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METHOD Open Access

MIA-Sig: multiplex chromatin interaction
analysis by signal processing and statistical
algorithms
Minji Kim1, Meizhen Zheng1, Simon Zhongyuan Tian1, Byoungkoo Lee1, Jeffrey H. Chuang1 and Yijun Ruan1,2*

Abstract

The single-molecule multiplex chromatin interaction data are generated by emerging 3D genome mapping
technologies such as GAM, SPRITE, and ChIA-Drop. These datasets provide insights into high-dimensional chromatin
organization, yet introduce new computational challenges. Thus, we developed MIA-Sig, an algorithmic solution
based on signal processing and information theory. We demonstrate its ability to de-noise the multiplex data,
assess the statistical significance of chromatin complexes, and identify topological domains and frequent inter-
domain contacts. On chromatin immunoprecipitation (ChIP)-enriched data, MIA-Sig can clearly distinguish the
protein-associated interactions from the non-specific topological domains. Together, MIA-Sig represents a novel
algorithmic framework for multiplex chromatin interaction analysis.

Keywords: 3D genomics, Multiplex chromatin interactions, ChIA-Drop, Signal processing, Algorithms

Background
Traditional 3D genome mapping efforts have suggested
complex chromosomal folding structures. In particular,
methods based on high-throughput sequencing capture
bulk chromatin contacts (Hi-C; Lieberman-Aiden et al.
[18]) or enrich for chromatin contacts involving a spe-
cific protein (ChIA-PET; Fullwood et al. [9]). Both of
these methods rely on proximity ligation and therefore
can only reveal population averages of pairwise contacts.
Thus, they lacked the ability to simultaneously capture
multiple loci involved in a chromatin complex in an in-
dividual cell.
To overcome these drawbacks, novel experimental

methods have recently been developed to capture multi-
plex chromatin contacts with single-molecule resolution.
For instance, GAM (Beagrie et al. [2]) identifies multi-
way interactions by capturing multiple DNA elements
co-existing in a given nuclear slice, SPRITE (Quinodoz
et al. [25]) barcodes individual chromatin complexes via
a split-pool strategy, and ChIA-Drop (Zheng et al. [31])
partitions each complex into a microfluidic droplet for

barcoding and amplification. Collectively, these emer-
ging 3D genome mapping technologies are advancing
the frontier of the nuclear architecture field. However, as
with other genomic approaches prone to the background
noise, the noisy and high-dimensional nature of the
multiplex data poses unique computational challenges
that cannot be readily addressed with existing tools that
are tailored for pairwise interactions data.
Numerous software tools are available for analyzing

data generated by genome-wide 3D architecture assays
such as 3C, 4C, 5C, and the most common assay Hi-C.
For example, HiCNorm (Hu et al. [10]) and Hi-
Corrector (Li et al. [17]) explicitly or implicitly correct
the bias observed in Hi-C data. Fit-Hi-C (Ay et al. [1])
and GOTHiC (Mifsud et al. [20]) aim to assess the stat-
istical significance of intra-chromosomal contacts by in-
corporating bias in the background null model. The
authors of Fit-Hi-C emphasized the importance of ac-
curately modeling the inverse relationship between gen-
omic distance and contact probability. Similarly,
multiplex data also depend on the distance, but cur-
rently available tools cannot be naively applied since (1)
genomic distance is now multi-dimensional instead of
1D, i.e., a complex with n-way contacts yield n − 1 neigh-

boring distances and ðn2Þ ¼ nðn−1Þ
2 pairwise distances, and
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(2) contact probability must be defined for all n-way
contacts, yet it is unclear if ten-way contact is as likely
as two-way contact.
Another crucial component in Hi-C data analysis is to

call topologically associating domains (TADs), loosely
defined as regions with more contacts inside than out-
side. In general, TADs appear as squares along the diag-
onal in the contact map, and the goal is to identify and
segment the genome. There are more than 20 TAD call-
ing algorithms (Zufferey et al. [32]), some of which con-
vert the contact map into a 1D signal along the diagonal
for subsequent segmentation or into a graph and apply
community detection algorithms. To run the existing
tools, multiplex data must first be converted into a con-
tact map. However, enumerating over all possible pairs
in a complex is computationally expensive and may
introduce additional bias since the number of pairwise
interactions increases quadratic in n. In other words, a
complex with 5 fragments yields 28 pairs instead of 1
pair for a complex with 2 fragments. This approach
would also lose valuable multiplexity information.
Conventional studies focused on interactions within

these TADs identified computationally. However, a recent
Hi-C study has suggested that multiple TADs can interact
with each other to accommodate molecular functions dur-
ing the development (Paulsen et al. [22]). The authors in-
ferred confident domain-wise interactions by finding
cliques in a graph, where nodes represent TADs and edges
are contact frequency between TADs. Unlike Hi-C data-
sets, the multiplex data naturally provide interactions
among any number of TADs. Thus, it is desirable to ex-
ploit this information and assess the statistical significance
of these observed inter-TAD interactions.
In parallel, algorithms have been developed to analyze

protein-enriched 3D architecture data from assays such
as ChIA-PET. Similar to Hi-C, ChIA-PET data are also
prone to bias and noise, which are computationally fil-
tered out by statistical algorithms such as ChIA-PET
tool (Li et al. [16]) and chiasig (Paulsen et al. [23]). The
main idea is to model interaction frequency between
two loci as hypergeometric distribution or the non-
central hypergeometric distribution. To accommodate
recently developed variants HiChIP (Mumbach et al.
[21]) and PLAC-seq (Fang et al. [8]), researchers devel-
oped hichipper (Lareau and Aryee [15]), fithichip (Bhat-
tacharyya et al. [4]), and MAPS (Juric et al. [11]) to
remove systematic biases and identify significant loops.
In ChIA-PIPE (Capurso et al. [5]), the de-noising is done
by filtering out loops without peak supports in the an-
chors. Unfortunately, these tools are specifically designed
to model interactions between two loci and would not
readily generalize to those involving more than two loci.
Thus, to fill in the gap in novel software for analyzing

multiplex data, we developed MIA-Sig (Multiplex

Interactions Analysis by Signal processing algorithms)
with a set of Python modules tailored for ChIA-Drop
and related data types. MIA-Sig has the following com-
ponents: (1) calling statistically significant complexes
and removing experimental noise, (2) calling TADs on
multiplex data, and (3) identifying meaningful multi-way
inter-TAD contacts.

Results
Distance test resolves multiplets and removes
experimental noise
A central challenge in ChIA-Drop data analysis is to dis-
tinguish the true biological chromatin complexes from
the experimental noise. One possible source of noise is
an event that two or more chromatin complexes are po-
tentially encapsulated in the same microfluidic droplet
and then are assigned the same barcode, yielding a
multiplet (Fig. 1a). The problem also prevails in
microfluidic-based single-cell RNA-seq data, which is
then resolved computationally via dimensionality reduc-
tion and clustering (Wolock et al. [30]). However,
methods developed for single-cell transcriptomics data
are not apt for multiplex chromatin interactions data
since (1) the signal for chromatin interactions is point
data (fragment is captured or not captured) rather than
continuously valued data (gene expression level), and (2)
multiplex chromatin interaction data are inherently
more sparse than the single-cell transcriptomics data,
due to the lack of cell barcodes.
Therefore, we devised a distance test with an entropy

filter based on the biological knowledge that most mean-
ingful chromatin interactions occur in a certain distance
range, while those outside the range are likely noise
(Lajoie et al. [14]). By converting the distances between
fragments into a probability vector, we compute the nor-
malized Shannon entropy (Shannon [27]), ranging from
0 to 1. If a droplet contains a single complex, the frag-
ments are presumably close and equally spaced, resulting
in high entropy close to 1. In the case of a doublet, two
independent complexes would be separated by a single
large distance, resulting in low entropy close to 0, which
can then be separated into two singlets (Fig. 1b). The
cutoff threshold is determined by the average normalized
Shannon entropy of the expected null distribution as
described below.
To identify significant chromatin complexes, a

resampling-based distance test is applied before and after
the entropy filter (Fig. 1c; Additional file 1: Figure S1a; the
“Methods” section). We verify that the distance distribu-
tion of expected complexes from resampling (computa-
tional null) and that of pure DNA complexes
(experimental null) are comparable, with the majority
greater than 1 Mbps (Additional file 1: Figure S1b). Fi-
nally, we retained 55,995 statistically significant complexes
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in the Drosophila S2 ChIA-Drop data out of 3,075,926 pu-
tative complexes (Additional file 1: Figure S1c). Filtering
to retain significant complexes preserves the TADs along
the diagonal of the 2D heat maps, while reducing the off-
diagonal noise (Fig. 1d; visualization through Juicebox
(Durand et al. [7])). A shift in distance distributions from
large (original) to small (significant) supports that mean-
ingful interactions are captured within 10 kb and 1Mb,
mostly from complexes with 5 or more fragments (Fig. 1e;
Additional file 1: Figure S2).
Of the significant chromatin complexes, 15,055 (27%)

were from the entropy filtering step that resolved dou-
blets and triplets (Additional file 1: Figure S3a,b). For ex-
ample, of complexes with 3 fragments (in F3), 499,613
are identified as “singlets” due to high entropy, and 284,
540 are considered to be “doublets” due to low entropy.
A general trend is that entropy is highest for those with-
out any splits, lowest for a doublet with a singleton, and
increases as the size of sub-complexes balance to be
roughly equal.
Several parameters are fixed or to be chosen in the

distance test. As mentioned earlier, the cutoff threshold

in the entropy filter is computed for each fragment class
based on the null distribution; for reference, some of the
values used in this study are summarized in Add-
itional file 1: Figure S3c. In general, the threshold is
higher for the class with a high number of fragments
than for that with a low number of fragments. Other pa-
rameters are to be chosen by the users: false discovery
rate (FDR), ratio threshold (ratiothresh) for separating
the second largest distance in the entropy test, and the
sample size for constructing the null. We benchmarked
a few values for some of these parameters and evaluated
their effects by recording the number of significant com-
plexes and by performing the two-sided K-S test on
fragment-to-fragment distances of the original and sig-
nificant complexes. As expected, the setting with a lower
number of significant complexes had higher K-S statis-
tics, likely because MIA-Sig kept a small portion of the
highly confident complexes. Given the same FDR, a
ratiothresh of 5 yields more complexes in the significant
category and a slightly higher K-S statistics than a ratio-
thresh of 2. The current default parameters are FDR =
0.1 and ratiothresh = 2, but a more systematic evaluation

Fig. 1 Performance of MIA-Sig on Drosophila S2 cells ChIA-Drop data. a ChIA-Drop experiments are designed to encapsulate each chromatin
complex in a droplet, but the encapsulation is a random process and sometimes results in more than one complex in a droplet (multiplets). b
MIA-Sig aims to detect multiplets by computing the normalized Shannon entropy Hnorm (the “Methods” section). It separates a complex at the
largest distance if Hnorm is smaller than a threshold, which is 0.7 in this example. This threshold is determined from the normalized Shannon
entropy of the expected null model. c Summary statistics of the distance test indicate that the entropy filter resolves around 500,000 doublets
and 85,000 triplets, from which 15,055 complexes pass the second distance test. d 2D heatmap comparison of original (bottom triangle) and
significant (upper triangle) complexes demonstrates that MIA-Sig removes off-diagonal noise. e Empirical cumulative distribution function for the
neighboring distances of original and significant complexes (two-sided Kolmogorov-Smirnov test statistic =0.47, p value <2.2 × 10−16 ). f
Comparison of TADs called from significant putative complexes (MIA-Sig) and from enumerating all pairs of fragments (insulation score). MIA-Sig
more specifically separates active regions (high H3K27ac and low H3K27me3) rather than assigning them to TADs.
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of “real complexes” will be desirable in the future as
more multiplex datasets become available.

Wavelet-based segmentation method identifies TADs
overlapping inactive regions
From the significant complexes, it is desirable to automat-
ically call TADs for downstream analyses. Many TAD
calling algorithms exist for Hi-C data (Zufferey et al. [32]),
yet all are based on pairwise contacts. To retain multiplex-
ity information, we developed an algorithm to call TADs
directly from the ChIA-Drop data (the “Methods” sec-
tion). The idea is to convert complexes into 1D signal
track then apply wavelet transformation (Mallat [19]) to
smooth the signal while retaining clear change points
(Additional file 1: Figure S4a). This approach allows us to
identify clear gaps between TADs, rather than segmenting
the genome into consecutive TAD regions (Additional file 1:
Figure S4b). MIA-Sig called 335 TADs with a wider range
of sizes than 513 TADs called by pairwise “insulation score”
(InS) approach; similarly, the gap sizes spanned a
wider range for MIA-Sig TADs than for InS TADs
(Additional file 1: Figure S5). Compared to InS
TADs, the MIA-Sig TADs are less likely to overlap
active regions characterized by high H3K27ac and
low H3K27me3 (Fig. 1f), which are known to be the
gaps between TADs in Drosophila (Rowley et al.
[26]). This pattern is observed genome-wide: MIA-
Sig TADs have a higher inactive mark (H3K27me3)
than InS TADs, and MIA-Sig gaps have a higher ac-
tive mark (H3K27ac) than InS gaps (Additional file 1:
Figure S6).

Binomial test detects frequent interactions among two or
more TADs
Most interactions occur within a single TAD, but 23% of
significant complexes also cross two or more TADs
(Additional file 1: Figure S7a), consistent with previous
findings (Paulsen et al. [22]). Thus, we identified fre-
quent interactions involving multiple TADs by counting
the occurrences and performing a binomial test (Add-
itional file 1: Figure S7b; the “Methods” section). A set
of TADs with frequent contacts are ultimately assigned
low p values (Additional file 1: Figure S7), which can
guide the researchers to perform validation experiments.

Enrichment test retains strong interactions involving
promoters
Similar to ChIA-PET, ChIA-Drop can also enrich chro-
matin complexes involving a specific protein, such as
RNAPII or CTCF. We implemented an enrichment test
to estimate the significance of binding intensity of ob-
served chromatin complexes and retain those with high
binding intensity (Fig. 2a; the “Methods” section). An
empirical null distribution is generated by placing the

observed complex on a random location in the chromo-
some and recording the binding intensity. We verified
that the empirical null and observed distributions differ
significantly, with observed shifted to the right of the
null (Additional file 1: Figure S8c,d). After the enrich-
ment test, we retain 190,226 significant complexes out
of 769,803 complexes (Additional file 1: Figure S8).
These significant complexes have their fragments in

highly enriched domains characterized by high RNA-seq
expression and H3K27ac signal with abundant RNAPII
ChIA-PET loops (Fig. 2b). Genome-wide patterns confirm
that significant complexes are biased towards active regions,
whereas insignificant complexes are not (Additional file 1:
Figure S9). Moreover, significant complexes have higher
median H3K27ac signals and lower median H3K27me3 sig-
nals than insignificant complexes (Fig. 2c, d). A detailed
view around a few genes shows that significant complexes
are more likely to retain promoter-centric interactions than
insignificant complexes (Fig. 2d; visualization through
ChIA-View (Tian et al. [29])). This pattern is prevalent
genome-wide, with 69% of significant complexes containing
at least one promoter compared to only 30% of insignificant
complexes (Fig. 2f). Notably, significant complexes are most
likely to capture one active promoter and one or more
non-promoters—possibly enhancers—while insignificant
complexes are prone to detect interactions among non-
promoters (Additional file 1: Figure S10). Among the
promoter-involving fragments, those in significant com-
plexes have higher median gene expression than those in
insignificant ones.

Insignificant RNAPII ChIA-Drop complexes emulate non-
enriched ChIA-Drop data
As with many experimental protocols, the chromatin im-
munoprecipitation step is not 100% efficient and typically
yields a 20–40% efficiency rate (Tang et al. [28]). Thus, we
take advantage of the fact that enriched ChIA-Drop data-
sets also contain some background signal for chromatin
complexes that did not specifically involve the protein of
interest, similar to non-enriched ChIA-Drop data. Through
the MIA-Sig enrichment test on RNAPII ChIA-Drop data,
we can extract the non-enriched complexes from the insig-
nificant complexes, which approximately emulate the
ChIA-Drop data (Fig. 2g).

Distance test can be applied to SPRITE data
We have developed MIA-Sig on ChIA-Drop and RNA-
PII ChIA-Drop data, but it could also be applied for de-
noising multiplex chromatin interactions from other
methods, such as SPRITE and GAM.
SPRITE uses three to five rounds of split-and-pool ap-

proach to barcode each chromatin complex by combinator-
ial indexing, with a theoretical assumption that many
rounds of splitting and pooling should result in one unique
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barcode combination per chromatin complex. However, in
practice, the split-and-pool process is limited to four to five
rounds with a limited set of distinct barcodes, and in each
round, potentially hundreds of thousands of chromatin
complexes are assigned the same DNA oligo barcode. As a
result, there is a certain non-zero probability of multiple
complexes receiving an identical barcode combination.
These unrelated complexes would be considered technical
noise of SPRITE technique, which is somewhat similar to
that of ChIA-Drop of unrelated complexes partitioned in
the same microfluidic droplet.
As a proof-of-concept, we demonstrate the utility of

MIA-Sig by performing the distance test on SPRITE data
(Quinodoz et al. [25]) generated from F121 mouse em-
bryonic stem cells (GSE114242). The data are pre-
processed to convert reads into fragments of certain
sizes and distances, and we selected intra-chromosomal
complexes in chr18 (the “Methods” section). From the
original 487,679 complexes, 11,984 complexes are identi-
fied as significant by the 2 distance tests preceding and
following the entropy filter (Fig. 3a). The 2D contact
maps of original complexes exhibit off-diagonal noise,

whereas that of the significant complexes have the ma-
jority of the signal along the diagonal (Fig. 3b). We plot
the empirical cumulative distribution of the fragment-
to-fragment distances of original and significant com-
plexes and observe that significant complexes have
shorter distances than original complexes (Fig. 3c; two-
sided Kolmogorov-Smirnov test statistic = 0.18, p value <
2.2 × 10−16). These results indicate that MIA-Sig can in-
deed assess the statistical significance of complexes cap-
tured by SPRITE.

Discussion
Many tools exist for analyzing traditional proximity
ligation-based chromatin interaction data, such as Hi-C
and ChIA-PET. By contrast, there is a lack of tools to
comprehend the data generated by the recently developed
multiplex interaction mapping techniques. To fill in this
gap, we have developed MIA-Sig that is specifically de-
signed to analyze multiplex chromatin interaction data.
The most significant functionality of MIA-Sig is to de-

noise and identify statistically confident multiplex chro-
matin complexes in both non-enriched data and protein-

Fig. 2 Enrichment test on Drosophila S2 cells RNAPII ChIA-Drop data. a MIA-Sig performs an enrichment test on RNAPII-enriched ChIA-Drop data
by retaining complexes with fragments in strong binding regions, which also correspond to RNAPII ChIA-PET peaks. b The significant complexes
are pronounced in regions with a high level of transcription, abundant loops, and active histone mark; insignificant complexes tend to be in
inactive regions. c Log of H3K27ac signal for fragments in significant and insignificant complexes (one-sided Mann-Whitney U test, p value <2.2 ×
10−16). d Log of H3K27me3 signal for fragments in significant and insignificant complexes (one-sided Mann-Whitney U test, p value <2.2 × 10−16).
e Fragment coverage profile of significant complexes is similar to that of RNAPII ChIA-PET, with 45 promoter-centric multiplex interactions (green,
non-promoters; light green, promoters). By contrast, insignificant complexes do not show any strong binding peaks in coverage, and 91 multiplex
interactions are non-specific (turquoise, non-promoters; light turquoise, promoters). f Genome-wide, significant complexes have a higher
proportion of active promoter fragments than insignificant complexes do (two-sided K-S test statistic =0.39, p value <2.2 × 10−16). g The
insignificant RNAPII ChIA-Drop complexes from the enrichment test are comparable to the significant ChIA-Drop complexes from the distance
test. TADs (black lines) are called by MIA-Sig on the latter complexes

Kim et al. Genome Biology          (2019) 20:251 Page 5 of 13



enriched data. We applied an entropy concept from infor-
mation theory to identify multiplets in ChIA-Drop and
SPRITE data and implemented a simple yet relatively effi-
cient method to evaluate the enrichment score of each
complex in RNAPII ChIA-Drop data. In addition, we pro-
posed a wavelet-based algorithm to call TADs on multi-
plex data. A unique feature of this approach is the ability
to clearly distinguish TADs from gaps, which is of bio-
logical relevance in Drosophila samples. In particular, it is
shown that TADs and gaps interleave in Drosophila, un-
like in human or mouse where gaps are not as critical as
they are in Drosophila (Rowley et al. [26]). These TADs
merely serve as a unit in the downstream analysis, where
we investigate the occurrence of simultaneous interactions
among two or more TADs through the binomial test. A
recent study support that these occurrences are important
during development (Paulsen et al. [22]). New algorithmic
ideas in this work are implemented in a publicly available
package, along with scripts to generate data QC plots.
Hence, MIA-Sig serves as a comprehensive pipeline in-
cluding both data quality control and data analysis.
Although potentially a useful package, MIA-Sig none-

theless has its own drawbacks. One key assumption in
the distance test is that a fragment far from the other
fragments is likely a droplet contamination resulting in a
doublet, a behavior yet to be confirmed experimentally
and statistically. As with other TAD calling algorithms
for Hi-C data, MIA-Sig’s TAD caller requires a set of pa-
rameters such as wavelet level and window size. We pro-
vide recommended parameters (Lajoie et al. [14]) for
each representative model organism, but have not thor-
oughly tested due to lack of datasets. A critical pitfall in
the inter-TAD binomial test is that we do not normalize
the TAD interaction frequency by distance and size. In
other words, we expect the closer and larger TADs to
interact more frequently than others. Finally, in perform-
ing the enrichment test for RNAPII ChIA-Drop data, we

do not use a background distribution model and instead
draw an empirical null distribution via random sampling.
A disadvantage of this approach is the computational
cost, which can be demanding for large human datasets.
In sum, all multiplex chromatin interaction data could

have a significant level of noise, and the principle nature
of the noises is conceptually similar. The algorithm used
in MIA-Sig considers general issues that should be ap-
plicable to all multiplex data. Although the current ver-
sion of MIA-Sig is specifically developed based on the
ChIA-Drop data, we demonstrated its capability to assess
the significance of multiplex chromatin complexes in
SPRITE data. With further modification and improvement,
MIA-Sig should be directly applicable to any multiplex
chromatin interaction data and also allow us to fully
characterize similarity and differences between experimen-
tal protocols.

Conclusions
As we enter the era of single-cell and single-molecule
3D genome mapping, it will be imperative to develop al-
gorithms to analyze data from these novel experimental
protocols. We have presented an approach to solve the
imminent problem of extracting statistically significant
complexes from noisy signals, calling TADs, and identi-
fying frequent inter-TAD contacts (Fig. 4). In addition,
we offer a practical strategy to extract non-enriched
ChIA-Drop from RNAPII ChIA-Drop.
We envision that MIA-Sig will be broadly applicable

to any type of multiplex chromatin interaction data ran-
ging from ChIA-Drop and SPRITE to GAM, under the
aforementioned assumptions and with modifications.
Here, we focused on the Drosophila ChIA-Drop and
RNAPII ChIA-Drop data as a proof of concept and dem-
onstrated that MIA-Sig filters and retains only the highly
informative complexes and tested its applicability to the
mammalian data generated by SPRITE. Finally, as a

Fig. 3 Distance test results on SPRITE mouse embryonic stem cell dataset. a Of 487,679 complexes in chr18, 11,984 (2.46%) complexes pass by
the 2 distance tests. b A chromosome-wide heatmap is generated for original and significant complexes by enumerating all pairs of fragments. c
Empirical cumulative distributive function (ECDF) for the neighboring distances of original and significant complexes (two-sided Kolmogorov-
Smirnov test statistic =0.18, p value <2.2 × 10−16 )
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publicly available software package, MIA-Sig provides a
valuable algorithmic framework for multiplex chromatin
interaction data to be utilized by the broader scientific
community.

Methods
Notation
An input dataset contains a set of chromatin complexes,
each with two or more fragments. Let OCm be the set of
fragments contained in the mth “observed complex”
(OC), for m ∈ {1, 2,…,M}, and n = |OCm| is the size of
the set denoting the number of fragments in a complex.
Each fragment u is subscripted by the complex index
and superscripted by the fragment index and encodes
the genomic location of its origin expressed as a triplet
of chromosome, start and end positions. The distance d
between fragments uam and ubm is start(ubm ) − end(uam ),
and neighboring (fragment-to-fragment; F2F) distances
are encoded in a vector

xF2F OCmð Þ ¼ d u1m; u
2
m

� �
; d u2m; u

3
m

� �
;…; d un−1m ; unm

� �� �
;

and the total distance is dtot(OCm) = ∑ xF2F(OCm); the
probability vector pF2FðOCmÞ ¼ x F2 FðOCmÞ

dtotðOCmÞ . For example,
if an eighth complex OC8 ¼ fu18; u28; u38g contains three
fragments (chr2L, 100, 500), (chr2L, 1000, 1500), and
(chr2L, 6000, 6500), then xF2F(OC8) = [500, 4500],
dtot(OC8) = 5000, and pF2FðOCmÞ ¼ ½ 110 ; 9

10� . Finally,
we can partition M complexes OC1, OC2, …, OCM

into Fj, where j is the number of fragments in a complex
(OC8 belongs to F3 since it has three fragments).

Distance test for non-enriched multiplex chromatin
interactions data
Empirical null distribution and first distance test
Assuming that complexes are independent of chromo-
some, we perform the distance test separately for
each chromosome. Motivated by the fact that each
fragment class Fj has distinct distributions in F2F dis-
tances, we construct the expected null background

distribution by randomly rewiring fragments. Specific-
ally, all neighboring distances xF2F(OCm) for m ∈ {1, 2,
…,M} are placed in a bucket B. For each observed Fj,
we randomly draw j − 1 elements (with replacement)
from B to create 100,000 “expected complexes” (EC)

EC j
k for k ∈ {1, 2,…, 100,000} and store them in Fj′.

Note that since we only care about the distance be-
tween fragments, we can assume that every fragment
starts at (chr, 1, 500) and each fragment is of equal
length. In practice, we store minimum information to
save compute memory (implementation details below).
For each OCm in Fj, we compare its total F2F dis-

tance to total F2F distance in F
0
j and record the pro-

portion of expected complexes that have shorter
distances than the observed complexes as the esti-
mated “raw p value.” Formally, for a OCm ∈ Fj,

pvalraw OCmð Þ ¼
X100;000

k¼1
1 dtot OCmð Þ>dtot EC j

kð Þf g;

where 1{∗} is an indicator function. Assuming that com-
plexes in each fragment class are independent, we subse-
quently separate the raw p values by Fj and adjust them
for multiple hypothesis testing using Benjamini-
Hochberg method (Benjamini and Hochberg [3]) with
false discovery rate (FDR) of 0.1. The complexes with
adjusted p value ≤0.1 are considered to be statistically
significant and are classified as “pass1” (Fj, pass1). Of
those insignificant complexes with adjusted p value >
0.1, we “fail1” (Fj, fail1) those with two fragments (OCm ∈
F2 with adjusted p value > 0.1) and treat others in a sep-
arate category called “defer” (Fj, def). These “deferred”
complexes are passed onto the entropy filter to correct
for droplet contamination.

Entropy filter
Some complexes in the “deferred” category may be due
to the experimental noise that can be computationally
detected. Specifically, this step aims to computationally
correct for the undesired phenomenon of a droplet

Fig. 4 Summary of MIA-Sig algorithm. ChIA-Drop putative complexes from ChIA-DropBox pipeline are inputs to the distance test, which assigns p
values to each complex to quantify its significance. Refined complexes enable TAD calling directly on the multiplex data. A binomial test
identifies frequent contacts among multiple TADs. RNAPII-enriched ChIA-Drop putative complexes are assigned significance according to the
level of enrichment
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containing more than one chromatin complex (referred
to as “doublet” for two, “triplet” for three, and “multi-
plet” for two or more). In single-cell RNA-seq (scRNA-
seq; single-cell transcriptome) experiments, the outcome
of a doublet would be a vector of real numbers indicat-
ing average expression of the two cells. By contrast,
ChIA-Drop data only provide binary values indicating if
a fragment was captured or not, with a variable number
of fragments. Therefore, the effect of two complexes ac-
cidentally being encapsulated in a single droplet would
be a large distance in the data. This assumption is based
on the observation from Hi-C and ChIA-PET data ana-
lysis that true interactions occur within certain range of
genomic span. Our goal is to identify complexes with
one dominating distance between fragments. Using the
probability vector of the neighboring distance, we quan-
tify the likelihood of a dominating event. Formally, for
an observed complex OCm with n fragments and
pF2F(OCm) = [p1, p2,…, pn − 1], we compute the normal-
ized Shannon entropy (Shannon [27])

Hnorm pF2F OCmð Þð Þ ¼
Pn−1

i¼1pi log2
1
pi

� �

log2 n−1ð Þ :

The normalization factor log2(n − 1) ensures that
Hnorm(x) ∈ [0, 1] for any probability vector x. Generally,
Hnorm is small when only one or two of pi of are large,
in which case we presume that a complex is a multiplet
and need to separate into singlets. For each observed
complexes in the “deferred” category, we compare its
normalized Shannon entropy to the average normalized
Shannon entropy of the expected complexes in the cor-
responding class; if the former is smaller, then we separ-
ate the observed complex at the longest distance
interaction. In other words, for OCm ∈ Fj, def, if

Hnorm pF2F OCmð Þð Þ < 1
100; 000

X100;000

k¼1
Hnorm pF2F EC j

k

� 	� 	
;

then OCm is separated into
OCm, 1= fu1m; u2m;…; uSmg and OCm, 2 = fuSþ1

m ; uSþ2
m ;…; unmg,

where dðuSm;uSþ1
m Þ ¼ maxxF2FðOCmÞ . Furthermore, if

the second largest distance is at least 1
τ of the largest dis-

tance, we also separate at the second longest distance. τ
is a variable parameter and we set it to 2 in our analyses;
the larger the τ, the more likelihood of a “second cut”
(implying a triplet). The resulting sub-complexes are
placed in Fj, def, filt and are now subject to the second
distance test. Note that we did not perform any statis-
tical test in this step, only performed filtering. Also, the
Shannon entropy merely serves as a quantification meas-
ure for a single complex and should not be confused
with the heterogeneity of all complexes in the ChIA-
Drop data.

Second distance test
We repeat the distance test after correcting for possible
doublets and triplets. For a OCm, ∗ ∈ Fj, def, filt

pvalraw OCm;�
� � ¼ X100;000

k¼1
1dtot OCm;�ð Þ>dtot EC j

kð Þ:

We adjust raw p values using Benjamini-Hochberg
method with false discovery rate (FDR) of 0.1. The com-
plexes with adjusted p value ≤0.1 are classified as “pass2”
(Fj, pass2) and others are “fail2” (Fj, fail2). A diagram of the
distance test is illustrated in Additional file 1: Figure S1a.

Implementation, results, and analysis
MIA-Sig takes putative chromatin complexes as the in-
put, which are results of the ChIA-DropBox (Tian et al.
[29]) data processing and visualization pipeline. The
“distance test” python (v3.6) script encompasses all parts
using the following packages: numpy, random, statsmo-
dels, itertools, os, and sys. We used the parameters --gen
dm3 --fdr 0.1 --cef 2 --sz 100,000 to run the script on
GSM3347523 dataset, which used 1.8 GB of memory
and 13 min of CPU time. To save memory, we store
minimal information for the null, total distance for ex-
pected complexes, and their mean entropy for each frag-
ment class. Two runs with the same parameters should
yield identical results because we set seeds in the con-
struction step for the expected complexes. By saving the
first 1000 expected complexes for each class in a
chromosome, we can compare our expected null model
to the biological null model, which is the “pure DNA”
described in (Zheng et al. [31]). Plotting the neighboring
distances, we observed that both the computational null
and pure DNA are unimodal with peaks between 1 and
10 Mbps for all classes (Additional file 1: Figure S1b).
After confirming that our expected complexes do emu-
late long-range noise, we obtained detailed statistics of
each step resulting in 55,995 significant complexes
(Additional file 1: Figure S1c). Complexes in each of the
“original,” “significant” (“pass1” + “pass2”) and “insignifi-
cant” (“fail1” + “fail2”) categories are converted into a
.short format by enumerating over all pairs of fragments
in a complex. Three .short files are then converted into
.hic files via juicer (v1.7.5) to be visualized in juicebox. A
5-Mbps window on chr3L shows that the original data
exhibit both the signal and noise, which are separated by
MIA-Sig into significant and insignificant, respectively
(Additional file 1: Figure S2a). The original observed
complexes have a bimodal distribution for high frag-
ment classes, which is a distinct behavior from the
null distribution (Additional file 1: Figure S1b, S2b).
The density plot further supports that significant
complexes retained short distances or a mix of short
and long distances. By contrast, insignificant com-
plexes are only comprised of unimodal long distances
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(Additional file 1: Figure S2b). Consistent with an ob-
servation that high-fragment complexes contribute to
the structure more than the low-fragment complexes
(Zheng et al. [31]), MIA-Sig assessed the majority of
high-fragment complexes as significant (Add-
itional file 1: Figure S2c). We next investigated the ef-
fects of the entropy filter, which was designed to
remove doublets and triplets. Of the 1,452,878 com-
plexes in the deferred category ranging from n = 3 to
n = 8, MIA-Sig identified 60% (869,065) to be singlets,
34% (498,291) to be doublets, and 6% (85,522) to be
triplets, yielding 548,342 singletons (F1) and 1,573,871
complexes (F≥2) (Additional file 1: Figure S3). For
each class, singletons had the highest normalized
Shannon entropy, followed by doublets and triplets.
The entropy filter step allowed MIA-Sig to identify
additional 15,055 complexes as significant, which
amounts to 27% of the total significant complexes.

TAD calling for non-enriched multiplex chromatin
interactions data
Generating 1D signal track
Existing TAD calling algorithms for pairwise Hi-C data
generally fall into two categories: (1) signal segmentation
after conversion from 2D contact maps into 1D tracks
measuring interaction intensities along the genome and
(2) community detection directly on the 2D heatmap by
treating each bin as a node on an undirected graph. We
take the first approach and convert our complexes into
1D signal track. A conventional pairwise approach would
enumerate over all pairs of fragments in a complex and
record their spans. However, multi-fragment complexes
may over-contribute since the number of pairs grows qua-

dratically: ðn2Þ ¼ nðn−1Þ
2 , where n is the number of fragments

in a complex. Instead, we allow each complex to only con-
tribute linearly in n by recording its span weighted by n.
More precisely, coordinates are (chrom( u1mÞ , start( u1m ),
end(unm ), n) for an OCm with n fragments. We finally ob-
tain a “weighted complex span coverage” by accumulating
the coordinates over all given complexes.

Smoothing and segmentation
Our next task is to segment the 1D track into regions
with a high signal and annotate them as TADs. In an
ideal case, we can achieve this goal by computing the
slope of the signal s and by recording critical points
where the slope is 0. However, our signal has a basepair
resolution and thus is not smooth, resulting in too many
false critical points. A common way to smooth the signal
is by a moving average window, but using a large win-
dow size would lose the resolution and yield TADs with
fuzzy boundaries. Moreover, due to the inherent nature
of TAD sizes, a window size parameter optimal in one

region may not be optimal in another. We avoid this
parameter tuning step by instead applying a discrete
wavelet transformation, which decomposes signal into
high-frequency component and low-frequency component
(Mallat [19]). Of note, the low-frequency component gen-
erally retains the smoothed version of the signal without
affecting the shape, which is helpful for us to find accurate
TAD boundaries (Additional file 1: Figure S4). Using this
“smoothed” signal, we compute the slope and fine-tune
TAD coordinates.

Implementation, results, and analysis
The “tad calling” python (v3.6) script encompasses all
parts using the following packages: numpy, os, scipy,
pywt, itertools, and sys. We used the parameters --cat
PASS --bs 1000 –sp drosophila --r dm3 to run the script
on significant complexes from the distance test of
GSM3347523 dataset, which used 84 MB of memory
and 1min of CPU time. Before generating the 1D signal
track, we separate 2 fragments if they are more than
100 Kb apart, based on the upper range of general TAD
sizes by organisms (Dekker and Heard [6]). Coverage
was generated by BEDtools (Quinlan and Hall [24])
using “genomecov” function, and the coverage is binned
into 1-Kb windows via “makewindows” and “map” com-
mands. Signal smoothing was done by pywt package
using the parameters “bior1.1” for wavelet function and
“3” for the level. MIA-Sig called 335 TADs over the 6
chromosomes, with a median size of 200 Kb
(Additional file 1: Figure S5a). For a comparison, we also
tested insulation score as follows: .hic file (of all pairs of
fragments) are converted into contact matrices via
Juicer’s “dump” function with a dense matrix option (-d)
in the Juicer tool (v1.7.5); insulation score script (https://
github.com/dekkerlab/cworld-dekker/tree/master/
scripts/perl) is executed with 100-Kb insulation square
size, 100-Kb delta window size for 10-Kb resolution con-
tact maps with balanced normalization. Insulation score
(InS) called 513 TADs with a median of 150 Kb and did
not call any TADs larger than 500 Kb (Additional file 1:
Figure S5b,c). When we examined the gaps (defined as
the regions between 2 TADs, if any), MIA-Sig also had a
wider size range than InS (Additional file 1: Figure S5d,e).
For each TAD called by MIA-Sig and InS, we compute
the total H3K27me3 signal and plot the genome-wide be-
havior (Additional file 1: Figure S6a). Overall, MIA-Sig
has a higher inactive signal in TADs than InS. The gap re-
gions in Drosophila are known to be transcriptionally ac-
tive and should positively correlate with the H3K27ac
signal. We confirm that MIA-Sig has a slightly higher me-
dian active signal than InS (Additional file 1: Figure S6b).
Note that we did not perform any normalization by region
size because both algorithms segment the genome into ei-
ther a TAD or a gap, so the region size should also be a
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feature. Histone marks provide biological evidence that
MIA-Sig TADs are inactive and gaps are active, but ChIA-
Drop fragment counts provide a direct measure of TAD
and gap intensities. Using the BEDtools command “inter-
sect -c,” we count the number of fragments in each region.
MIA-Sig generally captured more fragments in TADs than
InS did (Additional file 1: Figure S6c) and less fragments
in gaps than InS (Additional file 1: Figure S6d). Finally, we
annotate each fragment in significant and insignificant
complexes as “TAD” or “gap” as called by MIA-Sig. For
each complex, we count the number of TADs with at least
2 fragments within each TAD. Only 5% of the insignificant
complexes had fragments in 1 or 2 TADs, and the rest
were not contributing to the TAD structure (Add-
itional file 1: Figure S7a), validating the observation from
2D heatmaps. By contrast, only 26% of the significant
complexes were not in TADs, a majority (51.3%) in intra-
TAD interactions, and many (23%) connected 2 or more
TADs. By observing that 12,884 complexes involve 2 to 21
TADs, we next sought to characterize if multiple com-
plexes connect the same set of TADs.

Inter-TAD binomial test for non-enriched multiplex
chromatin interaction data
Motivation and intuition
Our goal is to evaluate the statistical significance of
these TAD combinations based on the frequency of oc-
currence measured by the number of complexes therein.
The problem is simple for a pair of TADs: we may treat
a TAD as a ChIA-PET loop anchor and apply tools
based on the hypergeometric test. However, our data are
now multi-dimensional. For instance, suppose that there
are five TADs and five combinations “A-C,” “B-C,” “B-
C-D,” “A-B-E,” and “A-D-E” (Additional file 1: Figure
S7b). The pair “B-C” appears four times on its own, but
also appears three times as a part of the triple “B-C-D.”
Moreover, some parts of a combination may appear else-
where with the same number of TADs: given “B-C-D”
and “A-C-D,” “C-D” appears twice. Therefore, we
propose a counting scheme based on the occurrence of
“expanded pairs.”

Methods
The notations used defined in this section are independ-
ent from those in other sections. We let the ith
combination be TCi ¼ fT 1

i ;T
2
i ;…;TN

i g , where each
Tn

i ∈fTAD1;TAD2;…;TADMg , N = ∣ TCi∣ is the
number of TADs involved, and we partition each TCi

into the same class Gj if |TCi| = j. All pairs of TADs
in TCi are in Pa(TCi) = {{r, s} : r ≠ s, for r, s ∈ TCi} and

jPaðTCiÞj ¼ nðn−1Þ
2 . For each TCi, we record the number of

pairs in the same class as

a TCið Þ ¼
X
y∈GN

X
w∈Pa yð Þ

1w¼Pa TCið Þ

and the number of exact appearance in higher class as

b TCið Þ ¼
X

w∉GN
1TCi⊂w:

Using these two numbers, we compute the appearance
of “pairs” in the same class and higher class

x TCið Þ ¼ a TCið Þ þ b TCið Þ∙n n−1
2

� �
:

Finally, we perform the binomial test with x(TCi) as

the number of success, kðTCiÞ ¼
X
z∈G j

xðzÞ as the number

of trials, the probability of success hypothesized as
p ¼ 1

jG jj ; the alternative hypothesis is that the

observed probability is greater than the expected
probability p. A detailed example is provided using
the same notations (Additional file 1: Figure S7b).

Implementation, results, and analysis
A python script “inter-TAD binomial test” implements
the method using packages numpy, itertools, scipy, stats-
models, os, and sys. Of 6861 unique combinations in-
volving 2 to 21 TADs, 915 (13%) were identified as
statistically significant. An example illustrates that a pair
of TADs with a strong signal in the heatmap and many
complexes in the linear view has lower p value than that
with a weak signal (Additional file 1: Figure S7c). Here,
we assumed that the frequency of interactions between
TADs is independent of their distance and sizes, and we
also did not distinguish contacts with 2 fragments from
those with 10 fragments. These parameters may be in-
corporated in the future version.

Enrichment test for RNAPII-enriched multiplex chromatin
interaction data
Motivation
The above sections are designed to analyze non-specific
multiplex interaction data analogous to the Hi-C data.
With an additional step of chromatin immunoprecipita-
tion, protein-enriched multiplex data reveal protein-
specific interactions similar to the population average
ChIA-PET loops. In a typical ChIA-PET analysis, loops
anchored in strong binding peaks are considered to be
more reliable than those with weak or no peaks. Extend-
ing this notion to the multiplex data, we developed an
enrichment test for RNAPII ChIA-Drop data. Our end
goal is to retain complexes with fragments in strong
binding peaks. One approach is to call peaks and only
keep complexes that overlap the peak regions. However,
peak calling algorithms have their own model
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assumptions that may not hold for ChIA-Drop data.
Even with accurate peak regions, assigning statistical sig-
nificance to each complex is not a trivial problem since
the null distribution is unclear. Thus, we take an alterna-
tive—inevitably the computationally expensive—approach
by sampling the background null distribution for each
complex.

Statistical test
The idea is to take the observed complex and place it on a
random location of the same chromosome and compare
the mean coverage between the observed and the ex-
pected. Through many rounds of re-sampling, we obtain
the p value by counting the number of occurrences in
which the expected coverage exceeds the observed cover-
age (Additional file 1: Figure S8a). More precisely, for an
observed complex OCm ¼ fu1m; u2m;…;unmg, we randomly
draw an integer i∈f1;…; lengthðchromÞ−startðu1mÞg and
the shift δ ¼ startðu1mÞ−i. The first expected complex is then
ECm

1 ¼ fv1m; v2m;…; vnmg , where startðvlmÞ ¼ startðulmÞ−δ ,
and endðvlmÞ ¼ endðulmÞ−δ for all l ∈ {1,…, n}. Repeating this
process 10,000 times, we obtain ECm

k for k ∈ {1,…, 10,000}.
We can then compute the raw p value of the mth observed
complex as:

pvalraw OCmð Þ ¼
X10;000

k¼1
1covg OCmð Þ<covg ECm

kð Þ;

where covgðOCmÞ ¼ 1
n

Pn
l¼1

fcsðstartðulmÞ;endðulmÞÞ
endðulmÞ−startðulmÞ and fcs(x, y)

is the mean “fragment coverage signal” between coordi-
nates x and y. Raw p values are separated by chromo-
somes and are adjusted via the Benjamini-Hochberg
method with a false discovery rate (FDR) of 0.1. The
complexes with adjusted p value ≤0.1 are considered to
be statistically significant and are classified as “pass”;
others are considered insignificant or “fail.”

Implementation, results, and analysis
A python script “enrichment test” utilizes the packages
numpy, random, statsmodels, os, and sys. GSM3347525
RNAPII ChIA-Drop data are pre-processed to exclude
fragments mapped to the repetitive regions in the gen-
ome (dm3.rmsk.bed), and 769,803 complexes remain as
“GSM3347525NR.” The most time-consuming part of
the algorithm is to obtain the fragment coverage at a
given location, since we need to search for a start and
end indexes in a bedgraph or a bigwig file. With at least
769,803 × 2 × 10,000 = 1.54 × 1010 operations, we realized
that python implementations of exact search would be
intractable. As means to reduce the runtime, we store
the bedgraph file into bins of size 10 bp and store only
the fourth column “value.” The solution then turns into
a simple lookup operation, yielding an approximation
that is close to the exact solution. Our code is

“parallelized” by chromosome, each using around 5 h
CPU time and 230 MB of memory (Additional file 1:
Figure S8b). MIA-Sig identified 190,226 complexes
(24.7%) as statistically significant. We ensure that our
empirical null distribution does behave randomly by
comparing the enrichment scores of the observed com-
plexes in chr2L with those of 1000 expected complexes
generated for each observed complex (Additional file 1:
Figure S8c). Zooming in further, we note that the histo-
gram of the observed is shifted to the right of the histo-
gram of the expected null (Additional file 1: Figure S8d).
Using the active and inactive regions defined in (Zheng
et al. [31]), we count the number of fragments therein for
significant and insignificant complexes (Additional file 1:
Figure S9a). For each active and inactive region, we com-
pute the number of significant complex fragments and
their log10 values are plotted (Additional file 1: Figure
S9b); K-S test supports that significant complexes are in-
deed more likely to be in active regions than in inactive re-
gions. By contrast, insignificant complexes have no bias
towards or against active regions (Additional file 1: Figure
S9c). We define a gene promoter as ± 1 KB from the tran-
scriptional start site (TSS) annotated by UCSC genome
browser. Note that typically ± 250 bp is used for Drosoph-
ila, but we extend it to accommodate ChIA-Drop
protocol-specific features. A gene is active (6466 genes) if
the total RNA-seq level is greater than 5 and inactive
(8874 genes) otherwise. A fragment is “active promoter” if
it overlaps the promoter of an active gene. In general, sig-
nificant complexes have higher proportion of promoter
fragments than insignificant complexes (Additional file 1:
Figure S9d), and the skew is more pronounced for active
promoters (Additional file 1: Figure S9e). Inactive pro-
moters serve as a control, in which both significant and in-
significant complexes display similar patterns in the
number of inactive promoter fragments (Additional file 1:
Figure S9f,g).

Distance test on mouse F121 SPRITE data
We have performed the distance test on SPRITE data
(Quinodoz et al. [25]) generated from F121 mouse em-
bryonic stem cells (GSE114242) mapped to the mm9 ref-
erence genome. The pre-processing steps of the SPRITE
data are the following: (1) extract complexes in chr18,
(2) construct fragments by extending a read mapped
position by 1000 bp, (3) exclude read mapped position if
it is less than 10,000 bp away from the left-adjacent
mapped loci, and (4) only retain complexes with 2 to
500 fragments. These parameters are chosen because
Quinodoz et al. treat multiple reads in a bin to be 1 read
due to PCR duplicates, where the bin sizes are 10 kb, 20
kb, 25 kb, 40 kb, 50 kb, 200 kb, 250 kb, and 1 Mbps. After
converting reads into fragments in our standard file for-
mat of 1 complex per line, we ran the distance test with
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the parameters --gen mm9 --fdr 0.1 --cef 2 --sz 10,000.
One modification is that during the first distance test,
we “fail” the complexes with more than 100 fragments.
The resulting master file is used for generating the 2D
contact maps for ALL and PASS categories by enumer-
ating all pairs of fragments in a complex (Fig. 3b). Like-
wise, the empirical cumulative distribution function is
plotted for ALL and PASS categories (Fig. 3c).
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