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Abstract This paper establishes the standardization of an
electro-chemical method called wet oxidation potential
(WOP) technique for determining the susceptibility of coal
to spontaneous combustion. A total of 78 coal samples col-
lected from 13 different mining companies, spread over most
of the Indian Coalfields, have been used for this investigation.
Experiments were carried out at different concentrations of
KMnO4, viz., 0.05, 0.1, 0.15, and 0.2 N in 1 N KOH and at
27, 40, and 45 °C. With a combination of different concentra-
tions of KMnO4 and temperature, 12 experiments were carried
out for each coal sample. Altogether, 936 experiments have
been carried out by adopting different experimental conditions
to standardize WOP method for wider applications in mining
industries. Physical, chemical, and petrographical composi-
tions of coal samples were studied by proximate, ultimate,
and petrographic analyses. In order to determine the best com-
binations of experimental conditions to achieve optimum re-
sults in wet oxidation potential method, results were first an-
alyzed by principal component analysis and then by artificial
neural network analysis. These analyses clearly reveal that
susceptibility index Brate of reduction of potential difference^
(RPD12), keeping experimental condition with 0.2 N KMnO4

in 1 N KOH solution at 45 °C, produces optimal results in

finding out the susceptibility of coal to spontaneous heating.
Further, coals are classified according to their proneness to
spontaneous heating with multilayer perceptron (MLP) clas-
sifier. A correct classification with accuracy of 94.29 % on test
data has been achieved with this classifier. The results have
been further validated by tenfold cross-validation method to
show its consistent performance over the chosen features.
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Introduction

Coal mine fire, a major problem worldwide, is caused primar-
ily by spontaneous combustion. Spontaneous combustion is
defined as the slow, low-temperature flameless form of com-
bustion sustained by the heat evolved when oxygen directly
attacks the surface of a condensed-phase fuel (Ohlemiller
2002). Self-heating would be facilitated in conditions where
large mass of coal is involved and ventilation is neither too
little to restrict coal–oxygen interaction nor too high to dissi-
pate away all the heat generated from above (Banerjee 2000).

The increasing international trade, in both metallurgical
and steam coal, has led to renewed interest in the potential
for spontaneous combustion occurring during transportation,
particularly by bulk carriers. Coal stockpiles are prone to
smouldering combustion especially where large quantities
are stored for a long span of time. It revealed from the analysis
of occurrence of these fires that most of them could have been
averted if suitable preventive measures had been taken. The
first step for taking such measures is to assess the susceptibil-
ity of coal seams. Attempts have been made to determine the
self-heating tendency of coal based on their constituents
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obtained from proximate and ultimate analyses. Gradations
are made particularly by using inherent moisture content, vol-
atile matter content, and oxygen percentage. A study of coal
and oxygen interaction clearly reveals that the process of
spontaneous combustion is governed by a number of factors
which may be broadly categorized as intrinsic and extrinsic
parameters. Intrinsic parameters are associated with nature of
coal, which are defined, either by its physical characteristics,
viz., moisture, ash, volatile matter, and fixed carbon, or chem-
ical characteristics, viz., carbon, hydrogen, nitrogen, sulphur,
or petrographic distribution like vitrinite, inertinite, liptinite,
and mineral matter content. Extrinsic parameters are mainly
site specific and are related to geological conditions, mining
methods, and environmental conditions prevailing during the
extraction of coal. Many researchers have tried to correlate the
spontaneous heating susceptibility of coal with the intrinsic
properties (Didari 1988; Ghosh 1986; Panigrahi et al. 2000;
Kaymakci and Didari 2002; Beamish and Arisoy 2008a;
Beamish and Arisoy 2008b). Peroxy complex formation of
coal during oxidation has also been used to evaluate its spon-
taneous combustion susceptibility (Behera and Mohanty
2009; Banerjee et al. 1988). Ozdeniz (2010) determined spon-
taneous combustion in an industrial-scale coal stockpile. Baris
et al. (2012) investigated low-temperature oxidation of four
different-rank Turkish coals experimented at 40, 60, and 90 °C
in order to assess the effects of temperature, particle size, coal
petrography, and coal rank by monitoring CO2 and CO
formation rates and calculated CO/CO2 ratios. Carras et al.
(2009) measured greenhouse gas (CO2 and CH4) emissions
from spoil piles, coal rejects, and tailings due to low-
temperature oxidation and spontaneous combustion at open
cut coal mines in Australia. Lang and Fu-Bao (2010) of PR
China made a comprehensive hazard evaluation system for
spontaneous combustion of coal in underground mining.
Xuyao et al. (2011) determined crossing point temperature
of 11 coal samples of varied rank collected from different
coalfields using self-designed experimental system.

In India, susceptibility of coal to spontaneous combustion
is determined by using crossing point temperature method. It
has been observed by earlier researcher (Banerjee 2000) that
in the case of high moisture coals usually having high suscep-
tibility, there is a shift of the crossing point temperature to a
high value, because of release of moisture during heating,
indicating that the coal is poorly susceptible, but in reality, it
is a highly reactive coal. Therefore, some researchers advocate
that susceptibility of a particular coal should be determined by
different methods to ascertain its liability fairly accurately.
This idea did not gain its ground as some of methods require
elaborate and costly experimental setups.

Keeping this in view, wet oxidation potential method, a
simple experimental technique, has been tried in the present
investigation. It is evident from the review of literature that
wet oxidation potential (WOP) technique has been applied to

a very few samples and on a limited scale by only two
researchers. Tarafdar and Guha (1989) conducted wet oxida-
tion experiments with seven coal samples and observed that
the higher the potential difference, the more susceptible the
coal toward smouldering combustion. Panigrahi et al. (2004)
conducted experiments with 12 coal samples from Indian
coalfields. As indicated by these researchers, WOP method
is one of the promising methods which should be investigated
in a wider scale. Keeping these points in mind, the present
investigation aims to study this method extensively over a
wide range of samples with variation in concentration of ox-
idants and standardize it for wider application, so that it can be
used by the practicing mining engineers for determining the
susceptibility of coal to spontaneous heating.

Physical, chemical, and petrographical compositions of
coals were studied by proximate, ultimate, and petrographic
analyses. In order to determine the best combinations of exper-
imental conditions to achieve optimum results in wet oxidation
potential method, results are first analyzed by principal compo-
nents analysis and then by artificial neural network analysis.

Principal component analysis (PCA) is a well-established
technique for dimensionality reduction and multivariate anal-
ysis. Examples of its applications include data compression,
image processing, visualization, exploratory data analysis,
pattern recognition, modeling of rock fragmentation, predic-
tion of ventilation methane emission rates in longwall mines,
and time series prediction (Esmaeili et al. 2014, Labib and
Vemuri 2004, Karacan 2008). In order to find out the effective
parameters responsible for susceptibility of coal to spontane-
ous heating, the PCA technique was applied in this study.

Artificial neural network (ANN) has been extensively used
in many fields, viz., prediction and controlling of flyrock in
blasting operation (Monjezi et al. 2011). predicting flyrock
distance caused by blasting operation (Ghasemi et al. 2014),
predictivemodels for pot-hole depth in underground coal min-
ing (Lokhande et al. 2014), to predict settlement under em-
bankment load using soft soil properties together with various
geometric parameters as input for each stone column (SC)
arrangement and embankment condition (Chik et al. 2014),
and to predict the elastic properties (Poisson’s ratio and
Young’s modulus) of the schistose rocks from unconfined
strength (UCS and tensile strength) (Khandelwal and Singh
2011). ANN has also found its wider application in the field of
ground vibration due to blasting and waste dump stability
(Singh and Singh 2005; Khandelwal and Singh 2006;
Khandelwal and Singh 2002). Further, this artificial intelli-
gence technique has been successfully used in modeling and
predicting ventilation methane emissions of longwall mines
(Karacan 2008).

In addition, attempts have also been made to classify
the coals according to their proneness to spontaneous
heating by multilayer perceptron (MLP) classifier to val-
idate the findings.
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The multilayer perceptron has been applied in the field of
air quality prediction, classification of satellite images to dis-
tinguish between clouds and ice or snow, and classification of
atmospheric circulation patterns (Gardner and Dorling 1998).
Further examples of its applications include prediction of sur-
face ozone concentrations in an industrialized area (Yi and
Prybutok 1996), prediction of the existence of tornadoes
(Marzban and Stumpf 1996), and vision problems: recogni-
tion and pose estimation of 3D objects from a single 2D per-
spective view, and handwritten digit recognition (Khotanzad
and Chung 1998).

Experimental investigation

Seventy-eight (78) coal samples covering fiery and non-fiery
seams of 13 mining companies of India were collected for this
investigation (Ray 2013). The companies are Eastern
Coalfields Ltd. (ECL), Bharat Coking Coal Ltd. (BCCL),
Central Coalfields Ltd. (CCL), Mahanadi Coalfields Ltd.
(MCL), South Eastern Coalfields Ltd. (SECL), Northern
Coalfields Ltd. (NCL), Western Coalfields Ltd. (WCL),
North Eastern Coalfields (NEC), Singareni Collieries
Company Ltd. (SCCL), IISCO Steel Plant (ISP) SAIL,
Monnet Ispat & Energy Ltd., Neyveli Lignite Corporation
(NLC), and Tata Steel Ltd. Location of collected coal samples
extends over Raniganj, Jharia, Karanpura, Ramgarh, Bokaro,
Ib Valley, Raigarh, Chirimiri, Son Valley, Wardha Valley,
Kamptee, Singrauli, Pranhita-Godavari Valley, Bikaner,
Neyveli, and Makum coal basins. Details of coal samples,
i.e., sample code, name of the mine and the seam, and mining
company are presented in Table 1.

The coal samples were collected from 55 mines by
following Channel Sampling procedure (Peters 1978; IS
436 1964) and brought to the laboratory in sealed con-
dition for analysis. Samples were ground and sieved to
suitable size (−212 μm) making necessary coning and
quartering. Samples were prepared for various analyses,
namely, proximate (moisture, volatile matter, ash, and
fixed carbon), ultimate (carbon, hydrogen, nitrogen, sul-
phur, and oxygen), and petrographic analyses (vitrinite,
inertinite, liptinite, and mineral matter content). The
proximate, ultimate, and petrographic analyses were car-
ried out by following standard procedures (IS 1350- Part
1 1969; ASTM D 5373–93 1993; ICCP 1971; ICCP
1994; IS 9127 Part I 1979; IS 9127 Part II 1979).
Crossing point temperature (CPT) of 78 coal samples
was determined by standard procedure as practiced in
India (Panigrahi et al. 2000). An electrochemical method
called wet oxidation potential is also described in detail
to find out susceptibility index of coal for the purpose of
its identification and classification.

Wet oxidation potential analysis

Wet oxidation potential analysis was carried out with potassi-
um permanganate (KMnO4) as oxidizer in potassium hydrox-
ide (KOH) solution. One hundred milliliters of such chemical
mixture was taken in a beaker, and a calomel reference elec-
trode and a carbon electrode were immersed in it. After
attaining a stable reading, the potential difference, i.e.,
electromotive force (EMF), in millovolts, was measured be-
tween these electrodes by using a digital millivoltmeter.
Equivalence factor of KMnO4 in this case was maintained as
158.04/3=52.68. Experiments were carried out at different
concentrations of KMnO4, viz., 0.05, 0.1, 0.15, and 0.2 N in
1 N KOH and at 27, 40, and 45 °C. With a combination of
different concentrations of KMnO4 and temperature, 12 ex-
periments were carried out for each coal sample. In total, 936
experiments were carried out using 78 coal samples. A 0.5-g
coal sample of −212-μm size was added in the chemical mix-
ture and was continuously stirred using a magnetic stirrer. The
potential difference was recorded over a period of time until a
nearly constant value was attained. Temperature of the mix-
ture was measured with a calibrated temperature recorder.
Potential difference and temperature were recorded at an in-
terval of 1 min. Each experiment takes about an hour. The
experimental setup for wet oxidation potential method is
shown in Fig. 1. The difference between potential difference
(PD) of the mixture before adding coal sample and after its
complete oxidation was calculated for each sample. Total time
taken for each experiment was recorded and thus rate of re-
duction of potential difference was calculated. This rate of
reduction of potential difference (RPD) was considered as a
parameter for susceptibility of coal to spontaneous combus-
tion and expressed in millivolts per minute (Ray 2013).

Results and discussion

Table 2 represents independent variables, viz., moisture (M),
ash (A), fixed carbon (FC) (wt%); volatile matter (VMdaf),
carbon (Cdaf), hydrogen (Hdaf), nitrogen (Ndaf), sulphur
(Sdaf), and oxygen (Odaf) on dry ash free basis (daf) (wt%);
and maceral content, viz., vitrinite (Vmmf), inertinite (Immf),
and liptinite (Lmmf) on mineral matter free basis (vol%), and
dependent variables like crossing point temperature (CPT).
Table 3 details out dependent variables like rate of reduction
of potential difference (RPD) in different experimental condi-
tions. Acronym used for indicating the rate of reduction of
potential difference (RPD) of different experimental condi-
tions is as follows: RPD1, RPD2, and RPD3: RPD at 0.05 N
KMnO4 with 1 N KOH solution at 27, 40, and 45, respective-
ly; RPD4, RPD5, and RPD6: RPD at 0.1 N KMnO4 with 1 N
KOH solution at 27, 40, and 45 °C, respectively; RPD7,
RPD8, and RPD9: RPD at 0.15 N KMnO4 with 1 N KOH
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solution at 27, 40, and 45 °C, respectively; RPD10, RPD11,
and RPD12: RPD at 0.2 N KMnO4 with 1 N KOH solution at
27, 40, and 45 °C, respectively.

Values of independent variables and CPTof 78 coal samples
are shown in statistical form in Table 2. Minimum, maximum,
mean, and standard deviations of all variables are furnished in

Table 1 Details of coal samples
chosen for experiments S

No.
Mine/company Seam S

No.
Mine/company Seam

1 Central Kajora, ECL RVIII 40 Churcha East, SECL V

2 Parascole East, ECL RVII 41 Haldibari, SECL XB

3 Shamsunderpur, ECL RVII 42 Kamptee OCP, WCL VB

4 Lakhimata, ECL Metadih 43 Saoner Mine 1, WCL IV (M)

5 Lakhimata, ECL BII 44 Saoner Mine 3, WCL V

6 Jhanjra, ECL RVIIA 45 Umrer OCP, WCL IV

7 MIC unit Jhanjra,
ECL

RVI 46 New Majri III, WCL Majri

8 Jhanjra, ECL RVII 47 Ghuggus OCP, WCL Meyo Bottom

9 Kottadih Project,
ECL

RV 48 Ghuggus OCP, WCL Meyo Middle

10 Kottadih, ECL RIII/II 49 Naigaon OCP, WCL Meyo Bottom

11 Khaskajora, ECL RVIIIA 50 Naigaon OCP, WCL Meyo Middle

12 Khaskajora, ECL RVIIIB 51 Jhingurda, WCL Jhingurdah

13 Kumardhubi, ECL Singpur Top 52 Jayant OCP, WCL Turra

14 Bansdeopur, BCCL VIII 53 Jayant OCP, WCL Purewa Bottom

15 Victoria West, BCCL Ramnagar 54 Jayant OCP, WCL Purewa Top

16 Sudamdih shaft,
BCCL

XI/XII 55 Amlohri OCP, WCL Purewa Merge

17 Bastacolla, BCCL 0 56 Amlohri OCP, WCL Turra

18 Bastacolla, BCCL I 57 Tipong, NEC 20 Feet

19 Bastacolla, BCCL II 58 Tipong, NEC 60 Feet
(Bottom)

20 Moonidih, BCCL XVI (T) 59 Tipong, NEC 60 Feet (Top)

21 Mudidih, BCCL IX 60 Tirap OCP, NEC 8 Feet

22 Kalyani, CCL Karo (Major) 61 Tirap OCP, NEC 60 Feet (Top)

23 Argada, CCL I 62 Tirap OCP, NEC 20 Feet

24 Argada, CCL J 63 Kakatiya LW, SCCL I

25 Hesagora, CCL X Bottom 64 Kakatiya LW, SCCL IA

26 Churi, CCL Lower Bachra 65 Kakatiya LW, SCCL II

27 KD Hessalong, CCL Dakra 66 Kakatiya LW, SCCL III

28 Kuju, CCL VII 67 Adriyala Shaft, SCCL I

29 Lilari OCP, MCL Lajkura Top 68 RK New Tech incline, SCCL 1A

30 Belpahar OCM,
MCL

IB 69 Sijua, Tata Steel Ltd. XIII

31 Belpahar OCM,
MCL

Rampur Top 70 Sijua, Tata Steel Ltd. XIV

32 Belpahar OCM,
MCL

Rampur
Bottom

71 6&7 Pits, Tata Steel Ltd. IX

33 Lakhanpur OCP,
MCL

Lajkura Top 72 6&7 Pits, Tata Steel Ltd. XI

34 Jagannath OCP,
MCL

III 73 Milupara, Monnet Ispat & Energy
Ltd.

II

35 Anjan Hill, SECL III 74 Kondkel, Monnet Ispat & Energy
Ltd.

III

36 NCPH, SECL III 75 Chasnalla, ISP, SAIL XII

37 Rajnagar RO, SECL 8A2 76 Western Quarry, ISP, SAIL XIII/XIV

38 5&6 Incline, SECL Index 77 Neyveli Mine 1A, NLC Lignite

39 Churcha West, SECL V 78 Barsingsar lignite, NLC Lignite

S - Sample
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Table 2. Repeatability of experimental results was verified with
three coal samples, carrying out five experiments each for a
sample. Sample No. 13 (Kumardhubi Colliery, Singhpur top
seam, ECL) with 0.2 N KMnO4 in 1 N KOH solution at
40 °C gives PD of 62, 61.1, 60.5, 61.7, and 60.9 mV whereas
Sample No. 16 (Sudamdih Shaft Mine, XI/XII seam, BCCL)
with 0.1 N KMnO4 in 1 N KOH solution at 27 °C shows PD of
48.1, 47.6, 47.1, 47.4, and 47.0 mV. Further, with 0.2 N
KMnO4 in 1 N KOH solution at 40 °C, Sample No. 46 (New
Majri III, Majri Seam) gives PD of 121.3, 119.7, 120.5, 118.5,
and 119.1 mV. So, standard deviation of these three samples
comes out to be 0.54, 0.39, and 0.99, respectively. The coeffi-
cients of variation of aforementioned samples are calculated as
0.0088, 0.0082, and 0.0083, respectively.

In order to determine the best combinations of experimen-
tal conditions to achieve optimum results in wet oxidation
potential method, results are first analyzed by principal com-
ponent analysis and then by artificial neural network analysis.

Principal components analysis

Principal components analysis (PCA) was carried out for find-
ing out the influencing parameters in susceptibility of coal to
spontaneous heating. Statistica 7.1 software was used for
PCA. The PCA was performed with the data obtained from
proximate, ultimate, and petrographic analyses and RPD
(Smith 2002). This analysis reduces the dimensionality of a
data set while retaining as much of the variance in the data set
as possible (Karacan and Goodman 2008; Ray et al. 2014).
Most of the variance in data set is retained in the first compo-
nents that contribute to variance to a greater degree. In PCA,
the variables considered were moisture on analytical basis;
volatile matter yield on dry ash free (daf) basis; ash, fixed

carbon, carbon, hydrogen, and oxygen on daf bases, respec-
tively; and vitrinite, inertinite, and liptinite content on mineral
matter free bases, respectively. The total sulphur content of
maximum number of samples is less than 1.90 wt% (except
three coal samples where the values are 7.18, 5.04, and
5.07 wt%). Further, nitrogen has no effect on the spontaneous
heating tendency of coal. Therefore, these parameters are not
taken into consideration in this analysis. Along with other
variables, susceptibility indices RPD1, RPD2, RPD3, RPD4,
RPD5, RPD6, RPD7, RPD8, RPD9, RPD10, RPD11, and
RPD12 were considered one at a time in PCA. In short, this
analysis was performed considering ten variables from intrin-
sic parameters and one variable from susceptibility index.
Thereby, this analysis was performed 12 times. For conve-
nience of presentation, only one result (RPD12 as susceptibil-
ity index) is shown.

Table 4 depicts the results of the principal components
analysis performed on 11 variables. It can be seen that all
variance in the data are represented by 11 principal compo-
nents (PCs). However, approximately 85 % of the total vari-
ance in the data can be represented by the first four PCs. The
individual contributions of the remaining seven PCs are small,
and their total contribution is only 15 % of the total variance.
Table 4 also lists out the eigenvalues, which show the propor-
tion by which an eigenvector’s magnitude is changed. The
eigenvectors with the largest eigenvalues represent the dimen-
sions with the strongest correlation in the data set. This data
set shows that the highest correlations are also in the first four
PCs. Thus, the first four PCs were selected for the principal
component matrix. Table 5 shows the loadings, which indi-
cates the influence of the variables in these four PCs. Loadings
close to 1 indicate stronger correlations. Figure 2 shows the
correlation circle for the factor loadings of the first two

Fig. 1 Experimental setup for
wet oxidation potential method
(after Ray 2013)
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components. It also shows that independent variables like
moisture on analytical basis, volatile matter yield on daf basis,
and hydrogen and oxygen on daf bases, and dependent vari-
ables like RPD12 are far from the center and are close to each
other. Therefore, these variables are grouped together based
on their weights and are significantly correlated. Further,
RPD12 and fixed carbon on daf basis are on opposite sides
of the center, so they are negatively correlated. However, var-
iables like carbon, inertinite on mineral matter free basis, ash
yield, and vitrinite on mineral matter free basis are orthogonal
to variable RPD12. So there is no correlation between them.
Liptinite on mineral matter free basis is close to the center,
suggesting that its information can be better represented by
other axes.

Levenberg–Marquardt model for standardizing RPD
index

After identifying the variables having correlation with them
by principal components analysis, results are analyzed by
Levenberg–Marquardt (LM) algorithm of artificial neural net-
work (Yu and Wilamowski 2010) in order to determine the
best combinations of experimental conditions to achieve opti-
mal results in wet oxidation potential method. The
Levenberg–Marquardt (LM) algorithm is the most widely
used optimization algorithm. This was independently devel-
oped by Kenneth Levenberg and Donald Marquardt. It pro-
vides a numerical solution to the problem of minimizing a
non-linear function. It is found to be the fastest method for
training moderate-size feed-forward neural networks. It has
stable convergence. It also has an efficient implementation
in MATLAB software, since the solution of the matrix

equation is a built-in function. So its attributes become even
more pronounced in aMATLAB environment. The network is
a two-layer feed-forward network. A two-layer feed-forward
network with sigmoid hidden neurons and linear output neu-
rons can fit multidimensional mapping problems arbitrarily
well, while consistent data and enough neurons are provided
in its hidden layers. LM optimization algorithm has less iter-
ation than traditional back-propagation (BP) and other im-
proved algorithm, while its convergence rate is faster and pre-
cision is higher than that of others. Therefore, the LM optimi-
zation algorithm has certain superiority in the learning of BP
network. Among simulation tool functions in the neural net-
work of MATLAB, LM is taken as default training function in
the BP neural network.

The LM algorithm is an iterative technique that locates a
local minimum of a multivariate function that is expressed as
the sum of squares of several non-linear, real-valued func-
tions. It has become a standard technique for non-linear least
squares problems, widely adopted in various disciplines for
dealing data fitting applications.

The total (net) input to a neuron and its output are calculated
using a transfer function, or axon. This is sometimes called a
Bsquashing function^ (Eberhart and Dobbins 1990). since it
compresses the output range between either 0 and 1 or −1
and 1, depending on the choice of the transfer function. While
there are various transfer functions, the hyperbolic tangent axon
(Tenhaxon) and sigmoid functions are generally used as the
non-linear axons. In the present study, sigmoid function is used.

The process of finding a suitable set of weights is called
Btraining.^ Training is one of the most important steps in the
development of the neural network. Based on the training
method, neural networks are classified as either supervised

Table 2 Variables and their units
obtained from different
experimental investigation

Variable Unit Minimum Maximum Mean Std. dev.

Independent

Moisture % 0.4 15.71 5.20 4.08

Ash % 0.71 38.46 16.18 8.84

Volatile matter % 18.62 55.22 38.44 8.13

Fixed carbon % 27.94 70.28 48.52 9.17

Carbon % 70.02 89.56 80.62 4.58

Hydrogen % 4.73 8.25 6.10 0.84

Nitrogen % 0.95 2.54 1.76 0.33

Sulphur % 0.3 7.18 1.02 1.06

Oxygen % 1.16 19.12 10.44 4.01

Vitrinite % 21.51 84.79 64.32 11.69

Inertinite % 8.69 78.49 31.33 12.34

Liptinite % 0 33.76 4.24 4.60

Dependent

Crossing point temperature °C 125 179 141.74 12.03

Volatile matter, carbon, hydrogen, and oxygen are on dry ash free bases and vitrinite, inertinite, and liptinite are on
mineral matter free bases
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Table 3 Experimental results of wet oxidation potential analysis in millivolts per minute

S No. RPD1 RPD2 RPD3 RPD4 RPD5 RPD6 RPD7 RPD8 RPD9 RPD10 RPD11 RPD12

1 4.97 5.98 6.40 4.81 8.00 7.99 5.31 8.67 9.07 5.99 5.85 7.64

2 5.22 5.64 6.21 6.01 7.20 7.95 5.38 7.54 9.58 5.77 8.29 8.17

3 4.95 6.05 4.91 5.18 7.54 8.51 5.21 5.72 6.31 5.78 6.33 8.37

4 1.02 1.19 1.26 1.94 2.56 3.96 1.58 1.81 2.52 1.48 1.63 1.81

5 1.71 2.00 1.16 1.84 2.04 1.94 1.19 2.16 2.17 1.96 1.20 1.58

6 1.38 2.70 3.72 2.56 4.62 7.61 3.80 6.71 5.19 5.15 10.70 13.79

7 1.80 3.51 3.12 2.86 3.93 4.39 5.71 5.14 3.99 8.28 12.31 11.33

8 2.52 9.75 13.05 2.83 5.27 4.45 3.41 5.50 5.96 11.58 12.45 12.08

9 3.64 1.91 1.75 4.72 4.87 6.22 4.98 4.85 6.33 6.68 8.92 7.79

10 1.97 7.21 9.85 3.17 2.79 3.16 2.98 3.41 3.55 3.57 4.90 5.54

11 8.87 9.30 8.83 2.39 2.81 3.51 3.96 2.58 14.65 5.03 6.05 8.12

12 6.57 7.78 10.35 9.88 11.45 10.04 10.74 10.88 6.44 4.72 15.26 6.69

13 1.40 1.46 1.46 2.23 1.51 1.20 1.32 2.48 3.07 1.76 2.00 2.50

14 1.35 1.23 1.24 1.14 1.20 1.52 0.83 1.87 1.57 1.44 0.93 1.78

15 1.91 1.99 1.83 1.80 2.16 3.17 2.37 2.12 2.67 1.92 2.18 2.47

16 1.00 1.43 1.14 0.76 1.10 0.92 1.27 1.11 0.92 1.04 1.45 1.32

17 1.16 2.59 2.84 0.97 1.80 1.92 1.22 1.93 1.95 1.34 1.91 1.93

18 1.53 2.05 1.47 1.52 2.78 2.79 1.16 1.73 1.53 1.22 1.82 2.18

19 1.12 1.53 2.04 0.83 0.79 1.30 1.22 1.97 1.35 1.68 1.70 1.73

20 1.00 1.35 1.44 0.86 1.42 1.54 1.10 2.28 1.91 1.13 1.79 2.35

21 0.84 1.39 2.46 1.35 1.68 1.80 1.48 1.47 1.82 1.55 2.39 2.02

22 0.98 1.25 1.35 1.20 2.32 2.60 1.03 2.68 2.26 0.89 1.44 1.30

23 2.77 3.16 4.55 3.97 5.81 6.23 3.26 4.42 4.86 2.25 4.10 3.70

24 2.73 4.40 4.25 3.18 5.61 5.21 3.17 5.24 5.80 3.22 5.28 5.18

25 1.97 3.20 3.20 2.72 3.92 4.00 1.99 3.68 3.65 2.08 2.67 3.45

26 3.44 4.79 4.61 4.32 5.98 6.53 5.09 7.01 7.28 6.38 9.72 10.18

27 3.00 4.92 4.93 4.14 7.16 6.44 4.93 6.63 8.28 5.24 9.33 8.51

28 2.17 3.49 3.31 2.01 2.72 3.15 1.81 3.06 2.68 2.01 2.59 2.61

29 6.13 9.89 9.88 7.39 9.07 10.65 6.77 10.61 11.22 6.12 15.02 14.26

30 4.55 5.17 5.89 5.84 8.38 8.59 5.82 8.89 8.51 6.54 6.56 5.81

31 3.71 6.47 5.56 5.59 8.75 8.85 5.93 8.19 8.55 6.93 6.61 8.01

32 3.92 5.09 4.80 5.34 6.86 7.39 6.59 8.54 7.96 6.33 7.60 8.69

33 4.60 4.89 5.29 5.42 11.38 10.92 7.25 10.43 11.72 6.23 8.00 9.75

34 8.13 6.77 5.88 6.51 6.09 6.29 5.15 5.48 5.38 5.21 7.10 8.72

35 3.82 4.35 3.98 2.89 3.70 4.75 4.96 6.23 6.55 3.82 6.45 6.49

36 2.45 3.11 3.37 3.35 5.07 6.29 5.06 6.82 9.71 5.26 7.92 6.85

37 4.30 4.74 5.19 3.55 4.91 5.01 3.60 5.90 6.14 2.83 5.45 5.93

38 3.55 6.56 6.97 3.59 6.46 6.49 5.50 7.44 9.39 5.41 6.00 6.46

39 1.80 3.34 2.70 1.48 2.67 2.37 2.09 2.62 2.16 1.96 2.69 2.72

40 1.81 2.59 2.35 1.70 2.29 2.53 1.58 1.92 1.77 1.96 2.21 2.08

41 2.29 3.99 3.80 3.85 6.41 5.82 2.91 5.65 5.74 3.96 6.73 6.05

42 3.92 5.37 7.28 5.80 7.23 11.99 8.23 9.03 8.65 9.30 8.42 10.77

43 7.63 10.21 5.02 9.09 8.69 7.46 10.82 11.73 13.02 10.94 9.86 10.71

44 3.16 5.03 6.21 5.40 7.52 11.67 3.93 9.37 9.16 7.66 10.61 15.30

45 3.56 4.23 4.38 3.68 5.63 5.78 4.44 6.76 6.84 4.85 8.58 19.03

46 8.42 8.23 10.06 10.73 12.30 12.88 9.09 11.77 10.55 4.81 10.91 11.48

47 5.54 12.56 10.70 10.28 11.43 12.02 9.20 11.71 11.92 7.60 9.70 12.18

48 9.08 11.94 11.70 10.12 14.77 14.49 6.42 11.77 12.43 6.11 9.88 10.84

49 7.21 8.56 10.11 8.70 9.93 10.55 7.56 11.32 11.75 8.11 10.74 11.85

50 4.19 7.18 5.05 6.60 10.83 12.94 6.71 9.42 9.22 8.23 9.43 8.36

51 7.06 11.34 13.13 4.45 6.44 6.69 8.34 8.78 8.43 5.22 9.55 10.86
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or unsupervised networks (Mohaghegh 1990). The supervised
training algorithm requires repeated showings (Epoch) of both
input vectors and the expected outputs of the training set of the
network. This is to let it learn the relations on a feedback basis.
The neural network computes its output at each epoch and

compares it with the expected output (target) of each input
vector in order to calculate the error. Minimizing the mean
square error (MSE) is the goal of the training process. The
most widely used technique is propagating the error back
and adjusting the initially assigned random weights to each

Table 4 Eigen values of
correlation matrix, and the
variances explained by PCA

PC Eigenvalue % Total variance Cumulative eigenvalue Cumulative %

1 5.44 49.42 5.44 49.42

2 1.75 15.92 7.19 65.34

3 1.27 11.57 8.46 76.90

4 0.88 8.02 9.34 84.93

5 0.68 6.21 10.02 91.13

6 0.46 4.22 10.49 95.35

7 0.31 2.81 10.80 98.16

8 0.17 1.57 10.97 99.73

9 0.03 0.23 11.00 99.96

10 0.00 0.03 11.00 99.99

11 0.00 0.01 11.00 100.00

The first four PCs represent ~85 % of the total variance

Table 3 (continued)

S No. RPD1 RPD2 RPD3 RPD4 RPD5 RPD6 RPD7 RPD8 RPD9 RPD10 RPD11 RPD12

52 7.25 6.56 5.48 6.17 8.04 8.43 4.47 16.31 13.98 8.14 12.26 11.98

53 4.62 4.55 6.79 4.10 6.89 4.40 3.86 5.56 4.09 6.24 7.33 11.23

54 3.80 4.43 6.05 4.20 5.81 5.16 4.25 4.97 5.72 5.39 6.15 9.02

55 4.97 7.05 7.69 5.43 7.42 7.35 5.01 5.89 13.99 12.06 15.66 9.45

56 4.25 5.21 6.13 4.26 5.63 4.15 4.51 5.86 5.93 6.16 7.44 7.89

57 3.24 3.69 4.80 1.86 2.59 3.18 2.00 2.82 2.42 1.91 2.68 2.60

58 1.65 1.93 2.29 1.15 1.85 1.89 1.33 1.65 1.50 1.43 1.78 2.17

59 1.66 2.51 3.00 1.50 2.05 2.41 1.43 2.07 2.94 1.43 2.85 3.06

60 2.78 4.27 4.21 2.40 4.57 4.28 2.21 2.75 2.82 2.15 3.23 3.23

61 1.85 2.76 2.81 1.51 2.14 2.64 1.55 2.36 2.19 1.77 1.92 3.42

62 1.92 1.92 1.77 1.42 1.71 1.89 1.41 1.93 1.97 1.42 1.72 1.87

63 4.32 5.60 6.75 2.78 4.59 6.72 4.23 7.28 8.36 4.62 8.24 8.43

64 3.66 6.80 4.21 4.46 5.92 6.55 5.05 6.97 6.73 3.79 7.52 8.13

65 2.92 4.62 4.54 3.64 5.87 6.18 3.28 6.74 6.18 3.24 5.40 6.22

66 2.67 3.18 2.76 3.19 4.61 6.19 4.19 6.19 6.75 3.40 4.24 7.12

67 3.79 5.12 4.10 4.55 4.60 6.69 3.52 6.77 6.25 3.32 7.22 8.21

68 2.73 4.34 5.57 5.24 6.76 7.40 4.34 6.96 7.67 6.13 9.85 10.41

69 1.04 1.46 1.68 0.83 2.07 1.55 0.94 1.39 1.89 1.17 2.10 1.75

70 1.36 1.77 1.41 1.10 2.17 2.32 1.22 1.75 1.89 1.21 1.94 2.19

71 1.18 2.01 1.70 0.87 1.87 1.98 1.22 1.75 1.81 1.16 1.69 2.78

72 1.33 1.77 1.66 1.29 1.79 1.91 1.86 1.99 2.44 1.47 1.95 2.09

73 4.25 5.93 7.86 4.79 8.78 9.65 5.72 6.60 7.80 5.82 11.08 14.39

74 2.13 4.00 3.61 1.93 4.70 3.99 6.82 8.64 7.66 5.48 8.47 7.23

75 1.37 1.31 1.20 2.39 2.13 2.95 1.43 1.18 1.25 1.82 1.98 2.47

76 1.28 2.03 1.27 1.54 2.13 2.69 1.61 1.94 2.54 0.99 2.04 1.76

77 2.97 3.85 3.12 2.98 3.11 3.17 4.62 7.56 9.17 5.51 10.05 11.30

78 3.44 6.32 7.87 3.28 3.15 3.53 7.41 7.48 8.55 5.43 8.71 12.20
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neuron. This process is called back propagation. This very
technique is used in this paper.

As revealed from principal components analysis, indepen-
dent variables like moisture, volatile matter yield (daf basis),
and hydrogen and oxygen on daf bases and fixed carbon are
considered as input parameters (five numbers) for ANN anal-
ysis. The rate of potential difference at different experimental
conditions, viz., RPD1, RPD2, RPD3, RPD4, RPD5, RPD6,
RPD7, RPD8, RPD9, RPD10, RPD11, and RPD12, is consid-
ered as output parameter one at a time. For each output pa-
rameter, this exercise is conducted and maximum correlation
coefficient (R) and mean square error (MSE) are recorded.

Results of analysis with artificial neural network

The neural network model was trained with Levenberg–
Marquardt (LM) back propagation (BP) algorithm till maximum
correlation coefficient was achieved. Out of 78 data sets, 54 were
considered for training (70%of total data), 12 (15% of total data)
were considered for validation, and the remaining 12 (15 % of
total data) were used for testing. Neural network fitting tool was
used for data analysis purpose. The number of neurons in the
fitting network’s hidden layer is set as 12, after ensuring that the
network is performing well after training. For each output param-
eter, this exercise was conducted and maximum correlation

coefficient (R) and mean square error (MSE) were recorded.
Note that mean square error is the average square difference be-
tween outputs and targets. Lower values are preferable as well as
better, and zero means no error. Similarly, regression R value
measures the correlation between outputs and targets. An R value
of 1 indicates a close relationship whereas a 0 indicates random
relationship.

Table 6 depicts the results of analysis from artificial neural
network. It is revealed fromTable 6 that RPD12 givesmaximum
correlation coefficient of 0.95 andmean square error of 1.83. For
ease of presentation, regression plot for susceptibility index
RPD12 is shown in Figure 3. Therefore, it is recommended that
rate of reduction of potential difference (RPD12) inWOPmeth-
od, using 0.2NKmnO4 solutionwith 1NKOHat 45 °C, should
be used for determining the susceptibility of coal to spontaneous
combustion. It is also concluded that for classification of coals
according to their proneness to spontaneous heating, suscepti-
bility index RPD12 is considered as one of the parameters.
Coals are classified according to their proneness to spontaneous
heating and are described in subsequent paragraphs
(section Classification of coals using classifier).

Comparison between RPD12 and CPT

Ensuring RPD12—a suitable susceptibility index in WOP
method by ANN—the next question comes to a practicing
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Fig. 2 Projection of variables on the factor plane

Table 5 Factor loadings of the variables in the principal component
matrix for the four principal components

Variables PC1 PC2 PC3 PC4

Moisture 0.699 −0.299 0.354 0.316

VMdaf 0.938 0.006 0.032 −0.052
Ash −0.055 −0.755 −0.496 −0.110
FC −0.815 0.494 0.181 0.011

Cdaf −0.897 0.018 0.115 0.300

Hdaf 0.778 −0.078 0.147 −0.094
Odaf 0.858 −0.098 −0.105 −0.279
Vmmf 0.681 0.606 0.009 −0.075
Immf −0.659 −0.634 0.294 −0.101
Lmmf 0.074 0.152 −0.808 0.447

RPD12 0.594 −0.196 0.286 0.612

Moisture (wt%; on analytical basis); VMdaf, volatile matter yield (wt%)
on daf basis; ash yield (wt%); FC, fixed carbon (wt%); Cdaf, Hdaf, and
Odaf, carbon, hydrogen, and oxygen (wt%) on daf bases, respectively;
Vmmf, Immf, and Lmmf, vitrinite, inertinite, and liptinite content (vol%)
on mineral matter free bases, respectively; RPD12, susceptibility index

Table 6 Results of analysis with artificial neural network

Indices RPD1 RPD2 RPD3 RPD4 RPD5 RPD6 RPD7 RPD8 RPD9 RPD10 RPD11 RPD12

R 0.87 0.87 0.85 0.86 0.85 0.83 0.86 0.89 0.91 0.91 0.90 0.95

MSE 1.00 1.77 2.50 1.76 2.69 3.44 1.83 2.47 2.25 1.46 2.77 1.83
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mining engineer whether this susceptibility index is better
than CPT—a thermal method widely used in India to deter-
mine susceptibility of coal to spontaneous heating.

Table 7 represents correlation coefficients obtained from
correlation analysis between CPTand intrinsic parameters like
moisture (M), volatile matter on daf basis (VMdaf), fixed car-
bon, hydrogen (Hdaf), and oxygen (Odaf) on daf bases, and a
combination of moisture and volatile matter, and oxygen and
hydrogen. This correlation analysis was performed with
Design Expert 7.0.0 software. Similar analysis was carried
out with RPD12. Results are depicted in Table 7. It reveals
from Table 7 that poor correlation coefficients are observed
when susceptibility index (RPD12) is correlated with petro-
graphic constituents. Therefore, these are not considered for
comparison purpose.

The following points are noteworthy while comparing
RPD12 and CPT (Table 7):

& Overall improvement of correlation coefficients is noticed
while analysis is done with RPD12.

& Maximum improvement in correlation coefficient is ob-
served while correlating with moisture. In case of RPD12,
it is 0.94, while in case of CPT, it is 0.62.

& While carrying out correlation studies with FC, correlation
coefficient r is found to be 0.75 in case of CPT analysis,
and RPD12 analysis depicts its value as 0.78.

& Improvement in correlation coefficient is also observed in
case of Hdaf and Odaf. While correlation is done with hy-
drogen, CPT analysis shows that r is 0.62, and RPD12
analysis shows it to be 0.65. Similarly, when correlation
is done with oxygen, CPTanalysis shows that the r is 0.74,
and RPD12 analysis shows it to be 0.77.

& Correlation coefficient r is also obtained combiningM and
VMdaf for both the analyses. CPTanalysis depicts its value
0.85, and RPD12 analysis gives it as 0.94.

& Considering Odaf and Hdaf as two independent variables,
correlation analysis is made with CPT as well as RPD12.

In case of CPT, r is found to be 0.75, and in case of
RPD12, its value is 0.80.

& Both the analysis results indicate that RPD12 gives the
highest correlation coefficient in the maximum number
of cases.

Classification of coals using classifier

After comparing RPD12 with CPT and finding out
RPD12 as a better susceptibility index than CPT, efforts
were made to classify the coal samples according to
their spontaneous heating tendency using RPD12 as
one of the parameters for further validation of the find-
ings. Multilayer perceptron (MLP) classifier was used in
this recognition process. It is worth mentioning that in
this process, suitable intrinsic parameters (i.e., M, VM,
and FC) were also taken into consideration.

A multilayer perceptron (MLP) is a feed forward ar-
tificial neural network model that maps sets of input
data onto a set of appropriate outputs. An MLP consists
of multiple layers of nodes in a directed graph, with
each layer fully connected to the next one. Except for
the input nodes, each node is a neuron (or processing
element) with a non-linear activation function. MLP uti-
l i z e s a supe rv i s ed l ea rn ing t echn ique ca l l ed
backpropagation for training the network. MLP is a
modification of the standard linear perceptron and can
distinguish data that are not linearly separable. MLP
architecture has a single hidden layer and the network
transfer function y= f(x) is given by y=W0φ(WHx),
where x is the input vector, WH is the weight matrix
connecting input and hidden units, and W0 is the weight
matrix connecting hidden and output units. The activa-
tion function φ, normally a sigmoidal, introduces a non-

Table 7 Correlation coefficients obtained from CPT and RPD12
analysis

Sl. No. Intrinsic Characteristics Susceptibility indices

CPT RPD12

1 M 0.62 0.94

2 VMdaf 0.78 0.74

3 FC 0.75 0.78

4 Hdaf 0.62 0.65

5 Odaf 0.74 0.77

6 M and VMdaf 0.85 0.94

7 Odaf and Hdaf 0.75 0.80

M moisture, VMdaf volatile matter yield on daf basis, FC fixed carbon,
Hdaf and Odaf hydrogen and oxygen on daf bases

Fig. 3 Regression plot for RPD12
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linear effect at the hidden units. To arrive at the optimal
WH, W0 weights, MLPs are trained by minimizing the
sum-of-squares error (SSE) function

E Wð Þ ¼
XN

n¼1

f xnð Þ−tnk k2
2

with tn being the target associated to the nth input.
MLPs are capable of approximating any continuous
function g: RD→RM to any given accuracy, provided
that sufficiently many hidden units are available; in par-
ticular, a trained MLP f(x) can be expected to approxi-
mate the optimal minimum square estimator (Freeman
and Skapura 1991).

Training and testing

As per field observations, 48 coal samples are considered
belonging to fiery seams. As per Coal Mines Regulations
1957, Bfiery seam^ means a seam in which a fire or sponta-
neous heating exists in the workings below ground or in open
cast workings lying within the precincts of a mine. Twenty
samples are from non-fiery/poorly susceptible seams.
Therefore, the rest ten samples may be assumed moderately
susceptible. Sample No. 1, 2, 3, 6, 7, 8, 9, 10, 11, 12, 26, 27,
29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 41, 42, 43, 44, 45, 46, 47,
48, 49, 50, 51, 52, 53, 54, 55, 56, 63, 64, 65, 66, 67, 68, 73, 74,
77, and 78 are from fiery seams whereas sample No. 4, 5, 13,
14, 16, 17, 18, 19, 20, 21, 22, 39, 40, 62, 69, 70, 71, 72, 75,

and 76 belong to non-fiery seams. The remaining ten samples,
viz., sample No. 15, 23, 24, 25, 28, 57, 58, 59, 60, and 61, are
from moderately susceptible group (Table 1). MLP classifier
has been used to validate the findings. These results are tested
by Weka (Waikato 2015). Weka contains a collection of visu-
alization tools and algorithms for data analysis and predictive
modeling together with graphical user interfaces.

The data contains 48 samples of highly susceptible class
having four attributes, viz., M, VM, FC, and RPD12.
Similarly, the other classes, i.e., poorly susceptible class, in-
cludes 20 samples and moderately susceptible one includes 10
samples with the same number of attributes. Ten percent
(10 %) of the randomly chosen samples (four samples from
highly susceptible, two samples from poorly susceptible, and
two samples frommoderately susceptible group) were consid-
ered as the training set covering all the three classes, and
subsequently 90 % samples were considered as the test set
(i.e., without class label supplied to the system).

The samples used for training are chosen at random to
avoid any biasness. It may be mentioned here that training
operation with classifier is done using labeled samples (i.e.,
known class). The training of the network is performed in the
following manner:

Once the classifier is trained properly with known class
labels, testing is done with 90 % samples, i.e., with a total
70 samples to predict class for each sample. All these opera-
tions are done with the platform of Weka classifiers. The clas-
sification performance is measured in terms of accuracy pre-
dicted by the system considering four attributes together, i.e.,
M, VM, FC, and RPD12.

Classification/recognition score

The recognition score is generated in the following fashion.
After the training is over, the test data is applied one at a time,
without supplying the class label to the system. The system
then predicts its class as output. If the prediction is a hit (i.e.,
correctly classified), the number of samples correctly

Table 9 Classification of coals
with different attributes Attributes Training Testing

Correct
classification %

Incorrect
classification %

Correct
classification %

Incorrect
classification %

VM,M, RPD12, FC,
H, O

100 0 90 10

VM, M, RPD12 100 0 87.1429 12.8571

VM, M, RPD12, FC 100 0 94.2857 5.7143

VM, M, RPD12, H 100 0 91.4286 8.5714

VM, M, RPD12, O 100 0 90 10

Mmoisture,VM volatile matter yield on daf basis,FC fixed carbon,H hydrogen,O oxygen,RPD12 susceptibility
index

Table 8 Confusion matrix for M, VM, FC, and RPD12 data for MLP
classifier

Category Highly Poorly Moderately

Highly 44 0 0

Poorly 2 16 0

Moderately 2 0 6
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classified is increased by 1; otherwise, it is a miss and the
corresponding counter (i.e., the number of incorrectly classi-
fied samples) is incremented by 1. In this manner, the confu-
sion matrix is generated for measuring the recognition/
classification score. An illustration of the confusion matrix
using MLP classifier is shown below in Table 8.

The first row in the confusion matrix contains 44
correctly classified samples (predicted by the system)
without any misclassification of any sample for this
group. The second row in the confusion matrix con-
tains 16 correctly classified samples of poorly suscep-
tible class (as predicted by the system) with 2
misclassified samples (i.e., misclassified as highly
susceptible group sample). Similarly, in the third row
of the confusion matrix, the number of correctly clas-
sified samples of moderately susceptible group is 6
and number of incorrectly classified samples is 2 (as
categorized by the system as highly susceptible
group). Hence, the total recognition/classification
score is computed as

% correct classification ¼ No: of correctly classified samples
.
total no: of test sample

� �
*100

The results of the classification are presented in Table 9.
From Table 9, it may be observed that the recognition score is
highest, i.e., 94.29 % when four attributes, viz., VM, M,
RPD12, and FC, are used for classification. The recognition
score is lowest when classification is done with three attri-
butes, viz., VM, M, and RPD12.

& It is clear that RPD12 values of the samples of highly sus-
ceptible group range between 5.54 and 19.03, whereas for
poorly susceptible group, they vary from 1.30 to 2.78, and
for moderately susceptible group, they vary from 2.17 to
5.18. However, a few samples of moderately susceptible
group (lying within the range of 2.17–2.78) overlap with
the samples of poorly susceptible group as outliers, leading
to misclassification. With large population of samples, the
misclassification may possibly get reduced further.

The overlapping nature of the samples can be reduced if the
same model is tested for a large number of samples having
different ranges of their intrinsic properties. Therefore, the
classification is made as given in Table 10.

Tenfold cross-validation

Cross-validation is a model validation technique for assessing
how the results of an analysis will generalize to an indepen-
dent data set. Each round of cross-validation involves
partitioning a sample of data into complementary subsets,
performing the analysis on one subset (training set), and val-
idating the analysis on the other subset (validation set or test-
ing set). It mimics the use of training and test sets by repeat-
edly training the algorithm K times with a fraction 1/K of
samples left out for testing purposes. In this case, K=10 is

Table 10 RPD12 value range for different category of samples

Group Status RPD12 value range, mV/min

1 Poorly susceptible 1.30–2.78

2 Moderately susceptible 2.17–5.18

3 Highly susceptible 5.54–19.03

Table 11 Results of tenfold
cross-validation method
(classification score)

S.
No.

Random
seed

% of Correctly
classified instances

% of Incorrectly
classified instances

Mean
absolute error

Root-mean-
square error

1. 1 94.8718 5.1282 0.0578 0.1801

2. 3 94.8718 5.1282 0.0568 0.1747

3. 9 94.8718 5.1282 0.0564 0.1739

4. 13 93.5897 6.4103 0.0597 0.1814

5. 15 94.8718 5.1282 0.0584 0.1780

6. 19 94.8718 5.1282 0.0571 0.1729

7. 25 94.8718 5.1282 0.0541 0.1686

8. 31 94.8718 5.1282 0.0598 0.1791

9. 37 94.8718 5.1282 0.0589 0.1798

10. 43 94.8718 5.1282 0.0597 0.1781

Std. Deviation 0.4054 0.4054 0.0018 0.0040

Average 94.7436 5.2564 0.0579 0.1767
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used, i.e., tenfold cross-validation. In each experimental run,
nine folds are used for training and the remaining one fold is
used for testing. Therefore, training set consists of 90 % data
and test set consists of 10 % data.

The tenfold cross-validation is performed on whole dataset
with four features (M, VM, RPD12, and FC). To reduce var-
iability, multiple rounds of cross-validation are performed
using different random partitions, and the validation results
are averaged over the rounds. Classification results reported
here are based on MLP classifier. In this case, ten runs of
tenfold cross-validation method with random seed for percent
split (seed value is taken odd numbers like 1, 3, and 9 for ten
runs) are used that produces different random folds for each
run. Finally, the standard deviation (SD), mean absolute error,
and root-mean-square error for all runs are calculated.

The results are depicted in Table 11. As observed from the
Table 11, the standard deviation, mean absolute error, and
root-mean-square error are 0.4054, 0.0018, and 0.0040, re-
spectively, averaged over ten runs. It is to be noted that results
with low variations among different runs are preferred. The
tenfold cross-validation results indicate the consistent perfor-
mance of the MLP classifier over the chosen features.

Conclusions

The following conclusions emerge from the present
investigations:

& PCA analysis results indicate that intrinsic properties of
coal, specifically moisture, volatile matter yield, hydro-
gen, and oxygen are positively correlated with susceptibil-
ity index, RPD, and fixed carbon is negatively correlated
with RPD. Further, ash yield, carbon, and vitrinite,
inertinite and liptinite on mineral matter free basis have
no correlation with RPD.

& A comparison between correlation coefficients obtained
fromCPTand RPD12 analysis indicates that RPD12 gives
the highest correlation in maximum number of cases. So,
RPD12 is a better susceptibility index than CPT.

& Artificial neural network analysis indicates that RPD12 is
the best susceptibility index to get optimal results. In other
words, with wet oxidation potential method, the experi-
mental conditions should be 0.2 N KMnO4 solution with
1 N KOH at 45 °C to achieve optimal results for finding
out the susceptibility of coal to spontaneous combustion.

& Coal seams were classified according to their proneness to
spontaneous heating with the help of different attributes
using multilayer perceptron classifier with a correct clas-
sification of 94.29 %. The results are further validated by
tenfold cross-validation method to show the consistent
performance of the MLP classifier over the chosen
features.

& As per the categorization of susceptibility of coal seams,
the highly susceptible group has RPD12 values range be-
tween 5.54 and 19.03 mV/min. For the poorly susceptible
group, RPD values range between 1.30 and 2.78 mV/min,
and for moderately susceptible group, these range between
2.17 and 5.18 mV/min. Therefore, there exist overlapping
values of RPD12 in case of poorly and moderately sus-
ceptible groups. To get precise range of RPD12 values, a
large population of samples belonging to poorly and mod-
erately susceptible group may be required.
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