
 

 

 

 

Advance Sustainable Science, Engineering and Technology 

 

0190101-1 
 

First-Principles Calculation of Laser Crystal Multiplet Levels via 

Hybridized Density Functional Theory and Configuration 

Interaction within the OLCAO Method  

Benjamin Walker  

University of Missouri – Kansas City, 257 Flarsheim Hall, 5110 Rockhill Road, Kansas City, 

Missouri, 64110 

baw5ea@mail.umkc.edu  

Abstract. Computation of highly-localized multiplet energy levels of transition metal dopants is 

essential to the design of materials such as laser host crystals. A purely first-principles density 

functional theory-configuration interaction (DFT-CI) hybrid computational method has been 

developed to accurately compute multiplet energy levels for single atoms of carbon, nitrogen, 

oxygen, sodium, aluminum, silicon, titanium, and chromium. The multiplet energy levels have 

been computed with close experimental agreement in terms of magnitude and degeneracy, and 

the method does not depend on empirical information (i.e. Racah parameters). The computed 

multiplet energy level results are distributed according to term symbols, which are then compared 
to experimentally-observed multiplet energy levels. The hybrid method consists of analytic 

computation of two-electron integrals via the DFT-based orthogonalized linear combination of 

atomic orbitals (OLCAO) method, which are subsequently used as input for the CI-based discrete 

variational multi-electron (DVME) method to obtain the multiplet energy values.  

Keywords: exchange-correlation; elecron repulsion integral; multiplet; DVME; OLCAO; 

density functional theory; configuration interaction 

1.  Introduction  
A key driving economic force over the past few decades has been the development of advanced materials 

with novel and/or highly tuned properties. This trend is expected to continue into the future due to tough 

global competition for manufactured products, new technologies, and the demand for progress in 

fundamental science. Many manufactured products and new technologies rely heavily on subtle details of the 

electronic structures of the component materials. In order to achieve optimal performance within the 

constraints (e.g. thermal, mechanical, form factor, etc.) imposed by the specific application it is necessary to 

possess fundamental understanding of the material. A few general application examples include photovoltaics, 

laser host crystals, photo-detectors, lighting phosphors, and quantum dots [1–5]. Specific areas of 

fundamental physical importance are excitonic states, electron mobility, electron-phonon coupling, and 

precise band structure including multiplet and satellite energy levels [6–8]. These applications and points of 

fundamental research are intimately associated with excitations of the valence band electrons into the 

unoccupied conduction band states. Therefore, an area of particularly urgent research interest is the ability to 

make an accurate determination of the excited state properties of materials with an emphasis on those 

containing doped atoms with 3d, 4d, and 4f valence electrons because they tend to possess the most uniquely 

tunable properties. The presence of such dopant atoms within a solid introduces additional highly localized 

electronic states into the gap between the occupied and unoccupied states. Figure 1 shows a comparison 

between the band structures of undoped Al2O3 and chromium-doped Al2O3 (ruby). 
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Figure 1. α-Al2O3 band structure example.  α-Al2O3 with and without dopant.  Left: Supercell band and 

crystal structure of α-Al2O3.  Right:  As the left side with a Cr substitutional defect (circled).  

Induced multiplet states are identified by arrows. 

 
Experimental spectroscopic techniques to study these types of materials systems have progressed very far 

in recent decades, but it is clear that fundamental understanding and efficient analysis is only achieved when 

theoretical and computational methods are applied as well. In response to this need, tremendous effort has 

been expended to develop and apply such methods [9,10]. At present, computational theoretical methods 

have proven themselves to be extremely cost effective, efficient, and powerful tools. However, as with 

experiment, each computational method has its own set of advantages and disadvantages in terms of 

capability, accuracy, and efficiency. In fact, increased accuracy tends to come at the cost of efficiency, and 

vice versa. A prime example is that many methods need to explicitly compute the excited state electronic 

wave function for accurate prediction of the spectral properties of a material. Such an explicit wave function 

calculation has never been feasible for bulk solids due to the high computational cost involved; rather it has 

been used with smaller molecule-sized systems. While progress has been made, very substantial challenges 

remain in addressing these disadvantages and will likely require many more years of focused effort.  
An example is the case of ruby; it has three lines (R, R', B) and three bands (U, Y, Y') in the visible 

spectrum which correspond to multiplets of impurity states. There have been studies that successfully 

computed multiplet levels from first principles. For example, Ohnishi and Sugano [11] computed two 
multiplet states of ruby, 2E (R line) and 4T2 (U band). In 1998 Prof. Ogasawara et al.[12] calculated the 

multiplet structure of ruby via a many-electron extension of the DV-Xα method [13] (Figure 2) thereby 

elucidating the effects that covalency and trigonal distortion of the impurity-state wave function have 

on the multiplet structure of ruby. 
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Figure 2. Ruby multiplet energy levels.  Calculated multiplet energy levels of ruby using three different 

clusters, in comparison with the experimental absorption spectrum [14]. 

As is shown in Figure 2, there is a significant difference between the computed multiplet states of 
ruby, and those observed experimentally. For example, computed 2E, 2T1 and 4T2 multiplet energy levels 

differ from their experimental counterparts in terms of quantity and magnitude. This difference is due 

to the presence of correlated electron-electron interactions that are not properly accounted for in the 

calculation. 
The current state of the art in predicting laser crystal multiplet energy levels is to plot them with 

Tanabe-Sugano diagrams [15,16]. In this method, an approximation of the crystal field splitting energies 

as a function of ligand field strength is generated for tetrahedral or octahedral complexes. For instance, 
the d-orbital energy levels of neutral transition metals are degenerate, but in the presence of ligands the 

degeneracy of the energy levels is broken when crystal splitting occurs (denoted by Δoct). 

Ruby is represented by an octahedral complex wherein a chromium atom is surrounded by six oxygen 

atoms. The energies of the dxx-yy and dzz orbitals increase relative to those of the dxy, dxz, and dyz orbitals. 
The energy splittings are characterized by empirically-determined Racah parameters [17] (denoted by 

B and C), which are meant to account for electron-electron repulsion. In this case, B represents the bond 

strength between the metal ion and the ligand, and is used to defined C as 1/4B. A Tanabe-Sugano 
diagram consists of the energy of an electron transition scaled by B, as a function of the crystal field 

splitting parameter Δoct, also scaled by B. While accurate, Tanabe-Sugano diagrams are dependent on 

empirically-derived Racah parameters. This work provides a framework for a method that is not 
dependent on the inclusion of empirical parameters to calculate multiplet energy levels. However, key 

challenges need to be addressed. 

The essence of the problem being addressed in this work is that the excited state electronic properties 

of a solid can only be precisely described when correlated electron-electron interactions are taken into 
account. In strongly-correlated systems, atoms with partially occupied d and/or f electron shells exhibit 

atom-like behavior, thereby limiting the accuracy of the homogeneous electron gas model employed by 

LDA- and GGA-based methods. The situation becomes even more complicated when electrons are 
excited into higher energy levels, because the excitation changes the electronic structure of the entire 

system. Electron-electron interaction phenomena cannot be decoupled from each other, which precludes 

direct calculation of their effects. However, the effects can collectively be accounted for via the strategic 
application of suitable computational methods – in effect, a hybrid method. 
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2.  Methods 

2.1.  DVME 

 
The discrete variational multi-electron (DVME) method that is used for this work was developed in 

2000 and has been successfully used to compute multiplet states for ruby [18-20]. In that work, an 

effective Hamiltonian was employed that takes only dopant-state electrons explicitly into account: 
 

( ) ( )
1

,
M

i i j

i i j i

H h r g r r
= 

= + 
 

(1) 

Here, ir  is the position of the ith electron and M is the number of electrons occupying dopant states. The 

first term in the effective Hamiltonian is the one-electron operator: 

 
( ) ( ) ( )2

0

1

2
exth r V r V r= −  + +

 
(2) 

This is composed of the following terms: 2  is the kinetic energy term, ( )extV r  is the Coulombic 

potential from surrounding nuclei, and ( )0V r  is the Coulombic repulsion energy from the core and 

valence electrons. The second term in the effective Hamiltonian is the two-electron operator: 

 
( )

1
,i j

ij

g r r
r

=  (3) 

where 
ijr  is the distance between the ith and jth impurity state electrons. 

According to the prior work of Prof. Ogasawara, Slater determinants i , representing the impurity 

state orbitals, are constructed via the single-electron cluster calculation described in 200018. 

Determination of the energy levels of the impurity states starts with diagonalizing the effective 

Hamiltonian within the subspace spanned by i . Next, the matrix elements of the Hamiltonian H are 

expanded to obtain: 

 

1 1 1 1 1 1

L L L L L L
pq pq

pq p q ij ijkl

i j i j k

H H A i h j B ij g kl
= = = = = =

=   = + 
 

(4) 

where L is the number of impurity state orbitals, A and B are coefficients, and i  are Slater determinants 

constructed from impurity state orbitals obtained from the CI cluster calculation. Additionally, 

| |i h j  is the one-electron integral, and | |ij g kl  is the two-electron integral, also known as the 

electron repulsion integral (ERI). These integrals are defined as follows: 

 ( ) ( ) ( )*

i ji h j r h r r dr =   
(5) 

 
( ) ( ) ( ) ( )* *

1 2 1 2 1 2

12

1
i j k lij g kl r r r r dr dr

r
   =    

(6) 

 

In these integrals, the   terms represent impurity-state orbitals. Next, eigenvectors are obtained to 

express the many-electron impurity state wave function: 
 

1 2, , ,n n nKa a a
 

(7) 

 
1 1 2 2n n n nK Ka a a =  +  + + 

 
(8) 
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where K is the number of Slater determinants. This is the CI formalism defined in the previous section. 

H is diagonalized in terms of n  to obtain the energy of the nth eigenstate: 

 
*

K K
n

n n np nq pq

p q

E H a a H=   =
 

(9) 

A major distinction to be made between the DVME method as shown here and the work being 
presented in this dissertation is how the ERIs are computed. The stand-alone DVME method computes 

ERIs numerically18 via random sampling points, a method that is less accurate than analytical 

computation; furthermore, it is and exceedingly expensive calculation for large systems. The hybrid 
DFT-CI method of this dissertation removes this complication by analytically computing the ERI 

solutions and substituting them into the effective Hamiltonian to be used in the aforementioned DVME 

procedure. The ERI derivation is shown in the subsequent section on interaction integrals. 
The Hartree-Fock method and its derivatives rely on direct computation of the wave function of the 

system being studied. In the next section an alternative approach in the form of density function theory 

will be discussed, with subsequent discussion about how the hybrid DFT-CI method is formed. 

2.2.  Orthogonalized Linear Combination of Atomic Orbitals (OLCAO) Method 
 

Over the past several decades, meeting the challenge of calculating the properties of materials has 

been made possible by the emergence of powerful and efficient computer and algorithms. The DFT-
based OLCAO method [21] has been shown to be accurate and efficient for large periodic atomic 

systems [19,21]. The OLCAO method employs a basis of atom-centered atomic orbitals that are 

expanded as Gaussian functions, which facilitates accurate and efficient computation of interaction 

integrals. 
 

Atomic Basis Functions 

 

The solid state wave function ( )
nk

r  for energy band index n and wave vector k  is defined as: 

 ( ) ( ) ( )
,

,n

i ink
i

r C k b k r 


 =
 

(10) 

For the ith aggregated quantum number (principle, angular momentum, and magnetic) and the γth atom 

in the cell. The Bloch sum ( ),ib k r  is defined as: 

 
( ) ( ) ( )

1
, expi ib k r i k R u r R t

N
   



 =  − −
   (11) 

where vR  is the lattice vector and t  is the position of the γth atom. The sum over   of iu   represents 

an atom-centered linear combination of atomic orbitals. Each atomic orbital consists of a radial part and 

an angular part: 
 

( ) ( ) ( )2

1

exp ,
N

l m

i j j l

j

u r A r r Y  
=

 
= −  
 
  (12) 

where l and m are angular momentum quantum numbers and Aj are expansion coefficients. The N decay 

factors αj of the sum of Gaussian-type orbitals (GTOs) are selected by empirically choosing minimum 

and maximum values and then obtaining the rest via a geometric series between them. During an 
OLCAO calculation, the same set {αj} is used for all the atoms of a given element, as well as for all the 

orbitals for a given quantum number i. In this way, the basis functions are element-specific and 

predetermined. Because of this, interaction integrals are computed and reused. 
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The OLCAO method is based on the local density approximation (LDA) of density functional theory 

(DFT). Next, the Kohn-Sham equation for a system of interacting particles is obtained: 

 
 ( ) ( ) ( ) ( ) ( )2

e n e e XC nk nk nk
V r V r V r r E r− −

 − + + +  =      (13) 

where ( )e nV r−  represents the electron-nuclear potential, ( )e eV r−   represents the electron Coulombic 

potential, and ( )XCV r    represents the exchange-correlation (XC) potential energy. The XC 

potential has a functional relationship to the charge density ( )r . Here, ( )r  is the electron density 

over occupied states: 

 ( ) ( )
2

nk
occ

r r = 
 

(14) 

The total energy of the system is: 

 
( ) ( )

,,

1

2 2

occ
e e

T n XC nuc e

n k

Z ZV
E E k r V dr

R R

 

   

  −
−

 
= + − − + 

− 
   (15) 

The first term is the sum of energies over occupied one-electron bands; within the middle term:  XC  is 

XC energy, nuc eV −  is nucleus-electron attraction energy, and 
2

e eV −  is electron-electron repulsion energy; 

the last term is a sum of nucleus-nucleus repulsion energy over the lattice sites, where δ and γ are lattice 

sites and Zδ and Zγ are atomic numbers at lattice sites δ and γ. 

 

Atom-Centered Potentional Functions 

 

The real-space charge distribution ( )cry r  for an OLCAO calculation is defined as follows: 

 ( ) ( )cry A A

A

r r t = −
 

(16) 

where: 

 
( ) ( )2

1

exp
N

A j j

j

r B r 
=

= −  (17) 

The atom-centered Coulomb potential ( )CoulV r  is expressed as follows: 

 ( ) ( )Coul C A

A

V r V r t= −
 

(18) 

where ( )CV r  is defined as 

 
( ) ( ) ( )2 2

1

exp exp
N

A
C j j

j

Z
V r r D r

r
 

=

= − − − −  (19) 

The first term represents the electron-nuclear potential, where ZA is the atomic number of the atom at 

the nucleus site; the second term of ( )CV r  is the electron-electron potential. 

The exchange-correlation potential ( )XCV r  is defined as 

 ( ) ( )xc x A

A

V r V r t= −
 

(20) 

where: 
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( ) ( )2

1

exp
N

x j j

j

V r F r
=

= −  (21) 

 

The crystal potential is defined as a sum of the above atom-centered potentials: 

 ( ) ( )cry A A

A

V r V r t= −
 

(22) 

where: 

 ( ) ( ) ( )A C xV r V r V r= +
 

(23) 

The same set of exponential decay parameters  j  is used in the above Gaussian functions. This 

allows for reuse of the expanded Gaussian functions ( )2exp jr− , hence fewer integral computations 

need to be performed. The mathematical form of ( )A r  and ( )AV r  allows for the analytical 

computation of multicenter interaction integrals, which is a factor that lends to the computational 

efficiency of OLCAO. 
 

Gaussian-Type Orbitals (GTOs) 

 
Computation of symmetric band structure about the Brillouin zone is accomplished by solving the 

secular equation: 

 ( ) ( ) ( ), , 0i j i jH k S k E k   − =
 

(24) 

where: 

 ( ) ( ) ( )

( ) ( ) ( )

, , | ,

exp

i j i j

i j

S k b k r b k r

ik R u r t u r R t dr

   

   


=

= −  − − − 
 (25) 

and: 
 ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

,

2

, | | ,

exp

i j i j

i Coul ex j

H k b k r H b k r

ik R u r t V r V r u r R t dr

   

   


=

 = −  − − + + − −  
 (26) 

where k  represents a set of k-points. Even for larger systems of hundreds or thousands of atoms, the 

number of interaction integrals that need to be computed remains manageable due to the reuse of 

interaction integrals. 

With the atom-centered potentials in-hand, let iu  be an s-type ( 0= ) Gaussian function with decay 

parameter 1 , centered at atomic site A: 

 ( )2

1expA Ar = −  (27) 

where Ar r A= − . OLCAO has a basis of Gaussian-type orbitals (GTOs), which is advantageous 

compared to other basis sets (i.e. plane wave basis). For example, a plane wave basis set requires many 

terms in order to accurately expand a wave function, making such bases more mathematically intense 

to compute. Gaussian functions are analytically integrated and differentiated easily.  
 

Creating the OLCAO-DVME Hybrid Method 
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The first step in the hybrid calculation process is to accumulate the analytically computed single 

electron integrals and electron repulsion integrals with the OLCAO method. Single electron integrals 

consist of a sum of kinetic energy and nuclear attraction integral matrix elements. For the sake of brevity 
in describing the hybrid OLCAO-DVME method, single electron integrals and electron repulsion 

integrals are referred to as ‘single integrals’ and ‘double integrals’, respectively. To demonstrate how 

the single and double integrals are accumulated in OLCAO, the accumulation process for 2-center 
overlap integrals is shown here first. 

Each atomic site has an atom-centered Gaussian function ( )2

1expA Ar = −  with decay parameter 

 . Each alpha has a set of atomic orbitals (1s, 2s, 2px, 2py, 2pz, etc.), and the total number of valence 

orbitals for all the atoms in a given system is known as the valence dimension. When performing stand-

alone OLCAO calculations, it is often preferable to consider only non-core electronic states. However, 

when preparing an OLCAO-DVME calculation, both core and valence orbitals are included in the single 
and double integrals. 

In the case of 2-center overlap integrals, all pairs of alphas (without double counting) are tested for 

non-negligible Gaussian overlap (highlighted portion of the schematic of Figure 3. 
 

 
Figure 3. Alpha pairs:  highlighted are alphas involved in non-negligible overlap. 

 

When this condition is met, the overlap integral subroutine is called for the alpha pair taking part in 
the non-negligible overlap. For each pair, the angular momentum character of the Gaussian function for 

the second alpha ( 2 ) determines the number of states over which the overlap is accumulated. This 

number is either 1, 4, 9, or 16 corresponding to s-, p-, d-, or f-type orbitals; this number is the upper 
bound on the accumulation loop. Starting from zero, each iteration of the loop adds the product of the 

orbital overlap of 1  multiplied by each of the set of 2 . Once all the alphas are looped over, the 

integral with a complete basis representation is formed. This formalism is applied to 2-center overlap, 
kinetic energy, 3-center electronic potential, and 3-center nuclear attraction integrals. Next, the single 

integrals are computed. 
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Single integrals are a term-by-term sum of the complete basis representation of kinetic 

energy and nuclear attraction integral matrix elements. The algorithm is as follows: 

( )

( ) ( ) ( )

( )

One i,j 0

do i=1,valeDim

do j=1,valeDim

One i,j = KE i,j +NP i,j

write One i,j

end do

end do

=

    

 

The algorithm for double integrals is as follows: 

 

( )

( ) ( )

( )

Two i,j,k, 0

do i=1,valeDim

do j=1,valeDim

do k=1,valeDim

do =1,valeDim

Two i,j,k, =ERI i,j,k,

write Two i,j,k,

end do

end do

end do

end do

=

 

 
The accumulated single and double integrals are used as input for DVME to perform a CI-style 

calculation that computes energy eigenvalues. It is important to note that the nuclear attraction integral 

within DVME treats the nucleus site as a point charge, whereas the nucleus site is treated with an s-type 

Gaussian function in OLCAO. Therefore, OLCAO-generated nuclear attraction integrals for use in the 
hybrid method are prepared in the DVME style. This means that the application of the Gaussian Product 

Theorem and factoring of constants is the same as for the 2-center overlap integral. 

3.  Results and discussion 

The main result of this work is the development of a purely first-principles method for computing the 

multiplet energy levels of single atoms, specifically transition metal dopants within crystalline systems. 

Such a method has remained elusive due to the reduced accuracy of DFT-based methods when applied 
to strongly correlated systems, as well as the prohibitive computational expense in applying post-HF 

methods to periodic crystals. However, strategic application of both methods at different stages of a 

hybrid-style calculation has shown promising results. 

The method computes atomic energy levels within the ground-state electron configuration. The 

multiplet energy values for atoms are distributed according to term symbols that have the form 
2 1S

JL+
, 

where S  is the total spin quantum number, L  is the total orbital quantum number, and J  is the total 
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angular momentum quantum number [22]. For a given pair of electrons within a subshell, we know that 

1 2L = −  to 
1 2+ , 1 2S s s= −  to 1 2s s+ , and J L S= −  to L S+ . The value of L  

determines the letter code of the term symbol, such that 0L =  corresponds to S , 1L =  corresponds 

to P , etc. in the same way as orbitals are designated. Spin degeneracy is determined from the fact that 

each level has 2 1S +  states. One additional constraint is that the many-electron wave function must be 

anti-symmetric when considering the combination of spin and orbital angular momenta. 
Putting this formalism into practice for Sodium, the single unpaired electron in the 3s subshell allows 

for straightforward tabulation of the ground-state term symbols. We have 
1

2
S = , 0L = , and 

1

2
J = ; 

this means we expect that there is a single anti-symmetric term 2S1/2 for ground-state Sodium, with this 

state being doubly spin degenerate (containing 
1

2 1 2 1 2
2

S
 

+ = + = 
 

 states). This is in agreement with 

what has been observed experimentally [23], and is summarized in Table 1: 

 

 

Table 1. Sodium multiplet energies (eV) 

Term Symbol 
OLCAO-DVME 

Method 
DVME Term Symbol Experiment23 

2S1/2 0.0000000 0.0000000 2S1/2 0.0000000 

 

The next set of tables shows multiplet energy comparisons for carbon, nitrogen, oxygen, aluminum, 
silicon, titanium, and chromium. 

 

 

Table 2. Carbon multiplet energies (eV) 

Term 
Symbol 

OLCAO-DVME 
Method 

DVME Term Symbol Experiment [24] 

3P0,1,2 0.000000 0.000000 3P0 0.0000000 

 0.000000 0.000592 3P1 0.002035413 

 0.000000 0.001132 3P2 0.005382583 
1D2 1.506279 1.947265 1D2 1.263728 

 1.506279 1.948595   

 1.506279 1.948948   

 1.506279 1.949887   
 1.506279 1.951090   

1S0 3.765696 4.8720310 1S0 2.684014 

 
 

For carbon, there are three low energy term symbols that may be obtained via transition from the 

[He]2s22p2 ground state:  3P, 1D, and 1S. Again, the superscript defines the spin configuration for each 

term symbol, and the number of energy values for each term symbol letter is determined by the number 
of orbitals of the same angular momentum combined with the anti-symmetric requirement. For instance, 
3P (read as ‘triplet P’) has three J values shown due to the possible allowed combinations of electron 

spin and orbital angular momenta that lead to anti-symmetric wave functions. Specifically, the 3P has 
two parallel (symmetric) spins for a total S equal to one. Each electron has an orbital angular momentum 

of one such that the total L  may take on values of 2, 1, or 0. Consequently, based only on the addition 



 
 

 

 

J.ASSET.0190101(2019)        Benjamin Walker 

0190101-11 
 

of angular momentum via LS coupling, the possible J  values are 3, 2, 1, or 0. Further refining this list 

to produce only anti-symmetric configurations leads to 1S = , 1L =  so that 2,1,0J = . 

The energetic differences among the 3P states that are expressed in the NIST data are the result of 

spin-orbit coupling while the differences in the pure DVME data are the result of integration error. For 

the 1D2 case the energy levels should possess orbital degeneracy and so only one is listed in the NIST 
data. As with the 3P case, the energy differences in the stand-alone DVME results are due to integration 

error. This may be contrasted with the hybrid OLCAO-DVME results which show perfect degeneracy 

for all five orbitals. 

The trends for atomic C continue with the other elements. Orbital degeneracies that are not due to 
spin-orbit coupling are exactly represented in the OLCAO-DVME method but not the stand-alone 

DVME method. Orbital degeneracies in the NIST data are reflected by only one number, but spin-orbit 

splittings are shown. There are some further anomalies that appear for higher Z atoms which will be 
discussed next. 

 

Table 3. Nitrogen multiplet energies (eV) 

Term Symbol 
OLCAO-DVME 

Method 
DVME Term Symbol Experiment24 

4S3/2 0.000000 0.000000 4S3/2 0.000000 
2D5/2,3/2 2.706276 3.199266 2D5/2 2.383523 

 2.706276 3.199597 2D3/2 2.384610 

 2.706276 3.201109   

 2.706276 3.201610   
 2.706276 3.203819   

2P1/2,3/2 4.510460 5.334013 2P1/2 3.575570 

 4.510460 5.334013 2P3/2 3.575618 
 4.510460 5.334790   

 

 

Table 4. Oxygen multiplet energies (eV) 

Term Symbol 
OLCAO-DVME 

Method 
DVME Term Symbol Experiment24 

3P0,1,2 0.000000 0.000000 3P0 0.000000 

 0.000000 0.003016 3P1 0.019622 

 0.000000 0.003738 3P2 0.028142 
1D2 2.109835 2.346584 1D2 1.967364 

 2.109835 2.351542   

 2.109835 2.352462   

 2.109835 2.353076   
 2.109835 2.355483   

1S0 5.274588 5.876203 1S0 4.189746 

 

 
 

Table 5. Aluminum multiplet energies (eV) 

Term Symbol 
OLCAO-DVME 

Method 
DVME Term Symbol Experiment [25,26] 

2P1/2,3/2 0.000000 0.000000 2P1/2 0.000000 
 0.000000 0.001079 2P3/2 0.013894 
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 0.000000 0.002662   

 

Table 6. Silicon multiplet energies (eV) 

Term Symbol 
OLCAO-DVME 

Method 
DVME Term Symbol Experiment [27] 

3P0,1,2 0.000000 0.000000 3P0 0.000000 

 0.000000 0.000540 3P1 0.009561 

 0.000000 0.002883 3P2 0.027668 
1D2 1.126786 1.477118 1D2 0.780958 

 1.126786 1.479868   

 1.126786 1.480659   

 1.126786 1.481468   
 1.126786 1.483393   

1S0 2.816966 3.699545 1S0 1.908659 
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Table 7. Titanium multiplet energies (eV) 

Term 
Symbol 

OLCAO-DVME 
Method 

DVME 
Term 

Symbol 
Experiment [28] 

3F2,3,4 0.000000 0 3F2 0.000000 

 0.000000 0.00623 3F3 0.021094 
 0.000000 0.00741 3F4 0.047967 

 0.000000 0.01103   

 0.000000 0.01238   

 0.000000 0.02707   
 0.000010 0.02917   

5F1,2,3,4,5 0.895369 0.41582 5F1   0.8129437     

 0.895380 0.41729 5F2   0.8181426     
 0.895380 0.43587 5F3   0.82585948    

 0.895380 0.43665 5F4   0.83599519    

 0.895390 0.43999 5F5   0.8484192     

 0.895390 0.44031   
 0.895390 0.44827   

1D2 1.13099 1.61907 1D2 0.8995494 

 1.13099 1.62392   
 1.13099 1.62488   

 1.13099 1.69335   

 1.13099 1.70036   
3P0,1,2 1.32576 1.70226 3P0   1.0460073     

 1.32576 1.70889 3P1   1.05292613    

 1.32576 1.71082 3P2   1.06655473    
3F2,3,4 - - 3F2   1.42975613    

 - - 3F3   1.44315261    
 - - 3F4   1.46013858    

 - -   

 - -   
 - -   

 - -   
1G4 1.78897 1.79972 1G4 1.5024892 

 1.78897 1.81572   
 1.78897 1.8181   

 1.78898 2.0627   

 1.78898 2.06429   
 1.78898 2.06667   

 1.78898 2.067   

 1.78898 2.0705   

 1.78898 2.07094   
5P1,2,3 - - 5P1   1.7335189     

 - - 5P2   1.7393044     

 - - 5P3   1.7488757     
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Table 8. Chromium multiplet energies (eV) 

Term 
Symbol 

OLCAO-DVME 
Method 

DVME 
Term 

Symbol 
Experiment [29] 

7S3 0.000000 0.000000 7S3 0.000000 
5S2 2.11166 2.60561 5S2 0.941430 

5D0,1,2,3,4 - - 5D0   0.96097008    
 - - 5D1

   0.96841323    
 - - 5D2

   0.98287741    
 - - 5D3

   1.00367492    
 - - 5D4

   1.03000806    
5G2,6,3,4,5 3.23514 2.69414 5G2 2.543836 

 3.23514 2.69571 5G6 2.544100 

 3.23514 2.70899 5G3 2.544268 
 3.23514 2.71366 5G4 2.544606 

 3.23514 2.72786 5G5 2.544639 

 3.23514 3.82348   
 3.23514 3.82364   

 3.23514 3.82457   

 3.23514 3.82532   
5P3,2,1 3.66658 3.82683 5P3 2.707915 

 3.66658 3.82789 5P2 2.708786 

 3.66658 3.82918 5P1 2.709914 
3P0,1,2 - - 3P0   2.87187330    

 - - 3P1
   2.91511321    

 - - 3P2
   2.98716592    

7P o
2,3,4 - - 7Po

2   2.88945204    

 - - 7Po
3

   2.89953683    
 - - 7Po

4
   2.91348179    

3H4,5,6 - - 3H4   2.96741994    

 - - 3H5
   2.98256886    

 - - 3H6
   3.00044213    

5D0,4,1,2,3 3.78868 3.83034 5D0   3.00997113    

 3.78868 3.83181 5D4
   3.01062750    

 3.78868 4.34235 5D1
   3.01114739    

 3.78868 4.34514 5D2
   3.01279639    

 3.78868 4.34819 5D3
   3.01329984    

 

In each case shown, multiplet energies from the hybrid method match experimental values more 
closely than do their DVME counterparts, in terms of magnitude and degeneracy. Whereas the term 

symbols for a carbon atom are relatively straightforward to tabulate, the production of term symbols for 

higher-Z atoms like titanium and chromium is extremely complicated. However, the general rules 
explained above can be extended to treat generation higher-Z atoms [30]. 

Both sets of calculations (OLCAO-DVME hybrid method and stand-alone DVME method) were 

non-relativistic, so spin-orbit coupling was not taken into account. This explains why the experimental 

multiplet energy values are resolved according to individual term symbols (with differing magnitudes), 
and the multiplet energy values computed via the hybrid method are the same for a given term symbol 

letter.  The improved agreement with respect to magnitude and degeneracy is a significant step forward 

because it demonstrates that the basic approach is sound and that additional improvements should be 
possible with the inclusion of higher-order theory. However, the above results also reveal limitations in 

the approach that will require further investigation before they can be fully resolved. 
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The multiplet energies shown for titanium and chromium are a subset of the total list of values 

produced; the hybrid method produced 225 multiplet energy values for titanium, and 400 for chromium. 

The full list of multiplet energy values for titanium and chromium is contained in an external appendix 
that is available with this document. The multiplet energy values shown for titanium and chromium 

convey that the hybrid method is capable of producing some of the multiplet energies with expected 

degeneracies and magnitudes, compared to experimental values. However, the method is insufficient to 
produce all the experimentally observed excited-state multiplets. The Cr 5D0,1,2,3,4 (quintuplet D) state is 

not reproduced in the correct energetic order by either the stand-alone DVME method or the hybrid 

OLCAO-DVME method. The energy levels are computed (and can be seen in the full list of energy 

levels in the supplementary appendix available with this document), but their energies are much higher 
than experiment indicates. The precise reason for this discrepancy is unknown, but because the problem 

manifests itself primarily with configurations that include a significant 4s orbital component it may be 

surmised that the basis function for that orbital is less than ideal. Likely, it is too compact. The effect of 
a compact orbital is to force the 4s electronic states to be too close to other orbitals, thus raising their 

energy primarily through Coulombic repulsion. 

4.  Conclusion 

The application of the DFT-CI hybrid method related in this dissertation has yielded promising results 

evidenced by the experimentally accurate atomic energy levels shown the preceding calculations. 

Although the energy levels of single atoms have been accurately computed before with tools like 

GRASP2K [31,32], and the computation of multiplet energy levels of multi-atom clusters has also been 
possible, the important contribution of the formalism exhibited here is that it is extendable to treat multi-

atom solids. Therefore, a major advance from this work is that a door is now opened to the computation 

of multiplet energy levels of wave functions that are expressed in terms of Bloch waves instead of just 
atomic orbitals or molecular orbitals as found in most other methods. Along the way, re-derivation of 

the existing interaction integrals in the OLCAO package has led to increased accuracy. For example, re-

deriving the momentum matrix integrals rectified a long-standing problem that hampered the 

computation of the dielectric function and energy-loss function of high-Z atom containing materials. 
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