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Abstract—A Turing machine has an important role in 
education in the field of computer science, as it is a 
milestone in courses related to automata theory, theory of 
computation and computer architecture. Its value is also 
recognized in the Computing Curricula proposed by the 
Association for Computing Machinery (ACM) and IEEE 
Computer Society. In this paper we present a physical 
implementation of the Turing machine accessed through 
Web. To enable remote access to the Turing machine, an 
implementation of the client-server architecture is built. The 
web interface is described in detail and illustrations of 
remote programming, initialization and the computation of 
the Turing machine are given. Advantages of such approach 
and expected benefits obtained by using remotely accessible 
physical implementation of the Turing machine as an 
educational tool in the teaching process are discussed. 

Index Terms— client-server architecture, e-learning, Turing 
machine, web interface. 

I. INTRODUCTION 
A Turing machine [1] has an important role in 

education in the field of computer science, as it is a 
milestone in the courses related to automata theory, theory 
of computation and computer architecture. Its value is also 
recognized in the Computing Curricula proposed by the 
Association for Computing Machinery (ACM) and IEEE 
Computer Society [2]. 

At present time the Turing machine is mainly 
implemented as a program simulator available on the Web 
[3-6]. Fig. 1 represents an example of the interface of a 
Turing machine program simulator [3]. The main 
characteristics of such program simulators are:  
• they are widely accessible, 
• they execute entirely on a computer, 
• output of the machine is visually displayed, 
• program is a character string whose semantics and 

syntax are often unintuitive, 
• symbol set is very limited, usually restricted to 

alphanumeric symbols. 
 

Based on our former experience [7], we believe that a 
physically implemented Turing machine supported by the 
web interface would add on the educational value of the 
Turing machine while retaining the positive characteristics 
of program simulators mentioned previously. The physical 
implementation of the Turing machine will enable 
students not only to observe the Turing machine 
computations but also to perceive the challenges of 
implementing a system in the physical environment. 

 
Figure 1.  Interface of a Turing machine program simulator [3] 

The physical implementation of the Turing machine 
based on the yields of pattern recognition, computer vision 
and robotics will motivate students to study and research 
these areas of artificial intelligence in more detail. 

It is very important for a successful educational tool to 
be easily accessible. The physical implementation is 
unique and static, i.e., tied to the laboratory so a client-
server architecture was built for it to be remotely 
reachable from a classroom or home. The client is a Java 
applet available on the World Wide Web with a friendly 
user interface as its core component. The interface uses 
visual programming concepts that allow intuitive 
programming and a broader symbol set. The server was 
designed as a software module and built into the physical 
implementation of the Turing machine. 

II. THE TURING MACHINE 

A. The formal model 
Formal structure of a Turing machine [1], [8] is shown 

in the Fig. 2. It consists of infinite tape, read/write (R/W) 
head, logical block L and internal memory cells S and P. 
An infinite tape, which represents the external memory, is 
divided into cells. Each cell contains one symbol from the 
tape alphabet Γ. At any time the R/W head is positioned 
over one particular cell that it is said to scan. The R/W 
head can alter the content of the scanned cell if so 
specified by the program of the Turing machine. The 
program is written as a set of transitions, defined by the 
transition function δ, and kept in the logical block L. 
Memory cells S and P are used to memorize the internal 
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state of the machine and the command for the R/W head 
movement, respectively. During the computation process 
the Turing machine chooses a transition based on its 
internal state and the symbol in the scanned cell. 
According to the transition it replaces the symbol with a 
new symbol (the new symbol can be the same as the old 
one), changes the internal state of the machine and moves 
the R/W head. 

 
Figure 2.  A Turing machine 

Formally, Turing machine TM is defined as a 7-tuple 
[8]: 
  
 TM = (Q, Σ, Γ, δ, B, q0, qf), (1) 
 

Where: 
• Q is a finite set of states: Q = {q0, q1,…, qi,…, qf}, 

where q0 denotes initial state and qf denotes final and 
acceptable state of the machine. 

• ∑ denotes a finite set of symbols consisting of 
symbols written on the tape at the beginning of the 
computation but excluding the “blank symbol” 
denoted with B. This set is also called input alphabet. 

• Γ denotes a finite set of all the symbols that can 
appear on the tape of the machine during the 
computation. Σ ⊆ Γ, B ∈ Γ. This set is also called 
tape alphabet. 

• δ denotes a transition function δ: (Q, Γ)→(Q, Γ, P), 
where P denotes a set consisting of valid moves of 
the R/W head, P = {L, R, H}, were R denotes 
movement of the R/W head one cell to the right, L 
denotes movement one cell to the left, and H denotes 
that the head remains at the same cell. The transition 
function δ is kept inside of the logical block L as a 
set of transitions. Transition function is often referred 
to as program. 

• B denotes blank symbol that represents an empty 
cell. 

Turing machine is a time-discrete machine that 
computes in cycles. In the first cycle the R/W head is 
positioned over the start cell. A finite array of cells 
starting with the start cell is filled with symbols from the 
input alphabet Σ. Content of that array of cells is called 
input string. During the first cycle, the machine is in the 
initial state q0 and it scans the starting cell. Based on the 
scanned symbol si ∈ Σ and the internal state of the 
machine q0 ∈ Q, a transition is chosen from the transition 
function δ: (q0, si)→(qj, sj, p) where qj ∈ Q, sj ∈ Γ, p ∈ P. 
Based on the chosen transition, symbol si is replaced with 
the symbol sj, the machine changes its internal state into qj 
and the R/W head takes action described by p. After 

executing the chosen transition, a current cycle ends and a 
new cycle begins. During the subsequent cycles, the 
process of choosing and executing transitions is analogue 
to the above-described procedure.  If there is more than 
one possible transition for some input pair (qi, si) the 
Turing machine is non-deterministic.  

The Turing machine refines the input string into the 
output through series of cycles. The machine stops in the 
cycle where the transition for the current input pair (qi, si) 
is not defined. If at that moment the internal state of the 
machine is an acceptable state qf, the machine has 
computed desired output. The output is written on the tape 
in the form of the finite symbol sequence from Γ with 
length n <∞. 

If the internal state is not acceptable when the machine 
stops then the machine failed to compute the desired result 
and content of the tape is not relevant.  

It is possible that the machine cannot compute the 
desired output in the finite number of steps (the machine 
never stops). 

During each cycle the Turing machine is described with 
a configuration. A k-configuration is defined at the 
beginning of the k-th cycle and it consists of: 
• content of the tape, 
• internal state of the machine, 
• position of the R/W head. 

B. The physical implementation 
Formal model of the Turing machine had to be 

modified as a prerequisite for physical implementation: 
• Formal symbols, as elements of tape alphabet, are 

replaced by plates with symbol images (colored 
geometrical shapes). 

• Pool is introduced to the model. The pool is an area 
used by the robot arm to store the spare plates. 

• The movement of the R/W head has been replaced 
with the equivalent conveyer movement that is 
simpler to implement. 

 

The physical implementation consists of hardware 
components and software modules. Fig. 3 depicts the main 
hardware components. 

 
Figure 3.  A detail of the physical implementation of the Turing 

machine 
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The main hardware components are: 
• A personal computer is the most important hardware 

component of the implementation. It executes 
software modules that simulate the Turing machine, 
communicates with all other physical components 
and interacts with the user.  

• A conveyer is a physical implementation of the tape 
of the Turing machine. It is a band segmented into 
rectangles that represent cells. Motion of the 
conveyer is achieved using two synchronized step-
motors. 

• A tape camera is mounted above the conveyer and its 
optical axis is orthogonal on the conveyer plane. 
Three cells of the conveyer are in the field of view of 
the camera: the scanned cell and its nearest neighbors 
to the left and to the right. This camera performs as a 
Read head of the Turing machine. 

• The robot arm performs as a Write head of the 
Turing machine and manipulates the plates contained 
within the conveyer cells and in the pool. The robot 
arm, together with the tape camera, forms the R/W 
head. 

• A pool camera monitors the content of the pool.  
• A panoramic camera oversees the whole Turing 

machine. It provides live video feedback about 
interaction of physical components of the Turing 
machine to the client. 

 

The software modules are: 
• Performer module: Performs as the modified formal 

model of the Turing machine. It communicates with 
the control modules and the user interface. It 
transmits commands to the hardware components and 
sends Turing machine status to the user interface. It 
receives information about symbols present on the 
conveyer and in the pool. 

• Control modules: They map commands received 
from the performer module to the hardware specific 
protocol. Robot arm, conveyer and cameras each 
have their own control module. 

• Image analysis module: Processes the images 
provided by the tape camera and the pool camera to 
identify the symbols present on the conveyer and in 
the pool. The processing procedure includes image 
preprocessing, image segmentation and classification 
of objects i.e. symbols. It also provides information 
about position and orientation of the plates with 
symbol images. 

 

III. CLIENT – SERVER ARCHITECTURE 
An important measure of success of any product is the 

number of its users. The Turing machine implementation 
described above consists of several hardware components. 
These components are immobile, sophisticated and 
expensive so it is unlikely that this implementation would 
be widely used regardless of its potential educational 
value. Furthermore, in direct contact with the user, it is 
likely that some of the components would be damaged due 
to improper usage. To make the implementation widely 

accessible while still kept in the controlled and safe 
environment we have built in a client-server architecture 
allowing remote access to the physical implementation of 
the Turing machine.  

The server is a software module built into the Turing 
machine implementation. It receives the initialization 
information for the Turing machine from the client. The 
server encapsulates and starts the computation of the 
Turing machine. It relays communication between the 
Turing machine and the client. The server transmits the 
output of the Turing machine, represented by the 
configuration, as well as live overview from the 
panoramic camera to the client. The server also relays 
client signals to the machine. Turing machine protocol - a 
specially designed protocol at the application level, is used 
for the communication between the client and the server. 

The client provides a graphical user interface to the 
Turing machine. Through this interface the initialization 
data for the Turing machine can be defined and uploaded 
to the server. The client is written in Java and published in 
the World Wide Web (http://www.pattern-
recognition.zemris.fer.hr/physicalTM/). The client 
interface uses visual programming paradigm to simplify 
the programming of the Turing machine and the analysis 
of its output.  

IV. WEB INTERFACE 

A. Visual programming paradigm 
Web interface is based on the visual programming 

paradigm. Image of the symbol is used within the 
interface to program the Turing machine and display the 
results of computations. Internally, the physical 
implementation uses textual representation of the symbol 
because it consumes less storage space. 

Since the internally used representation of symbol is 
textual, a simple hybrid visual programming language is 
used [9]. All elements of the visual programming 
language are present although very simple due to nature of 
the Turing machine itself. The tape alphabet is a 
dictionary of symbols (i.e. icons) represented by images 
and logical, textual description. The transition function δ 
represents the grammar. Only horizontal concatenation of 
symbols is allowed. Each configuration of the Turing 
machine is an iconic sentence. There is no formal domain-
specific knowledge base because a Turing machine is a 
general-purpose machine that can solve broad class of 
problems when given enough time and space. The user 
who proposed the problem is expected to have enough 
domain-specific knowledge about the problem to interpret 
the result. 

The web interface is shown in the Fig. 4. The interface 
consists of following components: 
• menu allowing programming and running of the 

Turing machine, 
• live feed window, 
• representation of the Turing machine R/W head, 
• representation of the Turing machine tape, 
• status window. 
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Figure 4.  The web interface 

 

 

 
Figure 5.  Available tape alphabet 

 

 

 
Figure 6.  An example of filled program form with triplets 

 
B. Programming the machine remotely 

User needs to provide the following information to start 
the computation of the Turing machine: tape alphabet Γ, 
state set Q, transition function δ and input string. This 
information formally and completely describes the 
problem of interest. A user, accessing the physical 
implementation of the Turing machine through the client 
interface, cannot use arbitrary tape alphabet. The tape 
alphabet that the remote user can use is sent to the client in 
advance and it depends on the plates with symbol images 
present in the pool. The user can preview the available 
tape alphabet using the form accessible through the menu 
Programming Alphabet. An example of the form is 
shown in the Fig. 5. 

The user has to specify the rest of the data using the 
web interface: state set Q, transition function δ, and input 
string. The first two can be defined using the form 
accessible through the menu Programming Program. 
The form is shown in the Fig. 6. 

The user is required to specify number of states 
contained in the state set Q, initial state and final state, 
respectively. After pressing the “Generate” button an 
empty table, designed for the specification of the Turing 
machine program, is generated. 

The first column of the table represents scanned 
symbols, while the first row represents internal states of 
the Turing machine. The entry points of the table contain 
triplets (new state of the machine, new cell symbol, 
command for R/W head movement) which describe 
actions to be taken during execution of the Turing 
machine when the correspondent scanned symbol-state 
pair is encountered. The task of the user is to enter the 
triplets that describe the procedure (i.e. transition function 
δ) that the Turing machine should follow while computing 
an assignment. The parameters of a triplet are selected in 
the comboBoxes below the table and written in the table 
when the button “Set” is pressed. The input of the triplet is 
illustrated by the Fig. 6. The “Load” button uploads the 
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state set and the program into the Turing machine that is 
about to be executed on the server side. 

An input string can be defined using the form 
accessible through the menu Programming Input string. 
The form is shown in the Fig. 8. 

Within this form a user can also choose whether to run 
a program simulator (by choosing the radio button 
“Virtual tape”) or the physical implementation of the 
Turing machine (by choosing the radio button “Physical 
tape”). In the simulation mode, the user can use unlimited 
number of symbols while in the physical implementation 
mode the user can use only the symbols present in the 
pool. The Fig. 8 depicts an example of the initial string. 

C. An execution example 
After the user provides the Turing machine parameters 

to the server through the client, the machine is ready to 
start. The machine can be run in systematic (i.e. step-by-
step) mode, where the machine pauses after each cycle 
and waits for user confirmation to continue, or continuous 
mode where the machine continuously runs until it 
reaches the end of the computation. 

The work of the physical implementation of the Turing 
machine connected with the web interface will be 
demonstrated by the following simple example:  

The Turing machine has to determine if there is odd or 
even number of blue circles in the input string. 

The state set Q and the program used to solve the 
described problem are shown in the Fig. 7. 

The solution utilizes the following idea: The Turing 
machine will have four internal states: initial state q0, state 
q1 symbolizing that odd number of blue circles has been 
scanned in the input string so far, state q2, symbolizing 
that even number of blue circles has been scanned in the 
input string so far and the final and acceptable state q3. 
The conveyer moves to the left in each cycle 
independently of the input pair (qi, si) and the R/W head 
progresses through the input string, writing the blank and 
changing the internal state of the machine according to the 
program (Fig. 7). After the input string has been scanned 
and deleted, the R/W head places a blue circle in the cell if 
the machine is in the state q2 (denotes that there was even 

number of blue circles in the input string) or it places a red 
triangle if the machine is in the state q1 (denotes that there 
was odd number of blue circles in the input string). The 
machine then changes its state to the final state q3, moves 
the R/W head to the right and stops.  

 
Figure 7.  Program used to solve the problem. Note that the triplets 

specify R/W head movement while the conveyer moves in the opposite 
direction. 

Fig. 9 shows an example of computation of physical 
implementation of the Turing machine while solving the 
problem as explained above. The initial string at the 
beginning of the computation (1st configuration) for this 
particular example consists of one red triangle and one 
blue circle as shown in the Fig. 9(a). The initial internal 
state of the machine is q0. The R/W head scans the start 
cell marked with the index 0. The computation progresses 
through several cycles depicted with the Fig. 9(b-c). At 
the end of the computation (depicted with the Fig. 9(d)) 
the Turing machine scans the cell indicated with the index 
3, the internal state of the machine is final and acceptable 
meaning that the red triangle on the conveyer is the 
solution of the problem. 

 

 
Figure 8.  An example of specified input string 
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a) 

 
b) 

 
c) 

  
d) 

Figure 9.  a) 1st configuration of the Turing machine b) 2nd configuration c) 3rd configuration d) 4th and final configuration, the solution of the 
problem is displayed on the conveyer of the machine. 

 
V. CONCLUSION 

In this paper we have described an attempt to broaden 
educational significance of the Turing machine. We 
achieved the goal by: 
• designing the physical implementation of the Turing 

machine,  
• interweaving the Turing machine implementation 

with the fields of artificial intelligence and real-time 
system design,  

• introducing graphical programming language, 
• preserving positive feature of the existing program 

simulators of the Turing machine available on the 
web. 

The physical implementation has two main positive 
effects on the educational value of the Turing machine. 
First is that the physical implementation includes yields of 
pattern recognition, computer vision and robotics. It is a 
demonstration of techniques and algorithms from these 
areas allowing students to get an early glimpse on those 
areas. There is no reason why this implementation could 
not be used even in the secondary education. This could 
popularize mentioned areas, motivating pupils and 
students to pursue further education or career in these 
areas. The second positive effect is the experience 
obtained from the design process of system in the real 

physical environment. Parameters of such environment are 
constantly varying and the system has to be carefully 
designed and fault-tolerant to function within parameters 
in such environment. The limitation of the physical 
implementation is the fact that hardware components can 
perform only one task at any given moment, meaning that 
only one user can use the Turing machine at the same time 
although it is reachable by many potential users. 

The graphical user interface that incorporates visual 
programming language paradigm eases the programming 
and analysis of the Turing machine. Syntax of visual 
programming language is more intuitive and therefore 
easier for students to use. 

The main positive feature of program simulators is 
availability; they are available to the vast number of users 
at minimal or no cost. Availability, in our approach, was 
preserved by building in a client-server architecture that 
made the physical implementation of the Turing machine 
available on the World Wide Web through a client user 
interface. 

Additional feature brought in by introducing the client-
server architecture was the detachment of the user from 
the implementation hardware to prevent possible damage 
caused by improper use. A problem that can arise from 
making the implementation available on the Internet is the 
problem of network security. 
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Future work includes evaluation and further 
improvements of the implementation. The students of our 
faculty will initially test the Turing machine 
implementation, but we will be expanding the tests if the 
initial feedback and results show that our predictions 
about educational value were true. We consider number of 
overall users and average usage rate important indicators 
about the value of our implementation. 

It is necessary to improve the hardware components: 
The robot arm has very constrained area of reach so we 
plan to replace it with a better model. A framework for the 
components will have to be built ensuring stable 
positioning. The implementation has to be tested on the 
broader set of symbols and problems. 

We would like to stress that the physical 
implementation of the Turing machine includes all 
initially designed features and we hope to improve it to the 
benefit of all potential users. 
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