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In this paper we propose a new latent class/mixture model (LCM) to determine whether 
firms behave like profit maximizers or just cost minimizers when there is no additional 
sample separation information. Since some firms might be maximizing profit while 
others might minimize cost, the LCM with behavioral heterogeneity can be quite useful. 
Estimation of the LCM amounts to mixing a cost minimization and a profit 
maximization model. Using the U.S. airlines data we find that after deregulation about 
15% of the airlines are found to be consistent with profit maximizing behavior.  
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1    Introduction 

Cost minimization and profit maximization behavioral assumptions are most widely used in 
microeconomic theory to analyze firm behavior. However, in practice researchers do not 
know whether every firm in the sample maximizes profit or minimizes cost. In this paper we 
address this problem via a latent class modeling approach in which some producers minimize 
cost while others also maximize profit, and probabilities of being in these groups are made 
functions of covariates. This approach does not require researchers to know which firms 
maximize profit. The model helps us to determine not only which firms behave like profit 
maximizers but also what differentiates them from firms that failed to maximize profit. The 
new technique is illustrated using data on US airlines. The empirical findings suggest that 
very few units maximize profit.  
 

                                                 
∗ Kumbhakar: Department of Economics, State University of New York – Binghamton, 
kkar@binghamton.edu. Tsionas: Department of Economics, Lancaster University Management School 
and Department of Economics, Athens University of Economics and Business,  
m.tsionas@lancaster.ac.uk  
©  2016  Subal C. Kumbhakar and Mike G. Tsionas. Licensed under the Creative Commons 
Attribution - Noncommercial 3.0 Licence (http://creativecommons.org/licenses/by-
nc/3.0/. Available at http://rofea.org. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Waterloo Library Journal Publishing Service (University of Waterloo, Canada)

https://core.ac.uk/display/270172057?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Review of Economic Analysis 8 (2016) 125-134 

 126

2    The classical optimization problems 

We start with the standard cost function approach1 that is based on the assumption that 
producers minimize cost, given output and input prices. In this approach one specifies a cost 
function and derives the cost share equations (input demand functions) using Shephard’s 
lemma. Usually a translog cost function is chosen to represent the underlying production 
technology. The corresponding cost system (Christensen and Greene (1976)) is then written 
as  

iiii vypCC 1)ln,(lnlnln +=  

iiii vypSS 211 )ln,(ln +=                                   (1) 

  

MiiiMiM vypSS += −− )ln,(ln1,1  

where iC  is total cost, iMi SS ,11 ,..., −  denote the 1−M  cost shares2, pi  is the 1×M  vector 

of input prices, yi is the 1×Q  vector of outputs, and ],...,[ 1 ′= Miii vvv  represents the error 

vector. The subscript i ( Ni ,...,1= ) indicates producers/firms. If ),0(~ ΩMMi INv  where 

Ω  is the MM ×  covariance matrix, the joint density of the cost system in (1) can then be 
written as 
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where  

],...,,[ln ,11 ′= − iMiii SSCZ  

and  

[ ]′−−−= −− )ln,(ln...,),ln,(ln),ln,(lnlnln);( 1,111 iiMiMiiiiiiii ypSSypSSypCCZv θ  

                                                 
1  Beard, Caudill and Gropper (1997) considered mixing cost functions to study differences in 
technology across regimes. They assumed cost minimizing behavior for all observations but allowed the 
technology to differ across regimes. See also Orea and Kumbhakar (2004) for a stochastic cost frontier 
application. 
2 One cost share is dropped to avoid the singularity problem. 



KUMBHAKAR, TSIONAS    Empirical Model of Behavioral Heterogeneity 

 127

Under profit maximization, we have Q  additional choice variables – the optimum values of 
which are to be obtained from the Q  additional conditions, viz., jj yCq ∂∂= /  Qj ,...,1= ), 

where qj is the price of output yj. These first-order conditions for profit maximization state 
that output allocation is optimal when output price equals marginal cost. These equations can 
be rewritten as  

( ) ijMiijijiiji vypecyqCy ,)ln,(lnlnlnlnln +++−= , Qj ,...,1= , Ni ,...,1=         (3) 

where 
ji

ii
iiji y

ypCypecy
ln

)ln,(lnln)ln,(ln
∂

∂=  is the output elasticity. Under the behavioral 

assumption of profit maximization, these additional conditions in (3) are to be appended to 
the cost system in (1) so that we have a complete system of QM +  equations for QM +  
endogenous (choice) variables ( M  inputs3 and Q  outputs).  Another difference with the cost 

system in (1) is that the present system for the profit maximizing model consisting of (1) and 
(3) can no longer be estimated using the SUR technique.4 This is because the endogenous 
variables (especially outputs) appear on both sides of the equations in (1) and (3). The 
endogenous variables of the profit system in vector form are: 
 

[ln , , ln ]i i i iC S y′ ′ ′Ξ = , 

where 

],...,[ ,11 ′= − iMii SSS , and 1ln [ln ,..., ln ]i i Qiy y y ′=  

Let: 

( )Σ′= +++ ,0~],...,[ ,1 QMQMiQMii INvvv  

where Σ  is an )()( QMQM +×+  covariance matrix. We have a nonlinear simultaneous 
equation model that can be written in the form iii vf =ΨΞ );,( θ , Ni ,...,1= , where iΨ  

represents the vector of predetermined variables (prices, and possibly other quasi-fixed 
factors or shift variables) and kR⊆Θ∈θ  is the parameter vector. The above notation is 
appropriate for an implicit nonlinear system.  
                                                 
3 The cost system in (1) treats the cost and (J-1) cost shares as endogenous variables. This is equivalent 
to treating the inputs as endogenous.  
4 Equation (3) is often written as ,/ji ji ji i ji M j iR q y C ecy v += = +  and then jointly estimated together 

with equation in (1) as a SUR system. This is wrong because the SUR equations do not recognize that y, 
appearing on the right hand side in these equations, is endogenous. 
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The joint density function of endogenous variables is  
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where 
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Jacobian of the transformation, 
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where ],...,[ 1 ′= Qiii ecyecydiagecy , ]/1,...,/1[ 1
1 ′=−

Qiii ecyecydiagecy , and Q1  is the 

1×Q  unit vector.  

3    Behavioral latent class model 

Kulatilaka (1985) developed tests that can be used to test the significance of departures from 
the first order condition that price equals marginal cost at each data point. The test developed 
by Schankerman and Nadiri (1986). This test determines whether producers (as a whole) 
maximize profit or simply minimize cost.  

The alternative approach explored here is to assume that every producer is potentially a 
profit maximizer (with some probability). The probability of being a profit maximizer is 
specified by a logistic function that depends on some exogenous variables. This gives us a 
finite mixture/latent class model (McLachlan and Peel (2000)), where the density of 
endogenous variables is given by 

);()1();();( θπθπθ iZiiii Zpff
ii

−+Ξ=Ξ Ξ , Ni ,...,1=                       (6) 

where iπ  is the probability that the i th firm behaves as if it were profit maximizing. Recall 

that iΞ  includes log cost, shares, and log outputs, and iZ  includes log cost and shares, 

exclusively. So iZ  is a subset of iΞ . However, a formal comparison of ( ; )
i if θΞ Ξ  and 

( ; )
iZ ip Z θ  is not possible since they refer to different endogenous variables. It is, however, 
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quite reasonable to compare the cost minimization density ( ; )
iZ ip Z θ  with the implied cost 

minimization density of the profit maximization system, that is, ( )| ln ,
i

CPM
Z i ip Z y θ . The 

density can be written as 
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Although the numerator is available from the profit maximization problem, the denominator 
is  

( )ln ln ; ( ; )
Mi iy i i if y f dZθ θΞ= Ξ  

Recall that 
 
ln

i
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i

Z
y
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 and, therefore, we have to integrate log cost and shares out of the 

profit maximization system (PMM).  
To compute the implied cost minimization density, we have to apply numerical integration 

to (6) with respect to iZ s. The integral cannot be computed by “completing the square” as 

usual, because of the nonlinearity of ( , ; )i i iv θΞ Ψ  with respect to iZ s. The nonlinearity is 

caused by the term ln iecy  in (3).  

Given a set of predetermined variables, iW , we parameterize the log-odds ratio in favor of 

profit maximization as follows: 

δ
π

π
i

i

i W ′=
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where hR⊆Δ∈δ  is a vector of parameters. Using (6) we can formulate the log-likelihood 
function 

1 1

1
ln ( , , , ; , , ) ln ( ; ) (1 ) ( ; )

i i

N
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i

L W f p Zθ δ π θ π θ− −
Ξ

=

 Σ Ω Ξ Ψ = Ξ + −    (7) 

We can maximize this function to obtain FIML estimates of all parameters. Straightforward 
application of Bayes' theorem yields an estimate of the posterior probability that the i th firm 
maximizes profit: 
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where the FIML estimates were substituted for θ  and δ , and 
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These posterior probabilities are firm-specific even when iπ  is a parameter. Ideally, we 

would like to have iQ  equal to either zero or one (or nearly so) so that the choice in favor or 

against profit maximization is more or less clear. Empirically, we cannot always expect that 
and therefore one has to use a cut-off probability (e.g., iQ > .5) to determine whether a firm 

falls in the profit maximizer group or not.  

4    Empirical application 

To illustrate the technique proposed in the preceding sections, we use an unbalanced panel 
data set (for details see Baltagi et al. (1998)) consisting of annual observations on the 
domestic operations of 23 US airlines over the period 1971-1986. This gives us a total of 268 
observations. Variable inputs are: labor ( L ), materials ( M ) and fuel ( F ). Capital ( K ) it 
treated as a quasi-fixed factor. To control for firm-heterogeneity, we also include 22 airline 
dummies in the cost function. In the log-odds ratio, we used a constant term, a deregulation 
dummy and 22 airline dummies. From the estimated coefficients in the log-odds equation, we 
found that (i) all the coefficients are statistically significant, (ii) deregulation has a statistically 
significant and positive impact upon the odds in favor of profit maximization, and (iii) airlines 
seem to differ substantially in their individual log-odds in favor of profit maximization.  

Mean values of scale economies are found to be 0.56, 1.037 and 0.552 for the CMM, the 
PMM and the LCM, respectively, with standard deviations 0.06, 0.301, and 0.130. Since the 
Schankerman-Nadiri test rejects the overall profit maximizing behavior, results from the 
PMM might be misleading. To highlight these differences and examine their behavior before 
and after deregulation in 1977, we report kernel density plots of output elasticities for these 
three models (before and after deregulation) in Figures 1(a) and 1(b). It can be seen from 
these figures that distributions of output elasticities are significantly different from one 
another. The distribution from the cost system is extremely tight, while for the profit system it 
is just the opposite. The results from the mixture model are in between. Furthermore, the 
qualitative nature of these distributions has not been changed after deregulation.  
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The mean technical change from the CMM, PMM and LCM are found to be -0.029, -
0.036, and -0.028, respectively, with standard deviations 0.005, 0.003, and 0.001. Thus, on 
average, technical progress took place at the rate of 2.8% to 3.6% per annum. To focus more 
on these differences, kernel density estimates of airline-specific measures of technical change 
are reported in Figures (1c) (before regulation) and (1d) (after deregulation). Although 
deregulation is not found to have a large impact but differences across models seem to be 
substantial. The spread of technical change distribution is found to be the highest for the 
CMM (opposite of output elasticity distribution) followed by the PMM. The distribution is 
very tight for the LCM. These results are true for both pre- and post-deregulation regimes. 

We prefer the LCM because it allows us to estimate the same technology irrespective of 
whether an airline maximizes profit or not. In other words, the LCM can impose the 
constraint of common technology irrespective of behavioral assumptions. Although the mean 
technical change from the PMM is not very different from the other two models, distributions 
of technical change obtained from the PMM, CMM and the LCM are quite different.   

From estimated posterior probabilities (see also Figure 2) only the following observations 
seem to favor profit maximization behavioral assumption: BR (1981), CN (1984-1986), ML 
(1982-1986), NW (1972-1986), PA (1986), PO (1986), and WN. Only NW and WN 
consistently behaved like profit maximizers. The posterior probability in favor of profit 
maximizing behavior increases somewhat (from about 8% to 15%) after the deregulation but 
the bulk of airlines remain cost minimizers. Thus, we do not have clear evidence that 
deregulation changed economic behavior of the airlines, viz., from cost minimization to profit 
maximization. 

5    Conclusions 

In this paper we proposed a new latent class/mixture model (LCM) to determine whether 
firms behave like profit maximizers or just cost minimizers without sample separation 
information. The Schankerman and Nadiri (1989) test gives an overall conclusion of either in 
favor or against profit maximization for all firms in the sample. In practice some firms might 
be maximizing profit while others might minimize cost. In such a situation the LCM with 
behavioral heterogeneity can be quite useful. Estimation of the LCM amounts to mixing a 
cost system with a profit system in such a way that the technology is the same for all firms 
irrespective of their behavioral assumptions. Estimates of the log-odds ratio are used to 
predict the posterior probability of U.S. airlines maximizing profit or minimizing cost. We 
find that after deregulation about 15% of the airlines are found to be consistent with profit 
maximizing behavior. In other words, we do not find evidence that all airlines were 
maximizing profit, especially after deregulation in 1978.  

 



Review of Economic Analysis 8 (2016) 125-134 

 132

References 

Baltagi, B.H., J.M. Griffin, and S.R. Vadali (1998), Excess capacity: A permanent 
characteristic of US airlines? Journal of Applied Econometrics 13, 645-657. 

Beard, T., S. Caudill, and D. Grooper (1997), The Diffusion of Production Processes in the 
U.S. Banking Industry: A Finite Mixture Approach, Journal of Banking and Finance 21, 
721-740.  

Christensen, L. R., and W. H. Greene  (1976),  Economies of Scale in U. S. Electric Power 
Generation, Journal of Political Economy 84:4, 655-76. 

Kulatilaka, N. (1985), Tests on the validity of static equilibrium models, Journal of 
Econometrics 28, 253-268. 

McLachlan, G.J. and D. Peel (2000), Finite Mixture Models,  John Wiley & Sons, New York.. 
Orea, L. and S.C. Kumbhakar  (2004), Efficiency Measurement using a Latent Class 

Stochastic Frontier Model, Empirical Economics, 29, pp. 169-183. 
Schankerman, M., and M.I. Nadiri (1986), A test of static equilibrium models and rates of 

return to quasi-fixed factors, with an application to the Bell system, Journal of 
Econometrics 33, 97-118. 

 



Review of Economic Analysis 8 (2016)  125-134                                               1973-3909/2016125 

133 

 

Figure1 : Cost elasticity and technical change   
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Figure 2: Probability of profit maximization 

 


