for spam
filtering
using machine
learning
classifiers.

1. Received field
(Hops, Span time,
Domain add, Date,
time, IP Add
legality)
2. Sender add
3. No. of receivers
4. Reception Date
5. X-Mailer
6. Missing/
malformed Msg-ID
7. Subject

Best:
RF classifier
Avg. acc:
98.5%
Precision:
98.4%
Recall:
98.5%
F-Measure:
98.5%
ROC area:
99%.

CEAS2008
live spam
challenge
lab corpus
(26180
spam and
6523 ham)
CSDMC
2010
(1378 spam,
2949 ham)

No
classification
performed.[43]

Analyzed
sender and
receiver field
information to
identify spam.

1. Sender add
validity
2. Receiver add
(To, CC, BCC)

No
classification
performed.

3,417 mails
from
Taiwan’s
ISP.

Random Forest
(RF)
classifier.[21]

Presents an
Intelligent
Hybrid Spam
Filtering
Framework
(IHSFF). Can
identify spam
based on
email header.

1. Originator field
(From)
2. Destination
field (To, CC,
BCC)
3. X-Mailer
4. Sender server
IP add
5. Subject

Best: RF
Accuracy:
96.74%
Precision:
93.53%
Recall:
92.99%
F-Measure:
93.26%.

From a
Chinese
website.
Dataset 1:
33,209
samples
Dataset 2:
21,725
email
headers.

RF, C4.5 DT
(J48), Voting
Feature
Intervals,
Random Tree,
REPTree,
Bayesian
Network
and Naive
Bayes.[35]

Studies
information
in the email
header and
evaluate those
features with
several
machine-
learning
classifiers.

1. From field
2. To and CC
3. Received
4. Message-ID
5. Return-Path
6. Reply-To
7. In Reply-To
8. Error-To
9. Sender
10. Reference

Best: RF
Accuracy:
99.27%,
Precision:
99.40%
Recall:
99.50%
F-Measure:
99.50%.

CEAS2008
(28590
spam,
11410
ham)
CSDMC
2010
(1378
spam,
2949 ham)
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Chapter 10

Conclusion

This thesis presented a multi-dimensional novel approach that is simple yet effective

in detection and classification of phishing emails. It has shown how the unique

characteristics of email headers can be exploited with n-gram analysis to produce

features that can distinguish between phishing and legitimate emails. The approach

in this thesis studies the performance of different classifiers on different order of n-

gram features, some binary and some continuous features from several datasets. The

results obtained are promising. The different systems created prove that the email

is an enormous source of information that could be used for phishing detection. The

header itself can provide enough data for successful classification.

Using information gain, error analysis and security analysis the results are stud-

ied in depth. Most useful features are recognized, causes of misclassification are

investigated and weaknesses of each method are discussed. This thesis thus provides
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a consolidated account of various email header based techniques for phishing detec-

tion. Further collaboration with Text analysis and Link analysis could result in a

very powerful and useful system.
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