
Technical Disclosure Commons Technical Disclosure Commons

Defensive Publications Series

October 2019

USER INTERFACE BASED APPROACH TO USER DATA USER INTERFACE BASED APPROACH TO USER DATA

COLLECTION FOR BUSINESS-FOCUSED AND CONTEXTUAL COLLECTION FOR BUSINESS-FOCUSED AND CONTEXTUAL

ENRICHMENT OF BROWSER PAGE PERFORMANCE DATA ENRICHMENT OF BROWSER PAGE PERFORMANCE DATA

Puneet Anand

Follow this and additional works at: https://www.tdcommons.org/dpubs_series

Recommended Citation Recommended Citation
Anand, Puneet, "USER INTERFACE BASED APPROACH TO USER DATA COLLECTION FOR BUSINESS-
FOCUSED AND CONTEXTUAL ENRICHMENT OF BROWSER PAGE PERFORMANCE DATA", Technical
Disclosure Commons, (October 30, 2019)
https://www.tdcommons.org/dpubs_series/2621

This work is licensed under a Creative Commons Attribution 4.0 License.
This Article is brought to you for free and open access by Technical Disclosure Commons. It has been accepted for
inclusion in Defensive Publications Series by an authorized administrator of Technical Disclosure Commons.

https://www.tdcommons.org/
https://www.tdcommons.org/dpubs_series
https://www.tdcommons.org/dpubs_series?utm_source=www.tdcommons.org%2Fdpubs_series%2F2621&utm_medium=PDF&utm_campaign=PDFCoverPages
https://www.tdcommons.org/dpubs_series/2621?utm_source=www.tdcommons.org%2Fdpubs_series%2F2621&utm_medium=PDF&utm_campaign=PDFCoverPages
http://creativecommons.org/licenses/by/4.0/deed.en_US
http://creativecommons.org/licenses/by/4.0/deed.en_US
http://creativecommons.org/licenses/by/4.0/deed.en_US

 1 5903

USER INTERFACE BASED APPROACH TO USER DATA COLLECTION FOR
BUSINESS-FOCUSED AND CONTEXTUAL ENRICHMENT OF BROWSER PAGE

PERFORMANCE DATA

AUTHORS:
Puneet Anand

ABSTRACT

Techniques are described for capturing business-data values automatically using a

configuration User Interface (UI) on a browser Real User Monitoring (RUM) product.

These techniques may allow customers to save time and also enhance product adoption.

The data obtained from the UI may be analyzed independently and may provide context to

performance data.

DETAILED DESCRIPTION

One of the main problems in setting up front-end monitoring is the

challenging/difficult configuration of the JavaScript® agent. This requires JavaScript

knowledge, access to modifying source code documents, and coding skills to instrument

applications. To extract and report contextual data from their applications, customers have

to write some JavaScript instrumentation code using a JavaScript Agent and then update

their web pages with this code. Oftentimes these customers are Information Technology

Operations (IT OPS) specialists or in other roles that do not have access to the code like

their development counterparts.

Described herein is a configuration User Interface (UI) to enable customers to

specify data to be collected. Pages on customer interfaces may also be selected to collect

the data using the same configuration UI. As a result, customers may add and improve the

configuration and management of custom contextual data without requiring assistance

from software development teams. Users may capture data that adds user context (and, in

turn, business context when aggregated) to the already-available performance-oriented data

captured by the same agent. This may enable improved decision-making and more efficient

use of time and effort. Today, on the browser Real User Monitoring (RUM) side, there is

no web browser or JavaScript-based custom data collection that exists in the industry that

allows remote automatic instrumentation.

2

Anand: USER INTERFACE BASED APPROACH TO USER DATA COLLECTION FOR BUSINES

Published by Technical Disclosure Commons, 2019

 2 5903

For example, a customer in the insurance field may wish to capture the branch

identifier, which is passed along from the server to their application interface. Or a

customer in the financial space may wish to capture member tier or status and/or

transaction value for analysis with statistics regarding high error rates. Or in still another

example, a customer who has a web site with thousands of daily users may wish to

determine the different types of business-relevant data values that are being displayed on

user screens as they load the interface. That customer may also wish to understand the

context of these business-relevant data values to understand the impact of different

performance issues in the application UI or by means of business transaction correlation,

into the back-end.

Today, this data is obtainable only by instrumenting every single such data point.

Depending on how the organization is structured, it may be necessary to navigate through

a large number of organizational layers to obtain the instrumentation code running live on

the application. This can often take days or even weeks.

Described herein are techniques to add (e.g., create, read, update, delete, manage,

etc.) dynamic and custom data instrumentation on the configuration UI. Upon saving, this

configuration may be transmitted in a matter of seconds to deploy JavaScript agents on the

users' UIs. The JavaScript agents may then start collecting the data (e.g., custom business

context data points) immediately.

There may be many ways to capture custom business relevant data. Figure 1 below

illustrates an example Document Object Model (DOM) element selector. The UI may

enable customers to add an arbitrary DOM selector using the DOM identifier, for example.

The JavaScript agent may be enabled to read and capture values on those selectors.

3

Defensive Publications Series, Art. 2621 [2019]

https://www.tdcommons.org/dpubs_series/2621

 3 5903

Figure 1

Figure 2 below illustrates how DOM element selectors may be captured from an

example live website using browser plugins and then fed into the aforementioned

configuration.

4

Anand: USER INTERFACE BASED APPROACH TO USER DATA COLLECTION FOR BUSINES

Published by Technical Disclosure Commons, 2019

 4 5903

Figure 2

Apart from DOM selectors, modern browsers allow loaded applications to store

state information in browser memory and browser applications commonly make use of

cookies. The JavaScript agent may read from the storage or cookie values given the

aforementioned settings including the appropriate key.

Modern applications deal with asynchronous data fetching using Asynchronous

JavaScript and eXtensible Markup Language (XML) (AJAX). The system may select the

correct data values from the returned payloads given particular calls and properties.

5

Defensive Publications Series, Art. 2621 [2019]

https://www.tdcommons.org/dpubs_series/2621

 5 5903

Techniques described herein may allow customers to edit the JavaScript agent

configuration and data collection function through a controller UI. Figure 3 below

illustrates an example overview of the high-level system that can serve this purpose.

Figure 3

A browser RUM customer may configure the JavaScript agent configuration

properties and data collection function through the controller UI (Step 1). The

configuration may be stored in a controller database and pass it on to the End User

Monitoring (EUM) cloud (Step 2). The customer may update their web page(s) through

server driven automatic or manual injection of the JavaScript agent. In case of automatic

instrumentation, the agent is hosted in their web server with the customer configuration

and is loaded with the customer-specified web application pages (Step 3). When an end

user visits and uses the customer web site, the agent automatically captures the values in

the DOM selectors / cookie values / AJAX payloads / local memory and generates beacons

containing those values that are sent over to the EUM cloud, which processes the browser

beacons and collects and aggregates the values sent over in a database (Step 4).

6

Anand: USER INTERFACE BASED APPROACH TO USER DATA COLLECTION FOR BUSINES

Published by Technical Disclosure Commons, 2019

 6 5903

The beacon format may include a page type value for a customer event. The

customer event may have an event identifier field and a parent identifier field that points

to the base page / virtual page as the parent of the customer event. The customer data may

be in the same field of the base page / virtual page / iframe / AJAX custom data fields.

Beacon parsing and validation may enable the system to detect and accept the page type

and, for customer events, relax requirements on metrics.

The system may further accept, validate, and persist customer events/data into a

store, and allow customers to search and view customer events/data in the controller's web

analytics or sessions features.

In summary, techniques are described for capturing business-data values

automatically using a configuration UI on a browser RUM product. These techniques may

allow customers to save time and also enhance product adoption. The data obtained from

the UI may be analyzed independently and may provide context to performance data.

7

Defensive Publications Series, Art. 2621 [2019]

https://www.tdcommons.org/dpubs_series/2621

	USER INTERFACE BASED APPROACH TO USER DATA COLLECTION FOR BUSINESS-FOCUSED AND CONTEXTUAL ENRICHMENT OF BROWSER PAGE PERFORMANCE DATA
	Recommended Citation

	Microsoft Word - 1077066_1

