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This paper proposes a method of establishing the global univalence of a mapping without the 
assumption of continuity and the absence of points of inflection. When the functions are not 
continuous and the points of inflections are present, the use of a Jacobian to establish univalence 
presents some difficulties. The method of establishing univalency, presented in this paper, in turn 
generalizes the theorems on the uniqueness of competitive equilibrium and factor price 
equalization. 
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1. Introduction 

The study of univalent mappings has been considered in economics in the 
context of establishing the uniqueness of competitive equilibrium, the factor- 
price equalization theorem and the generalized Leontief system. Traditio- 
nally, the univalence of a mapping is ensured by examining the Jacobian 
matrix which requires the mapping to be differentiable, e.g. the Jacobian is to 
be a P- (or NP-) matrix [Nikaido (1968)] or quasi-dominant diagonal matrix 
[McKenzie (1959)] or it should satisfy related restrictions [Mas-Cole11 (1970, 
1979, 1985), Pearce and Wise (1973, 1974), Kehoe (1985)]. In an interesting 
development of the literature on univalency, Mas-Cole11 and Kehoe [see 
Mas-Cole11 (1985)] developed the ‘index theory’ using a bordered Jacobian. 
However, like others’ works mentioned above, their approach is also 
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restricted to the analysis of smooth economies with differentiable excess 
demand functions. The differentiability of a mapping is indeed a stringent 
assumption when we recall that in order to prove the existence of a 
competitive equilibrium we take pains to avoid the assumption of continuity 
of excess demand correspondence [Arrow and Hahn (1971)]. Considering the 
initial endowment of an individual at the boundary of the consumption set, it 
is easy to construct a simple example to see the possibility of discontinuity in 
the (excess) demand correspondence. ’ In the context of the factor-price 
equalization theorem, the unit cost functions are not necessarily differentiable 
everywhere in the domain (e.g., when the unit isoquant is the convex 
combination of a set of discrete points). Hence, the study of univalency 
without the assumptions of continuity and differentiability is of considerable 
significance in economics. In the absence of continuity, the Jacobian tech- 
niques do not work in examining univalency.’ Hence, in the absence of 
continuity we need an alternative approach to establish the univalency of a 
mapping. Furthermore, in all results on global univalence, the conditions 
imposed on the Jacobian imply that the Jacobian and all its principal minors 
are bounded away from zero. Vanishing of the Jacobian does not necessarily 
imply degenerate mapping (absence of local homeomorphism). It may 
happen at points of inflection, which is admissible under univalent mapping.3 
Apart from inflection, there is another interesting case where 
vanishing Jacobians may be associated with univalent mappings. For a better 
intuitive understanding, we shall discuss this case in section 5. 

2. The preliminaries 

We shall be working in the real space R”; the representation of dimensio- 
nality n of the space depends on the economic models. For example, XE R” 
represents factor prices in the context of the factor-price equalization 
theorem and commodity prices in the context of competitive equilibrium. 

‘For the definition of consumption set, see Arrow and Hahn (1971). In economic literature, 
discontinuous functions are typically associated with correspondences and, in particular, upper 
semi-continuous correspondences. One important aspect of our approach is that it can deal with 
such complexities. 

‘For the sake of a simple illustration, consider a function y=f(x) such that 

y=60+7x for 01~~20, 

Y= 4x for 2O<x<co. 

The function f(x) has positive derivatives almost eoerywhere inside the domain (hence, trivially 
satisfies the P-matrix criterion) except at x=20 where the discontinuity occurs. Although the P- 
matrix criterion is satisfied almost everywhere, the function is not univalent (e.g., for Y= 172, 
there are two solutions x= 16 and x=43). 

3The noints of inflection alone do not create much problem. In fact, it is trivial to perturb 
away inflection points of univalent mappings. Furthdrmore, in certain cases, the study of 
univalency involving nondifferentiable mappings could be handled by adopting the technique of 
nonsmooth analysis [see Hiriar-Urruty (1981, 1982)]. 
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Following standard practice, for x and x’ in R” the notation x’ 2 x implies 
X~2Xi for all i, i&l,..., n. The notation x’ 2 x implies $2 xi for all i and 
x;>xi for some i. Let Q denote the nonnegative orthant R”. We are 
interested in the following set of equations: 

Yi=fi(Xiy...,Xn), i=l,2 ,..., n. (1) 

In section 3, we assume x, y E Sz, where we discuss the case of nondecreas- 
ing functions. However, the main theorem in this section has been stated in a 
more general context. In terms of economic interpretation, this case is related 
to the factor-price equalization theorem where the factor prices and the 
commodity prices are nonnegative. On the other hand in section 4, both the 
domain and the range of the mapping y =f(x) are assumed to be unres- 
tricted. Again in terms of economic interpretation, this section is related to 
the study of uniqueness of competitive equilibrium. Excess demands may be 
either negative or positive. Similarly, prices may be negative if we do not 
allow for free disposability. If we assume that commodities are freely 
disposable, then the prices (x) are nonnegative. The theorems proved in 
section 4 may also be extended to this case using logarithmic transformation 
of variables. Note, (i) logy, logxc R” where x,ye a, (ii) if y is an increasing 
function in x, it will also be an increasing function in logx. 

Definition 1. Let A = [aij] be a real n x n matrix. A is said to be 

(1.1) Dominant diagonal if JajjJ >CizjJaijl for each j. 
(1.2) Generalized dominant diagonal if there exists a number, dj>O, j= 

n such that d.la..l>C. .d.la..l. 
(1.3) ~t.f&~:~ominant diagh$ if tl;e:‘e Exits d.>O such that d.la..l2Cizjdi 

JffijJ (j=l,..., n), and when a,=0 (give; j ; J and i #j Ifog some set 
of indices J), the strict inequality holds for some jeJ. 

(1.4) P-matrix if all principle minors are positive. 
(1.5) NP-matrix if all principle minors of odd orders are negative and those 

of even orders are positive. 
(1.6) Weak gross substitute (WGS) if ajj 50 and Uij2 0, i#j, i, j= 1,2,. . . , n. 

McKenzie (1959, Corollary of Theorem 4) has established that any square 
matrix which is quasi-dominant diagonal is also a generalized dominant 
diagonal matrix. The importance of the various dominant diagonal matrices 
lies in their applications in a number of economic problems. A matrix having 
positive (negative) dominant diagonal is a P- (NP-) matrix. In general a P- 
or NP-matrix is not a quasi-dominant (or generalized dominant) diagonal 
matrix. However, if a matrix has a specific sign-pattern, e.g. nonnegative (or 
WGS) sign pattern, then a P- (or NP-) matrix is a quasi-dominant diagonal 
matrix. In economics, quite often we are concerned with a Jacobian matrix 
whose sign structure is known. Two such frequently discussed signed- 
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matrices are (i) nonnegative matrices and (ii) WGS matrices. For example, 
the Jacobian of the unit cost functions or the Jacobian of the input-output 
functions is a nonnegative matrix. In general equilibrium theory, the case of 
weak gross substitutes yields a Jacobian of the excess demand functions 
which is a WGS matrix. However, as we have remarked earlier, the 
assumption that the underlying functions are continuous or the principal 
minors are bounded away from zero, imposes some severe restrictions. We 
shall now explain why the univalency of a mapping may be established 
without such restrictions by presenting an alternative approach. 

Let us first investigate some implications of the dominant diagonal 
property which would provide an insight for the alternative approach. Let a 
set of functions (1) be differentiable and increasing with respect to all its 
arguments, i.e., ~j= 6yi/6xj> 0 for all i and j. The Jacobian is obviously a 
positive matrix. The above equations may alternatively be written as 

where tji=Xj+xi, i# j and tii=~i. Note, T =(tjJ EQ for XEO. Clearly, pij= 
(GPi/Stji)=(6fi/6Xj) >O, i# j; and pii=(GPi/Stii)=[(6f,/6xi)-C (6f;/6Xj)] >O 
if the Jacobian [fij] is a positive dominant diagonal matrix. It is now 
obvious that the positive dominant diagonal property of the Jacobian of a 
mapping y= S(x), where x, y E Q, implies that the transformed functions 
yi= Pi(t,i,. . .) tnj), i= 1,2, f..) II, have positive partial derivatives, (6yi/6tj,) > 0, 
for all i and j. 

This observation on the positive dominant diagonal property suggests to 
our intuition that for a certain class of mappings (e.g. when the mapping is a 
set of nondecreasing functions), the continuity assumption is not necessary. 
We may replace the 6yi/6tjiz0 with the property that yi is a nondecreasing 
function in tji (j = 1,. . . , n) even allowing for tjumps’. 

3. Univalency: The case of nondecreasing mappings 

A mapping y =S(x) is said to be univalent if for any assigned y-vector the 
solution vector x is unique. The function fi is increasing with respect to xj if 
./Xx;, *. . , xb) > .m,, *. a, x,) for XJ > xj and xi = xi for all i #j. The function is 
said to be nondecreasing if the strict inequality of fi is replaced by weak 
inequality. 

For a set of increasing functions the positive dominant diagonal property 
of the Jacobian implies that a simultaneous increase in the ith variable and 
decrease of same magnitude in all other variables increases the value of the 
ith function. To capture the essence of this argument for nondecreasing 
functions which are not necessarily continuous, it is instructive to introduce a 
transformation function. 
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Definition 2. Given yi =J(Xi, . . . , x,), i = 1,2,. . . , n, a function Pi is defined for 
tji=xj+xi, i#j and tii=Xi as 

Pi(t,i,. . .) t ii,.. . J,i)= fd(tli- tii), . * * 3 tii, *. . v(t*i- tit)), 

where x E 0 and T = (tji) E l2. 

Although the effect of a change in xj on Pi and fi, where if j, are the 
same, any change in xi alone affects all other arguments of the Pi function. 
Now to examine the effect of an increase in only the ith argument of Pi one 
must simultaneously increase xi and decrease all other xj’s by the same 
amount. 

Definition 3. Let P, denote Pi as a function of tji. The function f; is said to 
be 

(3.1) nonnegative/y responsive iff Pii is nondecreasing; 
(3.2) positively responsive iff Pii is increasing; 
(3.3) sensitive to xj iff Pij is increasing. 

Positive responsiveness (respectively nonnegative responsiveness) requires 
that a simultaneous increase in Xi and decrease in all other Xj’S increases 
(respectively does not change) the value of fi. Sensitivity to Xj says that an 
increase in Xj results in an increase in fi* 

Definition 4. Let y =f(x), X, y E 52, be a set of nondecreasing functions. Let 
Pi and Pij be defined for i, j= 1,. . . , n. Then f satisfies the weakly positive 
dominance condition (WPD) iff for every i= 1,. . . , n, L is nonnegatively 
responsive and there is a sequence i(O), i(l), . . . , i(k), where i(0) = i, such that 
for s=O,l,...,k-1, &, is sensitive to xi(s+l) and &., is positively responsive. 

Note that for every i= 1,. .., n, if J is positively responsive then WPD is 
trivially satisfied. In other words, WPD requires that for every i= 1,. . . , n 
either Pii is increasing or Pii is nondecreasing and there is a sequence i(O), 
i(l),..., i(k), where i(0) = i, such that for s=O, 1,. . . , k- 1, Pi(s)i(s+ 1) and Pi( 
are increasing.4 

For an economic interpretation, suppose that n equations given in (1) is a 
set of unit cost functions where yi is the price of commodity i and xj is the 
price of factor j. Now the nonnegative responsiveness (i.e., nondecreasing Pii) 
requires that both the goods and the factors may be ranked in such a way 
that an increase in xi and an equal reduction in all other xj’s will not reduce 
yi. The chain condition of WPD may be interpreted in the following way: for 
any j in the index set, either the industry j is positively responsive to the 
factor j or there exists a sequence j(O), j(l),. .., j(k) with j(O)= j such that 
the industry j(s) is sensitive to the price of factor j(s+ 1) for s =O, 1,. . . , k- 1 

4The origin of a related type of mapping can be found in network theory. See Duffin (1948) 
where he considered continuous mapping in proving the existence and uniqueness of a solution. 
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and the industry j(k) is positively responsive to the factor j(k). In a 
two-good, two-factor world WPD is trivially satisfied whenever goods and 
factors are ranked in such a way that the price of each good is positively 
responsive to the price of a distinct factor. 

Consider an n x n sign matrix which has a ‘+’ (or 0) sign in the entry of 
ith row and jth column if P, is increasing (or locally constant). The chain 
condition of WPD establishes the connection between the elements of the 
sign matirx which is constructed from the original mapping y =f(x). 
Following is an example of a mapping which satisfies WPD but its Jacobian 
is neither a P-matrix nor a positive dominant diagonal matrix.5 

Example 1. Consider the following set of functions: 

Y,=(x1-1)3+2(x1+xz), 

y,=x, +x2, (2) 

y,=x,+xj, 

It is easy to check that the Jacobian of (2) vanishes whenever x1 = 1; and the 
Jacobian matrix of (2) is neither a P-matrix nor a positive dominant 
diagonal matrix for all x E 0. Obviously, given any (yr, y,, y3) 20, if any 
x=(x1,xZ,x3) satisfies (2), then x is unique. The system of eqs. (2) is a simple 
illustration of a univalent mapping whose univalency cannot be established 
by using the P-matrix or the dominant diagonal matrix technique. However, 
it is easy to see (2) satisfies WPD. Consider the matrix of the Pij functions 
which are nondecreasing. Use the symbol (+) when P, is an increasing 
function and (0) otherwise. The matrix [pij] which corresponds to our 
illustration has the following sign-pattern: 

(3) 

Note, P,, is an increasing function in x1 even at x1 = 1 although the 
derivative of (x1 - 1)3 with respect to x1 vanishes whenever x1 = 1. From the 
sign-pattern of the elements in (3) it is obvious that (2) satisfies WPD. 

Although, in the economic literature, we generally consider the domain of 
a mapping to be either IF?’ or Sz, we shall state the main result of this section 
in a generalized form. Let S be defined as a positively comprehensive set if 

‘The same point can be made trivially with the mapping y=x3. Our example illustrates the 
construction of Cpij] and the use of the chain condition for WPD. 
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S+sZcX6 Now assuming that S is a positively comprehensive set, we 
present the main result of this section: 

Theorem 1. Let y= f (x), x, YE S, be a set of nondecreasing functions satisfy- 
ing WPD. For any assigned vector y if a solution vector x exists then x is unique. 

This result can be extended to semicontinuous correspondences with some 
suitable definitions for increasing and decreasing correspondences. Define a 
correspondence Fi to be increasing in xi if y:>yi for any y:~ Fi 

(x l,...,xj-l,xs,xj+l,..., x,) and any yip Fi(xl,. . . ,x,) where x>>x~. We 
define a correspondence Fi to be nondecreasing with respect to xj in a 
similar way. The reader should note that if Fi is nondecreasing in its 
arguments, then the ‘graph of the correspondence is ‘thin’ (single valued yi), 
almost everywhere in the domian of xj. Intuitively, it should be clear, that if 
the graph were not thin almost everywhere, we would have a problem in 
having any reasonable theorem on univalence. 

If Fix) is a nondecreasing correspondence, then construct a set of derived 
funtions y = f (x) choosing any arbitrary yi E Fi where Fi is multivalued. The 
set of functions y= f (x) is a set of nondecreasing functions (not necessarily 
continuous). It is clear that if F(x) satisfies WPD, so does f(x). Now suppose 
F(x) satisfies WPD and for some YIZ F(x), there exists x, x’ such that 
y = F(x) = F(x’). It is then possible to construct a derived function f(x) - not 
necessarily continuous - such that y= f (x) = f (x’). But we know that a 
derived function of F(x) must also satisfy WPD and by Theorem 1, 
f(x) #f (x’). Therefore, F(x) must be univalent. A similar kind of extension 
to Theorem 2 in section 4 can easily be constructed. 

It is obvious that if f(x), x, YE S, is differentiable everywhere and if its 
Jacobian is a nonnegative matrix which has the property of having a positive 
dominant diagonal, i.e., pii = (hi-xi+ jAj) > 0 for every i = 1, . . . , n, then 
y= f (x) must satisfy WPD. Example 1 shows that the converse is not true. 
In other words, the requirement of WPD, like P-matrix and quasi-dominant 
diagonal matrix, is weaker than the requirement of positive dominant 
diagonal property of the Jacobian matrix. Furthermore, as Example 1 shows, 
the requirement of P-matrix sometime may appear to be more demanding 
than necessary for univalency of a mapping. 

To see the relationship between the quasi-dominant diagonal property of 
the Jacobian and WPD, let us detine variables x: such that di(xr)=xi with 
derivative d:>O, i=l,..., n. Apparently, d$x,* = 6xi. As before one may define 
t$ =xf +x: and tt =$ that allows US to write yi =p:(t:i,. . . ) tf). NOW 
p$ = SPc/Stj*, = Sy,fGxr = dj(6fi/6xj) and pz = Lip:/&; = 6yi/6xr - cj+ Gy,/Sxj* = 

6The comprehensive set in Levhari et al. (1975) may be regarded as a negatively comprehen- 
sive set. 
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d:(6f;,/6~,)-C~,~d~(6J;/6x~). If the Jacobian of a mapping y=f(x) has a 
positive generalized dominant diagonal with the choice of weights as 
&I,&,..., d”, then pt >O. It is clear that the positive generalized dominant 
diagonal property of the mapping y =f(x), x, ye S, implies that the trans- 
formed function yi=p:(tZ,. . . , tf) has positive partial derivatives, 6y,/&i*, > 0 
for all i, j and (t$) E: S. Now we make the following remark. 

Remark 1. Let y = f(x), x, y E S, be a set of nondecreasing and differentiable 
functions. If the Jacobian of j(x) is a positive generalized quasi-dominant 
diagonal matrix with weights d, > 0 (i = 1,. . . , n), then there exist variables XT, 
where xi = d,x,*(i = 1,. . . , n), such that y=g(x*) satisfies WPD. The converse is 
not true. 

Proof: Since we are dealing with square matrices, by McKenzie’s corollary 
[133, a quasi-dominant diagonal matrix is also a generalized dominant 
diagonal matrix. Therefore, we have to show that if the Jacobian of y= f(x) 
is a positive generalized dominant diagonal then y=g(x*) satisfies WPD. 

Define tj*i = XT +x: = xi/di + xjldj and t$ =x; =xi/di. Then SP:lSt,*, = 
6yi/6xT =di(byJbxj) 20, and sP,*/hte =hyi/hx: -Cjzi 6yi/6xi* =di(6yi/6xj) - 
GZ i dj(6yi/6xj) > 0. S ince the Jacobian of y=f(x) satisfies the positive 
generalized dominant diagonal property, the above implies that y expressed 
as a function of x* satisfies WPD trivially (i.e., we do not have to invoke the 
chain condition of WPD). 

Example 1 shows that the converse is not true. Note, the Jacobian of the 
set of functions of the example remains a singular matrix for any strictly 
monotonic transformation of the variable x. 

4. Univalency: The case of nonincreasing mappings 

So far we have considered the nondecreasing functions and have estab- 
lished the relationship with the nonnegative Jacobian matrices used in the 
international trade theory and in the generalized Leontief model. In the 
context of competitive equilibrium analysis, the mappings we encounter, i.e., 
the excess demand (supply) functions, are neither nondecreasing nor nonin- 
creasing with respect to all its arguments. In the well-known case of ‘weak 
gross substitutes’ (WGS), the excess demand functions are nonincreasing with 
respect to own-price and nondecreasing with respect to other prices. 

Let yi=fi(xi ,..., xn), i=l,..., n. Throughout this section we assume that fi 
is nonincreasing with respect to Xi and nondecreasing with respect to Xj, 
j#i. To deal with this class of mappings, it is instructive to introduce the 
following transformation function. 

Definition 5. Given yi=f;(x,, . . . ,xJ, i= 1,2,. . . , n, a new function Ri, is 
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defined for tji=~i-~j, i#j and tii=~i as Ri(t,i,. . . , tii,. . . , tni)= 
fi((tii-tli)v. *. 7 tii,-. . ,(tii- tni))- 

Definition 6. Let Rij denote Ri as a function of tjC The function fi is said to 
be 

(6.1) nonpositively responsive iff Rii is nonincreasing, 
(6.2) negatively responsive iff Rii is decreasing, 
(6.3) sensitive to Xj iff R, is decreasing. 

Negative responsiveness (respectively nonpositive responsiveness) requires 
that a simultaneous increase in all xts by the same amount decreases 
(respectively does not change) the value of A. Once again, sensitivity to Xj 
says that an increase in Xi results in an increase in fi. 

Definition 7. Let y = f(x), x, y E R”, be a set of functions such that for each i, 
A is nonincreasing in xi and nondecreasing in xi for all j #i. Let Ri and Rij 
be defined for i, j=l,..., n. Then f satisfies the weakly negative dominance 
condition (WND) iff for every i = 1,. . . , n, fi is nonpositively responsive and 
there is a sequence i(O), i(l),. . . , i(k), where i(0) =i, such that for s= 
O,l,..., k - 1, f;(,, is sensitive to Xi(s+ 1I and fi(k) is negatively responsive. 

Once again note that for every i = 1,. . . , n, if fi is negatively responsive then 
WND is trivially satisfied. In other words, the WND condition requires that 
for every i = 1,. . . , n either Rii is decreasing or Rii is nonincreasing and there 
is a sequence i(O), i(l),..., i(k), where i(0) = i, such that for s=O, 1,. . . , k- 1, 

Ri(s)i(s+ 1) and Ri(k)i(k) are decreasing. In the context of WND the following 
result is parallel to Theorem 1.’ 

Theorem 2. Let y = f (x), x, y E KY’, be a set of functions such that for each i, fi 
is nonincreasing in xi and nondecreasing in xi for all j#i. Let f satisfy WND. 
For any assigned y if a solution vector x exists then x is unique. 

Our next theorem establishes that WND is both necessary and sufficient 
for global univalency of nondecreasing mappings which satisfy nonpositive 
responsiveness. This result in turn shows further the importance of chain 
relation that we have used in defining WND. 

‘Following the method of constructing piis from pi(.), construct rij)s from Ri, i= 1,. .,n 
such that 

where, by WND, rij_10 for i, j= 1,. , n. The rest of the proof is very similar to Theorem 1 
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Theorem 3. Let yi= fi(x,, . . .,x,), i= 1,. . . , n, be a set a functions which are 
nonincreasing in xi and nondecreasing in xj for j#i. Let fi (i = 1,. . . , n) be 
nonpositively responsive. Then y = f (x), x, y E KY’, is univalent if and only if f(x) 
satisfies WND. 

Once again, following the proof of Remark 1, the observation below is 
immediate. 

Remark 2. Let y= f (x), x, YE [w” be a set of differentiable mappings whose 
Jacobian is a WGS. If the Jacobian of f(x) is a negative quasi-dominant 
diagonal matrix with weights di> 0 (i = 1,. . . , n), then there exist variables xi*, 
where xi*=dixi (i=l,..., n), such that y =g(x*), x* E Iw”, satisfies WND. The 
converse is not true. 

In general a set of functions may not all be nondecreasing as required by 
WPD or satisfy a similar type of restriction required by WND. However, if 
these functions can be transformed to satisfy WPD and WND by any 
monotonic transformation of the variables, then univalency holds. For 
example let 

Xi=Yi(qi), i=l,2 ,..., n, (4) 

such that Yi is strictly monotonic and unbounded. Substituting (4) in (1) we 

get 

Yi=fr(y’1(41),...,yY,(q,))=Fi(q1,..,q,), i=LT...,n. (1’) 

Since (1) may not be continuous, (1’) is not necessarily continuous. Now the 
following observation is immediate. 

Remark 3. If (1’) satisfies WPD or WND then (1) is a univalent mapping. 

As explained in section 3, Theorems 2 and 3 may be easily extended to 
cover the cases of ‘thin’ upper semicontinuous correspondences. 

5. Economic applications 

Much of the discussion of uniqueness in the economic literature was 
originally motivated by the theory of factor-price equalization in internatio- 
nal trade theory. In the general model of two competitive economies with no 
joint production, constant returns to scale production functions, full employ- 
ment and equal number of commodities and factors, commodity prices (pi’s) 
and factor prices (wI)s) in each country satisfy the relation p = c(w), p, w E 0. 

The factor-price equalization theorem establishes that if certain conditions 
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are fulfilled by the structure of the cost functions c(w), then given any 
commodity price vector (p), the factor price vector (w), if it exists, must be 
unique. Samuelson (1953) sought to figure out these conditions by examining 
the Jacobian of the mapping c(w). He thought of a sufficient condition which 
required that for any permutation of the rows and columns of the Jacobian, 
all its leading principle minors are nonvanishing. With a counter-example, 
Gale and Nikaido (1965) showed that this proposition paid insufficient 
attention to the domain of the mapping. They established that if the 
Jacobian has the property of P-matrix, then the factor-price equalization 
theorem holds. We have shown earlier (by giving an example) that a 
mapping has a unique solution although its associated Jacobian is neither a 
P-matrix nor a dominant diagonal matrix. Apart from the case of inflection, 
there is another interesting case of univalent mapping with vanishing 
Jacobian. Consider unit isocost curves drawn on the factor-price space. If the 
curves meet tangentially (the case of factor intensity reversal), the factor-price 
equalization theorem does not hold. On the other hand, it is possible that 
the curves always intersect but at the point of intersection two curves have 
the same slope. In this case the vanishing Jacobian does not affect 
univalency. In the former case, in the neighborhood of tangency, there must 
exist w and w’ such that eq. (6), presented in the next section, holds with the 
matrix of coefficients being singular. In this case the WPD condition is 
violated. In the second case, where univalency holds, the matrix of coeffi- 
cients as in eq. (6) is nonsingular and the WPD condition holds. This shows 
that the WPD condition is more helpful in such cases than the Jacobian 
conditions. Now we state the factor-price equalization theorem in a suitable 
form. 

Proposition 1 (factor-price equalization). Let p=c(w), w,p~Q represent the 
relationship between commodity prices and factor prices, i.e., a set of unit cost 
functions. Let c(w) be a nondecreasing mapping. If c(w) satisfies WPD 
condition, then for any assigned commodity price vector (p), there exists a 
unique factor price vector (w). 

Now, if the vectors w’ and p’ are the relative prices of factors and 
commodities (respectively relative to the price of the factor j and the price of 
commodity k) then ci(w’)‘s are not required to be linearly homogeneous and 
the Jacobian matrix of the system is not necessarily always nonnegative. In 
that case the use of the technique of P-matrix or dominant diagonal matrix 
requires knowledge beyond the sign-pattern of the Jacobian. However, 
utilizing Remark 3 together with Theorem 1, the following result is 
immediate. 

Proposition 2 (relative factor-price equalization). Let p’ = c(w’), w’, p’ E 52, 
represent the relationship between the relative commodity prices and the 
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relative factor prices. Zf there exists a mapping w’= Y(q) which satisfies (4) 
such that p’=c(w)‘.Y = F(q) is a nondecreasing mapping and satisfies WPD 
condition then for any assigned relative commodity price vector (p’), there exists 
a unique relative factor price vector (w’). 

The importance of the study of univalent mappings in economics has been 
established above all by the people who are interested in proving the 
uniqueness of competitive equilibrium. Let z: = zfr(p,, . . . , pn + t), i = 1,. . . , n + 1, 
be a set of excess demand functions of a competitive economy, where zr 
stands for the excess demand for commodity i and (pl,. . .,pn+t) represents 
the vector of commodity prices. It is well known that such excess demand 
functions are homogeneous of degree zero in prices. 

A set of excess demand functions, zr(p,, . . . ,p.+ 1), i= 1,. . . , n+ 1, is said to 
satisfy the property of weak gross substitute if and only if each zr is a 
nonincreasing function in pi and nondecreasing function in pj for j= 
1 ,..., n+l, and j#i and PER”+‘. Then an economy is said to be in 
competitive equilibrium whenever for a price vector PE (W”+l, z*(p) =O. Now 
assuming p n+l = 1, let us normalize the price vector. The competitive 
equilibrium corresponding to a set of normalized excess demand functions, 

zitP17.. . ,p,l, i=l,..., n, is said to be unique if the set of n equations, 
zi(Pl,. . * ,p,) =O, has a unique solution vector. Then, following the technique 
in establishing Theorem 2, transform the normalized excess demand func- 
tions to 

zi=Ri(t,i )...) “, , r 4 i= l,..., n, 

where tji =pi -pj and tii =pi. Since Ri satisfies the property of weak gross 
substitute and also since t>ls are normalized, R,, must be a nonincreasing 
function. Now the result below is immediate. 

Proposition 3. Zf the set of excess demand functions of a competitive economy, 

$(Pl, . . . , P~+A i=L..., n+ 1, satisfzes the property of weak gross substitute, 
then the normalized mapping, zi(pl,. . . , p,), i = 1,. . . , n, is univalent if and only if 

.dPl,..., pJ satisfies WND. 

6. Proof of the theorems 

Before proving the univalency results first consider a set of nondecreasing 
functions yi=~(X, )...I X.), i= l,..., n, which satisfies WPD. Now we describe 
the procedure of constructing an n x n matrix in pii’s corresponding to the 
given set of mappings. For any assigned values yi, yZ,. . . ,y, if there exist two 
solution vectors x and x’ define tii=xi, tji=(xj+xi) for j fi and tii =xi, 
tii = (xJ + xi) for j # i. 

First consider the case for t,, I til. Then, by definition, 
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O=P,&, ,...,tbl)-Pl(tll,...,tnl) 

-Pl(~ll~h?&l ,...,tbt)l+...+[pl(tll,..., (n-l)l~GI) t 

--P,(h, ,...J”Jl. 

Define, for tJ1 # tjl, 

(5) 

Plj=CPl(tll,...,tti-1)1,t;l,...,tal)-pl(tll,...,tjl,t;+,),’,...,thl)l.d 

where d=(t;j-tji)-‘; otherwise, for tJ1=tjl, plj=l. Since t>,2t;,2t,1 for all 
j, plls are defined for x, y E S. 

Now consider the case for t, 1 2 t; 1. Define, for til # tjl, 

Plj=CP,(t;,,...,t;j-l)l,tjl,...,tnl)-Pl(t;1,...,tljl,t(j+l)l,...,t”l)l.d*, 

where d* =(tjl - tj,)-‘; otherwise, for til = tjl, plj= 1. Now rewrite (5) as 

O=CP1@11 ,...,4&PlVl1 ,...,cJ 

+ ~-~+L-Pl(hi,~; 1,...,tbl)-pl(t;,,...,t’,,)l. 

By WPD, plj>O, If we define Gx=x’-x, then tJ1 -tjl =6xj+6xl for all j# 1 
and t; 1 - t 1 1 =6x1. Using the definition of p1 j, (5) may be rewritten as 

o=p~~6x~+p,,(6x,+6x,)+~~~+p,,(6x,+6x,). (5’) 

Similarly pi;S for all i, j= 1,2,. . . , n, may be defined, which following the 
construction of (5’) from (5) gives 

(6) 

0=pn~(GX~+8X,)+*.. + P"," - l(h - 1+ w + P”“k 
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Alternatively, we can write (6) in vector matrix form as 

0 

#I 0 = 
0 

n 

j$lPlj P12 .*f Pin 

P21 gP2j .f* P2n 

P.1 P”2 f*. j$l Pnj 

(6’) 

Note that the matrix of the right-hand side would be equivalent to the 
Jacobian of the mappings yi= fi(xl,. . . , x,,), i = 1,. . . , n, whenever for each i, fi 
is nondecreasing and differentiable with respect to all its arguments (i.e., 
Sf;/Sxj 2 0 for all i and j), since for i, j = 1,. . . , n, (8fi/6xj) = pij for i # j and 

C(a~lax,)-Cj,i(bf;-lBxj)l =Pii. 

Proof of Theorem 1 

To the contrary, suppose for some assigned value of y, the solution vector 
x exists and is not unique. Assume, x and x’ are two solution vectors. 
Construct pi;s in the way explained earlier. By definition, (6) is true. We shall 
complete our proof by demonstrating that, 6x, =6x, = . . . = 6x, =O. 

Suppose 6Xi #O for some i. Without any loss of generality assume 6X, >O. 
We shall show that there must exist some 6xj such that )6xjJ > IBXil. Consider 
the ith equation of system (6): 

If pii >O, piiSxi>O. By WPD, Pij~O. Hence there exists a negative 6Xj such 
that 16xj( > 16xi(. If pii=O, by WPD, there exists an element a in the index set 
such that P, is an increasing function of taj which also implies that P, 
is an increasing function of x,. If 6xi#6x, then pi,>O. Suppose 6Xi< -6x,. 
Obviously our search for a 6xj, such that 18xjl > IBXil) ends with the choice of 
j= a. Again if 6xi > -6x,, since pii 6Xi =0 and Pia(GX. +&) >O, by (7) there 
exists some 6xj which is negative and (6xjl > 18Xil. 

The problem arises when pii= and -6x, =6xi. Then consider the relation 
(a) of (6): 

Again, by WPD, either there exists a positive 6Xj such that (6xj(> (SX~(=(&~( 
or there exists b in the index set such that 8xb is positive and 16x,( =(6x,( = 

Review of Economic Analysis 4 (2012) 89-104

Originally published in Journal of Mathematical Economics (1994) 23(5): 435-450. 
 
                                                                 102

 



16Xi(. In the former situation our search for a 6Xj such that 16xjI > 18~~1 ends. 
In the latter situation we proceed to consider the relation (b) of (6): 

By WPD this search must end. In case of worst luck we have to continue till 
we reach a situation where, 18~~1 =18xgl = 0.. =(6x,1 =1&J. By WPD again 
pke > 0. Also, 

Depending on whether 6x, is positive or negative now there must exist a 
negative or positive 6xj such that (6XjJ > 16x,( = ... = lBxil to satisfy the above 
equation. 

We have arrived at the conclusion that if bXi>O for some i, there exists 6xj 
such that 18xjl>18xil. It . IS clear from the nature of our argument that if 
6xi<O from some i, there would also exist some 6xj with 16xjl > 16~~1. NOW, 
suppose 6x=x’-x#O. Consider a 6x, such that (6x,1 2 (6X,1 for all i. We 
have just shown above that WPD requires the existence of a 6x, such that 
]BXJ > 16x,,,/ which contradicts the choice of 6x,. Therefore, 8x=x’-x =O, 
which proves our theorem. Q.E.D. 

Proof of Theorem 3 

Given Theorem 2, we have to establish only the necessity part. Suppose, 
WND, is not satisfied in the cell (x,f k) where k is a positive n-dimensional 
vector (k,, . . . , k,). Since f(x) is continuous almost everywhere, pick up 
x c(xO + k), such that f(x) is continuous in the neighborhood of x, the chain 
condition breaks down. We can divide y= f(x) into two sets of functions. 
The set I contains those functions which satisfy the chain condition and the 
set J contains those functions which do not satisfy the chain condition. Note, 
for ie J, Pii and Pij (i# j and j+J) are locally invariant in the neighborhood 
of X. Therefore, in the neighborhood of X, we may write, yi = Pi(tji,. . . , tni), 
. . z =J, . . . , n, where tii = xi and tki = xi - xk. Since Pi is invariant with respect to 
tii, for i E J, and tki is the difference of two terms, yi (i E J) remains invariant if 
we add a small value 6 >O to each element of the solution vector. That is, if 
xi (i EJ) is a solution vector for yi= f(xj,. . .,x,), in J, then (xj + 6) is also a 
solution vector. Let xi (i E I) be such that y, = (xi, xi,. . . , XJ _ 1, xj + 6. . . , x, + 6) 
for iE J. Remember, 6 is an arbitrary but small positive number and yi is a 
continuous function in the neighborhood of x satisfying WND with respect 
to the variables (x 1,. . . ,xj- 1). Hence, the solution xi (i= 1,. . . , j- 1) exists and 
satisfies a vector-matrix relationship similar to eq. (6’) in section 3. It is clear 
that if x=(x~,...,x,) is a solution vector then x’=(x;,...,~J_~, 
xi+&..., x, + 6) is also a solution vector for y = f(x). Q.E.D. 
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