
A PHYSICAL IMPLEMENTATION OF THE TURING MACHINE ACCESSED THROUGH WEB

A Physical Implementation of the Turing
Machine Accessed trough Web

doi:10.3991/ijoe.v4i4.688

Marijo Maracic and Slobodan Ribaric
University of Zagreb, Zagreb, Croatia

Abstract—A Turing machine has an important role in
education in the field of computer science, as it is a
milestone in courses related to automata theory, theory of
computation and computer architecture. Its value is also
recognized in the Computing Curricula proposed by the
Association for Computing Machinery (ACM) and IEEE
Computer Society. In this paper we present a physical
implementation of the Turing machine accessed through
Web. To enable remote access to the Turing machine, an
implementation of the client-server architecture is built. The
web interface is described in detail and illustrations of
remote programming, initialization and the computation of
the Turing machine are given. Advantages of such approach
and expected benefits obtained by using remotely accessible
physical implementation of the Turing machine as an
educational tool in the teaching process are discussed.

Index Terms— client-server architecture, e-learning, Turing
machine, web interface.

I. INTRODUCTION
A Turing machine [1] has an important role in

education in the field of computer science, as it is a
milestone in the courses related to automata theory, theory
of computation and computer architecture. Its value is also
recognized in the Computing Curricula proposed by the
Association for Computing Machinery (ACM) and IEEE
Computer Society [2].

At present time the Turing machine is mainly
implemented as a program simulator available on the Web
[3-6]. Fig. 1 represents an example of the interface of a
Turing machine program simulator [3]. The main
characteristics of such program simulators are:
• they are widely accessible,
• they execute entirely on a computer,
• output of the machine is visually displayed,
• program is a character string whose semantics and

syntax are often unintuitive,
• symbol set is very limited, usually restricted to

alphanumeric symbols.

Based on our former experience [7], we believe that a
physically implemented Turing machine supported by the
web interface would add on the educational value of the
Turing machine while retaining the positive characteristics
of program simulators mentioned previously. The physical
implementation of the Turing machine will enable
students not only to observe the Turing machine
computations but also to perceive the challenges of
implementing a system in the physical environment.

Figure 1. Interface of a Turing machine program simulator [3]

The physical implementation of the Turing machine
based on the yields of pattern recognition, computer vision
and robotics will motivate students to study and research
these areas of artificial intelligence in more detail.

It is very important for a successful educational tool to
be easily accessible. The physical implementation is
unique and static, i.e., tied to the laboratory so a client-
server architecture was built for it to be remotely
reachable from a classroom or home. The client is a Java
applet available on the World Wide Web with a friendly
user interface as its core component. The interface uses
visual programming concepts that allow intuitive
programming and a broader symbol set. The server was
designed as a software module and built into the physical
implementation of the Turing machine.

II. THE TURING MACHINE

A. The formal model
Formal structure of a Turing machine [1], [8] is shown

in the Fig. 2. It consists of infinite tape, read/write (R/W)
head, logical block L and internal memory cells S and P.
An infinite tape, which represents the external memory, is
divided into cells. Each cell contains one symbol from the
tape alphabet Γ. At any time the R/W head is positioned
over one particular cell that it is said to scan. The R/W
head can alter the content of the scanned cell if so
specified by the program of the Turing machine. The
program is written as a set of transitions, defined by the
transition function δ, and kept in the logical block L.
Memory cells S and P are used to memorize the internal

iJOE – Volume 4, Issue 4, November 2008 45

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online-Journals.org (International Association of Online Engineering)

https://core.ac.uk/display/270196763?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.3991/ijoe.v4i4.688�

A PHYSICAL IMPLEMENTATION OF THE TURING MACHINE ACCESSED THROUGH WEB

state of the machine and the command for the R/W head
movement, respectively. During the computation process
the Turing machine chooses a transition based on its
internal state and the symbol in the scanned cell.
According to the transition it replaces the symbol with a
new symbol (the new symbol can be the same as the old
one), changes the internal state of the machine and moves
the R/W head.

Figure 2. A Turing machine

Formally, Turing machine TM is defined as a 7-tuple
[8]:

 TM = (Q, Σ, Γ, δ, B, q0, qf), (1)

Where:
• Q is a finite set of states: Q = {q0, q1,…, qi,…, qf},

where q0 denotes initial state and qf denotes final and
acceptable state of the machine.

• ∑ denotes a finite set of symbols consisting of
symbols written on the tape at the beginning of the
computation but excluding the “blank symbol”
denoted with B. This set is also called input alphabet.

• Γ denotes a finite set of all the symbols that can
appear on the tape of the machine during the
computation. Σ ⊆ Γ, B ∈ Γ. This set is also called
tape alphabet.

• δ denotes a transition function δ: (Q, Γ)→(Q, Γ, P),
where P denotes a set consisting of valid moves of
the R/W head, P = {L, R, H}, were R denotes
movement of the R/W head one cell to the right, L
denotes movement one cell to the left, and H denotes
that the head remains at the same cell. The transition
function δ is kept inside of the logical block L as a
set of transitions. Transition function is often referred
to as program.

• B denotes blank symbol that represents an empty
cell.

Turing machine is a time-discrete machine that
computes in cycles. In the first cycle the R/W head is
positioned over the start cell. A finite array of cells
starting with the start cell is filled with symbols from the
input alphabet Σ. Content of that array of cells is called
input string. During the first cycle, the machine is in the
initial state q0 and it scans the starting cell. Based on the
scanned symbol si ∈ Σ and the internal state of the
machine q0 ∈ Q, a transition is chosen from the transition
function δ: (q0, si)→(qj, sj, p) where qj ∈ Q, sj ∈ Γ, p ∈ P.
Based on the chosen transition, symbol si is replaced with
the symbol sj, the machine changes its internal state into qj
and the R/W head takes action described by p. After

executing the chosen transition, a current cycle ends and a
new cycle begins. During the subsequent cycles, the
process of choosing and executing transitions is analogue
to the above-described procedure. If there is more than
one possible transition for some input pair (qi, si) the
Turing machine is non-deterministic.

The Turing machine refines the input string into the
output through series of cycles. The machine stops in the
cycle where the transition for the current input pair (qi, si)
is not defined. If at that moment the internal state of the
machine is an acceptable state qf, the machine has
computed desired output. The output is written on the tape
in the form of the finite symbol sequence from Γ with
length n <∞.

If the internal state is not acceptable when the machine
stops then the machine failed to compute the desired result
and content of the tape is not relevant.

It is possible that the machine cannot compute the
desired output in the finite number of steps (the machine
never stops).

During each cycle the Turing machine is described with
a configuration. A k-configuration is defined at the
beginning of the k-th cycle and it consists of:
• content of the tape,
• internal state of the machine,
• position of the R/W head.

B. The physical implementation
Formal model of the Turing machine had to be

modified as a prerequisite for physical implementation:
• Formal symbols, as elements of tape alphabet, are

replaced by plates with symbol images (colored
geometrical shapes).

• Pool is introduced to the model. The pool is an area
used by the robot arm to store the spare plates.

• The movement of the R/W head has been replaced
with the equivalent conveyer movement that is
simpler to implement.

The physical implementation consists of hardware
components and software modules. Fig. 3 depicts the main
hardware components.

Figure 3. A detail of the physical implementation of the Turing

machine

46 http://www.i-joe.org

A PHYSICAL IMPLEMENTATION OF THE TURING MACHINE ACCESSED THROUGH WEB

The main hardware components are:
• A personal computer is the most important hardware

component of the implementation. It executes
software modules that simulate the Turing machine,
communicates with all other physical components
and interacts with the user.

• A conveyer is a physical implementation of the tape
of the Turing machine. It is a band segmented into
rectangles that represent cells. Motion of the
conveyer is achieved using two synchronized step-
motors.

• A tape camera is mounted above the conveyer and its
optical axis is orthogonal on the conveyer plane.
Three cells of the conveyer are in the field of view of
the camera: the scanned cell and its nearest neighbors
to the left and to the right. This camera performs as a
Read head of the Turing machine.

• The robot arm performs as a Write head of the
Turing machine and manipulates the plates contained
within the conveyer cells and in the pool. The robot
arm, together with the tape camera, forms the R/W
head.

• A pool camera monitors the content of the pool.
• A panoramic camera oversees the whole Turing

machine. It provides live video feedback about
interaction of physical components of the Turing
machine to the client.

The software modules are:
• Performer module: Performs as the modified formal

model of the Turing machine. It communicates with
the control modules and the user interface. It
transmits commands to the hardware components and
sends Turing machine status to the user interface. It
receives information about symbols present on the
conveyer and in the pool.

• Control modules: They map commands received
from the performer module to the hardware specific
protocol. Robot arm, conveyer and cameras each
have their own control module.

• Image analysis module: Processes the images
provided by the tape camera and the pool camera to
identify the symbols present on the conveyer and in
the pool. The processing procedure includes image
preprocessing, image segmentation and classification
of objects i.e. symbols. It also provides information
about position and orientation of the plates with
symbol images.

III. CLIENT – SERVER ARCHITECTURE
An important measure of success of any product is the

number of its users. The Turing machine implementation
described above consists of several hardware components.
These components are immobile, sophisticated and
expensive so it is unlikely that this implementation would
be widely used regardless of its potential educational
value. Furthermore, in direct contact with the user, it is
likely that some of the components would be damaged due
to improper usage. To make the implementation widely

accessible while still kept in the controlled and safe
environment we have built in a client-server architecture
allowing remote access to the physical implementation of
the Turing machine.

The server is a software module built into the Turing
machine implementation. It receives the initialization
information for the Turing machine from the client. The
server encapsulates and starts the computation of the
Turing machine. It relays communication between the
Turing machine and the client. The server transmits the
output of the Turing machine, represented by the
configuration, as well as live overview from the
panoramic camera to the client. The server also relays
client signals to the machine. Turing machine protocol - a
specially designed protocol at the application level, is used
for the communication between the client and the server.

The client provides a graphical user interface to the
Turing machine. Through this interface the initialization
data for the Turing machine can be defined and uploaded
to the server. The client is written in Java and published in
the World Wide Web (http://www.pattern-
recognition.zemris.fer.hr/physicalTM/). The client
interface uses visual programming paradigm to simplify
the programming of the Turing machine and the analysis
of its output.

IV. WEB INTERFACE

A. Visual programming paradigm
Web interface is based on the visual programming

paradigm. Image of the symbol is used within the
interface to program the Turing machine and display the
results of computations. Internally, the physical
implementation uses textual representation of the symbol
because it consumes less storage space.

Since the internally used representation of symbol is
textual, a simple hybrid visual programming language is
used [9]. All elements of the visual programming
language are present although very simple due to nature of
the Turing machine itself. The tape alphabet is a
dictionary of symbols (i.e. icons) represented by images
and logical, textual description. The transition function δ
represents the grammar. Only horizontal concatenation of
symbols is allowed. Each configuration of the Turing
machine is an iconic sentence. There is no formal domain-
specific knowledge base because a Turing machine is a
general-purpose machine that can solve broad class of
problems when given enough time and space. The user
who proposed the problem is expected to have enough
domain-specific knowledge about the problem to interpret
the result.

The web interface is shown in the Fig. 4. The interface
consists of following components:
• menu allowing programming and running of the

Turing machine,
• live feed window,
• representation of the Turing machine R/W head,
• representation of the Turing machine tape,
• status window.

iJOE – Volume 4, Issue 4, November 2008 47

http://www.pattern-recognition.zemris.fer.hr/physicalTM/�
http://www.pattern-recognition.zemris.fer.hr/physicalTM/�

A PHYSICAL IMPLEMENTATION OF THE TURING MACHINE ACCESSED THROUGH WEB

Figure 4. The web interface

Figure 5. Available tape alphabet

Figure 6. An example of filled program form with triplets

B. Programming the machine remotely

User needs to provide the following information to start
the computation of the Turing machine: tape alphabet Γ,
state set Q, transition function δ and input string. This
information formally and completely describes the
problem of interest. A user, accessing the physical
implementation of the Turing machine through the client
interface, cannot use arbitrary tape alphabet. The tape
alphabet that the remote user can use is sent to the client in
advance and it depends on the plates with symbol images
present in the pool. The user can preview the available
tape alphabet using the form accessible through the menu
Programming Alphabet. An example of the form is
shown in the Fig. 5.

The user has to specify the rest of the data using the
web interface: state set Q, transition function δ, and input
string. The first two can be defined using the form
accessible through the menu Programming Program.
The form is shown in the Fig. 6.

The user is required to specify number of states
contained in the state set Q, initial state and final state,
respectively. After pressing the “Generate” button an
empty table, designed for the specification of the Turing
machine program, is generated.

The first column of the table represents scanned
symbols, while the first row represents internal states of
the Turing machine. The entry points of the table contain
triplets (new state of the machine, new cell symbol,
command for R/W head movement) which describe
actions to be taken during execution of the Turing
machine when the correspondent scanned symbol-state
pair is encountered. The task of the user is to enter the
triplets that describe the procedure (i.e. transition function
δ) that the Turing machine should follow while computing
an assignment. The parameters of a triplet are selected in
the comboBoxes below the table and written in the table
when the button “Set” is pressed. The input of the triplet is
illustrated by the Fig. 6. The “Load” button uploads the

48 http://www.i-joe.org

A PHYSICAL IMPLEMENTATION OF THE TURING MACHINE ACCESSED THROUGH WEB

state set and the program into the Turing machine that is
about to be executed on the server side.

An input string can be defined using the form
accessible through the menu Programming Input string.
The form is shown in the Fig. 8.

Within this form a user can also choose whether to run
a program simulator (by choosing the radio button
“Virtual tape”) or the physical implementation of the
Turing machine (by choosing the radio button “Physical
tape”). In the simulation mode, the user can use unlimited
number of symbols while in the physical implementation
mode the user can use only the symbols present in the
pool. The Fig. 8 depicts an example of the initial string.

C. An execution example
After the user provides the Turing machine parameters

to the server through the client, the machine is ready to
start. The machine can be run in systematic (i.e. step-by-
step) mode, where the machine pauses after each cycle
and waits for user confirmation to continue, or continuous
mode where the machine continuously runs until it
reaches the end of the computation.

The work of the physical implementation of the Turing
machine connected with the web interface will be
demonstrated by the following simple example:

The Turing machine has to determine if there is odd or
even number of blue circles in the input string.

The state set Q and the program used to solve the
described problem are shown in the Fig. 7.

The solution utilizes the following idea: The Turing
machine will have four internal states: initial state q0, state
q1 symbolizing that odd number of blue circles has been
scanned in the input string so far, state q2, symbolizing
that even number of blue circles has been scanned in the
input string so far and the final and acceptable state q3.
The conveyer moves to the left in each cycle
independently of the input pair (qi, si) and the R/W head
progresses through the input string, writing the blank and
changing the internal state of the machine according to the
program (Fig. 7). After the input string has been scanned
and deleted, the R/W head places a blue circle in the cell if
the machine is in the state q2 (denotes that there was even

number of blue circles in the input string) or it places a red
triangle if the machine is in the state q1 (denotes that there
was odd number of blue circles in the input string). The
machine then changes its state to the final state q3, moves
the R/W head to the right and stops.

Figure 7. Program used to solve the problem. Note that the triplets

specify R/W head movement while the conveyer moves in the opposite
direction.

Fig. 9 shows an example of computation of physical
implementation of the Turing machine while solving the
problem as explained above. The initial string at the
beginning of the computation (1st configuration) for this
particular example consists of one red triangle and one
blue circle as shown in the Fig. 9(a). The initial internal
state of the machine is q0. The R/W head scans the start
cell marked with the index 0. The computation progresses
through several cycles depicted with the Fig. 9(b-c). At
the end of the computation (depicted with the Fig. 9(d))
the Turing machine scans the cell indicated with the index
3, the internal state of the machine is final and acceptable
meaning that the red triangle on the conveyer is the
solution of the problem.

Figure 8. An example of specified input string

iJOE – Volume 4, Issue 4, November 2008 49

A PHYSICAL IMPLEMENTATION OF THE TURING MACHINE ACCESSED THROUGH WEB

a)

b)

c)

d)

Figure 9. a) 1st configuration of the Turing machine b) 2nd configuration c) 3rd configuration d) 4th and final configuration, the solution of the
problem is displayed on the conveyer of the machine.

V. CONCLUSION

In this paper we have described an attempt to broaden
educational significance of the Turing machine. We
achieved the goal by:
• designing the physical implementation of the Turing

machine,
• interweaving the Turing machine implementation

with the fields of artificial intelligence and real-time
system design,

• introducing graphical programming language,
• preserving positive feature of the existing program

simulators of the Turing machine available on the
web.

The physical implementation has two main positive
effects on the educational value of the Turing machine.
First is that the physical implementation includes yields of
pattern recognition, computer vision and robotics. It is a
demonstration of techniques and algorithms from these
areas allowing students to get an early glimpse on those
areas. There is no reason why this implementation could
not be used even in the secondary education. This could
popularize mentioned areas, motivating pupils and
students to pursue further education or career in these
areas. The second positive effect is the experience
obtained from the design process of system in the real

physical environment. Parameters of such environment are
constantly varying and the system has to be carefully
designed and fault-tolerant to function within parameters
in such environment. The limitation of the physical
implementation is the fact that hardware components can
perform only one task at any given moment, meaning that
only one user can use the Turing machine at the same time
although it is reachable by many potential users.

The graphical user interface that incorporates visual
programming language paradigm eases the programming
and analysis of the Turing machine. Syntax of visual
programming language is more intuitive and therefore
easier for students to use.

The main positive feature of program simulators is
availability; they are available to the vast number of users
at minimal or no cost. Availability, in our approach, was
preserved by building in a client-server architecture that
made the physical implementation of the Turing machine
available on the World Wide Web through a client user
interface.

Additional feature brought in by introducing the client-
server architecture was the detachment of the user from
the implementation hardware to prevent possible damage
caused by improper use. A problem that can arise from
making the implementation available on the Internet is the
problem of network security.

50 http://www.i-joe.org

A PHYSICAL IMPLEMENTATION OF THE TURING MACHINE ACCESSED THROUGH WEB

Future work includes evaluation and further
improvements of the implementation. The students of our
faculty will initially test the Turing machine
implementation, but we will be expanding the tests if the
initial feedback and results show that our predictions
about educational value were true. We consider number of
overall users and average usage rate important indicators
about the value of our implementation.

It is necessary to improve the hardware components:
The robot arm has very constrained area of reach so we
plan to replace it with a better model. A framework for the
components will have to be built ensuring stable
positioning. The implementation has to be tested on the
broader set of symbols and problems.

We would like to stress that the physical
implementation of the Turing machine includes all
initially designed features and we hope to improve it to the
benefit of all potential users.

REFERENCES
[1] Turing, A. M.: On computable numbers with an application to the

Entscheidungsproblem, Proceedings of the London Mathematical
Society, 2nd Series, 42., pp. 230-265, 1936.

[2] The Joint Task Force on Computing Curricula - IEEE Computer
Society and Association for Computing Machinery: Computing
Curricula 2001 for Computer Science, Final Report, December 15,
2001., http://www.acm.org/education/education/education/curric_
vols/cc2001.pdf

[3] Britton, S.: Turing machine Simulator, http://www.ironphoenix.o
rg/tril/tm/

[4] Schweller, K. G.: Turing Machine, http://web.bvu.edu/faculty/sch
weller/Turing/Turing.html

[5] Vinokur, A.: Turing and Post Machines: C++ Simulators,
http://sourceforge.net/projects/turing-machine/

[6] Hodges, A.: Alan Turing Internet Scrapbook,
http://www.turing.org.uk/turing/scrapbook/tmjava.html

[7] Ribarić, S., Krleža, D., Pavešić, N.: A Turing machine with Robot
Arm and Eye, Proceedings of the 5th IEEE Conference on
Intelligent Engineering Systems, INES 2001, Helsinki pp. 273-276

[8] Atallah, M. J.: Algorithms and Theory of Computation Handbook,
CRC Press, 1998., New York

[9] Boshernitsan, M., Downes, M.: Visual Programming Languages:
A Survey, Report No.UCB/CSD-04-1368, December 2004,
Computer Science Division (EECS), University of California,
Berkeley, California 94720, http://nitsan.org/~maratb/pubs/csd-
04-1368.pdf

AUTHORS
Marijo Maracic is with the Faculty of electrical

engineering and computing, University of Zagreb. Marijo
Maracic earned a B. Sc. degree in computer science from
the Faculty of electrical engineering and computing,
University of Zagreb, Croatia in 2007. His research
interests include computer vision and pattern recognition.
He is a graduate student member of IEEE.

Slobodan Ribarić received the B.Sc. degree in
electronics, the M.Sc. degree in automatics, and the PhD.
degree in electrical engineering from the Faculty of
Electrical Engineering, Ljubljana, Slovenia, in 1974,
1976, and 1982, respectively. He is currently a Full
Professor at the Department of Electronics,
Microelectronics, Computer and Intelligent Systems,
Faculty of Electrical Engineering and Computing,
University of Zagreb, Croatia. His research interests
include Pattern Recognition, Artificial Intelligence,
Biometrics, Computer Architecture and Robot Vision. He
has published more than one hundred and fifty papers on
these topics, and he is author of four books
(Microprocessor Architecture, The Fifth Computer
Generation Architecture, Advanced Microprocessor
Architectures, CISC and RISC Computer Architecture)
and co-author of one (An Introduction to Pattern
Recognition). Dr. Ribarić is a member of the IEEE, ISAI
and IAPR.
This article was modified from a presentation at the International
Conference on Computer Aided Learning ICL2008 in Villach, Austria,
Sptember 2008. Manuscript received 10 October 2008. Published as
submitted by the authors.

iJOE – Volume 4, Issue 4, November 2008 51

http://www.acm.org/education/education/education/curric_�vols/cc2001.pdf�
http://www.acm.org/education/education/education/curric_�vols/cc2001.pdf�
http://www.ironphoenix.o�rg/tril/tm/�
http://www.ironphoenix.o�rg/tril/tm/�
http://web.bvu.edu/faculty/sch�weller/Turing/Turing.html�
http://web.bvu.edu/faculty/sch�weller/Turing/Turing.html�
http://sourceforge.net/projects/turing-machine/�
http://www.turing.org.uk/turing/scrapbook/tmjava.html�
http://nitsan.org/~maratb/pubs/csd-04-1368.pdf�
http://nitsan.org/~maratb/pubs/csd-04-1368.pdf�

