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ARTICLE

A Bayesian mixture model for the analysis
of allelic expression in single cells
Kwangbom Choi 1, Narayanan Raghupathy1 & Gary A. Churchill1*

Allele-specific expression (ASE) at single-cell resolution is a critical tool for understanding

the stochastic and dynamic features of gene expression. However, low read coverage and

high biological variability present challenges for analyzing ASE. We demonstrate that dis-

carding multi-mapping reads leads to higher variability in estimates of allelic proportions, an

increased frequency of sampling zeros, and can lead to spurious findings of dynamic and

monoallelic gene expression. Here, we report a method for ASE analysis from single-cell

RNA-Seq data that accurately classifies allelic expression states and improves estimation of

allelic proportions by pooling information across cells. We further demonstrate that com-

bining information across cells using a hierarchical mixture model reduces sampling varia-

bility without sacrificing cell-to-cell heterogeneity. We applied our approach to re-evaluate

the statistical independence of allelic bursting and track changes in the allele-specific

expression patterns of cells sampled over a developmental time course.
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A llelic imbalance of transcripts is common across many
genes1. It can range from a subtle imbalance to complete
monoallelic expression as in imprinted genes2 or genes

under dosage compensation by X chromosome inactivation3,4.
Single-cell RNA sequencing (scRNA-Seq) can reveal features of
cellular gene expression that cannot be observed in bulk RNA
sequencing5. In single cells, allelic proportions often form U-
shaped or W-shaped distributions due to the occurrence of
monoallelic transcriptional bursts6. However, our ability to dis-
cern gene expression dynamics is limited by low depth of
sequencing coverage per cell7–14 and thus it is critical to make full
use of all information available in scRNA-Seq data.

We propose an approach to classification and estimation of
allele-specific gene expression in single cells (Fig. 1 and Methods).
We first count the allele-specific read alignments using one of two
methods. In the unique-reads method, we exclude multi-mapping
reads (multi-reads) and count only reads that map unambigu-
ously to one allele of one gene. Alternatively, we can include
multi-reads using an expectation-maximization (EM) algorithm
to estimate counts by weighted allocation15–17. Next, we compute
a probabilistic classification of each gene in each cell into paternal
monoallelic, bi-allelic, or maternal monoallelic expression states.
Lastly, we can apply partial pooling to improve the individual
cell-level estimation by combining information across cells that
are in the same allelic expression state. The classification and
partial pooling steps inform one another and are applied itera-
tively. Partial pooling can be applied to either of the read
counting results leading to four different methods for estimating
allelic proportions: (a) unique reads, (b) weighted allocation, (c)
unique reads with partial pooling, or (d) weighted allocation with
partial pooling. These methods are implemented in our scBASE
software.

In the following sections, we examine the effects of weighted
allocation and partial pooling on classification and estimation of
allelic proportions. We then apply scBASE methods to evaluate
the statistical independence of allelic bursting. Finally, we illus-
trate the interpretive power of allelic expression analysis of
scRNA-Seq using data from a development time course8.

Results
Application of scBASE. We applied scBASE methods to scRNA-
Seq data from 286 pre-implantation mouse embryo cells from an
F1 hybrid mating between female CAST/EiJ (CAST) and male
C57BL/6J (B6) mice8. Cells were sampled along a time course
from the zygote and early 2-cell stages through the late blastocyst
stage of development. We created a diploid transcriptome from
CAST- and B6-specific sequences of each annotated transcript
(Ensembl Release 78)18 and aligned reads from each cell to obtain
allele-specific alignments. In order to ensure that genes had suf-
ficient polymorphic sites for ASE analysis, we restrict attention to
13,032 genes that had at least four allelic unique reads in at least
10% of cells. Where indicated below, we apply scBASE to only 122
cells from the blastocyst stages of development, or to only 60 cells
in the mid-blastocyst stage.

Discarding multi-reads increases spurious ASE calls. A read
that maps to one allele of one gene is a unique read. A read that
maps uniquely to one gene but to both allelic copies is an allelic
multi-read. A read that maps to multiple genes but only to one
allele at each is a genomic multi-read. A read that maps to
multiple genes and to both alleles of any of those genes is a
complex multi-read. Contrary to our intuition, complex multi-
reads convey information about allele-specific expression (Sup-
plementary Fig. 1). We obtained unique reads and weighted
allocation counts for each of 286 cells. The sequence reads include

2.5% genomic multi-reads, 59.3% allelic multi-reads, and 23.3%
complex multi-reads. Thus, the unique-reads method retains only
14.9% of the available reads for analysis. This substantial loss of
information could lead to high variability of allelic proportions.
As a result, we find that the unique-reads method finds more
monoallelic expression (Fig. 2a and Supplementary Fig. 1), calling
on average �66 more genes monoallelic in each cell. We also
observed �1,908 genes where the unique-reads method fails to
detect bi-allelic expression in some cells whereas weighted
allocation counts are consistently bi-allelic, for example, Mtdh
(Fig. 2b and Table 1). The high frequency of monoallelic
expression calls from unique reads can be misinterpreted as allelic
bursting and gene expression can appear to be more dynamic.

Partial pooling improves the accuracy of allelic proportions.
Over the course of the embryonic time series, the frequency of
allelic expression varies dramatically, especially in the earliest
stages where there is a very high rate of maternal monoallelic
expression. In order to avoid mixing very disparate cell types in
our evaluation of partial pooling, we restricted our analysis to the
122 mature blastocyst cells, the largest group in Deng et al.8 data.
These cells have average coverage of �14.8M reads per cell. This
allowed us to down-sampled the data by randomly selecting 1%
of reads to obtain an average coverage of 148k reads per cell — a
depth of coverage similar to current scRNA-Seq applications. We
estimated allelic proportions on both full and down-sampled data
using each of four methods implemented in scBASE. We com-
pared the estimated allelic proportions from the down-sampled
data to estimates obtained from the full data using the corre-
sponding unique reads or weighted allocation estimates with no
pooling. The full data are based on 100-fold more reads per
sample and provide an approximate truth standard. A similar
approach to evaluation of single-cell data analysis was employed
by Huang et al.19.

In order to assess the effects of partial pooling, we computed
differences in the mean squared error (MSE) of estimated allelic
proportions with and without partial pooling. Partial pooling
applied to the unique-read counts improves estimation for the
majority of genes (4,392 versus 1,367 out of 5,759 genes) with an
average MSE difference of 0.018 (Fig. 3a). Partial pooling applied
to the weighted allocation counts improves estimation for most
genes (5,078 versus 1,673 out of 6,751 genes) with an average
MSE difference of 0.016 (Fig. 3b). In both cases, the greatest gains
are seen in the low expression range (<10 unique reads per gene).
For the most highly expressed genes, there is little or no reduction
in MSE, which is consistent with our expectation that pooling of
information across cells is most impactful when coverage is low.

The timing of allelic bursting is coordinated. The timing of
allelic bursting events is a defining feature of stochasticity in gene
expression20. One fundamental question is whether the occur-
rence of allelic bursts is coordinated or if bursts occur indepen-
dently for each allele. Statistical independence of maternal and
paternal bursting can be evaluated using a 2 ´ 2 table of counts of
the numbers of cells for which a given gene is expressed only
from the maternal allele, only from the paternal allele, from both,
or not expressed (as in Table 1). If allelic bursts occur indepen-
dently, the log-odds ratio (logOR) computed from this 2´ 2 table
should be close to zero. In order to relate this standard
approach21 for testing the independence hypothesis to alternative
methods8,22 that have been proposed for scRNA-Seq data, it is
helpful to consider a geometric representation of the proportions
of cells in each allelic expression state (Fig. 4a). Proportions are
numbers greater than or equal to zero that sum to one. They can
be represented as a point in a 3-dimensional tetrahedron in 4-
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dimensional space — the 4D simplex23. When maternal and
paternal bursting events occur independently, the proportions
should fall near the 3-dimensional surface within the simplex
where the logOR is equal to zero (the point cloud region in
Fig. 4a). The method of testing independence used in Deng et al.8

and Larsson et al.22 imposes an additional constraint on the 2´ 2
table proportions by assuming that the frequencies of maternal
and paternal bursting events are equal (pM ¼ pP). This constraint
corresponds to a 2-dimensional cross-section of the simplex,
indicated by the blue triangle in Fig. 4a. Projection of points in
the 4D simplex onto this triangle produces the graphical repre-
sentation used by Deng et al. (e.g., Fig. 4b). This illustrates how
the Deng et al. method is a special case of the logOR test.

We evaluated independence of allelic expression on the 122
mature blastocyst cells, as was done in Jiang et al.24. We first
simulated data under the assumption of independent allelic
bursting (Methods) and plotted the results to illustrate how
points will be distributed in this diagram when the pure

independence model is true (Fig. 4b). Next we estimated the
2 ´ 2 table of allelic expression states using counts obtained from
each of the four methods implemented in scBASE. The
appearance of the data in Fig. 5 is qualitatively distinct from
the simulated data (Fig. 4b). Moreover, the null hypothesis of
independence is rejected for the majority of genes regardless of
the method used to estimate the allelic states (Supplementary
Fig. 2a, b, c, d).

We evaluated independence with SCALE software, as in Jiang
et al.24 using both unique reads and weighted allocation counts as
input. We found significant non-independence for 3,381 genes
using unique reads and for 4,815 genes using weighted allocation.
We then applied partial pooling and found 6,068 significant genes
using unique reads with partial pooling and 6,761 significant
genes using weighted allocation with partial pooling. These results
are reported using a false discovery rate of 5%. To assess the
magnitude of the departure from independence we note that
2,845 and 3,763 (out of 8290) genes had jlogORj> 2 using unique
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Fig. 1 Overview of the scBASE algorithm. The Counting step estimates the expected read counts using an EM algorithm to compute a weighted allocation of
multi-reads. Each read is represented as an incidence matrix that summarizes all alignments to genes and alleles ①. Weighted allocation of multi-reads
uses a current estimate of allele-specific gene expression to compute weights equal to the probability of each possible alignment ②. The weights are
summed across reads to obtain the expected read counts for each gene and allele ③. Steps ② and ③ are repeated until the read counts converge. The
weighted allocation estimates of maternal allelic proportion (p̂gk) are obtained at this step. The Classification step computes the posterior probability of
paternal monoallelic (P), bi-allelic (B), or maternal monoallelic (M) expression (πsgk) using current estimates of the model parameters (Equation 3 in
Supplementary Methods). The classification model is a beta-binomial mixture model with three components. The model parameters are initialized to non-
informative values and are obtained from the partial pooling step in subsequent iterations. The partial pooling step uses the classification results to re-
estimate the weights of mixture components (πsg�) and parameters of the Beta densities (αsg; β

s
g) that define the distribution of the within-class the maternal

allelic proportions (psg). The partial pooling estimate of the maternal allelic proportions (~pgk) is obtained as an average of the class-specific proportions
weighted by the class membership probabilities (Eq. 1 in Methods)
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reads and weighted allocation, respectively. After partial pooling
5,622 and 6,209 genes have jlogORj> 2 for unique reads and
weighted allocation, respectively. The majority of genes had
positive logOR, indicating a tendency for bursting to occur more
in synchrony than chance would predict (Supplementary Fig. 2e).

We repeated these analyses using three additional
datasets6,22,25 and arrive at similar conclusions in each case
(Supplementary Figs. 3, 4, 5, 6, 7, and 8). The evidence for
statistical dependence of bursting is strong and application of
weighted allocation and partial pooling strengthens this
conclusion.

Characterizing allelic imbalance across a cell population. The
scBASE classification step provides a way to characterize the
distribution of allelic expression states for any gene across a
population of cells. We first compute the posterior probability of
allelic expression states P, B, and M, for each gene in each cell.

This classification assumes that all genes are expressed at some
level, which may be very low for some genes. Thus, there is no
state representing the absence of expression. This allows us to
classify the allelic expression of cells that may have zero read
counts due to statistical sampling. For each gene, we then esti-
mate the proportion of cells in each allelic expression state and
represent these proportions as points in a triangular simplex
diagram. (Note that this representation is coming from projecting
out the no-expression dimension in the 4D simplex, Fig. 4a.) To
interpret the distribution of allelic expression across cells, we
designate seven patterns of allelic expression (Fig. 6). Genes that
are predominantly expressed as P, B, or M will appear near the
corresponding vertex of the triangle (P, B or M region). Genes
with mixed allelic states will appear along the edges (PB, BM, or
MP region) or near the center of the triangle (all three states,
PBM region). For example, the gene Pacs2, which is expressed
from either the maternal or the paternal allele but rarely both, is
classified as an MP gene. The bi-allelic region (B) includes genes
that are consistently expressed from both alleles e.g., Mtdh. The
PB and BM regions include genes that show a mixture of bi-
allelic and monoallelic expression with a strong allelic imbalance,
e.g., Timm23 and Tulp3. The majority of genes (56.9%) in the
blastocyst stages of development are in the PBM region (Sup-
plementary Fig. 9). These genes display a mix of mono- and bi-
allelic expression states (e.g., Akr1b3) that is consistent with
dynamic bursting of allele-specific gene expression.

We applied scBASE with weighted allocation and partial
pooling to track changes in the ASE patterns of cells sampled over
a developmental time course (Fig. 7a, Supplementary Figs. 9 and
10). Our aim is to classify allelic state distributions within
subpopulations of cells defined by developmental stages. To
achieve this, we first ran scBASE MCMC algorithm on all 286
cells to estimate the prior parameters, αsg and βsg (Fig. 1 and
Supplementary Methods). These parameters describe the dis-
tribution of allelic proportions in each allelic state. We then ran
scBASE EM algorithm (with the prior parameters fixed) on each
subpopulation of cells to estimate developmental stage-specific
parameters (see Methods). In the zygote and early 2-cell stages,
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Fig. 2 Weighted allocation of multi-reads reduces monoallelic expression calls. a For each of 13,032 genes, we obtained the allele-specific read counts by
unique reads and by weighted allocation. We counted the numbers of genes in each cell that showed either maternal or paternal monoallelic expression.
Each data point in this figure represent a cell. Yellow and green circles indicate unique-reads and weighted allocation respectively, for all 286 cells. The
zygote and 2-cell stage cells (highlighted in red triangles) have large numbers of genes with maternal monoallelic expression. On average there are �66
fewer monoallelic calls per cell with the weighted allocation counts. The outlier cell with high levels of paternal monoallelic expression was noted in Deng
et al.8 b We selected one gene (Mtdh) to illustrate the distribution of maternal (X-axis) and paternal (Y-axis) counts across 286 cells. The weighted
allocation counts (green) are connected to their corresponding unique counts by a line in the scatter plot

Table 1 Cross-tabulation (2 ´ 2 table) of maternal and
paternal allelic expression for Mtdh gene with unique reads
and weighted allocation counts. The unique counts resulted
in 88 cells with monoallelic expression while only seven
monoallelic calls were seen with weighted allocation

Unique reads Maternal allele

Not expressed Expressed

Paternal allele
Not expressed 56 39
Expressed 49 142

Weighted allocation Maternal allele

Not expressed Expressed

Paternal allele
Not expressed 0 5
Expressed 2 279

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-13099-0

4 NATURE COMMUNICATIONS |         (2019) 10:5188 | https://doi.org/10.1038/s41467-019-13099-0 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


most genes show monoallelic maternal expression. At this stage,
the hybrid embryo genome is not being transcribed and the
mRNA present is derived from the mother (inbred CAST
genome). At the mid 2-cell stage the hybrid embryo is being
transcribed and we start to see expression of the paternal allele for
some genes. Many genes exhibit the M and BM patterns through
the 8- or 16-cell stages perhaps due to the persistence of long-
lived mRNA species that were present at the 2-cell stage. The bi-
allelic class B dominates the late 2-cell and 4-cell stages indicating
high levels of expression at rates that exceed the half-life of most
mRNA species. In the later stages of development, 8-cell through
late blastocyst, most genes transition into the PBM pattern.

There are �400 genes that make dramatic transitions across
allelic expression states. For example, Akr1b3 (Fig. 7b) starts in
the zygote and early 2-cell stage with only maternal alleles
present. It transitions to bi-allelic expression by the mid 2-cell
stage indicating the onset of transcription of the paternal allele. It
then transitions through the paternal monoallelic state. Our
interpretation is that the early maternally derived transcripts were
present prior to fertilization and these transcripts are still present
when the paternal allele in the hybrid embryo gene starts to
express. The early maternal transcripts are largely degraded by
the 4- to 8-cell stages where we see only expression from the
paternal allele. In the early blastocyst stages, we start to see
embryonic expression of maternal alleles resulting in a bi-allelic
expression pattern by the late blastocyst stage.

Discussion
Allelic expression in single cells has provided new insights into
the dynamic regulation of gene expression6. However, estimates
of allelic proportions can display high statistical variation due to
low depth of sequencing coverage per cell. The common practice
of discarding multi-mapping reads exacerbates this problem. The
scBASE algorithm reduces statistical variability by retaining and
disambiguating multi-read data. It further improves estimation of
allelic proportions by partial pooling of information across cells
in the same ASE states. As a result we can obtain a more precise
and accurate picture of gene expression dynamics in which bio-
logical stochasticity is revealed by reducing statistical variation.

Weighted allocation has been demonstrated to improve gene
expression estimation in whole-tissue RNA-Seq15–17. When
estimating total gene expression with weighted allocation, only
genomic multi-reads need to be resolved and these typically
represent a small proportion of all reads. When estimating allele-
specific expression, however, depending on the levels of nucleo-
tide heterozygosity, the majority of reads may lack distinguishing
polymorphisms and will be allelic multi-reads. Complex multi-
reads with ambiguity in both genomic and allelic alignment can
carry useful information about allele-specific expression, as illu-
strated in Supplementary Fig. 1.

scBASE uses partial pooling in the context of a mixture model
with three allelic expression states (paternal monoallelic, bi-allelic,
and maternal monoallelic) to preserve cell-to-cell heterogeneity
by pooling information across cells that are in the same state.
Combining information across cells, therefore, does not weaken
the signals of strong allelic imbalance. We applied scBASE to X
chromosome genes in female cells of three different datasets6,8,25.
In the Reinius et al. fibroblast data, partial pooling corrected the
allelic proportions of Xist gene expression towards either mater-
nal or paternal monoallelic expression for both unique reads and
weighted allocation counts (Supplementary Fig. 11). Looking at
expression of all X chromosome genes in these same cells, we
observe that partial pooling strengthens the expected pattern of
expression due to X chromosome inactivation (XCI) consistent
with Xist allele expression (Supplementary Fig. 12). We observe
that XCI is often incomplete and not uniform across cells. In the
Chen et al. and Deng et al. datasets, Xist is clearly in the bi-allelic
expression state in many of mouse embryo cells, epistem cells, or
motor neuron cells and this is preserved after partial pooling
(Supplementary Figs. 13 and 14). We also observe that XCI is not
fully established for these cells (Supplementary Figs. 15 and 16).
In addition, for genes that are reported to be imprinted26–28 we
examined their allelic expression. Irrespective of the estimation
method applied, many of these genes do not appear to be fully
imprinted in these three datasets (Supplementary Figs. 17, 18, 19,
and 20). However, for those genes that do show evidence of
imprinting, i.e., appear in M- or P-class, partial pooling improves
the evidence for monoallelic expression for both unique reads and
weighted allocation counts.
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The scBASE analysis incorporates statistical uncertainty in both
the classification of allelic expression state and the estimated
allelic proportions of a gene. To evaluate the precision of the
estimated parameters, we have computed the posterior standard
deviation of allele proportions across a range of total read counts
and with varying numbers of cells (286 cells versus 60 cells). The
trends are as expected, deeper read coverage or more cells
improves the precision of estimation (Supplementary Fig. 21).
Our probabilistic classification accounts for uncertainty and can
estimate the allelic expression state of a gene even when few or no
reads are sampled from a given cell based on the behavior of
other cells. The scBASE model is still reliable with degenerate
inputs, for example, in the most extreme case of a single cell and a
gene with zero total reads, the algorithm provides a sensible
answer: class probabilities are ð13 ; 13 ; 13Þ and a nearly uniform dis-
tribution for allelic proportion (mean at 0.5 with standard

deviation of 0.2), indicating that the data do not contain any
information. As the number of cells or the read depth increases,
the class probabilities become more concentrated and the pos-
terior distribution for the allelic proportion gets narrower. Partial
pooling has the biggest impact when read coverage is low and the
number of cells is large (Fig. 3 and Supplementary Fig. 21).

scBASE software can be implemented as part of a scRNA-Seq
analysis pipeline. For example, we ran SCALE software, which
analyzes the dynamics of gene expression, using scBASE esti-
mated counts as input. We found that both weighted allocation
and partial pooling counts identified many more genes as
non-independent (Results and Supplementary Figs. 2a, b, c, d).
Our findings suggest that running SCALE with scBASE
estimated counts as input will result in more accurate estimates of
bursting kinetics and reduced levels of monoallelic gene expres-
sion when compared to standard pipelines that rely on unique-
read counts.

The statistical properties of allelic bursting shed light on the
nature of gene expression regulation. If expression bursts are
statistically independent, this would imply that the regulation of
allelic expression is local and acting autonomously at each allele.
Under the perfect independence model, there would be no shared
regulation of expression across alleles and the counts of cells in
each allelic state will satisfy statistical criteria for independence.
Under an alternative model, perfect dependence, bursting would
be precisely coordinated across alleles and bursts would occur
synchronously. All cells would be in either the bi-allelic or not
expressed states. Our analysis of published scRNA-Seq data from
four different experiments6,8,22,25 indicates that neither of these
extremes is true (Fig. 5 and Supplementary Figs. 2, 3, 4, 5, 6, 7,
and 8). We observed that the pattern of bursting is statistically
dependent and positively correlated (logOR > 0) for the majority
of genes. It is neither statistically independent nor perfectly
synchronous. This suggests that regulation of allelic expression
has both shared and locally autonomous components. While our
statistical analysis cannot identify the mechanisms of regulation,
it seems plausible that diffusible transcription factors could be
responsible for the coordinated component of regulation. Local
control is likely to be cis-acting and may involve stochastic var-
iation in the activation of the transcriptional machinery. Addi-
tional experimental work would be required to test these
hypotheses and to identify the cis-acting molecular events that
trigger bursting of gene expression. However, the available data
are sufficient to reject both hypotheses of perfect independence
and of perfect dependence of allelic bursting.

Weighted allocation of multi-reads captures information in
scRNA-Seq that is lost when multi-reads are discarded. It
results in fewer spurious monoallelic expression calls and
improves the accuracy of estimated allele proportions. Partial
pooling is a technique for leveraging the information across
many cells to improve the precision of estimation at the indi-
vidual cell level. Pooling must be accomplished without com-
promising the cell-to-cell heterogeneity that single-cell analysis
aims to reveal. In scBASE, this is achieved by pooling within
classes of a mixture model of allelic expression states. Based on
the evaluations presented here, we recommend weighted allo-
cation with partial pooling as the best approach to estimate
expected counts for scRNA-Seq data. However, the scBASE
software implements alternative methods, which could be
useful for further evaluation in diverse applications. The
retention of multi-mapping sequence reads and partial pooling
of information are approaches that can be applied to a wide
range of sequencing applications but they are especially critical
in single-cell analysis where the number of cells is large and the
number of reads available to quantify each gene in each cell
may be very small.
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allelic expression state as indicated by labels. The distance from a vertex is
inversely related (1-x) to the proportion of cells in that state. The point
cloud inside the simplex represents random proportions according to the
perfect independence model, i.e., the logOR equals zero. The blue triangle
indicates proportions with equal maternal and paternal expression
probability pM ¼ pP. b We simulated data under the perfect independence
model without assuming pM ¼ pP and plotted the proportions of bi-allelic
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Methods
Data. Deng et al.8 sampled 286 pre-implantation embryo cells from an F1 hybrid of
CAST ´B6 along the stages of prenatal development. Embryos were manually
dissociated into single cells using Invitrogen TrypLE and single-end RNA-Seq
sequencing was performed using Illumina HiSeq 2000 (Platform GPL12112). There
were fastq-format read files for four single-cell samples from zygote stage, eight
from early 2-cell, 12 from mid 2-cell, 10 from late 2-cell, 14 from 4-cell, 47 from 8-
cell, 30 from 16-cell, 43 from early blastocyst, 60 from mid-blastocyst, and 58 from
late blastocyst stage. The Reinius et al. data6 consist of primary mouse fibroblast
cells from the F1 reciprocal crosses of CAST ´B6 (125 cells, sex-typed) and
B6 ´CAST (113 cells, sex-typed). The Chen et al. data25 are from mouse embryonic
stem cells (mESCs) from an F1 hybrid of B6 ´CAST: 111 mESCs cultured in 2i and
LIF, 120 mESCs cultured in serum and LIF, 183 mouse Epistem cells (mEpiSCs),
and 74 post-mitotic neuron cells. The samples are sex-typed. Larsson et al.22

generated 224 individual primary mouse fibroblast cells from the F1 hybrid of
CAST ´B6. As the data are from non-standard SMART-Seq2 platform, we
downloaded the allele-specific UMI counts directly from their txburst github
repository (https://github.com/sandberg-lab/txburst), and did not apply weighted
allocation to these data. See Data Availability below.

scRNA-Seq read alignment. For the F1 hybrid mouse we aligned reads to a phase-
known diploid transcriptome — this is a best-case scenario for phasing. When
dealing with more complex genomes, phasing should be performed beforehand if
haplotype-specific transcriptomes are not available and scphaser29 is one possible
approach. We reconstructed the CAST genome by incorporating known SNPs and
short indels (Sanger REL-1505) into the reference mouse genome sequence
(Genome Reference Consortium Mouse Reference 38) using g2gtools (http://
churchill-lab.github.io/g2gtools/). We lifted the reference gene annotation
(Ensembl Release 78) over to the CAST genome coordinates, and derived a CAST-
specific transcriptome. The B6 transcriptome is based on the mouse reference

genome. We constructed a bowtie (v1.0.0) index to represent the diploid tran-
scriptome with two alleles of each transcript. We aligned reads using bowtie with
parameters ‘–all’, ‘–best’, and ‘–strata’, allowing for three mismatches (‘-v 3’). These
settings enable us to find all of the best alignments for each read. For example, if
there is a zero-mismatch alignment for a read, all alignments with zero-mismatch
will be accepted.

Overview of the scBASE model. The scBASE algorithm is composed of three
steps: read counting, classification, and partial pooling (Fig. 1). The read counting
step is applied first to resolve read mapping ambiguity due to multi-reads and to
estimate expected read counts. The read counting step is not a requirement since
the following steps are applicable to any allele-specific count estimates. The clas-
sification and partial pooling steps are executed iteratively to classify the allelic
expression state and to estimate the allelic proportions for each gene in each cell
using a hierarchical mixture model. We have implemented scBASE as a Monte
Carlo Markov chain (MCMC) algorithm30, which randomly samples parameter
values from their conditional posterior distributions. We have also implemented
the classification and partial pooling steps as an Expectation-Maximization (EM)
algorithm31 that converges to the maximum a posteriori parameter estimates
(Supplementary Methods). MCMC is flexible, and the sampling distributions and
priors are easy to change in the MCMC code. MCMC provides the full posterior
distribution of allelic proportions and thus provides useful information about the
uncertainty of estimated parameters. We also found that MCMC is more stable
when fitting allelic proportion of monoallelic classes. The EM algorithm is much
faster, but it provides only point estimation. We provide a brief description of the
algorithm here and provide additional details in Supplementary Methods.

Read counting: In order to count all of the available sequence reads for each
gene and allele, we have to resolve read mapping ambiguity that occur when
aligning reads to a diploid genome. Genomic multi-reads align with equal quality
to more than one gene. Allelic multi-reads align with equal quality to both alleles of
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1
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bi-allelic expression and monoallelic expression. Many of the genes in these regions have strong allelic imbalance and cells with monoallelic expression
could be due to statistical sampling zeros in the lower expressed allele (e.g., Tmim23 and Tulp3). The expression pattern in blastocyst cells for the majority
of genes (57%) fall in the PBM region and display a pattern that is a mix of mono- and bi-allelic expression states across cells (e.g., Akr1b3)
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a gene. In scBASE, multi-reads are resolved by computing a weighted allocation
based on the estimated probability of each alignment. We use an EM algorithm
implemented in EMASE software for this step17. Alternatively, read counting could
be performed using similar methods implemented in RSEM15 or kallisto16

software. The estimated maternal read count (xgk) for each gene (g) in each cell (k)
is the weighted sum of all reads that align to the maternal allele, where the weights
are proportional to the probability of the read alignment. Similarly, the estimated
paternal read count (ygk) is the weighted sum of all reads that align to the paternal
allele. The total read count is the sum of the allele-specific counts (ngk ¼ xgk þ ygk).
A parameter of interest is the allelic proportion pgk . The read counting step
provides an initial estimate p̂gk ¼ xgk=ngk, which we refer to as the weighted
allocation estimated counts (b).

Classification: In the classification step, we estimate the allelic expression state
(zgk) for each gene in each cell. The allelic expression state is a latent variable with
three possible values zgk 2 fP;B;Mg representing paternal monoallelic, bi-allelic,
and maternal monoallelic expression, respectively. Uncertainty about the allelic
expression state derives from sampling variation that can produce zero counts for
one or both alleles even when the allele-specific transcripts may be present in the
cell. We account for this uncertainty by computing a probabilistic classification
based on a mixture model in which the maternal read counts xgk are drawn from
one of three beta-binomial distributions (given ngk) according to the allelic
expression state zgk. For a gene in the bi-allelic expression state the maternal allelic
proportion is denoted pBgk and, as suggested by the notation, it may vary from cell to
cell following a beta distribution. For a gene in the paternal monoallelic expression
state, the allelic proportion pPg follows a beta distribution with a high concentration
of mass near zero. Similarly, for a gene in the maternal monoallelic expression
state, we model pMg using a beta distribution with the concentration of mass near
one. The beta distribution parameters for the maternal and paternal states are gene-
specific but are constant across cells.

Partial pooling: The classification step assumes that the mixture model
parameters are known. This model describes gene-specific allelic proportions for
each cell and thus it has a very large number of parameters. In the scRNA-Seq
setting where thousands of genes are measured but low read counts and sampling

zeros are prevalent, we may have limited data to support their reliable estimation.
Bayesian analysis using a hierarchical model is well suited for estimation in settings
with large numbers of parameters. In this context, the hierarchical model improves
the precision of estimation by borrowing information across cells for each gene,
giving more weight to cells that are in the same allelic expression state. This
estimation technique is referred to as partial pooling. Specifically, we sample the
mixture weights ðπPg�; πBg�; πMg� Þ and the class-specific allele proportions ðpPg ; pBgk; pMg Þ;
generate classification probabilities ðπPgk; πBgk; πMgkÞ; and then estimate the allelic
proportions as a weighted average

pgk ¼ πPgk pPg þ πBgk pBgk þ πMgk pMg ð1Þ
The average value across many iterations is ~pgk , the partial pooling estimator.

Estimating allelic proportions in subsets of cells or genes. The scBASE algo-
rithm is designed to model heterogeneous ASE states in any population of cells. In
some experiments, we may be interested in the distribution of allelic expressions
states within pre-defined groups of cells. For example, in the data from Deng et al.,
the early stages of development are highly skewed toward maternal expression. If
the groups of cells are large, we could apply scBASE separately for each group.
However, if the the number of cells is small, we recommend a two-stage procedure.
First, run MCMC with all of the available cells to estimate the prior parameters, αsg
and βsg . These prior parameters are common across all cells and we can estimate
them most accurately in this way. Then, holding αsg and βsg fixed, re-estimate the
group-specific parameters, πsg� , π

s
gk , and pgk , within each cell type using the EM

algorithm version of scBASE. We applied this approach to Deng et al. data to
generate Fig. 7a.

When groups of genes are expected to have different distributions of allelic
states, e.g., X chromosome genes, it makes sense to run scBASE separately for these
genes. Our analyses of female X chromosome genes used this strategy
(Supplementary Figs. 12, 15, 16).

Assigning allelic expression states from estimated counts. Unique-read counts
are obtained directly from counting reads after discarding all genomic and allelic
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multi-reads. Weighted allocation counts are derived from the EM algorithm as
described above. To estimate counts after partial pooling, we multiply ~pgk by the
total gene expression counts. We note that estimated counts are not integers and
may be non-zero but less than one. Classification of allelic expression states for
each gene in each cell directly from observed or estimated counts requires setting a
threshold for monoallelic expression. For each allele, we regarded it as expressed if
its estimated abundance is greater than one reads (or one UMI as in Larsson
et al.22).

Gene classification using its ASE profile across many cells. We classify a gene
according to the proportion of cells in P-, B-, and M-states, ðπPg�; πBg�; πMg� Þ, that are
estimated by the partial pooling model. If a majority of cells (πsg� > 0:7) are in a
particular ASE state, s 2 fP;B;Mg, then we will assign the gene to the class P
(monoallelic paternal; blue), B (bi-allelic; yellow), or M (monoallelic maternal; red)
respectively. When a majority of cells are a mixture of two of those classes
(πs1g� þ πs2g� > 0:9 where s1; s2 2 fP;B;Mg), we classify it into either of PB (mixture
of monoallelic paternal and bi-allelic; green), BM (mixture of monoallelic maternal
and bi-allelic; orange), or MP (a mixture of monoallelic maternal and paternal;
purple). Otherwise, genes that present all three ASE states are classified as PBM
(mixture of all; gray). We specified these seven classes in a ternary simplex dia-
gram32 (Fig. 6). The class boundaries are arbitrary but the aim of this classification
is to provide a simple descriptive summary of the gene expression states present in
a population of cells.

Sampling reads. We randomly sampled 1% of reads in each of 122 cells at the
early, mid, and late blastocyst stages to obtain an average read count of �148k
reads per cell. We chose the blastocyst cell types because, unlike cells in earlier
developmental stages, they show the widest range of different states of allelic
expression. The original analysis of SCALE24 also used the same 122 cells. We
applied the unique-reads method and weighted allocation algorithm to
the full set of �14.8M reads and also applied each of four estimation methods
(unique reads, weighted allocation counts, unique reads with partial pooling,
and weighted allocation with partial pooling) to the down-sampled data. We
compared estimates obtained from the down-sampled data to the full data
estimates and computed the mean squared error of estimation across cells for
each gene.

Simulation of counts under perfect independence model. We randomly sam-
pled the marginal probabilities of maternal and paternal allelic expression, pM and
pP from uniform distribution between 0 and 1. Then we generated 2 ´ 2 tables by
sampling counts from multinomial distribution with probability fpMpP ; pMð1�
pPÞ; ð1� pMÞpP; ð1� pMÞð1� pPÞg for bi-allelic, maternal monoallelic,
paternal monoallelic, and silent cells respectively.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
We downloaded Deng et al.8 data, Series GSE45719, from Gene Expression Omnibus
(GEO) at http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE45719. Reinius et al.6

data are available from GEO at https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?
acc=GSE75659. We downloaded Chen et al.25 data (files in SRA format) available at
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE74155. For the analysis of
Larsson et al.22 data, we downloaded the allele-specific UMI counts from https://github.
com/sandberg-lab/txburst/tree/master/data (as of 19 April 2019). All other relevant data
are available upon request.

Code availability
We have implemented our approach in extensible open-source software, scBASE,
available at https://github.com/churchill-lab/scBASE with the MIT licence.
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