

Northern Illinois University

Your Future. Our Focus.

Seeing the Unseen: Inquiry Driven Campus Hydrogeology Project

Melissa E. Lenczewski, NIU- Geology Sarah O'Leary-Driscoll, IMSA-Science

Importance of Groundwater Education

Hydrologic cycle

On a global scale, water is transferred from the oceans, to the atmosphere, to the continents, and back to the oceans.

Water reservoirs on Earth

Main Groundwater use

- Lower population areas with most water
- 25% of population of USA drinks groundwater while in rural areas 100%
- Human biologically require 1 gallon of water/day
- We withdrawal 400 billion gallon/day or 1800 gallon/person
 - used for agriculture, livestock, showers, cooking, etc.

Water in the zone of

saturation below the water table

Groundwater

- Geology influences location and if it can be used as a resource
- Not rivers underground

Groundwater

Vadose Zone-

unsaturated zone, pores are filled with air or air/water

- Zone of Saturation
- where all the pores are filled up with water

Dug Wells in Myanmar

Your 1

- Dug wells are about 100 years old
- Brick liner
- Community Use
- Cleaning
- Washing
- 20-50 feet deep
- 4-5 feet in diameter

Well

- Tube into the ground that intersects groundwater
- Pumped to get water to the surface

Chicagoland Area

Groundwater elevations in the Deep Sandstone Aquifer in northeastern Illinois, 2014. (Abrams et al., 2015)

Recharge into groundwater

Regional Bedrock

Your Futu

Figure 11. Elevation (in feet msl) of the potentiometric surface of the Cambrian and Ordovician aquifers, October 1985

Groundwater Contamination

Sources

Sciences

- Chemistry
 - Organic (oil, Rx)
 - Inorganic (N, P)
- Biology
 - Pathogens
 - Microbial Communities
- Earth Sciences
 - Geology of site (As, F)
 - Hydrological flow (landfill leachate to stream)
- Math
 - Velocity, gradients
- Engineering
 - Development of sensors

Your Future. Our Focus.

Objectives

- Introduce groundwater sciences
 - Earth sciences, biology, chemistry, environmental sciences, math, engineering
- Hands-on activities on campus
- Curriculum development

Your Future. Our Focus.

IMSA and SIR

- Partnered with Illinois Math and Science Academy
 - 3 year residential academy
 - Selective for interest in math and science
 - Inquiry based teaching
 - Methods in Science Course
 - Geology course
 - UNSDG focused curriculum
 - Future cross disciplinary environmental courses

IMSA and SIR

- Scientific Inquiries in Research Program
 - Wednesday is inquiry day with students
 - On and off campus research work
 - Students collaborate with researchers in the field
 - Papers published internally
 - Presentation day with posters and research talks

Development of well field

 Inspiration from teaching Environmental Field Camp at NIU

NIL

Regional Geology

Campus Geology
 – Glacial Geology

- Tools:
 - ILWATER (website)
 - Geological Maps

Students determined locations

Drilling and Well Installation

- Drilling methods NIU's Geoprobe
 Donation from local drillers
- Well installation PVC

Borehole Logging

Classification using USCS and USDA systems.
 – focus on glacial and Quaternary materials

Pictures of cores

- Submit to state geological survey
- Preserve core for a display

Your Future. Our Focus.

Microbiology

Sample

KCT: ATION: ING METHOD AN RELEVELS:	Northern Illinois University	PROJECT NUMBE DRULING SED. START :			SHEFT	GF								ſ	
INTERNAL (FT) RECC	VERY (ET) CON	NAME, USES GROUPS ITENT, RELATIVE DENS UCTURE, MINEROLOGY	ALLESCHPTON SYMBOL, COLOR, MOIST MTV. OR CONSISTENCY, 7. ODOR, OTHER OBSER	UTBE SOIL SA KATLONS. TE OVI	COMMENTS WAFLE INFORMATION, OB ISTS, AND INSTRUMENTA N (ppn): Dreawing Zore	ISTRUCTIONS. ITION Associlities									
					_										
	-			A		lorthei	n	PROJEC	I NUMBER		BORING NUMBER	{	OUEET	1 05	4
					2	Illinois	• •								_'_
	-]			(U	nivers	, ity			S	OIL/ROC	K LOG			
	-	P	ROJEC	Г:	IMSA V	Vells					LOCATION :	IMSA No Pond			
		E	LEVATI	ON :					DRILLING CO	ONTRACTOR :					
	offy Decourse(NR	D	RILLING	METH	OD AND	EQUIPM	ENT US	ED :	Geoprobe, 1	inch dual tube	system				
		V	VATER L	EVELS):			START :	0 ft		END : 36 ft	LOGGER	:		
		D	EPTH B	ELOW SI		(FT)			SOIL D	ESCRIPTION			COMMENTS		
				NIERVA			CONT	NAME, US	ATIVE DENIGIT		TENCY SOIL				ICTIONS
					NLCOVI	#/TYPE	STRU	CTURE, M	INEROLOGY,	ODOR, OTHER	R OBSERVATIONS.	TESTS, AN	D INSTRUME		I.
				4 ft.								OVM (ppm);	Breathing Zor	ne Abov	e Hole
			_				_	075 ft-	color: 7.5y 6/4 granular. effer	, silty clay (50% vescent, abrup	clay, 1% CF),strong t boundaries	, Soil with gr	ass, light to o	lark colo)r
			_		2.1		_	.75-2 ft	color: 2.5y 3/2 granular, grac	, silty clay (50% lual boundarie:	o clay, 1% CF), strong s				
		_	_				_	2-3.6 ft	color:5y 3/2, s	ilty clay (50% c	lay, 1% CF), strong,	_			

Water Levels

- GIS
- Elevations

Well ID	Total Station						
	meters, East	meters, North	TOC, feet				
EW 3	334249	4653698	762.654				
EW 2	334266	4653695	762.647				
EW 1	334276	4653687	762.603				
FP 1	334276	4653674	768.979				
OBS 4S	334286	4653644	771.663				
OBS 4	334287	4653644	776.624				
PW 1	334294	4653645	774.635				
PW 2	334312	4653646	774.623				
OBS 1	334312	4653634	776.89				
OBS 00	334312	4653621	776.797				
OBS 2	334321	4653646	776.392				
OBS 10	334320	4653601	774.898				
OBS17-01	334330	4653645	771.172				

DTWTOC 5/22,	head elev, ft	total depth, ft	vertical gradient, ft
4.60	764.379	7.17	2.57
7.67	767.228	12.21	4.54
11.56	765.330	29.76	18.20
8.17	763.002	16.91	8.74
11.08	765.312	29.76	18.68
NA	NA	24.89	NA
11.82	764.180	21.88	10.06
6.89	764.773	24.65	17.76
11.31	765.487	29.3	17.99
8.28	768.170	14.47	6.19
9.78	764.843	27.38	17.60
9.42	765.203	28.09	18.67

Your Future. Our Focus.

Water Sampling

- Exposure to a variety of purging and sampling techniques.
 - low flow, parameter
 stabilization, specified
 volume
 - QA/QC, sample preservation
 - Organics, inorganics, microbiological

Microbial Community

Pathogens- Coliform/E. coli

Microbial Community

DNA extract of core with depth and of water Compare microbial communities using PCR-Sequencing

Microbial Community

Aqueous Chemistry

Test Type	HACH Testing Kits								
Method	As per manufacturer instructions								
					detection limit				
	Substance being tested for	symbol	sample results	unit	lowest	highest	IL MCL	unit	misc. info.
	Arsenic	As	ND	mg/L	5.00	1000.00	0.05	ppm	NA
	Ammonia	NH3	ND	mg/L	0.00	2.00	NA	NA	NA
	Calcium Hardness	CAS	240.00	mg/L	20.00	400.00	NA	NA	NA
	Nitrate	NO2	0.88	mg/L	0.00	40.00	10.00	ppm	as nitrogen
	Total Hardness	CaCO3	420.00	mg/L	20.00	400.00	NA	NA	NA
	Phosphate	PO4	0.06	mg/L	0.00	50.00	400.00	ppm	proposed
	Phosphorous	Р	0.02	mg/L	0.00	50.00	NA	NA	NA
	Magnesium Hardness	Mg	180.00	mg/L	20.00	400.00	NA	NA	NA

Continuous Monitoring

- Water level changes associated with precipitation events
- Weather Station
- Pressure Transducer

Flow between wells

- Three-point problems and hydraulic conductivity
- Conservative tracer
 - NaCl into one well, monitor in others
 - Advective Flow, Disperation, Dilution
- Gradient and velocity

$$K = \frac{r^2 \ln(L/R)}{2L T_0}$$
$$K = \frac{r_c^2 \ln\left(\frac{R_e}{R}\right)}{2L_e} \frac{1}{t} \ln\left(\frac{H_o}{H_t}\right)$$

Other exercise

- Field observations and keeping accurate notes

Em 21	in a about	
	musuram	115 3:00-3: Jon
Nel	N TIME Set	UP perfenditular
- 100	time 4 st	arting at intrance
100	peng pr c	Vauel road
V) for 38	meters: (meter
()	norments	
astance	nesistivitymo	Distance Rasistivitymm
OM	38.4	17m B1+7
m	37.9	18m Bal
am	38.0	19m 32.7
3m	36.6	20m 31.0
Am	34.5	2m 29.9
5m	32.4	22m 31.2
low	24.9	23m 31.7
200	20	24m 38.2
	210	250 344
8m	31.8	2 2 245
9m	32.7	alem stis
10m	21.3 31.4	+ ann 33.5
IIm	31.1	28m 33.1
him	31.9	39m 33.2
1011	274	30m 31.6
15M	22.7	310 31.7
14m	32.0	27.4
15m	31.9	32 11 30.7
1.m	30.6	33 m 24.4
ILEVI	50.4	Rite in the Rai

Presenting Research

- In addition to on campus research presentations and publications, our students are going to share their research more widely
 - Rachel Moreno: presenting at American Society for Microbiology
 - Ethan Phillips: presenting at North Central Geological Society of America

Next Steps

- Formally Write up curriculum for dissemination
- Partner with other schools locally and further abroad
- Engage in longer term collaborative research groups using this model

Opportunities for Science Teachers

- Interdisciplinary Foreign Research Experience for Teachers (IFRET)
- Summer 2020 (flexible dates between June-July)
- All expenses paid to Southeast Asia (Myanmar) for up to two high school teachers
- Research with Professor
 - Jim Wilson, Medical Geographer
- NIU.edu/ese/ifret

Textile Dyes as a Source of Groundwater Contamination in Mandalay, Myanmar

Surya Freeman

Example Project- Myanmar

Example Project

Home to 1.21 million people

Currently lacking:

- wastewater management systems
- solid waste disposal processes
- water treatment facilities

People either use shallow aquifer groundwater or buy bottled water for everyday uses

Textile dyeing and weaving of traditional longyi garments has occurred in the Amarapura Township of Mandalay, Myanmar since 1822

- Dyeing is an unregulated practice
- Colored dyes are bought from China and India

Heavy Metals	Units	RDL	MCL	M1-A	PG1-B	PG1-B	M1-B	M3-B	M6-B
				3/13/2018	3/12/2018	8/7/2018	3/13/2018	8/7/2018	8/8/2018
Aluminum	mg/L	0.1	0.2*	5.12	0.24	0.9	1.66	0.51	3.81
Antimony	mg/L	0.006	0.02					0.713	
Arsenic	mg/L	0.01	0.005						
Barium	mg/L	0.005	0.3						
Beryllium	mg/L	0.004	0.004						
Cadmium	mg/L	0.005	0.003						
Chromium	mg/L	0.005	0.05						
Copper	mg/L	0.005	2*						
Iron	mg/L	0.05	0.3	8.69	0.24	1.06	1.58	0.73	1.92
Lead	mg/L	0.005	0.01*	0.271			0.046		0.045
Manganese	mg/L	0.005	0.4*						
Nickel	mg/L	0.005	0.02*			0.122			
Selenium	mg/L	0.01	0.01						
Silver	mg/L	0.005	0.1						
Sodium	mg/L	0.5	200*	523	1090	2960	373		624
Thallium	mg/L	0.01	0.002	0.002					
Zinc	mg/L	0.01	3*						
		Effluent Release Points							

* Indicate WHO Health Guidelines when MCL is absent

Values above MCL or WHO Guidelines Values below the RDL Values below the MCL or WHO Guidelines

Questions?

- Melissa Lenczewski

 <u>Lenczewski@niu.edu</u>
- Sarah O'Leary-Driscoll
 <u>soleary@imsa.edu</u>

